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Resumen

En las épocas de glaciación, las masas de hielo llegaron a ocupar el 30% de la su-

perficie terrestre. En la actualidad cubren un 10% de la misma y, además, otro 10%

está permanentemente congelada. Aproximadamente la mitad del suelo del hemis-

ferio norte está cubierto por nieve y hielo durante el invierno (ver Figura 1). Los

glaciares almacenan más del 75% del agua dulce del mundo y proporcionan agua

de riego para algunas de las zonas más pobladas del planeta. En la actualidad, los

grandes mantos de hielo (ice sheets) de Groenlandia y la Antártida contienen 99% del

hielo existente en la tierra. Estos grandes mantos de hielo están en zonas remotas,

alejadas de toda actividad humana. Por ello, no sorprende que los glaciares pequeños

de las zonas montañosas fuesen los primeros en llamar la atención debido a su ubi-

cación cercana a zonas habitadas por el hombre. Durante los últimos 150 años, los

glaciares y la Glacioloǵıa han centrado la atención creciente de la comunidad cient́ıfica

internacional, pero ya podemos encontrar descripciones de glaciares en la literatura

islandesa del siglo XI. En Paterson [69], por ejemplo, se pueden encontrar detalles

sobre la evolución histórica de la investigación en Glacioloǵıa.

Las investigaciones recientes se centran más en los mantos de hielo que en los

glaciares. Esto se debe principalmente a que la amenaza del calentamiento global se

cierne sobre el mundo y los mantos de hielo son reconocidos como el mayor compo-

nente en el sistema climático después de los océanos [57]. El gran volumen de agua

contenida tanto en los glaciares como en los mantos de hielo representan un peligro

potencial para las actividades humanas en las zonas costeras. El colapso de la capa

de hielo de la Antártida Occidental puede conllevar un aumento del nivel de los mares
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Figure 1: Northern Hemisphere in February 2004 [75]

y océanos de 7 metros en, quizás, menos de un siglo, y si este colapso es seguido por

el derretimiento de la capa de hielo de la Antártida Oriental, entonces el nivel del

mar podŕıa incrementarse otros 50 metros [57].

No es dif́ıcil encontrar otras aplicaciones para la Glacioloǵıa. Las personas que

viven en los páıses nórdicos y en tierras montañosas a veces están tan cerca de los

glaciares que sus vidas se pueden ver gravemente alteradas si esos glaciares avanzan

de forma similar a como se han retráıdo durante el siglo pasado en muchas partes del

planeta. El avance del Mer de Glace en Francia presentó un problema de este tipo

durante la Little Ice Age [47].

Existen poblaciones próximas a arroyos que drenan lagos represados por glaciares.

El derretimiento de ese tipo de presas de hielo ha dado lugar a algunas de las mayores

inundaciones archivadas en los registros geológicos y a la devastación de comunidades

enteras en los Alpes y en el Himalaya [72].

El Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y la Orga-

nización Meteorológica Mundial (OMM ) establecieron un Grupo Intergubernamental
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de Expertos sobre Cambio Climático (IPCC ) para proporcionar al mundo una visión

cient́ıfica sobre el estado actual del cambio climático y sus posibles consecuencias

ambientales, sociales y económicas.

Esta memoria pretende contribuir, desde un punto de vista matemático, al es-

tablecimiento de modelos y técnicas de simulación numérica de los fenómenos f́ısicos

involucrados en la evolución de los glaciares. Con ello se pretende ayudar a una

mejor comprensión del comportamiento de los glaciares y aśı poder llevar a cabo

tratamientos riguroso de distintos problemas tanto en el campo de la ingenieŕıa como

medioambientales preocupantes para el ser humano.

Un manto de hielo es una capa gruesa de hielo permanente que cubre un área

extensa. Los únicos mantos de hielo que existen actualmente en la tierra son la

Antártida y Groenlandia (el Ártico en un océano y su hielo es hielo marino), pero

durante el último periodo glacial el manto de hielo conocido como Laurentide llegó

a cubrir gran parte de Canadá y América del Norte, el manto de hielo Fennoscandia

ocupó el norte de Europa y el manto de hielo Patagónico se extend́ıa por el sur de

América del Sur. Las magnitudes de los mantos de hielo son del orden de miles

de kilómetros de extensión, y kilómetros de espesor (hasta cuatro kilómetros en la

Antártida). Los mantos de hielo son el equivalente a gotas de hielo, pero a gran

escala. Cuando un continente entero (o al menos una parte sustancial de él) tiene

clima polar, entonces la nieve se acumula en las alturas, se comprime el hielo y fluye

para cubrir el continente, de la misma forma que una gota de un fluido sobre una mesa

se extiende por la acción de la gravedad. Sin embargo, mientras las gotas alcanzan un

estado estacionario debido al efecto contráctil de las tensiones superficiales, esto no

es tan relevante en el caso de los mantos de hielo. En los mantos de hielo el equilibro

se mantiene por un balance de masas entre la acumulación en el centro y la ablación

en los márgenes. Ésta puede ocurrir tanto debido al derretimiento del hielo, porque

los márgenes se encuentran en regiones de clima más cálido, como al desprendimiento

de icebergs.

Los glaciares son grandes masas de hielo perenne que se mueven lentamente sobre
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la tierra como ŕıos de hielo. Se forman en lugares donde durante muchos años la

acumulación de nieve y hielo excede a la ablación. Alaska, los Alpes, Spitzbergen

o el Himalaya son algunos ejemplos de su localización actual. Los glaciares drenan

las zonas donde se acumula la nieve, de la misma forma que los ŕıos drenan las

zonas donde cae la lluvia. Los glaciares también fluyen de la misma forma en que

lo hacen los ŕıos. Aunque los glaciares son sólidos, se pueden deformar por la lenta

expansión de la red de cristales de hielo que los forman. Aśı, el hielo de los glaciares se

comporta como un material viscoso, con una viscosidad muy elevada, sobre 1016 veces

la viscosidad del agua. Como consecuencia de su enorme viscosidad, los glaciares se

mueven de forma lenta, con velocidades t́ıpicas en el rango de 10–100 metros por año,

que, aunque sin duda son velocidades pequeñas, son muy importantes.

Tanto el movimiento de los mantos de hielo como el de los glaciares pueden ser

explicados mediante la teoŕıa de la viscosidad, sin embargo, ocurren ciertos fenómenos

relevantes que no se pueden explicar utilizando esta teoŕıa. El principal es el hecho

de que el hielo puede alcanzar temperaturas de fusión en la base del glaciar debido al

calentamiento por fricción o a la entrada de calor geotérmico. En ese caso se produce

agua y el hielo se puede deslizar. Aśı, a diferencia de un fluido viscoso ordinario, el

deslizamiento de los glaciares puede ocurrir en la base.

Es importante destacar que la Matemática Aplicada, con herramientas de modeli-

zación basadas en ecuaciones en derivadas parciales (EDPs), técnicas para el análisis

matemático de los modelos, y una amplia variedad de métodos para la simulación

numérica de fenómenos termo-mecánicos, es una parte de la familia multidisciplinar

que estudia la Glacioloǵıa teórica (ver Dı́az [26], por ejemplo). Otras ciencias de

esta familia como, por ejemplo, la Geof́ısica, la Geograf́ıa, o la Mecánica de Medios

Continuos, han reconocido el papel primordial de la modelización matemática y la

simulación numérica en este campo, como se puede ver en los libros de Fowler [35],

Greve y Blatter [46], Hutter [54], Lliboutry [62] y Paterson [69], entre otros.

El contenido de esta memoria se puede enmarcar dentro de los modelos matemáti-

cos de glaciares y su simulación numérica. Una de las principales motivaciones de este
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trabajo es formular las ecuaciones matemáticas de la dinámica del hielo, teniendo en

cuenta de forma destacada que no se conoce a priori la región ocupada por el hielo,

de modo que el dominio forma parte de la solución del problema. Otra motivación

importante es que se tienen que considerar modelos globales donde hay agua y hielo

a punto de fusión. Ambas motivaciones llevan a ejemplos t́ıpicos de problemas de

frontera móvil o libre.

La formulación matemática de los modelos globales que establecen el compor-

tamiento mecánico y termohidrodinámicos de los glaciares es compleja, porque, como

se ha comentado previamente, todav́ıa hay cuestiones abiertas sobre algunas condi-

ciones de flujo tanto en el interior del glaciar como en las fronteras. Esto se evi-

dencia cuando se observan las diferentes simplificaciones y los desacoplamientos de

los distintos fenómenos f́ısicos que se han estado utilizando desde el primer modelo

matemático a finales de los años cincuenta. Existen modelos termodinámicos, mode-

los isotermos de la dinámica del hielo, modelos termomecánicos, modelos espećıficos

para la Antártida, entre otros, lo que evidencia la dificultad de los problemas.

El lector interesado puede consultar la Tesis Doctoral de Huybrechts [55]. En

ella se indican las particularidades de los distintos modelos matemáticos que se han

manejado en los últimos cuarenta años, también se recomienda la lectura del libro

de Hutter [54], donde se incluyen los progresos hechos por Nye, Glen, Lliboutry,

Weertman y Fowler, entre otros. Esta tesis se centra en modelos simplificados, ya que

todos los modelos que se resuelven son de este tipo. En particular, las formulaciones

basadas en el trabajo de Fowler–Larson [36] y, de forma más concreta, Fowler [34].

El Caṕıtulo 1 es una introducción general a esta memoria.

El Caṕıtulo 2 es una revisión de los modelos matemáticos de glaciares. En él

se establecen las ecuaciones básicas de los problemas de frontera móvil estudiados

en los siguientes caṕıtulos. En teoŕıa, se puede calcular el tamaño de un glaciar,

su distribución de temperatura, su campo de velocidades y sus tensiones, aśı como

la variación temporal de estas magnitudes con unas condiciones inicial y de frontera

dadas. Las ecuaciones básicas que se resuelven para el cálculo de esas magnitudes son
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las leyes de conservación de la masa, el momento y la enerǵıa, acompañadas por la ley

de comportamiento del hielo y las condiciones de contorno apropiadas. Sin embargo,

se tiene que considerar algún tipo de simplificación, f́ısica o emṕırica, para conseguir

una solución factible. Incluso con estas simplificaciones, el problema matemático es

lo suficientemente complejo como para no tener solución anaĺıtica. Por una parte,

las simplificaciones obvian algunos fenómenos locales en tiempo y espacio, como por

ejemplo: la formación y propagación de grietas dentro del glaciar, la acumulación de

tensiones en ciertas partes del mismo, el desprendimiento de icebergs en los márgenes,

etc. Por otra parte, la importancia de las escalas de tiempo en años, y no en segundos

o minutos, hace posible excluir ciertos efectos como los movimientos śısmicos, entre

otros. Las ecuaciones adimensionales, basadas en el escalado de hielo poco profundo

y bajo la hipótesis de aproximación de hielo poco profundo, también permiten des-

preciar ciertos términos en el modelo matemático, y además, la imposición de ciertas

hipótesis relacionadas con los órdenes de magnitud de las distintas incógnitas conduce

a unos modelos que pueden ser tratados con técnicas anaĺıticas y numéricas conocidas.

Se debe indicar que, aunque la exclusión de ciertos fenómenos y las simplificaciones

de las ecuaciones que se han incluido pueden limitar la aplicabilidad de los modelos

matemáticos propuestos en el Caṕıtulo 2, estas restricciones no evitan que, desde un

punto de vista práctico, las soluciones matemáticas sean f́ısicamente relevantes, como

se discute a lo largo de este trabajo, y que forman, desde una perspectiva teórica,

problemas visiblemente dif́ıciles enmarcados en el campo de la resolución numérica

de ecuaciones en derivadas parciales.

Concretamente, en el Caṕıtulo 2 se propone un problema acoplado para el cálculo

del perfil, la distribución de temperaturas y el campo de velocidades para modelar el

comportamiento termo-mecánico de los glaciares, utilizando una condición de frontera

móvil para el cálculo de la superficie del glaciar que está en contacto con la atmósfera.

Esta caracterización da lugar a un problema de frontera móvil gobernado por una

ecuación no lineal en derivadas parciales.

Por otro lado, otras formas de enerǵıa interna distintas de la enerǵıa térmica se
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desprecian, de modo que, la distribución de temperatura en una sección longitudinal

está determinada por un balance entre los mecanismos de conducción, convección y

reacción, junto con las distintas leyes constitutivas (Glen y Arrhenius). Además, la

difusión horizontal del calor se omite, debido a que los gradientes en esta dirección son

muy pequeños si se comparan con los grandes gradientes verticales de la temperatura,

como se indica en el escalado de hielo poco profundo.

El problema acoplado propuesto en el Caṕıtulo 2, sirve como base para los si-

guientes caṕıtulos de la memoria.

En el Caṕıtulo 3 se propone una aproximación isoterma para el problema del

perfil descrito en el Caṕıtulo 2 y aśı se desacopla el cálculo del perfil de los problemas

de distribución de temperatura y campo de velocidades. Además, se desarrollan un

conjunto de técnicas numéricas para la simulación de la evolución del perfil que se

enmarcan en el campo de los modelos isotermos de hielo poco profundo. Las diferen-

tes formulaciones matemáticas se proponen en términos de una ecuación parabólica

altamente no lineal. Una primera no linealidad viene de la frontera móvil asociada

al desconocimiento a priori de la extensión basal de la región ocupada por el glaciar.

Esta caracteŕıstica se trata con una técnica de dominio fijo aplicada a formulaciones

de complementariedad que son resueltas numéricamente por un método de dualidad.

La formulación en términos de un problema de obstáculo asociado con ecuaciones

altamente no lineales de convección-difusión es una de las principales novedades de

este trabajo. El término difusivo no lineal es tratado de forma expĺıcita en el esquema

de avance en tiempo. Al tratarse de un problema de convección dominante, se propone

un esquema de caracteŕısticas para la discretización en tiempo, mientras que para la

discretización espacial se utilizan elementos finitos de Lagrange lineales a trozos. La

presencia de pendientes infinitas en los reǵımenes polares motivan una formulación

alternativa basada en la prescripción de una condición de contorno donde interviene

el flujo en el nacimiento del glaciar en vez de la condición de tipo Dirichlet homogénea

que se hab́ıa utilizado. Al final del Caṕıtulo 3, se incluyen varios ejemplos numéricos

para ilustrar el comportamiento de los métodos propuestos. Para comprobar la validez
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del método que se propone, entre los ejemplos se plantean casos anaĺıticos en los que se

han construido soluciones exactas artificiales de forma similar a las de Bueler y otros

[11] para el caso de mantos de hielo. Además, bajo ciertas condiciones de contorno se

puede calcular la posición del frente del glaciar de forma anaĺıtica, aśı que también

se proponen algunos ejemplos para comprobar que la posición del frente del glaciar

obtenida con la simulación numérica coincide con el valor anaĺıtico que debeŕıa tener.

En el Caṕıtulo 4 se propone y resuelve un modelo termoacoplado para la simu-

lación numérica de la termo-mecánica de los glaciares utilizando técnicas numéricas

eficientes. Una novedad en este caṕıtulo es la formulación de problema de tipo

obstáculo asociado a la ecuación integro-diferencial no lineal para el problema del

perfil. Para tener en cuenta de forma adecuada el modelo no isotermo es preciso que

los coeficientes de esta ecuación dependan en forma no local de la temperatura. Esta

formulación se basa en la caracteŕıstica de la frontera libre y la influencia de la tem-

peratura en el perfil. Se trata de un modelo no isotermo completamente acoplado.

En cuanto a la ecuación de la temperatura, en la superficie el valor de la temperatura

se prescribe de forma dinámica. Este valor de temperatura atmosférica decrece a

medida que la altura aumenta. Como las ecuaciones de la temperatura y el perfil

están completamente acopladas, se tiene un sistema no lineal de EDPs donde las

incógnitas principales son el perfil del glaciar, el campo de velocidades y la temper-

atura. Junto a las dificultades numéricas asociadas a la ecuación del perfil, para la

resolución numérica de la temperatura, la velocidad y las magnitudes basales se han

considerado varias técnicas: formulaciones en entalṕıa, métodos de caracteŕısticas

para la discretización en tiempo, discretizaciones de elementos finitos en 2D, métodos

de dualidad asociados a operadores monótonos, métodos de Newton para problemas

no lineales y fórmulas de cuadratura numérica para el cálculo del campo de veloci-

dades. Para resolver el sistema acoplado global de EDPs no lineales se realiza una

iteración de punto fijo que trata de forma secuencial cada uno de los problemas im-

plicados (perfil, velocidad y temperatura). Al final del Caṕıtulo 4 se proponen varios

ejemplos ilustrativos de glaciares con base polar, glaciares con base politérmica y
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glaciares con base temperada. Además, como en el Caṕıtulo 3, se consideran dos

posibles condiciones de contorno en el nacimiento del glaciar: flujo prescrito o valor

del perfil impuesto. Como ocurre en el Caṕıtulo 3, tras las simulaciones numéricas,

los resultados obtenidos para los casos de flujo impuesto son más realistas que los que

se consiguen con un valor fijado para el flujo en el nacimiento del glaciar. Además, se

ha desarrollado la misma técnica que en el Caṕıtulo 3 para calcular la posición de la

frontera libre en los casos en los que se impone el flujo como condición de contorno y

se ha comprobado que el valor calculado en las simulaciones numéricas se aproxima

bien al valor teórico.

En el Caṕıtulo 5 se propone otro modelo de aproximación de hielo poco profundo

de valles glaciares para reconsiderar si el fenómeno conocido como fugas térmicas

puede ser un mecanismo viable en el inicio de las inestabilidades en los glaciares

que comienzan a moverse hasta 100 veces más rápido de lo normal y avanzan de

forma sustancial (surge glaciers). Para ello se plantea una solución aproximada a la

distribución de la temperatura dentro del glaciar. Dicha aproximación se fundamenta

en que las tensiones se concentran en la base del glaciar. Con esta hipótesis se muestra

que existe una ecuación evolutiva para el perfil. Aunque esto es bien conocido para

flujos iso-viscosos, no hab́ıa sido planteado antes para flujos de viscosidad variable.

Durante el proceso de obtención de las ecuaciones se demuestra que las fugas térmicas

no pueden ocurrir. Un resultado particular de este caṕıtulo ha sido la inesperada

inadecuación del calor geotérmico. Si se calcula utilizando los valores t́ıpicos para

el flujo de calor geotérmico, entonces el calor geotérmico resultante es demasiado

pequeño como para que el hielo de la base alcance el punto de fusión. En la naturaleza

es extraño encontrar glaciares con la base completamente fŕıa, y esta consideración

lleva a replantearse la importancia de la liberación de calor latente producido por el

agua del deshielo y de la lluvia que pasa de la superficie a partes interiores del glaciar.

En ausencia de tales fenómenos la base de los glaciares permanece completamente

congelada.

En el Apéndice A, se incluyen definiciones y resultados clásicos relacionados con
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operadores maximales monótonos. Además, se detallan los cálculos para obtener las

aproximaciones Yosida de los operadores monótonos que aparecen en los distintos

modelos.

En el Apéndice B se muestran detalles de la implementación en ordenador. Aśı,

se describe la herramienta de software espećıfica para la simulación de glaciares,

glanusit, que se ha construido y también se indican las técnicas de paralelización

utilizadas en la implementación del problema.

Para finalizar, se ha de indicar que un resumen de los distintos apartados del

Caṕıtulo 3 se encuentran en los trabajos [14], [17] y [19]. Una primera aproximación

a los resultados obtenidos en el Caṕıtulo 4 se puede encontrar en las referencias [17]

y [18]. El Caṕıtulo 5 ha sido publicado en Proceedings of the Royal Society A (ver

[40]). Los detalles de la versión para mantos de hielo de la herramienta de software

glanusit ha sido publicada en Advances in Engineering Software (ver [15]), y algunos

de los resultados de la versión paralela de los códigos de simulación numérica para

mantos de hielo están incluidos en Proceedings in Applied Mathematics and Mechanics

(ver [16]).
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Chapter 1

Introduction

Glaciers once covered 30% of the land area of the Earth, nowadays they cover the 10%

and a further 10% of Earth’s surface is permanently frozen. About 50% of the land is

covered by snow and ice in the northern-hemisphere during winter. More than 75%

of the world’s fresh water is contained in glaciers, which provide irrigation water for

some of the most densely populated areas of the world. However, at present, all but

about 1% of this ice is located in areas remote from human activities, the great ice

sheets of Greenland and Antarctica. Thus, it is not surprising that relatively small

glaciers on mountain areas were the first to attract attention due to their location

near to human activities. Glaciers and glaciology have focused the attention of a

growing international research community for a little more than 150 years, but we

can find descriptions of glaciers in the Icelandic literature of the 11th century. Details

about the history evolution of research in Glaciology can be found in Paterson [69],

for example, and the bibliography that is referenced there.

Recently research is centered on ice sheets more than in glaciers. This is mainly

because the ice sheets are recognized as the second largest component of the climate

system after the oceans [57] and nowadays the threat of global warming is hanging over

the world. The large volume of water locked up in glaciers and ice sheets represents a

potential hazard for human activities in coastal areas. Collapse of the West Antarctic

ice sheet could lead to a worldwide rise in sea level of seven meters in, perhaps, less

1
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Figure 1.1: Le Mer De Glace

than a century and whether this event is followed by melting of the East Antarctic

ice sheet, sea level could rise around additional fifty meters or so [57].

Other applications of Glaciology are not hard to find. An increasing number of

people in northern and mountainous lands live so close to glaciers that their lives

would be severely altered by ice advances comparable in magnitude to the retreats

that have taken place during the past century in many parts of the world. The Mer

de Glace in France, see Figure 1.1, present a particular problem during the Little Ice

Age [47].

Other people live in proximity to streams draining lakes dammed by glaciers.

Some of the biggest floods known from the geologic record resulted from failure of

such ice dams, and smaller floods of the same origin have devastated communities in
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the Alps and Himalayas [72].

The United Nations Environment Programme (UNEP) and the World Meteo-

rological Organization (WMO) established the Intergovernmental Panel on Climate

Change (IPCC ) to provide the world with a clear scientific view on the current state

of climate change and its potential environmental and socio-economic consequences.

This memory tries to contribute, from a mathematical perspective, to the state-

ment of the models and the numerical simulation of the physical phenomenon involved

on glaciers evolution. In this way, we also try to contribute to a better comprehen-

sion of the glaciers behaviour for a rigorous treatment of various engineering and

environmental problems of concern humans.

An ice sheet is a thick, permanent mass of ice that covers a very large area.

The only current ice sheets on Earth are in Antarctica and Greenland (the Arctic is

an ocean, and its ice is sea ice), but during the last glacial period at Last Glacial

Maximum the Laurentide ice sheet covered much of Canada and North America,

the Fennoscandian ice sheet covered northern Europe and the Patagonian ice sheet

covered southern South America. Their magnitudes are on the order of thousands

of kilometers in extend, and kilometers deep (up to four in Antarctica). Ice sheets

are the equivalent of droplets, but on a larger scale. When an entire continent (or at

least a substantial portion thereof) has a polar climate, then snow accumulates on the

uploads, it compressed from ice, and flows out to cover the continent, much as a drop

of fluid on a table will spread under the action of gravity. However, whereas droplets

can reach a steady state though the contractile effect of surface tension, this is not

so relevant in the case of large ice sheets. Nevertheless, in ice sheets equilibrium can

be maintained through a balance between accumulation in the center and ablation at

the margins. This can occur either though melting of the ice in the warmer climate

regions located at the ice margin, or though calving of icebergs.

Glaciers are huge perennial masses of ice which move slowly over land like rivers

of ice. A glacier forms in locations where the mass accumulation of snow and ice

excess ablation over many years. Alaska, the Alps, Spitzbergen or Himalayas are just
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current examples of their localization. They drain areas in which snow accumulates,

much as rivers drain catchment areas when rain falls. Glaciers also flow in the same

basic way as rivers do. Although glaciers are solid, they can deform by the slow creep

of dislocations within the lattice of ice crystal which form the fabric of ice. Thus,

the glacier ice effectively behaves like a viscous material, with, however, a very large

viscosity, about 1016 times the water viscosity. As a consequence of their enormous

viscosity, glaciers move slowly, a typical velocity would be in the range of 10–100

meters per year, certainly measurable but hardly dramatic.

While the motion of ice sheets and glaciers can be understood by means of viscous

theory, there are some relevant complex phenomena which can occur. Chief among

these is that ice can reach the melting point at the glacier bed, due to frictional

heating or geothermal heat input, in which case water is produced, and the ice can

slide. Thus, unlike an ordinary viscous fluid, slip can occur at the base.

It is important to emphasize that Applied Mathematics, with its modelization

tools based on partial differential equations, its techniques for the mathematical anal-

ysis of the models, and its wide range of methods for the numerical simulation of the

thermo-mechanical phenomenon, is a part of the multidisciplinary family that studies

the theoretical glaciology (see Dı́az [26], for example). Other different subjects of this

family, as for example: Geophysics, Geography, Materials Science and Continuum

Mechanics, have recognized the important role of the mathematical modelization and

numerical simulation in this field, as you can see in the books of Fowler [35], Greve

and Blatter [46], Hutter [54], Lliboutry [62] and Paterson [69], among others.

The content of this memory can be framed into the field of mathematical models

of glaciers and their numerical simulation. One of the main motivations of this work

is to formulate the mathematical equations of the ice dynamics, specially keeping in

mind that we do not know a prior the ice region so that this unknown domain is part

of the solution of the problem. Other important motivation is that we have to consider

global models where there are ice and water at melting point and solidification areas.

Both motivations lead to typical examples of free or moving boundary problems.
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The mathematical formulation of the global models that state the mechanical and

thermodynamical behaviour of glaciers is complex, because, as we have previously

mentioned, there are still questions about some flow conditions inside the domain

and at the boundaries. This is evidenced when you observe the different simplifica-

tions and the uncoupling of the different physical phenomena that have been used

since the advent of the first comprehensive mathematical models at the late fifties.

Thermodynamical models, isothermal models of the ice dynamics, thermomechanical

models, specific models for the Antarctic, are clear examples of the difficult of these

problems.

We refer the interested reader to the PhD thesis of Huybrechts [55], where he

referenced the particularities of different mathematical models that have been handled

in the past forty years and the book wrote by Hutter [54] that includes the progress

made by Nye, Glen, Lliboutry, Weertman and Fowler, among others. Accordingly, we

direct our attention to certain simplified models and sets the guideline of this work.

In particular, the formulations based on the work of Fowler-Larson [36] and more

specifically Fowler [34].

Chapter 2 in this memory is a review of the mathematical models of glaciers and

the statement of the basic equations appearing in the moving boundary problems that

we study in the following chapters. In theory, we can compute the size of a glacier, its

temperature and its velocity and stress distribution, just as the time variation of these

magnitudes with prescribed boundary and initial conditions. The basic equations

that we have to solve in order to compute these values are the conservation laws of

mass, momentum and energy, accompanied by the ice rheology law and boundary

conditions. However, we have to consider some kind of simplification, physical or

empirical, to get a feasible solution. Even with this simplifications, the mathematical

problem is complex enough so that we cannot get an analytical solution. On one hand,

this simplifications neglect some local phenomena in time and space, as for example

the cracks formation and propagation inside the glacier, the stress accumulation in

certain places, the calving at margins, etc. On the other hand, the relevance of the



6

time scales in years, and not in seconds or minutes, makes it possible to exclude

certain effects such as seismic waves, among others. The dimensionless equations,

based on a shallow ice scaling under the hypothesis of shallow ice approximation,

also neglect certain terms in the mathematical model, and the imposition of certain

assumptions related orders of magnitude of some unknowns, lead to models that can

be treated with known analytical and numerical techniques. In this work, we propose

a coupled model to compute the profile, temperature and velocity of a glacier.

We must indicate that, although the exclusion of certain phenomena and simpli-

fications can limit the applicability of the mathematical models posed in Chapter 2,

these restrictions do not prevent that from an application perspective, the mathemati-

cal solutions are physically relevant, as discussed throughout this work, and that from

a theoretical perspective, the problems notoriously difficult within the framework of

numerical solution of partial differential equations.

Specifically, in Chapter 2 we pose a coupled problem to model the thermo-mechanical

behaviour of the glacier using a moving boundary condition to compute the boundary

of the glacier that is in contact with the atmosphere. This characterization gives rise

to a free boundary problem governed by a non-linear partial differential equation.

On the other hand, we can neglect other internal energy forms apart from the

thermal energy so that the temperature distribution in a longitudinal section is deter-

mined by a balance between the mechanisms of conduction, convection and reaction,

also involving different constitutive laws (Glen and Arrhenius). Moreover, the hori-

zontal heat diffusion is omitted, due those gradients in this direction are very small

compared with the vertical gradients of temperature, as illustrated by the shallow ice

scaling.

The coupled problem posed in Chapter 2, is the basis for the next chapters in the

memory.

In Chapter 3 we propose an isothermal approximation to the profile problem de-

scribed in Chapter 2 and so we uncouple this profile problem from the temperature
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and velocity problems. Moreover we develop a set of numerical techniques for the sim-

ulation of the profile evolution included in the framework of isothermal shallow ice

approximation models. The different mathematical formulations are posed in terms

of a highly nonlinear parabolic equation. A first nonlinearity comes from the free

boundary problem associated to the unknown basal extent of the glacier region. This

feature is treated by a fixed domain complementarity formulation which is numerically

solved by a duality method. The formulation in terms of a new obstacle problem as-

sociated to a highly nonlinear convection-diffusion equation is one main novelty. The

nonlinear diffusive term is explicitly treated in the time marching scheme. A convec-

tion dominated problem arises so that a characteristics scheme is proposed for the

time discretization (see Pironneau and co-workers [2, 71] for example), while piece-

wise linear finite elements are used for spatial discretization. The presence of infinite

slopes in polar regimes motivates an alternative formulation based on a prescribed

flux boundary condition at the head of the glacier instead a homogeneous Dirichlet

one. At the end of the Chapter 3, several numerical examples illustrate the perfor-

mance of the proposed methods. Some of these examples are analytical, so we build

artificial exact solutions to check the validity of the proposed method. The artificial

solutions are built similarly to those ones proposed by Bueler et al. [11] to ice sheets.

Moreover, under certain boundary conditions we can compute the position of the

glacier front analytically, so we also propose several examples to check if the position

of the glacier front in the simulation results coincide with the analytical value.

In Chapter 4 the shallow ice thermocoupled model for the complex nonlinear

polythermal glacier dynamics is proposed and solved by means of efficient numerical

methods. A novelty of this chapter is the obstacle problem formulation associated

to a nonlinear integro-differential equation for the glacier profile. The coefficients of

this equation depend in a non local way on temperature in order to account properly

for the non-isothermal setting. This formulation is motivated by the free boundary

feature and the influence of the temperature on the profile, because it is a fully non-

isothermal model. Concerning the temperature equation, a dynamically prescribed
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surface temperature that decreases with altitude is posed. As the profile and the

temperature equations are fully coupled, a nonlinear PDE system governing the up-

per glacier profile, the velocity field, and the temperature is stated. In addition to

the numerical difficulties associated to the new profile equation, several techniques

have been considered for the numerical solution of the temperature, velocity and

basal magnitudes: enthalpy formulations, upwind methods for time discretization,

2D finite element discretizations, duality methods associated to monotone operator,

Newton methods for nonlinear problems, and numerical quadrature formulae for ve-

locity computation. For solving the global coupled system of nonlinear PDEs a fixed

point iteration which sequentially treats each subproblem has been developed. At

the end of Chapter 4 several examples are proposed. Thus, illustrative examples con-

cerning the case of cold, polythermal and temperate-based ice have been considered.

Moreover, as in Chapter 3, we consider two possible boundary conditions at the head

of the glacier: a prescribed a flux or an imposed profile value. Also as in Chapter 3,

the computed numerical results show that flux imposed boundary results are more

realistic. Moreover, in the case of flux imposed boundary condition, the same tech-

nique developed in Chapter 3 allows to obtain the exact position of the free boundary.

This value has been very accurately verified by the computations.

In Chapter 5 we propose other two-dimensional shallow ice approximation model

for a valley glacier in order to reconsider the question of whether thermal runaway

could be a viable mechanism for the onset of creep instability in surging glaciers.

We do this by providing an approximate solution for the temperature field based on

the idea that shear is concentrated at the glacier bed. With this assumption, we

show that a closed form evolution equation for the glacier profile exists in this case.

While this is well-known for iso-viscous flows, it has not previously been derived for

variable viscosity flows. During the process of deriving these equations, we show that

thermal runaway does not occur. A particular revelation of this chapter has been

the unexpected inadequacy of geothermal heat. If it is computed using normal values

of geothermal heat flux, we find that it is so small that basal ice will never reach
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the melting point. In reality, entirely cold-based glaciers are something of a rarity,

and we consider this to be due to the overwhelming importance of latent heat release

by buried surface meltwater and rainwater. In the absence of such enhanced basal

heating, glaciers would remain frozen at their base.

In Appendix A, some definitions and classical results related to maximal mono-

tone operators are included. Moreover, we develop some calculus to obtain the Yosida

approximations of several maximal monotone operators appearing in the different

models. Appendix B is devoted to some features related to computer implemen-

tation. Thus, some details about the specific software toolbox glanusit and the

parallelization of numerical algorithms are described.

Finally, we point out that a summary of different parts of Chapter 3 are contained

in the works [14], [17] and [19]. A first approach to the results obtained in Chapter 4 is

contained in references [17] and [18]. Chapter 5 has been published in Proceedings of

the Royal Society A (see [40]). The details of the glanusit software toolbox version

for ice sheets has been published in Advances in Engineering Software (see [15]), and

some results on the parallel version for ice sheets simulation codes are included in

Proceedings in Applied Mathematics and Mechanics (see [16]).
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Chapter 2

Shallow Ice Glacier Model

2.1 Introduction

Glaciers and ice sheets have been subject of interest over the last few decades due

to their importance in the study of climate change. Glaciers can be thought as large

and slow moving rivers of ice. They drain areas in which snow accumulates, much

as rivers drain catchment areas where rain falls. Glaciers also flow in the same basic

way that rivers do. Although glacier ice is solid, it can deform by the slow creep

of dislocations within the lattice of ice crystals which form the fabric of ice. Thus,

glacier ice behaves like a viscous material with a very large viscosity, about 1016 times

the water viscosity. As a consequence of its enormous viscosity, glaciers move slowly –

a typical velocity would be in the range 10–100 my−1. More awesome are the glacier

dimensions, typical values are depths of hundreds of metres, widths of kilometres

and lengths of tens of kilometres. Thus glaciers can have an important effect on the

human environment in their vicinity. They are also indirect monitors of climate; for

example, many lithographs of Swiss glaciers show that they have been receding since

the nineteenth century, a phenomenon thought to be due to the termination of the

Little Ice Age which lasted from about 1500 to about 1900. Glaciers can be formed in

places of high elevation, such as the Himalayas or the Alps, as well as in polar regions

, such as Alaska or Antarctica. For example, the Bering Glacier is one of the longest

11
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with 200 km in length.

In this chapter we study the motion of a valley glacier using the shallow ice

approximation (SIA). The SIA keeps in mind the orders of magnitude of the real

glaciers with the purpose of neglecting some terms in the original mass, momentum

and energy conservation equations of the original continuum mechanics model (see

Hutter [54], among others). Previously to obtain the SIA model, we carry out a

shallow ice scaling of the continuum mechanics model equations that gives rise to

introduce a small parameter ε = d2/d1 in the scaled model, where d1 and d2 are

length and depth orders of magnitude, respectively. After this shallow ice scaling, we

neglect the terms of O (ε2) and obtain our SIA model. This fact restricts the limits of

the approach to ice masses geometries for which that ratio of characteristic thickness

to characteristic length is small compared to 1. Traditionally, mountain glaciers

can indeed develop typical thickness of the same order as their length. However,

some mountain glaciers have intermediate geometries with an overall aspect ratio

still allowing for a correct expansion series to have any meaning. For example, the

Glacier Saint Sorlin, in the French Alps, whose geometrical characteristics give rise

to an ε = 5 × 10−2 [61]. Moreover, in Le Meur et al. [61] it is concluded that the

applicability of SIA is also related to the presence of small bedrock slopes and not

only to small enough aspect ratio. The authors arrive to this conclusion by comparing

the obtained results for SIA and full Stokes models under very simple basal conditions

and no sliding. The use of SIA presents the huge advantage of being very efficient in

terms of computing resources concerning memory and CPU time consumptions. In

order to simplify the glacier model, a two dimensional ice flux is commonly assumed

so that the same profile is considered for the different longitudinal sections.

This chapter is organized as follows: Section 2.2 is dedicated to the glacier profile

model in real variables. The shallow ice scaled model is proposed in Section 2.3 and

the shallow ice approximation of the scaled model is described in Section 2.4. To

get a more detailed information about the ice constitutive relations and about the

glaciers modelling see Hutter [54] and Paterson [69], for example.
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2.2 Initial problem

In this section we propose the equations in real variables that model the behaviour of

a glacier situated over a valley. For this purpose, first we consider that glaciers flow

is nearly two dimensional and we restrict ourselves to the glaciers where the profiles

are the same for different longitudinal sections [33]. More precisely, by neglecting

the width effect, we consider a section in the longitudinal and depth directions, the

geometry of which is shown in Figure 2.1. Thus, we take the X-axis in the direction of

the valley downslope and the Z-axis upwards and transverse to the mean valley slope.

The angle between the valley axis and the horizontal line is denoted by δ. Moreover,

the bedrock geometry below the glacier is characterized by the function b∗, and η∗

is the unknown function defining the glacier profile in real coordinates. Therefore,

Ω∗

I(t
∗)

Z

X

Z = η∗ (t∗, X)

Z = b∗ (X)

δ

Figure 2.1: Typical profile of a valley glacier.

the ice region at time t∗ is denoted by Ω∗
I (t∗) = {(X,Z) / b∗ (X) ≤ Z ≤ η∗ (X, t∗)}.

Moreover, if t∗A is the final time, we denote Ω∗
I =

⋃
t∗∈[0,t∗A] ({t

∗} × Ω∗
I (t∗)).

The basic equations for the ice displacement are those ones of mass and momentum

conservation, which for an incompressible ice flow (neglecting inertial terms) are [49]:

∇ · ~U = 0 (2.1)

∇ · T = −ρ~g, (2.2)

where ~U = (U, V ) denotes the velocity field, T is the Cauchy stress tensor, ρ is the

ice density and ~g is the acceleration due to gravity. Moreover, the stress tensor can



14

be decomposed into an isotropic and a deviatoric part, namely:

T = −P I + 2νD

where P is the ice pressure, ν is the effective viscosity and D denotes the stress rate

tensor:

D =
1

2

(
∇~U + ∇~UT

)
. (2.3)

Then, field equations (2.1) and (2.2)can be equivalently written in the form:

0 = UX + VZ (2.4)

0 = −PX + τ ∗11X + τ ∗12Z + ρ g sin δ (2.5)

0 = −PY + τ ∗12X + τ ∗22Z + ρ g cos δ, (2.6)

where τ ∗11, τ
∗
22 and τ ∗12 are longitudinal and transversal stresses in the XZ-plane,

respectively, and the subscripts X and Z denote the partial derivatives with respect

to X and Z, respectively.

Other forms of internal energy different from heat are neglected so that the tem-

perature distribution in polar ice is governed by a balance among the mechanisms

of reaction, conduction and convection. Thus, the temperature verifies the energy

equation:

ρcpΘ̇ = −∇ · ~q +Q (2.7)

where cp is the specific head, Θ denotes the temperature, ~q is the energy flux and Q is

the internal heat source. Notice that Θ̇ denotes the material derivative of Θ respect

to time, t∗, i.e.:

Θ̇ =
∂Θ

∂t∗
+ ~U · ∇Θ.

More precisely, the energy heat flux is given by:

~q = −k∇Θ, (2.8)

where k is the thermal conductivity, and the internal heat source, Q, is associated to

viscose dissipation and takes the form:

Q = τ ∗ije
∗
ij (2.9)
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where e∗ij denotes the components of the strain tensor of the material (2.3) that are

defined by:

e∗11 =
∂U

∂X
, e∗12 =

1

2

(
∂U

∂Z
+
∂V

∂X

)
= e∗21, e∗22 =

∂V

∂Z
. (2.10)

The joint consideration of (2.7), (2.8) and (2.9) leads to the following equivalent

expression for the energy equation:

ρ cp

(
∂Θ

∂t∗
+ ~U · ∇Θ

)
= k∇2Θ + τ ∗ij e

∗
ij, (2.11)

In the case of an isotropic (τ ∗ij = τ ∗ji, e
∗
ij = e∗ji), incompressible (τ ∗11 + τ ∗22 =

e∗11 + e∗22 = 0) and viscous material, a classical model represents the deformation rate

in the fluid due to the efforts through the second invariants of the stress and strain

tensors, respectively. These invariants are defined as:

2 (e∗)2 = e∗ij e
∗
ij , 2 (τ ∗)2 = τ ∗ij τ

∗
ij . (2.12)

Notice that e∗ and τ ∗ represent the effective strain and stress rates, respectively.

Moreover, the stress and strain rates are related by the effective viscosity ǭ as follows:

τ ∗ij = 2 ǭ e∗ij . (2.13)

The most common choice of nonlinear rheology flow law for glaciers links again

the stress and strain tensors through Glen’s law Gl (τ ∗) (see Glen [43]) and Arrhenius

type function A∗ (Θ) as indicates the following expression:

e∗ij = A∗ (Θ) Gl∗ (τ ∗) τ ∗ij/τ
∗. (2.14)

Moreover, the definitions of the Glen’s law and the Arrehnius function in this case

are:

Gl∗ (τ ∗) = (τ ∗)n , (2.15)

A∗ (Θ) = A∗
0 exp (−Q/RΘ) , (2.16)

where n is the Glen’s law exponent (typically, n = 3), A∗
0 is a constant depending on

the material, Q is the activation energy and R is the Boltzmann’s universal constant.
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Notice that the set of equations (2.14)–(2.16) can be summarized in the following

non Newtonian law for the viscosity:

ν =
1

2
A− 1

n

(
1

2
tr (D · D)

) 1−n
2n

(2.17)

Although expression (2.16) is classical, its validity at temperatures between 263K

and 273K has been questioned. In this rank of temperatures, some authors have

developed more appropriate variants which are based on experimental values. There

is a detailed study of this expression in Hutter [54], where there are precise proposals

by Smith and Morland [74].

In brief, the equations that model the behaviour of ice in cold region are:

UX + VZ = 0 (2.18)

0 = −PX + τ ∗11X + τ ∗12Z + ρ g sin δ (2.19)

0 = −PY + τ ∗12X + τ ∗22Z + ρ g cos δ (2.20)

ρ cp

(
∂Θ

∂t∗
+ ~U · ∇Θ

)
= k∇2Θ + τ ∗ij e

∗
ij (2.21)

e∗ij = A∗ (Θ) Gl∗ (τ ∗) τ ∗ij/τ
∗. (2.22)

The model (2.18)–(2.22) is posed over a domain, Ω∗
I , the upper boundary of which

is defined at each time t by the function Z = η∗ (t∗, X). This upper boundary is

an unknown of the problem and its location depends on, among other factors, the

accumulation-ablation function and the displacement of the glacier. In this sense it

is a kinematic boundary and it is characterized by the equation:

∂η∗

∂t∗
+ U

∂η∗

∂X
− V = a∗, (2.23)

where a∗ is the real accumulation-ablation function and (2.23) indicates the net mass-

balance of the glacier. Accumulation includes all processes by which material is added

to the glacier. Material is normally added as snow which is slowly transformed to

ice. Avalanches, rime formation and freezing of rain within snowpack are some other

accumulation processes. Ablation includes all processes by which snow and ice are
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lost from the glacier: melting followed by run-off, evaporation, removal of snow by

wind of the calving of icebergs are some examples. Melting followed by refreezing

at another part of the glacier is not ablation because the glacier does not lose mass.

Almost all the ablation takes place at the surface or, in the case of calving, at the

terminus. Some glaciers may lose ice by melting at their bases but, unless the ice

is floating, the amount is usually negligible compared with the surface ablation. In

glaciers, accumulation normally takes place in the upstream region of the glacier and

ablation normally takes place in the downstream region of the glacier. The deduction

of the kinematic boundary equation (2.23) of this problem can be found in Hutter [54]

or Fowler [33].

In order to solve the problem (2.18)–(2.22), we impose upper and lower boundary

conditions in addition to the kinematic upper boundary (2.23). These conditions are

detailed in next paragraphs.

Following previous works of Fowler and Schiavi, for example [39], we prescribe no

tangential stress condition at the upper boundary Z = η∗ (t∗, X) as follows:

T~n = 0

or equivalently:

0 = (−P + τ ∗11) η
∗
X − τ ∗12 at Z = η∗ (t∗, X) , (2.24)

0 = τ ∗12 η
∗
X + P − τ ∗22 at Z = η∗ (t∗, X) , (2.25)

and we also assume a prescribed temperature at that upper boundary Z = η∗ (t∗, X):

Θ (t∗, X, η∗ (t∗, X)) = ΘA (t∗, X, η∗ (t∗, X)) at Z = η∗ (t∗, X) . (2.26)

Before describing boundary conditions at the base of the glacier we point out that

glaciers can be classified in terms of their thermal characteristics, although a contin-

uum exists between the end members. We normally think of water as freezing at 0 ◦C,
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but we may overlook the fact that once all the water in a space is frozen, the temper-

ature of the resulting ice can be lowered below 0 ◦C as long as heat can be removed

from it. Thus, the temperature of glaciers ice in specially cold climates can reach be-

low 0 ◦C temperatures. We call such glaciers polar glaciers. More specifically, polar

glaciers are those ones in which the temperature is below the melting temperature

of ice everywhere, except possibly at the bed. Glaciers that are not polar are either

polythermal or temperate. Polythermal glaciers, which are sometimes called subpolar

glaciers, contain large volumes of ice that are cold, but also large volumes that are at

the melting temperature. Most commonly, the cold ice is present as a surface layer,

tens of meters in thickness, on the lower part of the glacier (the ablation area). Poly-

thermal glaciers can be found mainly at high latitudes, e.g. in the Canadian Arctic,

in Svalbard or in Scandinavia but also can be found at high altitudes in the European

Alps and in China. In simplest terms, a temperate glacier is one that is at the melting

temperature throughout except for a surface layer, about 15m thick, that is subject

to seasonal variations in temperature. However, the melting temperature varies on

many length scales in a glacier [54]. Harrison suggests a more rigorous definition of

a temperate glacier [50]. He suggested that a glacier is considered as temperate if its

heat capacity is greater than twice the heat capacity of pure ice. In other words, this

is when the temperature and liquid content of the ice are such that only half of any

energy put into the ice is used to warm the ice, while the other half is used to melt

ice in places where the local melting temperature is depressed. This definition, while

offering the benefit of rigor, is not easily applied in the field. Thus, this discussion

serves to emphasize that the class of glaciers that we loosely refer to as temperate

may include ice masses with a range of physical properties that are as wide, or wider

than, polar glaciers.

This classification of glaciers depending on their temperature is relevant to im-

pose the thermal conditions at the base of the glacier, b∗ (x). We can distinguish

two different basal boundary conditions: one for the polar case and another for the

polythermal one.
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In the case of polar glaciers, basal temperature is under melting point at each

point, so we impose as condition at the base of the glacier that heat flow balances

geothermal heat:

k∇Θ · ~n∗ = Gb, (2.27)

where ~n∗ = (b∗X ,−1) is the normal vector pointing outwards the domain Ω∗ and Gb

is the geothermal heat and it is considered as a constant (a typical value for polar

glaciers is 60mW m−2).

In the case of polythermal glaciers, there are some points at the basal boundary

at melting point and some others are under melting point, but their position is un-

known a priori so, we impose the following Signorini type condition as basal boundary

condition:

Θ ≤ Θm, (Θ − Θm)

(
k
∂Θ

∂ ~n∗
−Gb

)
= 0, 0 ≤ k

∂Θ

∂ ~n∗
≤ Gb at Z = b∗ (x) , (2.28)

where Θm denotes the ice melting temperature.

The thermal boundary condition at the base is completed with a kinematic bound-

ary condition. Thus, either a sliding velocity at the base, Ub is prescribed or a sliding

law relation between basal shear stress, τ ∗b , and Ub is considered. In the isothermal

problem treated in Chapter 3 we assume that the basal velocity is given while in the

fully coupled model posed in Chapter 4 a sliding law is considered. Notice that in both

cases, when no-slip conditions hold (such as, for example, in the case of cold-based

regions) then Ub = 0.

In the framework of non isothermal lubrication problems with Newtonian and

incompressible fluids a rigorous mathematical analysis for Tresca free boundary con-

ditions has been carried out in Boukrouche–Saide [8]. Also the corresponding thin

film approximation with Reynolds-like models is obtained in Boukrouche–Saide [9].

A lubrication phenomenon involves the temperate and polythermal regions, but

following the same approach in the glacier framework is far more complex due to non

Newtonian and phase change features among others.
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2.3 Shallow ice scaling

The initial model and boundary conditions posed in Section 2.2 are written in real

variables, so they do not consider the specific temporal and spacial scales. Depth

in glaciers is small compared to their width or length, this difference in magnitude

orders in the real domain of glaciers must allow us to neglect some terms in the model

in order to obtain some simplifications in the original equations. This is one of the

basic ideas in the Shallow Ice Scaling proposed mainly by Fowler and Larson [36] and

detailed in the books of Hutter [54] and Fowler [33], for example. We develop this

idea in this section and the next one.

New unknowns and magnitude order relations

Previously to deduce the SIA model, we introduce the following set of new variables

and unknowns to establish the dimensionless equations:

X = d1 x, Z = d2 z, (2.29)

τ ∗12 = [τ ∗] τ12, τ ∗11 = ε [τ ∗] τ11, τ ∗22 = ε [τ ∗] τ22, (2.30)

Θ = Θm + (∆Θ) T, A∗ = [A∗]A, Gl∗ = [Gl∗]Gl, (2.31)

η∗ = d2 η, U = [U ] u, V = ε [U ] v, (2.32)

P − Pa − ρ g cos δ (η∗ − Z) = ε [τ ∗] p, t∗ =
d1

[U ]
t, (2.33)

where d1 and d2 are the orders of magnitude for length and depth, respectively, and

ε = d2/d1 (2.34)

is the aspect ratio for which we anticipate ε ≪ 1. Moreover, Pa is the atmospheric

pressure, magnitude orders [τ ∗], [U ], [A∗] and [Gl∗] correspond to stress, horizontal

velocity, Arrhenius term and Glen’s law, respectively, and are used to define the

different scaled functions. At last, considering that the melting point is Θm = 273K

and maximum ice temperature prescribed on surface is ΘA = 253K, the temperature
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gap is ∆Θ = 20K which motivates the definition of the dimensionless temperature

T .

The choice of [A∗] and [Gl∗] is done so that the dimensionless functions A and

Gl are O (1). Moreover, we get the following equalities as a result of the Glen’s and

Arrhenius’s expressions, respectively:

[Gl∗] = [τ ∗]n , [A∗] = A∗
0e

− Q
R Θm . (2.35)

We choose the accumulation-ablation ratio [a∗] via [a∗] = ε [U ], because it balances

the vertical velocity with the accumulation-ablation rate. Besides, we choose [τ ∗] =

ρgd2 sin δ, and define

µ = ε cot δ. (2.36)

On the other hand, the choice of d2 and [τ ∗] has to be determined self-consistently.

The relation for choosing d2 is determined by a balance in the flow law. So, if the

viscosity scale is [ǭ∗], then we choose

[τ ∗] = [ǭ∗] [U ] /d2. (2.37)

With this relation and the Glen’s law, we obtain the value of [ǭ∗] = 1
2[A∗][τ∗]n−1 , and

we set the value of d2:

d2 =

[
[a∗] d1

2 [A∗] (ρ g sin δ)n

] 1

n+2

, (2.38)

which leads (with sensible choices of [A∗], d1, [a∗] and n) to values of d2 comparable

to those ones experimentally observed (d2 ∼ 100 m).

Now, we introduce the changes of variables proposed in the previous paragraphs,

(2.29)–(2.33), in the set of original equations (2.18)–(2.22) to obtain our shallow ice

scaled model.

Shallow ice scaling in mass and momentum equations

To obtain the shallow ice scaling equation of the mass conservation law, we write

equation (2.18) in the new variables:

0 = UX + VZ =
[U ] ux

d1
+

[U ] ε vz

d2
=

[U ]

d1
(ux + vz) ,
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so we can deduce that:

ux + vz = 0. (2.39)

On the other hand, to obtain the shallow ice scaling equation for the momentum

conservation, first we take derivatives with respect to X and with respect to Z in

(2.33)1, thus obtaining:

PX =
ε

d1

[τ ∗] px + ρ g
d2

d1

cos δ ηx, PZ = −ρ g cos δ + ε ρ g pz sin δ, (2.40)

Next, we take derivatives with respect to X and Z in (2.30):

τ ∗11X = ε [τ ∗]
τ11x

d1
, τ ∗12Z = [τ ∗]

τ12z

d2
, τ ∗12X = [τ ∗]

τ12x

d1
, τ ∗22Z = ε [τ ∗]

τ22z

d2
, (2.41)

where [τ ∗] = ρ g d2 sin δ. So, we obtain the following shallow ice scaling equations of

the momentum conservation law from (2.19)–(2.20):

τ12z = ε2 (px − τ11x) + µ ηx − 1, (2.42)

pz = τ12x + τ22z. (2.43)

Shallow ice scaling in temperature equation

In order to write the equation (2.21) in the new variables we apply (2.22), (2.29),

(2.31) and (2.33). First, we use the chain rule and the expressions (2.31)1 and (2.33)2

to write the material derivative of the temperature, DΘ
Dt∗

, as follows:

DΘ

Dt∗
= (∆Θ)

[U ]

d1

DT

Dt
,

and we use again the chain rule and the expressions (2.31)1 and (2.29) to write the

value of ∇2Θ in the new set of variables and unknowns:

∇2Θ =
∂2Θ

∂X2
+
∂2Θ

∂Z2
=

∂

∂X

(
(∆Θ)

∂T

∂x

∂x

∂X

)
+

∂

∂Z

(
(∆Θ)

∂T

∂z

∂z

∂Z

)
=

=
∆Θ

d1

∂

∂X

∂T

∂x
+

∆Θ

d2

∂

∂Z

∂T

∂z
=

∆Θ

d2
1

∂2T

∂x2
+

∆Θ

d2
2

∂2T

∂z2
.
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So, we obtain the following expressions:

DΘ

Dt∗
= (∆Θ)

[U ]

d1

DT

Dt
, (2.44)

∇2Θ =
∆Θ

d2
1

∂2T

∂x2
+

∆Θ

d2
2

∂2T

∂z2
. (2.45)

On the other hand, to rewrite expression τ ∗ij e
∗
ij , we multiply by τ ∗ij the equation (2.14):

τ ∗ij e
∗
ij = τ ∗ij A

∗ (Θ) Gl∗ (τ ∗) τ ∗ij/τ
∗. (2.46)

Moreover, we employ the definition of the Glen’s law (2.15), its dimensionless expres-

sion (2.31) and the choice of [Gl∗] in (2.35) to get a Glen’s law function of O (1). So,

we can relate dimensional and dimensionless Glen’s law using the following expression:

Gl∗ (τ ∗) = [Gl∗]Gl (τ) = [Gl∗] τn = [τ ∗]n τn. (2.47)

In order to write τ ∗ijτ
∗
ij/τ

∗ in the new set of variables and unknowns, we use the

definition of stress invariants (2.12) and the expression which relates dimensional and

dimensionless stress tensor:

τ ∗ijτ
∗
ij/τ

∗ = 2 (τ ∗)2 /τ ∗ = 2τ ∗ = 2 [τ ∗] τ, (2.48)

and now we include the expression (2.47) and (2.48) in (2.46) to obtain:

τ ∗ije
∗
ij = 2 [A∗]A (T ) [τ ∗]n+1 τn+1. (2.49)

Now, we introduce the expressions (2.44), (2.45) and (2.49) in (2.21) to get:

DT

Dt
=

k d1

ρ cp [U ]

(
Txx

d2
1

+
Tzz

d2
2

)
+

2 [A∗] [τ ∗]n+1 d1

ρ cp (∆Θ) [U ]
A (T ) τn+1, (2.50)

and we can simplify this equation by using the relation between accumulation-ablation

order and horizontal velocity order ([a∗] = ε [U∗]), the equation (2.38) and the selec-

tion of [τ ∗] order ([τ ∗] = ρ g d2 sin δ). So, the equation (2.50) is written as follows:

DT

Dt
=

k d1

ρ cp [U ]

(
Txx

d2
1

+
Tzz

d2
2

)
+

[τ ∗] d1

ρ cp (∆Θ) d2

A (T ) τn+1. (2.51)
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Besides, we define the following parameters to simplify the previous expression:

κ =
k

ρ cp
, (2.52)

β =
d1 κ

d2
2 [U ]

=
κ

d2 [a∗]
, (2.53)

α =
[τ ∗] d1

ρ cp ∆Θ d2

=
[τ ∗]

ρ cp ∆Θ ε
=
g d1 sin δ

cp (∆Θ)
, (2.54)

where κ is the thermal diffusivity, β is the thermal diffusion coefficient and α is a

dimensionless parameter. Next, we introduce them in the expression (2.50) to get:

DT

Dt
= d2

2 β

(
Txx

d2
1

+
Tzz

d2
2

)
+ αA (T ) τn+1.

Therefore, the shallow ice scaling of energy equation (2.21) is the following:

DT

Dt
= β

(
ε2 Txx + Tzz

)
+ α τ Gl (τ) A (T ) . (2.55)

Shallow ice scaling of the rheology flow law

In order to obtain the shallow ice scaled expression related to the rheology flow law

(2.22), first we write the shallow ice scaling for the invariant τ ∗:

2 (τ ∗)2 = τ ∗ijτ
∗
ij =

(
(τ ∗11)

2 + (τ ∗22)
2 + 2τ ∗12τ

∗
12

)
=

=
(
[τ ∗]2 ε2 τ 2

11 + [τ ∗]2 ε2 τ 2
22 + 2 [τ ∗]2 τ 2

12

)
=

= [τ ∗]2
(
ε2 τ 2

11 + ε2 τ 2
22 + 2 ε2 τ 2

12

)
= 2 [τ ∗]2 τ 2,

where

2 τ 2 = 2 τ 2
12 + ε2

(
τ 2
11 + τ 2

22

)
. (2.56)

On the other hand, we write the shallow ice scaled expressions for strain using (2.10),

the expressions (2.29) and (2.32):

e∗12 =
1

2

(
[U ]

∂u

∂z

∂z

∂Z
+ ε [U ]

∂v

∂x

∂x

∂X

)
=

[U ]

2

(
uz

d2
+ ε

vx

d1

)
, (2.57)

e∗11 = [U ]
∂u

∂x

∂x

∂X
=

[U ]

d1
ux, (2.58)

e∗22 = ε [U ]
∂v

∂z

∂z

∂Z
=
ε [U ]

d2
vz. (2.59)
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Besides we write equation (2.22) in new variables as follows:

e∗12 = [A∗] A (T ) [Gl∗] Gl (τ) τ12/τ, (2.60)

e∗11 = [A∗] A (T ) [Gl∗] Gl (τ) ε τ11/τ, (2.61)

e∗22 = [A∗] A (T ) [Gl∗] Gl (τ) ε τ22/τ. (2.62)

Now, identifying expressions (2.60)–(2.62) with their respective (2.57)–(2.59), we get:

2 d2 [A∗] [Gl∗]

[U ]
A (T ) Gl (τ) τ12/τ = uz + ε2 vx, (2.63)

2 d2 [A∗] [Gl∗]

[U ]
A (T ) Gl (τ) ε τ11/τ = 2 ε ux, (2.64)

2 d2 [A∗] [Gl∗]

[U ]
A (T ) Gl (τ) ε τ22/τ = 2 ε vz. (2.65)

Moreover, if we keep in mind the selection of [ǭ∗]
(
[ǭ∗] = 1

2 [A∗] [τ∗]n−1

)
and the relation

between [τ ∗] and [ǭ∗], given by (2.37), we obtain:

[τ ∗]n [A∗] = [Gl∗] [A∗] =
[U ]

2 d2

. (2.66)

So, we finally obtain the shallow ice scaled equations of the rheology law:

A (T ) Gl (τ) τ12/τ = uz + ε2 vx, (2.67)

A (T ) Gl (τ) τ11/τ = 2 ux, (2.68)

A (T ) Gl (τ) τ22/τ = 2 vz. (2.69)
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Shallow ice scaled model

Now, we can write the scaled model coming from equations (2.18)–(2.22) as:

ux + vz = 0 (2.70)

0 = −µ ηx + τ12z + 1 − ε2 (px − τ11x) (2.71)

0 = −pz + τ12z + τ22z (2.72)
DT

Dt
= α τ Gl (τ) A (T ) + β

(
ε2 Txx + Tzz

)
(2.73)

uz + ε2 vx = A (T ) Gl (τ) τ12/τ (2.74)

2 ux = A (T ) Gl (τ) τ11/τ (2.75)

2 vz = A (T ) Gl (τ) τ22/τ (2.76)

2 τ 2 = 2 τ 2
12 + ε2

(
τ 2
11 + τ 2

22

)
(2.77)

Next, we devote the rest of this section to apply shallow ice scaling to the boundary

conditions and to complete the model (2.70)–(2.77).

Shallow ice scaling of the upper boundary conditions

First, by using the chain rule, the kinematic boundary condition (2.23) is transformed

into:

d2
∂η

∂t

∂t

∂t∗
+ [U ] u d2

∂η

∂x

∂x

∂X
− ε [U ] v = [U ]

d2

d1

∂η

∂t
+ [U ]

d2

d1
u
∂η

∂x
− ε [U ] v = ε [U ] a.

Thus, the shallow ice scaled kinematic boundary condition (2.23) leads to:

∂η

∂t
+ u

∂η

∂x
− v = a at z = η (t, x) . (2.78)

In order to write the previous equation in terms of flow conservation, we introduce

the horizontal flux:

Q =

∫ η(x,t)

b(x)

(u, v) dz,
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so that:

∇ ·Q =
∂

∂x

∫ η(t,x)

b(x)

u (x, z) dz +
∂

∂z

∫ η(t,x)

b(x)

v (x, s) ds =

=

∫ η(t,x)

b(x)

ux (x, z) dz + u (x, η (t, x))
∂η (t, x)

∂x
− u (x, b (x))

∂b (x)

∂x
=

= u (x, η (t, x))
∂η (t, x)

∂x
− u (x, b (x))

∂b (x)

∂x
−
∫ η(t,x)

b(x)

vz (x, z) dz =

= u (x, η (t, x))
∂η (t, x)

∂x
− u (x, b (x))

∂b (x)

∂x
− v (x, η (t, x)) + v (x, b (x)) =

= u (x, η (t, x))
∂η (t, x)

∂x
− v (x, η (t, x)) − u (x, b (x))

∂b (x)

∂x
+ v (x, b (x)) =

= u (x, η (t, x))
∂η (t, x)

∂x
− v (x, η (t, x)) .

Next, we write equation (2.78) as:

:
∂η

∂t
+ ∇ ·Q = a,

or equivalently:
∂η

∂t
+

∂

∂x

∫ η

b

u (x, s) ds = a. (2.79)

On the other hand, equations (2.24)–(2.25) give us the upper surface boundary

conditions, and we use the relations (2.29), (2.30), (2.32) and (2.33) to get their

corresponding shallow ice scaling ones, as follows:

0 = (−ε [τ ∗] p− ρ g cos δ d2 (η − z) + ε [τ ∗] τ11)
d2

d1

ηx − [τ ∗] τ12,

0 = [τ ∗] τ12
d2

d1
ηx + ε [τ ∗] p+ ρ g cos δ d2 (η − z) − ε [τ ∗] τ22.

At the surface z = η (t, x), the previous equations are analogous to the following ones:

0 = (−ε [τ ∗] p+ ε [τ ∗] τ11) ε ηx − [τ ∗] τ12,

0 = ε [τ ∗] τ12 ηx + ε [τ ∗] p− ε [τ ∗] τ22,

or, equivalently:

τ12 = ε2 (τ11 − p) ηx at z = η (t, x) , (2.80)

τ22 = τ12 ηx + p at z = η (t, x) . (2.81)
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Shallow ice scaling of the basal boundary conditions

Concerning the basal conditions, we need to distinguish two possible cases: the polar

case and the polythermal one. In the polar case, first we apply the change of variable

(2.31) for temperature and the chain rule to obtain:

k

(
∂Θ

∂X
,
∂Θ

∂Z

)
(ε bx,−1) = k

(
∆Θ

d1

∂T

x
,
∆Θ

d2

∂Θ

∂Z

)
(ε bx,−1) . (2.82)

Next, we replace (2.82) in (2.27) to establish:

ε2 bx
∂T

∂x
− ∂T

∂z
= gb, (2.83)

where gb is the dimensionless geothermal heat flux given by:

gb =
Gb d2

k∆Θ
. (2.84)

Analogously, in the polythermal case, first we pose:

∂Θ

∂ ~n∗
=

∆Θ

d2

∂T

∂~n
,

and next, we replace this expression and (2.31) in the boundary condition (2.27).

Finally, we get:

T ≤ 0, T

(
ε2bx

∂T

∂x
− ∂T

∂z
− gb

)
= 0, 0 ≤ ε2bx

∂T

∂x
− ∂T

∂z
≤ gb. (2.85)

2.4 Shallow Ice Approximation

In the shallow ice scaled model that has been described in Section 2.3, we will neglect

O (ε2) terms to obtain a simplified model called Shallow Ice Approximation (SIA)

model.

Moreover, we use the classic Frank-Katmeneskii’s approximation to Arrhenius’

law. More precisely, from equation (2.35) we get:

A (T ) = exp (Q/RΘm) exp (−Q/R (Θm + (∆Θ)T )) =

= exp (Q/RΘm) exp (−Q/Rj (T )) ,
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with

j (T ) =
1

Θm + (∆Θ)T
.

Next, by approaching j (T ) with the Taylor series at Tm = 0 we have:

A (T ) = exp (Q/RΘm) exp
(
−Q/ (RΘm) +Q∆T/

(
RΘ2

m

))
=

= exp
(
Q∆ΘT/

(
RΘ2

m

))
= exp (γT ) ,

where

γ =
Q (∆Θ)

RΘ2
m

. (2.86)

So, in the SIA model we use the Frank-Katmeneskii expression:

A (T ) = eγT (2.87)

to approximate the Arrhenius’ law.

The SIA model mainly consist of three coupled SIA submodels: velocity, profile

and temperature models. Next subsections are devoted to each one of them as follows:

in Subsection 2.4.1 we set out the SIA velocity model, in Subsection 2.4.2 we state the

SIA profile one and finally in Subsection 2.4.3 we pose the SIA temperature model.

2.4.1 SIA glacier velocity model

In order to obtain a SIA model for the velocity field ~u = (u, v), first we neglect

O (ε2) terms in equations (2.71), (2.74) and (2.77). Thus, we obtain the following

expressions:

0 = −µ ηx + τ12z + 1, (2.88)

uz = A (T )Gl (τ) τ12/τ, (2.89)

τ 2 = τ 2
12. (2.90)
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Additionally, we neglect the terms of O (ε2) in the upper boundary condition (2.80)

and in equation (2.81). So, we obtain:

τ12 = 0 at z = η(t, x), (2.91)

τ22 = p at z = η(t, x). (2.92)

Moreover, we integrate respect to z in equation (2.88) to get the following expression:

f (x) = (1 − µ ηx) z + τ12. (2.93)

Next, we rewrite this expression at z = η (and then τ12 = 0 from (2.91)), to get:

f (x) = (1 − µ ηx) η.

Therefore, we can conclude the following expression for τ12:

τ12 = (1 − µ ηx) (η − z) . (2.94)

Now, by using (2.94) in equation (2.90), we obtain:

τ = |τ12| = |1 − µηx| (η − z) . (2.95)

Next, we use Glen’s law in the equations (2.89) and (2.95), to obtain:

uz = A (T ) τn−1τ12 = (2.96)

= A (T ) (1 − µ ηx) |1 − µ ηx|n−1 (η − z)n . (2.97)

Thus, by integrating the equation (2.97) between b (x) and z we get:

u− ub =

∫ z

b

A (T (s)) (1 − µ ηx) |1 − µ ηx|n−1 (η − s)n ds =

= (1 − µ ηx) |1 − µ ηx|n−1

∫ z

b

A (T (s)) (η − s)nds,

ub being the basal sliding velocity. Notice that, just for simplicity, we write A (T (s))

instead of A (T (t, x, s)). So, we can write the velocity component in downslope

direction as follows:

u = ub + (1 − µ ηx) |1 − µ ηx|n−1

∫ z

b

A (T (s)) (η − s)nds. (2.98)
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Moreover, we can rewrite (2.98) by using the Frank-Katmeneskii’s approximation to

Arrhenius’s law indicated in (2.87), as follows:

u = ub + (1 − µ ηx) |1 − µ ηx|n−1

∫ z

b

eγT (s) (η − s)nds. (2.99)

Now, by introducing the transversal flow function:

Υ (x, η (t, x)) =

∫ η

b

u dz, (2.100)

where u is given by (2.99), we can write the vertical component of the velocity v as:

v (x, z) = −∂Υ
∂x

(x, z). (2.101)

2.4.2 SIA glacier profile model

In this section we state the model governing the glacier profile evolution. For this

purpose, we write the kinematic boundary equation (2.79) in terms of the horizontal

velocity, as follows:
∂η

∂t
+

∂

∂x

(∫ η

b

u dz

)
= a, (2.102)

where the expression of u is given by equation (2.98). In order to state a basic

equation to obtain the glacier profile, we can solve the integral appearing in (2.102):

∫ η

b

u dz =

∫ η

b

[
ub + (1 − µ ηx) |1 − µ ηx|n−1

∫ z

b

A (T (s)) (η − s)nds

]
dz =

= ub (η − b) + (1 − µ ηx) |1 − µ ηx|n−1

∫ η

b

[∫ z

b

A (T (s)) (η − s)nds

]
dz =

= ub (η − b) + (1 − µ ηx) |1 − µ ηx|n−1

∫ η

b

A (T (s)) (η − s)n+1ds.

Now, we introduce the previous calculus in (2.102) and we get the following profile

equation:

∂η

∂t
+
∂

∂x
[ub (η − b)]+

+
∂

∂x

[
(1 − µ ηx) |1 − µ ηx|n−1

∫ η

b

A (T (s)) (η − s)n+1ds

]
= a, (2.103)
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that we can rewrite (again by using the Frank-Katmeneskii’s approximation to Ar-

rhenius’ law indicated in (2.87)) as follows:

∂η

∂t
+
∂

∂x
[ub (η − b)] +

+
∂

∂x

[
(1 − µ ηx) |1 − µ ηx|n−1

∫ η

b

eγT (s)(η − s)n+1ds

]
= a. (2.104)

2.4.3 SIA glacier thermal model

After neglecting O (ε2) terms in equation (2.73) we get:

DT

Dt
= ατ Gl (τ)A (T ) + βTzz.

Moreover, the combination of (2.90) and (2.94) leads to:

DT

Dt
= α (|1 − µ ηx| (η − z))n+1A (T ) + βTzz,

or, equivalently:

∂T

∂t
+ −→v · ∇T − β

∂2T

∂z2
− αeγT (|1 − µ ηx| (η − z))n+1 = 0, (2.105)

after using the Frank–Katmeneskii approximation.

Moreover, in this model we have two possible boundary conditions at the base:

one condition if the glacier is polar and another one if the glacier is polythermal.

In the case of polar glaciers, after the shallow ice scaling we deduce condition

(2.83). Therefore neglecting the term of O (ε2) we get the following basal boundary

condition for the polar case:

− ∂T

∂z
= gb. (2.106)

Analogously, if we neglect O (ε2) terms in condition (2.85) for polythermal glaciers,

we get:

T ≤ 0, T

(
∂T

∂~n
− gb

)
= 0, 0 ≤ ∂T

∂~n
≤ gb. (2.107)



Chapter 3

Numerical Simulation of the

Isothermal Glacier Profile Problem

3.1 Introduction

In the previous chapter the fully coupled SIA model has been deduced. As it has

been already pointed out, it can be understood as the set of three coupled SIA

submodels: profile, velocity and temperature submodels. In fact, in order to solve

numerically the coupled SIA model, the most used strategy in the literature is to solve

sequentially each submodel until convergence. In this framework, the main objective

of the present chapter is solve the SIA profile model governed by equation (2.104)

when the basal velocity and temperature are given data. For this purpose we first

present an isothermal approximation of the model. Next, we solve this isothermal

model by using a fixed domain formulation for the moving boundary problem of the

SIA profile model combined with a set of appropriate numerical methods to deal with

the main difficulties arising in the equations.

In a previous work [61] a front-tracking method that follows the unknown glacier

geometry is proposed. In this region a semi explicit scheme posed on a finite dif-

ferences discretization method is applied (see [55]). There exists a large literature

concerning the numerical solution of ice sheet profile equation, some examples of re-

cent references are [12, 53] or the summary of the first eismint workshop in [56].

33
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Nevertheless, the profile equation in glaciers differs from the ice sheet case and has

been not so treated in the literature. The here proposed fixed domain method allows

the use a fixed mesh, with no need of updating at each time step. In this setting, the

unknown basal extent of the glacier is implicitly obtained in terms of either the main

solution or the multiplier associated to the nonnegative unilateral constraint on the

profile. Moreover, the characteristics method for time discretization provides a well

suited upwind scheme when solutions with regions of steep gradient are expected, as it

is the case of the profile near the snout. The highly nonlinear diffusive term is treated

by an appropriate explicit scheme and piecewise Lagrange linear finite elements are

considered for spatial discretization.

This chapter is organized as follows: in Section 3.2 an isothermal uncoupled model

for the glacier profile is stated. In Section 3.4 the fixed domain formulation for the

moving boundary problem is posed in terms of a suitable complementarity problem.

Section 3.5 is devoted to the description of the different numerical techniques involved

in the proposed algorithm for the numerical solution of the model. Finally, in Section

3.6 various test examples illustrate the performance of the proposed methods.

3.2 Isothermal profile model for glaciers

In this section we consider just the profile model deduced in Chapter 2, assuming that

sliding (or basal) velocity and temperature are known data functions. This problem

setting naturally arises when solving the coupled problem with a global algorithm that

sequentially computed temperature, velocity and profile until convergence. Notice

that, in this chapter we consider an isothermal approach for the profile model, which

seems a reasonable first step in the modelling process, where we mainly focus on

the profile equation assuming a given temperature. Moreover, the variation of the

Arrhenius’ law, A (T ), with respect to real temperature is less important in glaciers

than in ice sheets (in fact, the range of temperatures is lower).
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In order to pose an isothermal approximation of the non-isothermal equation

(2.103), we consider:

A (T ) ≈ eγ T0, (3.1)

where T0 is a prescribed constant temperature. In Section 3.6, which is devoted to

numerical tests, the particular case with T0 = −1 (so that A (T ) = e−γ) and the

temperate one with T0 = 0 (so that A (T ) = 1) are considered.

In the isothermal setting here considered, we solve the integral in (2.103) and get

the following basic equation for the glacier profile problem:

∂

∂t
(η − b) +

∂

∂x
[ub (η − b)]+

+
eγ T0

n+ 2

∂

∂x

[(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1

(η − b)n+2

]

= a.
(3.2)

Moreover, hereafter we will assume a flat bottom base for the glacier (b = 0) for

simplicity, so that:

∂η

∂t
+

∂

∂x
(ub η) +

eγ T0

n + 2

∂

∂x

[(
1 − µ

∂

∂x
η

) ∣∣∣∣1 − µ
∂

∂x
η

∣∣∣∣
n−1

ηn+2

]
= a. (3.3)

3.3 Boundary conditions

The issue of boundary conditions for a valley glacier is an interesting one. The second

order equation (3.3) requires two boundary conditions, upstream and downstream. At

the snout of the glacier, assuming it terminates on land, we assume the homogeneous

Dirichlet condition:

h = 0 at x = xfront, (3.4)

where xfront is the position of the glacier front. The value of xfront is unknown (it

is a free boundary), but the condition (3.4) is sufficient to determine it, since the

equation is degenerate there (the diffusion coefficient is zero).

The condition at the upstream end of the glacier, xhead, is less clear. One first

approximation might be:

h = 0 at x = xhead, (3.5)
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where xhead is the position of the glacier head. If we choose this condition, when

ub = 0 the flux:

Υ = ubη +
eγT0

n+ 2

(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1

ηn+2 (3.6)

is then apparently zero unless ∂η/∂x is infinite. Indeed, the condition η = 0 then

requires Υ ≈ ax > 0 near x = xhead, and this requires ∂η/∂x to be infinite and

negative. Thus, when ub = 0, the only way one can maintain η = 0 at the head is to

have finite flux, and (since η must be positive in x > xhead), this must be a negative

flux; that is to say, the glacier actually grows into an ice sheet with an ice divide

downstream of the head.

Physically, we need to represent the bergschrund of the glacier. One way is to

allow a variable basal slope, another option is applied a flux boundary condition:

Υ = Υ0 at x = xhead. (3.7)

In this problem we use both boundary conditions (3.5) and (3.7) at the head of

the glacier and so we pose two problems: case without prescribed flux using (3.5) and

case with prescribed flux using (3.7).

3.4 Moving boundary and complementarity prob-

lems

In this section we pose two moving boundary problems issued from different physical

motivations. In the first case, the glacier profile evolution comes from the balance

between accumulation-ablation phenomena plus the basal sliding. So, at each time

the unknown positions of the head and the snout constitute the free boundary to be

determined jointly with the profile function. In the second case, at a given position,

xhead, the flux is prescribed so that the free boundary is just the snout position.
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3.4.1 Case without prescribed flux

The equation (3.3) is valid for the function η that defines the glacier profile at those

points x where η (t, x) > 0. Nevertheless, the set of those points is an additional

unknown of the departure problem due to the fact that, a priori, the longitudinal

extent of the ice layer is unknown (the same argument appears in [21, 27]). Therefore,

this is a typical moving boundary problem which is appropriately formulated in the

following paragraph.

Let (0, tA) be a large enough time interval and let Ω = (0, xmax) be a large enough

bounded interval to be suitable fixed. Moreover, if a given accumulation-ablation

function a : (0, tA) × Ω → R is considered and a positive initial glacier profile η0 :

Ω → R is prescribed, then the moving boundary formulation can be stated as follows:

For all t ∈ [0, tA], find the ice covered region Γ (t) = (xhead (t) , xfront (t)) ⊂ Ω

and the profile function η : ℘ =
⋃

t∈[0,tA] ({t} × Γ(t)) → R such that:

Dη

Dt
= − eγ T0

(n+ 2)

∂

∂x

[(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1

ηn+2

]

+ a in ℘,

η > 0 in ℘,

η = 0 on {xhead (t)} ∪ {xfront (t)} , t ∈ (0, tA) ,

η (0, x) = η0 (x) in Ω, (3.8)

where Γ (t) = {x/η(t, x) > 0} = (xhead (t) , xfront (t)) denotes the unknown basal lon-

gitudinal glacier extent and Ω is chosen such that Γ (t) ⊂ Ω for all t, a is a given time

and space dependent accumulation-ablation rate function, and Dη
Dt

denotes the total

derivative with respect to the velocity field ub in conservative form, that is:

Dη

Dt
=
∂η

∂t
+

∂

∂x
(ubη) . (3.9)

As it has been mentioned before, the set ℘ results to be an additional unknown. The

technique of fixed domain methods for moving boundary problems involves a problem

formulation in a given domain Q = (0, tA)×Ω, extending by zero the function η (t, x)

in the set Q\℘, so that the ‘extended’ glacier profile function verifies a nonlinear
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equation with multivalued operator (see [30], for example). For the sake of simplicity,

we also denote by η the extent of the initial unknown to the fixed domain. Then, the

function η satisfies the equations:

Dη

Dt
+

eγ T0

(n + 2)

∂

∂x

[(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1

ηn+2

]

− a ≥ 0 in Q,

η ≥ 0 in Q,(
Dη

Dt
+

eγ T0

(n+ 2)

∂

∂x

[(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1

ηn+2

]
− a

)
η = 0 in Q,

η = 0 on (0, tA) × ∂Ω,

η (0, x) = η0 (x) in Ω. (3.10)

Notice that in the ice covered region, Γ (t), the fact that η (t, x) > 0 jointly with

equation (3.10)3 imply equation (3.3).

The above set of equations is classically known in moving boundary literature as

a nonlinear parabolic complementarity formulation (see [30], for example).

3.4.2 Case with prescribed flux

In this case, for all t ∈ [0, tA], we have to find the ice covered region Γ (t) =

(0, xfront(t)) ⊂ Ω and the profile function η : ℘ =
⋃

t∈[0,tA] ({t} × Γ(t)) → R such that

equations (3.8)1, (3.8)2 and (3.8)4 are verified. Moreover, equation (3.8)3 is replaced

by conditions:

Υ = Υ0 on x = 0, t ∈ (0, tA) , (3.11)

η = 0 on x = xfront (t) , t ∈ (0, tA) , (3.12)

where the flux is defined by:

Υ = ubη +
eγ T0

n + 2

(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1

ηn+2, (3.13)

and Υ0 denotes the constant prescribed flux at the head of the glacier. So, the

complementarity problem formulation is given by (3.10), but replacing boundary



39

condition (3.10)4 by (3.11) and:

η = 0 on (0, tA) × {xmax} . (3.14)

Notice that the unknown basal glacier extent is given in this case by the domain

Γ (t) = {x/η(t, x) > 0} = (0, xfront(t)) and the free boundary just reduces to the

point x = xfront(t).

3.5 Numerical Methods

3.5.1 Case without prescribed flux

The set of equations (3.10) defines a nonlinear evolutive problem and the material

derivative is involved in its formulation. In this section we describe different numerical

methods for the approximation of the solution. The techniques are very close to

those ones used for an analogous moving boundary model in ice sheets [21]. First,

a characteristics method is proposed for time discretization. Next, a fixed point

iteration is used for the nonlinear diffusive term at each time step. For the nonlinearity

associated to the free boundary aspect (obstacle problem) a duality algorithm is

proposed [5].

Time discretization

In order to discretize in time the nonlinear problem (3.10) an upwind characteristics

scheme is chosen to approximate the material derivative, using the technique proposed

in [2]. More precisely, let ∆t be the time step and let us denote:

ηm+1 = η ((m+ 1) ∆t, x) , ∀x ∈ Ω. (3.15)

For m = 0, 1, 2, .... Then, we introduce the approximation:

Dη

Dt

(
(m+ 1) ∆t, x

)
≈ ηm+1 (x) − Jm (x) ηm

(
χm (x)

)

∆t
, (3.16)
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where χm (x) = χ ((m+ 1) ∆t, x;m∆t) is obtained by solving the final value problem:





dχ (t, x; s)

ds
= ub

(
χ (t, x; s) , s

)
,

χ (t, x; t) = x,
(3.17)

and the function Jm is computed by numerical integration in the form:

Jm (x) = 1 −
∫ (m+1)∆t

m∆t

∂ub

∂x

(
χ
(
(m+ 1) ∆t, x; τ

))
dτ. (3.18)

More specifically, we denote Jm (x) = J
(
(m+ 1)∆t, x;m∆t

)
, where the function J

represents the jacobian of the change from eulerian coordinates to lagrangian coordi-

nates defined by the function x→ χ (t, x; s), (see [2]).

Next, by replacing (3.16) in the problem (3.10), we obtain a sequence of nonlinear

elliptic complementarity problems. More precisely, after initializing η0 = η (0, x), as

indicated by equation (3.10), for each m = 0, 1, 2, ..., for a given function ηm, the

following nonlinear problem is posed:

Find ηm+1 such that:

ηm+1 − Jm (ηm ◦ χm)

∆t
+

+
eγ T0

5

∂

∂x

(
(
ηm+1

)5
∣∣∣∣1 − µ

∂η

∂x

m+1
∣∣∣∣
2(

1 − µ
∂η

∂x

m+1))
− am+1 ≥ 0 in Ω,

ηm+1 ≥ 0 in Ω,

ηm+1

[
ηm+1 − Jm (ηm ◦ χm)

∆t
+

+
eγ T0

5

∂

∂x

(
(
ηm+1

)5
∣∣∣∣1 − µ

∂η

∂x

m+1
∣∣∣∣
2(

1 − µ
∂η

∂x

m+1))

− am+1

]

= 0 in Ω,

ηm+1 = 0 on ∂Ω, (3.19)

where am+1 (x) = a
(
(m+ 1)∆t, x

)
and ◦ denotes the composition symbol.

In order to solve the complementarity problems (3.19), an iterative fixed point

technique is applied on the nonlinear diffusive term. In this way, a sequence of linear

complementarity problems (indexed by k) is obtained.
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More precisely, for each m, we initialize ηm+1,0, for example, ηm+1,0 = ηm, and at

step k + 1 the following problem has to be solved:

Find ηm+1,k+1 such that:

ηm+1,k+1 − Jm (ηm ◦ χm)

∆t
+

+
eγ T0

5

∂

∂x

(
fm+1,k

1

(
1 − µ

∂η

∂x

m+1,k+1))
− am+1 ≥ 0 in Ω,

ηm+1,k+1 ≥ 0 in Ω,
[
ηm+1,k+1 − Jm (ηm ◦ χm)

∆t
+

+
eγ T0

5

∂

∂x

(
fm+1,k

1

(
1 − µ

∂η

∂x

m+1,k+1))
− am+1

]

ηm+1,k+1 = 0 in Ω,

ηm+1,k+1 = 0 on ∂Ω, (3.20)

where

fm+1,k
1 =

(
ηm+1,k

)5
∣∣∣∣1 − µ

∂η

∂x

m+1,k
∣∣∣∣
2

.

Notice that problem (3.20) can be rewritten as follows:

Find ηm+1,k+1 such that:

ηm+1,k+1 − Jm (ηm ◦ χm)

∆t
−

− µ
eγ T0

5

∂

∂x

(
fm+1,k

1

∂η

∂x

m+1,k+1)
+ fm+1,k

2 − am+1 ≥ 0 in Ω,

ηm+1,k+1 ≥ 0 in Ω,
[
ηm+1,k+1 − Jm (ηm ◦ χm)

∆t
−

− µ
eγ T0

5

∂

∂x

(
fm+1,k

1

∂η

∂x

m+1,k+1)
+ fm+1,k

2 − am+1

]

ηm+1,k+1 = 0 in Ω,

ηm+1,k+1 = 0 on ∂Ω, (3.21)

where

fm+1,k
2 =

eγ T0

5

∂f1

∂x

m+1,k

=
eγ T0

5

∂

∂x

(
(
ηm+1,k

)5
∣∣∣∣1 − µ

∂η

∂x

m+1,k
∣∣∣∣
2
)
. (3.22)
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Spatial discretization and variational formulation

In order to pose the spatial discretization and the variational formulation, the follow-

ing convex set is introduced:

K = {ϕ ∈ H1
0 (Ω) /ϕ ≥ 0 a.e. in Ω}. (3.23)

Thus, for each value of m, ηm+1,0 ∈ K is initialized, for example ηm+1,0 = ηm, and at

the step k + 1 the solution of the following variational inequality is posed:

Find ηm+1,k+1 ∈ K such that:

1

∆t

∫

Ω

ηm+1,k+1
(
ϕ− ηm+1,k+1

)
dΩ +

+µ
eγ T0

5

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂

∂x

(
ϕ− ηm+1,k+1

)
dΩ ≥

≥ 1

∆t

∫

Ω

Jm (ηm ◦ χm)
(
ϕ− ηm+1,k+1

)
dΩ −

−
∫

Ω

fm+1,k
2

(
ϕ− ηm+1,k+1

)
dΩ +

+

∫

Ω

am+1
(
ϕ− ηm+1,k+1

)
dΩ, ∀ϕ ∈ K. (3.24)

The relation between variational inequalities, complementarity problems and ob-

stacle problems can be reviewed in [30], for example. In order to discretize (3.24) in

space, a piecewise linear Lagrange finite elements space is used. Thus, for a positive

given parameter l, a uniform finite elements mesh, τl, is built for the domain Ω with

nodes xi = (i − 1)l, i = 1, . . . , N + 1. So, the following classical spaces and sets are

introduced:

Vl = {ϕl ∈ C0 (Ω) /ϕl|E ∈ P1, ∀E ∈ τl}, (3.25)

V0l = {ϕl ∈ Vl/ϕl|∂Ω = 0}, (3.26)

Kl = {ϕl ∈ Vl/ϕl ≥ 0, a.e. in Ω, ϕl|∂Ω = 0}, (3.27)

where E denotes a standard finite element. In this way, the discretized problem can

be written as follows:
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Find ηm+1,k+1
l ∈ Kl such that:

1

∆t

∫

Ω

ηm+1,k+1
l

(
ϕl − ηm+1,k+1

l

)
dΩ +

+µ
eγ T0

5

∫

Ω

fm+1,k
1

∂ηl

∂x

m+1,k+1 ∂

∂x

(
ϕl − ηm+1,k+1

l

)
dΩ ≥

≥ 1

∆t

∫

Ω

Jm (ηm
l ◦ χm)

(
ϕl − ηm+1,k+1

l

)
dΩ −

−
∫

Ω

fm+1,k
2

(
ϕl − ηm+1,k+1

l

)
dΩ +

+

∫

Ω

am+1
(
ϕl − ηm+1,k+1

l

)
dΩ, ∀ϕl ∈ Kl. (3.28)

In the following sections the subindex l has been suppressed for simplicity.

Duality algorithm

In order to solve the discretized nonlinear problem (3.28) several minimization algo-

rithms applied to variational formulations of obstacle problems can be used [44]. In

this work a duality method proposed in [5] to solve variational inequalities has been

chosen. For this purpose, first we express the variational inequalities (3.24) in terms

of the indicatrix function, IK , of the convex K. So that we pose the problem:

Find ηm+1,k+1 ∈ V0l (Ω) such that:

1

∆t

∫

Ω

ηm+1,k+1
(
ϕ− ηm+1,k+1

)
dΩ +

+µ
eγ T0

5

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂

∂x

(
ϕ− ηm+1,k+1

)
dΩ +

+IK (ϕ) − IK
(
ηm+1,k+1

)
≥

≥ 1

∆t

∫

Ω

Jm (ηm ◦ χm)
(
ϕ− ηm+1,k+1

)
dΩ −

−
∫

Ω

fm+1,k
2

(
ϕ− ηm+1,k+1

)
dΩ +

+

∫

Ω

am+1
(
ϕ− ηm+1,k+1

)
dΩ, ∀ϕ ∈ H1

0 (Ω) ,(3.29)

where (∂IK)ω
λ is the Yosida approximation of operator (∂IK − ωI) with parameter

λ > 0.
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Moreover, the results of subdifferential calculus for the convex function IK allow

to rewrite (3.29) in the following equivalent form:

ξm+1,k+1 = −
(
A
(
ηm+1,k+1

)
− gm+1,k

)
∈ ∂IK

(
ηm+1,k+1

)
, (3.30)

where ∂IK (u) denotes the subdifferential of IK at the point u, the operator A :

H1
0 (Ω) → H−1 (Ω) is defined by:

(A (ϕ) , ψ) =
1

∆t

∫

Ω

ϕψ dΩ + µ
eγ T0

5 ν

∫

Ω

fm+1,k
1

∂ϕ

∂x

∂ψ

∂x
dΩ, (3.31)

and the element gm+1,k ∈ H−1 (Ω) is given by:

(
gm+1,k, ψ

)
=

1

∆t

∫

Ω

Jm (ηm ◦ χm) ψ dΩ −
∫

Ω

fm+1,k
2 ψ dΩ +

∫

Ω

am+1 ψ dΩ. (3.32)

Therefore, equation (3.30) is equivalent to the following problem:

Find ηm+1,k+1 ∈ H1
0 (Ω) such that:

1

∆t

∫

Ω

ηm+1,k+1 ψ dΩ +

∫

Ω

ξm+1,k+1 ψ dΩ +

+ µ
eγ T0

5

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂ψ

∂x
dΩ − 1

∆t

∫

Ω

Jm (ηm ◦ χm) ψ dΩ =

=

∫

Ω

am+1 ψ dΩ −
∫

Ω

fm+1,k
2 ψ dΩ, ∀ψ ∈ H1

0 (Ω) , (3.33)

with

ξm+1,k+1 ∈ ∂IK
[
ηm+1,k+1

]
. (3.34)

The method proposed in [5] to solve the nonlinear problem (3.33)–(3.34) intro-

duces a new unknown, qm+1,k+1, which works as multiplier, defined by:

qm+1,k+1 ∈ ∂IK
[
ηm+1,k+1

]
− ωηm+1,k+1, (3.35)

in terms of a positive parameter ω. Thus, equation (3.33) can be written as follows:

Find ηm+1,k+1 ∈ H1
0 (Ω) such that:

1

∆t

∫

Ω

ηm+1,k+1 ψ dΩ +

∫

Ω

(
qm+1,k+1 + ω ηm+1,k+1

)
ψ dΩ +

+ µ
eγ T0

5

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂ψ

∂x
dΩ =

1

∆t

∫

Ω

Jm (ηm ◦ χm) ψ dΩ +

+

∫

Ω

am+1 ψ dΩ −
∫

Ω

fm+1,k
2 ψ dΩ, ∀ψ ∈ H1

0 (Ω) , (3.36)
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where qm+1,k+1 verifies (3.35).

As ∂IK is a maximal monotone operator, the following conditions are equivalent

(see proof in [5]):

qm+1,k+1 ∈ (∂IK − ωI)
(
ηm+1,k+1

)
, (3.37)

qm+1,k+1 = (∂IK)ω
λ

[
ηm+1,k+1 + λqm+1,k+1

]
, (3.38)

where (∂IK)ω
λ is the Yosida approximation of operator (∂IK − ωI) with parameter

λ > 0.

The duality formulation and the previous equivalence in the discretized problem

are used to propose the following algorithm:

Step 0:

• Initialize
(
ηm+1,k+1

)0
:
(
ηm+1,k+1

)0
= ηm+1,k for example.

Step j: Given
(
ηm+1,k+1

)j
:

• compute
(
ηm+1,k+1

)j+1 ∈ V0l as the solution of the linear problem:
(

1

∆t
+ ω

)∫

Ω

ηm+1,k+1,j+1 ψ dΩ +

+ µ
eγ T0

5

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1,j+1 ∂ψ

∂x
dΩ =

= −
∫

Ω

qm+1,k+1,j ψ dΩ +
1

∆t

∫

Ω

Jm (ηm ◦ χm) ψ dΩ +

+

∫

Ω

am+1 ψ dΩ −
∫

Ω

fm+1,k
2 ψ dΩ, ∀ψ ∈ V0l, (3.39)

• update the multiplier by:

(
qm+1,k+1

)j+1
= (∂IK)ω

λ

[(
ηm+1,k+1

)j+1
+ λ

(
qm+1,k+1

)j]
.

The duality method convergence is obtained in [5] when λω ≤ 0.5. The case of

constant parameters corresponds to the classical case. Further extensions using func-

tional parameters had been consider in [68] for specific problems. For the particular

choice of the parameters λω = 0.5, the Yosida approximation is given by:

(∂IK)ω
1

2ω
(r) = −2ω |r| .
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3.5.2 Case with prescribed flux

In this case, the departure point for the variational formulation replaces the Sobolev

space H1
0 (Ω) by V = {ϕ ∈ H1(Ω)/ϕ(xmax) = 0} in the definition of convex K at

equation (3.23). Then, formulation (3.24) is replaced by:

Find ηm+1,k+1 ∈ K such that:

1

∆t

∫

Ω

ηm+1,k+1
(
ϕ− ηm+1,k+1

)
dΩ+

+ µ
eγ T0

5

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂

∂x

(
ϕ− ηm+1,k+1

)
dΩ ≥

≥ 1

∆t

∫

Ω

Jm (ηm ◦ χm)
(
ϕ− ηm+1,k+1

)
dΩ −

∫

Ω

fm+1,k
2

(
ϕ− ηm+1,k+1

)
dΩ+

+

∫

Ω

am+1
(
ϕ− ηm+1,k+1

)
dΩ + Υ̂0

(
ϕ(0) − ηm+1,k+1(0)

)
, ∀ϕ ∈ K, (3.40)

where we have replaced condition ηm+1,k+1 (0) = 0 by:

ubη
m+1,k (0) +

eγT0

5
fm+1,k

1 (0)

(
1 − µ

∂η

∂x

m+1,k+1)
(0) = Υ0,

which corresponds to a linearization of the initially prescribed nonlinear flux. Thus,

in (3.40) we use the notation:

Υ̂0 = Υ0 − ubη
m+1,k (0) − eγT0

5
fm+1,k

1 (0) . (3.41)

Following similar procedures to the ones in the case without imposed flux and defining:

V0l = {ϕl ∈ Vl/ϕl(xmax) = 0}, (3.42)

we achieve the following linear problem:
(

1

∆t
+ ω

)∫

Ω

ηm+1,k+1,j+1ψ dΩ+

+ µ
eγ T0

5

∫

Ω

fm+1,k
1

(
∂η

∂x

)m+1,k+1,j+1
∂ψ

∂x
dΩ =

= −
∫

Ω

qm+1,k+1,j ψ dΩ +
1

∆t

∫

Ω

Jm (ηm ◦ χm) ψ dΩ+

+

∫

Ω

am+1ψdΩ −
∫

Ω

fm+1,k
2 ψdΩ + Υ̂0 ψ(0), ∀ψ ∈ V0l, (3.43)

which replaces (3.39).
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3.6 Numerical Tests

In this section, we present numerical results corresponding to analytical and non–ana-

lytical test solutions. The results have been obtained by implementing in Fortran90

the numerical methods previously described in this chapter.

3.6.1 Test examples with analytical solution

This analytical test is an academic example developed to validate the correct perfor-

mance of the algorithm proposed in this chapter.

Case without prescribed flux

In this section we have chosen several examples corresponding to the case without

prescribed flux and for which the exact time dependent solution is:

ηe (t, x) = 0.86025 (1 − 0.1t)
(
1 − (x− 1)2)1/2

. (3.44)

For this purpose, the following accumulation ablation function has been chosen:

ae(t, x) =
∂ηe

∂t
+

∂

∂x
(ubηe) +

eγ T0

5

∂

∂x

[(
1 − µ

∂ηe

∂x

)3

η5
e

]

, (3.45)

and the parameters selected for this example are:

γ = 4.52, δ = 10o, µ = 0.4 and T0 = −1.

Moreover, a first example without basal velocity, ub = 0, and a second one with

constant basal velocity, ub = 10−3, have been tested.

For the numerical solution, we have chosen several uniform finite element meshes

(with N = 1000, 2000, 4000 and 8000 nodes) and time steps (∆t = 10−4, 10−5 and

10−6). Moreover, we have chosen the value of 10−20 as stopping test for the fixed

point iteration and duality algorithms.

The exact solution in expression (3.44) and the correspond exact accumulation-

ablation function (3.45) are plotted in Figure 3.1 and Figure 3.2 respectively. Tables
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Figure 3.1: Exact solution for the analytical test without prescribed flux
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Figure 3.2: Exact accumulation-ablation function for the analytical test without pre-
scribed flux
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∆t N = 100 N = 1000 N = 10000
1.e-4 1.2876e-4 9.0814e-5 ———–
1.e-5 1.2974e-4 9.0689e-5 8.6606e-5
1.e-6 1.2922e-4 9.0676e-5 8.6602e-5

Table 3.1: Errors in infinity norm at time t = 7 for the analytical test example without
prescribed flux. Domain [0, 2] and no sliding velocity (ub = 0).

∆t N = 100 N = 1000 N = 10000
1.e-4 1.6103e-2 1.5981e-2 ———–
1.e-5 1.6102e-2 1.5981e-2 8.8129e-3
1.e-6 1.6119e-2 1.5981e-2 8.8128e-3

Table 3.2: Errors in infinity norm at time t = 7 for the analytical test example without
prescribed flux. Domain [0, 2] and sliding velocity ub = 10−3.

3.1 to 3.6 show the infinity norm of the obtained error for η (t, .) with t = 7 for different

meshes and time steps. That is, they show the value ‖ηe (t, xi) − ηc (t, xi)‖∞, where

ηc denotes the computed solution. First, Table 3.1 corresponds to zero basal velocity

and Table 3.2 corresponds to the constant basal velocity ub = 10−3. The problem

domain in both tables is [0, 2]. For the same domain, but just considering the errors

on the nodes in [0.1, 1.9], analogous Tables 3.3 and 3.4 are shown. If we compare

these new tables with the previous ones, we can conclude that most of the errors are

concentrated at the domain margins. The main cause is due to the accumulation-

ablation function (3.45) associated to the exact solution (3.44) that presents infinite

slope at the margins. For this reason, we have also considered another test example

where the profile problem is posed in [0.1, 1.9], and the corresponding errors of these

new tests are presented in Tables 3.5 and 3.6. Notice that the convergence results

are better illustrated in this last tests than in the previous ones, and moreover errors

for zero sliding velocity are smaller than for nonzero sliding velocity case. Note also

that in all previous examples the free boundary does not appear and the solution

corresponds to a fully ice covered domain.

As a general conclusion about the previous results we can state the good conver-

gence results obtained when refining both the time and spatial mesh steps. Although
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∆t N = 100 N = 1000 N = 10000
1.e-4 5.1363e-6 2.2556e-6 ———–
1.e-5 6.0288e-6 2.2900e-7 2.2914e-7
1.e-6 6.1180e-6 5.0555e-8 2.6120e-8

Table 3.3: Errors in infinity norm measured only in [0.1, 1.9] at time t = 7 for the
analytical test example without prescribed flux. Domain [0, 2] and no sliding velocity
(ub = 0).

∆t N = 100 N = 1000 N = 10000
1.e-4 4.2611e-4 5.1859e-5 ———–
1.e-5 4.2506e-4 5.0874e-5 4.4088e-6
1.e-6 4.2495e-4 5.0775e-5 4.3060e-6

Table 3.4: Errors in infinity norm measured only in [0.1, 1.9] at time t = 7 for the
analytical test example without prescribed flux. Domain [0, 2] and sliding velocity
ub = 10−3.

∆t N = 100 N = 1000 N = 10000
1.e-4 9.9581e-6 7.4474e-8 ———–
1.e-5 1.0892e-5 6.4142e-8 2.9143e-8
1.e-6 1.0986e-5 6.7154e-8 2.6299e-8

Table 3.5: Errors in infinity norm at time t = 7 for the analytical test example without
prescribed flux. Domain [0.1, 1.9] and no sliding velocity (ub = 0).

∆t N = 100 N = 1000 N = 10000
1.e-4 2.9899e-4 3.6353e-5 ———–
1.e-5 2.9791e-4 3.6260e-5 3.8513e-6
1.e-6 2.9780e-4 3.6247e-5 3.7497e-6

Table 3.6: Errors in infinity norm at time t = 7 for the analytical test example without
prescribed flux. Domain [0.1, 1.9] and sliding velocity ub = 10−3.
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several numerical methods dealing with the involved nonlinearities, we remember that

the characteristics method for time discretizations presents an order of convergence

O(∆t+ h+ h2/∆t) (see [3]) leading to a first order convergence for ∆t = h.

Case with prescribed flux

In this section we present the same methodology to check the algorithm but now by

choosing different data, because in this case we have different boundary condition on

the head of the glacier.

We have chosen a flat sloped based as the base of the glacier, but in this case we

want to test a fixed flow as boundary condition at the head of the glacier for which

the exact time dependent solution is given by:

ηf (t, x) = (1 − 0.1t)

(
1 −

(x
2

)2
)1/2

, (3.46)

and the accumulation-ablation function applied in this academic example is:

af(t, x) =
∂ηf

∂t
+

∂

∂x
(ubηf ) +

eγ T0

5

∂

∂x

[(
1 − µ

∂ηf

∂x

)3

η5
f

]
, (3.47)

which it is plotted in Figure 3.4. The selected parameters for this example are:

γ = 2.5, δ = 10, µ = 0.4 and T0 = −1.

Moreover, examples without basal velocity, ub = 0, and with constant basal velocity,

ub = 10−3, have been tested.

The value of the flux is given by:

Υf = ubηf +
eγ T0

5

(
1 − µ

∂ηf

∂x

)3

η5
f ,

so that the boundary condition (3.11) remains as follows:

Υ = Υ0 = ub (1 − 0.1t) +
eγ T0

5
(1 − 0.1t)5 at x = 0, t > 0. (3.48)

Tables 3.7 to 3.10 show the infinity norm of the obtained error for η(., t) with

t = 7 for the different meshes and time steps. The value ‖ηf (t, x) − ηc (t, x)‖∞ is



52

∆t N = 100 N = 1000 N = 2000 N = 4000 N = 8000
1.e-4 5.2681e-2 1.1571e-2 6.0962e-3 ———– ———–
1.e-5 5.2679e-2 1.1571e-2 6.0962e-3 3.1382e-3 ———–
1.e-6 5.2678e-2 1.1571e-2 6.0962e-3 3.1382e-3 1.5936e-3
1.e-7 ——— 1.1571e-2 6.0962e-3 3.1382e-3 1.5936e-3

Table 3.7: Errors in infinity norm at time t = 7 for the analytical test example with
prescribed flux. Domain [0, 2] and no sliding velocity (ub = 0).

∆t N = 100 N = 1000 N = 2000 N = 4000 N = 8000
1.e-4 4.5393e-2 9.6712e-3 5.0270e-3 ———– ———–
1.e-5 4.5392e-2 9.6712e-3 5.0207e-3 2.5674e-3 1.4590e-3
1.e-6 4.5392e-2 9.6712e-3 5.0207e-3 2.5674e-3 1.4590e-3
1.e-7 ——— 9.6712e-3 5.0207e-3 2.5674e-3 1.4590e-3

Table 3.8: Errors in infinity norm at time t = 7 for the analytical test example with
prescribed flux. Domain [0, 2] and sliding velocity ub = 10−3.

∆t N = 100 N = 1000 N = 2000 N = 4000 N = 8000
1.e-4 5.0670e-2 1.0977e-3 5.4767e-4 ———– ———–
1.e-5 5.0669e-2 1.0977e-3 5.4764e-4 2.7354e-4 ———–
1.e-6 5.0669e-2 1.0977e-3 5.4770e-4 2.7358e-4 1.3672e-4
1.e-7 ——— 1.0977e-3 5.4767e-4 2.7355e-4 1.3670e-4

Table 3.9: Errors in infinity norm at time t = 7 for the analytical test example with
prescribed flux. Domain [0, 1.9] and no sliding velocity (ub = 0).

∆t N = 100 N = 1000 N = 2000 N = 4000 N = 8000
1.e-4 4.3569e-2 1.3219e-3 4.7798e-4 ———– ———–
1.e-5 4.3569e-2 1.3219e-3 4.7797e-4 2.4420e-4 1.2359e-4
1.e-6 4.3568e-2 1.3219e-3 4.7800e-4 2.4425e-4 1.2357e-4
1.e-7 ——— 1.3219e-3 4.7797e-4 2.4420e-4 1.2359e-4

Table 3.10: Errors in infinity norm at time t = 7 for the analytical test example with
prescribed flux. Domain [0, 1.9] and sliding velocity ub = 10−3.
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Figure 3.3: Exact solution for analytical test example with prescribed flux

shown, where ηc denotes the computed solution, as we have indicated in the previous

example.

First, Table 3.7 corresponds to zero basal velocity and Table 3.8 corresponds to

the constant basal velocity ub = 10−3. The problem domain in both tables is [0, 2].

Considering the domain in [0, 1.9] analogous Tables 3.9 and 3.10 are shown.

Note that in all previous examples of this analytical test the free boundary does

not appear and the solution corresponds to a fully ice covered domain.

3.6.2 Test without closed form solution

In this section we have considered several examples without analytical solution, some

of them corresponding to the case without imposed flux and others to the case of

prescribed flux at the head.

Case without prescribed flux

In this setting we first consider an example corresponding to an isothermal temperate

regime, defined by constant temperature T0 = 0 (so that A(T ) = 1) and different

sliding velocities. More precisely, the values ub = 1 and ub = 5 have been cho-

sen. The domain Ω = (0, 5) has been taken. We have considered the dimensionless
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Figure 3.4: Exact accumulation-ablation function for analytical test with prescribed
flux

accumulation-ablation given by:

a(t, x) = c(1 − x), (3.49)

with c = 1 or c = 2. This accumulation-ablation function is O(1) and assumes accu-

mulation taking place on the left part (upper glacier region) and ablation occurring on

the right part (lower glacier region). As initial conditions we have considered either

a zero initial profile or the following flattened half-sphere on a sloping ground:

η(0, x) =

{
0.1 (1 − (x− 1)2)

1/2
if | x− 1 |≤ 1

0 if | x− 1 |> 1,
(3.50)

which is very close to the one already used in [61]. Moreover, from this example we

have also taken the following parameters to simulate the glacier behavior:

d1 = 1km, d2 = 132m, δ = 10o and ε = 0.13.

The resulting profiles when ub = 1 are shown in Fig. 3.5 for different times until

steady state is achieved. The two upper pictures in this figure show the case c = 1

with the initial condition defined in (3.50) and zero initial condition, respectively.
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Thus illustrating that the same steady state is achieved from both initial conditions.

The bottom part of Fig. 3.5 shows the expected behavior when both accumulation

and ablation increase at the left and right regions, respectively. Next, in Fig. 3.6 the

analogous results are shown for ub = 5.

The second example corresponds to a polar regime when T0 = −1 (so that A(T ) =

e−γ , with γ = 5) and no sliding (ub = 0) are considered. The resulting profiles are

shown in Fig. 3.7. Notice that while in the temperate case a finite slope is observed

at the head, in the polar one an infinite slope seems to appear. Thus, in this second

case we think that the homogeneous Dirichlet boundary condition at the head leads

to a negative flux at that point, so that it is more realistic to impose the flux. This

is the main reason why we consider the second case with prescribed flux.

The parameters associated to time and space discretizations have been taken to

∆t = 10−6 and ∆x = 10−3, respectively. The stopping test parameter for the nonlin-

ear algorithms have been taken to 10−9.

Case with prescribed flux

In this second set of tests we have considered a prescribed flux at the head of the

glacier. Unless specifically pointed out, the common data are the same as in the

previous example. As initial condition we just consider a zero profile function, but in

all tests the same steady state results are obtained with initial condition (3.50).

The first tests correspond to the polar case, by taking T0 = −1, ub = 0, c = 1 and

different flux values Υ0. The obtained profiles are shown in Fig. 3.8 and illustrate the

behavior with respect to Υ0. Notice that finite slopes appear at the head. Analogous

results for the case c = 2 (thus increasing the accumulation-ablation) are shown in

Fig. 3.9.

The rest of the tests correspond to the temperate case with T0 = 0 and Υ0 = 0.5

as fixed parameters, and different values of ub and c. The obtained profiles are shown

in Figs. 3.10 and 3.11.

Notice that we can deduce further information about the position of the free
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Figure 3.5: Computed profiles for the temperate case (T0 = 0) without prescribed flux
and with ub = 1. From top to bottom: case c = 1 and flat bottom initial condition,
case c = 1 and zero initial condition and case c = 2 and zero initial condition.
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Figure 3.10: Computed profiles for the temperate case (T0 = 0) with prescribed flux
Υ0 = 0.1 and ub = 1. From top to bottom: case c = 1 and case c = 2.
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Figure 3.11: Computed profiles for the temperate case (T0 = 0) with prescribed flux
Υ0 = 0.1 and ub = 5. From top to bottom: case c = 1 and case c = 2.
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boundary at the steady state solution:

x∞front = lim
t→∞

xfront(t).

More precisely, if we define the function η∞ by:

η∞(x) = lim
t→∞

η(t, x),

then, for a time independent accumulation-ablation function, a, we have:

a =
∂Υ∞

∂x
,

where Υ∞ denotes the flux associated to η∞. Next, if we integrate the previous

equation between the head and the front of the glacier we get:

∫ x∞

front

0

a(x) dx = −Υ0, (3.51)

just by using that η∞(x∞front) = Υ(x∞front) = 0 and Υ(0) = Υ0.

Now, if the accumulation-ablation function is given by (3.49), then (3.51) leads to

equation:

c

(
x∞front −

(x∞front)
2

2

)
= −Υ0,

and therefore (the negative root does not correspond to a real situation):

x∞front = 1 +

√
1 +

2 Υ0

c
. (3.52)

From the previous expression, notice that for a given accumulation-ablation func-

tion the steady state free boundary x∞front moves to the right when increasing the

prescribed flux, Υ0. Conversely, for fixed values of Υ0, the free boundary moves to

the left when increasing c (we are increasing ablation at the snout region). Moreover,

we can compute the value of xfront for a given c and Υ0 values. We compare this

exact value of x∞front with the computed value in the polar case in Table 3.11 and

for the temperate case in Table 3.12. Notice that the values of the velocity does not

affect the position of the free-boundary as expected from expression (3.52), although

it modifies the solution.



64

Υ0
c=1 c=2

exact value computed value exact value computed value

0 2 2 2 2

0.1 2.0954 2.096 2.0488 2.049

0.5 2.4142 2.414 2.2247 2.224

1 2.7321 2.732 2.4142 2.414

Table 3.11: Exact and computed values of the free boundary in the polar case with
prescribed flux boundary condition and ub = 0.

ub
c=1 c=2

exact value computed value exact value computed value

1 2.0954 2.096 2.0488 2.049

5 2.0954 2.096 2.0488 2.049

Table 3.12: Exact and computed values of the free boundary in the temperate case
with prescribed flux Υ0 = 0.1 and with different nonzero basal velocities: ub = 1 and
ub = 5.

As argued in [61], the joint consideration in previous examples of small aspect

ratio and small slope bedrock justifies the applicability of the SIA approximation.

The fixed domain formulation here proposed prevents from using different meshes

associated to the basal glacier extent that appears for different time steps.

3.7 Conclusions

In the present chapter, first we have described isothermal SIA models for a valley

glacier profile computation. One main novelty relies on their formulation in terms of

a new obstacle problem associated to a highly nonlinear convection-diffusion equation.

More precisely, we use fixed domain formulations where the unknown moving bound-

ary between the ice covered and ice free regions is implicitly obtained. The modelling

of prescribed profile and prescribed flux at the glacier head leads to two different fixed

domain formulations, the second one being the more innovative in view of the existing

literature. The main advantage with respect to some possible front-tracking alterna-

tives (posing the nonlinear equation in the unknown ice covered domain) comes from
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our use of a fixed domain and a fixed mesh instead of updating the mesh associated to

the ice covered domain at each time step. For the numerical solution, a combination

of characteristics method for time discretization, a duality method for the nonlinear

obstacle formulation and an appropriate explicit treatment of the nonlinear diffusive

term have been considered. Moreover, piecewise linear Lagrange finite elements for

the spatial discretization have been used.

Numerical results illustrate the performance of the proposed numerical algorithm

and techniques when applied to an academic example with closed form analytical

solution. When addressing problems with not know analytical solution, in polar

regimes the results show the presence of an infinite slope when a zero profile condition

at the head is prescribed. This is motivated by the appearance of unrealistic negative

fluxes at the head in this formulation. Therefore, an original and more realistic

formulation with prescribed flux at the head is proposed and numerical methods are

suitably adapted.
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Chapter 4

Numerical Simulation of the

Non-Isothermal Coupled Glacier

Problems

4.1 Introduction

An original model for the simulation of a valley glacier behavior in the framework of

non-isothermal shallow ice approximation models is proposed in this chapter. More

precisely, we use the shallow ice approximation already described in Chapter 2 to get

a simplified coupled model for the profile, velocity and temperature. As in Chapter 3,

the glacier profile is an additional unknown of the problem, thus giving rise to a free

boundary feature. Nevertheless, in the thermomechanical model developed in this

chapter, the use of an isothermal approximation in the term A (T ) to compute the

longitudinal velocity is not realistic. The non-isothermal approach is addressed by

maintaining a non constant temperature in this term in order to couple the profile,

velocity and temperature equations.

In this non-isothermal setting, for a given temperature function and a basal ve-

locity, the profile model is posed as a free boundary obstacle problem associated to a

nonlinear parabolic integro-differential equation which governs the profile above the

ice covered region. Moreover, for prescribed profile and temperature, the velocity

67
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field inside the ice domain can be obtained. Also, from the ice velocity field, the

profile, the surface temperature and the basal magnitudes (tension and velocity), a

Stefan model with a Signorini boundary condition at the base provides the temper-

ature distribution in the ice region. Finally, from a rheology law, the basal velocity

and tension are expressed in terms of the basal temperature.

The previous paragraph summarizes a possible way to uncouple the different in-

volved coupled phenomena. In fact, this idea is used for the numerical solution of the

coupled problem which essentially consists of sequentially solving the various uncou-

pled problems until convergence. This idea has been already used in the case of ice

sheets in Calvo–Durany–Vázquez [22].

An additional aspect comes from the use of suitable fixed domain formulations.

More precisely, the ice domain is assumed to be contained in a fixed domain which

contains not only the ice glacier region but also the atmosphere region around it.

This chapter is organized as follows: In Section 4.2 a non-isothermal coupled

model for the glacier evolution is stated, and the corresponding boundary conditions

of this coupled model are explained in Section 4.3. Then, in Section 4.4 the fixed

domain formulation for the coupled model is posed. Section 4.5 is devoted to the

description of the different numerical techniques involved in the proposed algorithm

for the numerical solution of the model. Finally, in Section 4.6 several test examples

illustrate the performance of the numerical methods.

4.2 Non-isothermal coupled model on the cold ice

region

In Chapter 2 we have deduced the main equations defining a SIA approximation model

to obtain the profile, velocity and temperature in a valley glacier. Notice the coupled

feature of the SIA model. In Chapter 3 we have used an isothermal approximation

to get an uncoupled profile problem, so that the upper profile and the longitudinal
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extent of the glacier are obtained in terms of a given basal velocity and a prescribed

constant ice temperature.

Notice that the isothermal approach relies on the use of a constant temperature

in the Frank–Katmeneskii’s approximation of the Arrhenius’ law. In the present

thermocoupled problem we maintain the law (2.87) with non constant temperature

in order to get a non-isothermal fully coupled model:

A (T (x, z)) = eγT (x,z).

More precisely, in the ice region we recover (2.104) as the basic profile equation,

which is more complex than the non-linear one treated in the isothermal model of

Chapter 3. Moreover, we consider (2.105) as the basic temperature equation in the

cold ice region, while the horizontal and vertical components of the velocity field

verify equations (2.99) and (2.101), respectively.

Thus, in the cold ice region occupied by ice below melting point, the set of gov-
erning equations can be written as follows for the case b = 0:

∂η

∂t
+

∂

∂x
(ubη) +

∂

∂x

[(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1 ∫ η

0
eγT (s)(η − s)n+1ds

]
= a (4.1)

∂T

∂t
+ −→v · ∇T − β

∂2T

∂z2
− αeγT

(∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣ (η − z)

)n+1

= 0 (4.2)

u = ub +

(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1 ∫ z

0
eγT (s) (η − s)nds (4.3)

v = − ∂

∂x

∫ η

0
u dz. (4.4)

4.3 Boundary conditions

The issue of boundary conditions for the profile problem of a valley glacier has been

already widely discussed in Section 3.3 for the isothermal setting, so here we just

enumerate them.
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At the snout of the glacier we assume that it terminates on land, so we have the

following Dirichlet homogeneous boundary condition:

η = 0 at x = xfront (4.5)

where xfront is the snout of the glacier.

At the upstream end of the glacier two alternative conditions on the profile have

been analyzed in Chapter 3. Thus, a first condition is:

η = 0 at x = xhead, (4.6)

where xhead is the head of the glacier. The second possible condition, as discussed

in previous chapter, is a more realistic boundary condition, specially if b = 0. This

alternative boundary condition is to prescribe the flux at the given head of the glacier,

as follows:

Υ = Υ0 at x = xhead. (4.7)

where

Υ = ubη +

(
1 − µ

∂η

∂x

) ∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1 ∫ η

0

eγT (s)(η − s)n+1ds.

Regarding the boundary conditions of the thermal problem, we are considering a

polythermal glacier regime so that cold ice regions (with ice below melting point) and

temperate regions (with ice at melting point) coexist. In any case, we must prescribe

thermal boundary conditions at the basal and upper boundaries.

The possible basal boundary conditions for temperature corresponding to both

the polar case and the polythermal one are described in Chapter 2. We are interested

in a realistic model that includes the presence of temperate ice (ice at melting point).

So, we use the following basal condition for polythermal glaciers in our model:

T ≤ 0, T

(
∂T

∂~n
− gb − τbub

)
= 0, 0 ≤ ∂T

∂~n
≤ gb + τbub, (4.8)

where gb and τb represent the geothermal flux and the basal shear stress, respectively.
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Moreover, this polythermal boundary condition can be expressed as the following

Signorini condition at the basal boundary:

−∂T
∂z

= gb + τbub if T < 0,

−∂T
∂z

= 0 if T > 0,

0 < −∂T
∂z

< gb + τbub if T = 0. (4.9)

Theoretically, the ice begins to slide at the base when the basal temperature

reaches the melting point and, consequently, basal melt water is produced. But,

sliding processes have also been experimentally observed on sub-temperate regions

(T = −4.6C, approximately). So, keeping this in mind and following the work of

Blatter and Hutter [6], the basal shear stress, τb, and the basal velocity, ub are modeled

by the following expressions:

τb = η

(
1 − µ

∂η

∂x

)
, ub = cb |τb| τbeT/δb , (4.10)

where cb ∈ (0.1, 10) and δb ≪ 1 are given parameters (see the work of Fowler [32], for

example).

As pointed out in Chapter 2, a modelling approach similar to the one proposed in

Boukrouche–Saidi [8] for non isothermal lubrication problems results to be far more

complex due to the non-Newtonian and phase change features.

The temperature at the glacier surface coincides with the atmospheric tempera-

ture. In the case of ice sheet several models have been considered in the literature.

Thus, for example in Bueler–Brown–Linge [12], Huybrecht–Payne [56] and Saito–

Abe–Ouchi–Blatter [73] a surface temperature depending on the distance to the ice

sheet divide is considered. More recently, in Calvo–Durany–Vázquez [23] an atmo-

spheric temperature provided by an Energy Balance Model corrected by the altitude

effect is proposed.

In the case of the valley glacier here treated, we keep in mind the troposphere

temperature for the glacier surface temperature. The troposphere is the lowest layer

of the atmosphere. It extends from the Earth surface to an altitude of 7 kilometers at
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the poles or 17 kilometers at the equator, with some minor variations due to weather.

Notice that the troposphere is mostly heated by energy transfer from the surface, so

on average the lowest part of the troposphere is warmest and temperature decreases

with altitude. The rate of temperature decrease is known as the temperature lapse

rate and it is around 6K per kilometer. Thus, by considering the previous arguments

and taking into account that the coordinate system is rotated from the horizontal by

the angle δ, we impose that the dimensionless temperature:

TA = TA0 −
6

∆T
(−x d1 sin δ + z d2 cos δ) , (4.11)

where z ≥ η(t, x) and TA0 denotes the dimensionless atmospheric temperature at the

ground that surrounds the front of the valley glacier.

4.4 Thermocoupled problem over fixed domains

In this section we describe the different subproblems involved in the thermocoupled

problem, when it is posed on a fixed domain. The segregation in different subproblems

allows us to use a fixed point iteration which splits the solution of the coupled problem

into the sequential solution of the three uncoupled problems determining: ice profile,

velocity and temperature evolutions.

As in the previous chapter, the profile evolution problem is posed over a 1D fixed

domain in terms of the accumulation-ablation rate, sliding velocity and temperature.

The velocity field problem is posed over a fixed 2D domain in terms of the profile,

temperature and basal velocity. Next, the temperature problem is posed in terms of

profile and velocity over the same 2D domain.

Notice that both fixed 1D and 2D domains contain not only the glacier but also

the atmosphere surrounding the glacier. In the subsequent sections we explain how

to solve numerically these three problems which are posed over fixed domains.

Let us consider a longitudinal section of a linear valley glacier as shown in Fig-

ure 2.1. We assume that shallow ice scaling has been applied so that x is the di-

mensionless coordinate pointing to the downslope direction while z coordinate points
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upward in the normal direction to x. As the region occupied by the ice is not known

a priori, a fixed larger rectangular domain, ΩG, including not only the longitudinal

section of the glacier, ΩI (t), but also the atmosphere domain, ΩA (t), that surrounds

the ice mass, is considered. More precisely, we define the following domains:

ΩG = {(x, z) /0 ≤ x ≤ xmax, 0 ≤ z ≤ zmax} , (4.12)

ΩI (t) = {(x, z) /xhead (t) ≤ x ≤ xfront (t) , 0 ≤ z ≤ η (t, x)}, (4.13)

ΩA (t) = {(x, z) / (x, z) ∈ ΩG, (x, z) /∈ ΩI (t)}, (4.14)

where (xhead (t) , xfront (t)) ⊂ (0, xmax) denotes the unknown basal longitudinal ex-

tent of glacier section and η is the dimensionless upper profile function depending on

time t and longitudinal coordinate x.

Moreover, in order to impose the boundary conditions we divide the boundary of

the glacier into two parts ∂ΩI (t) = Γ0 (t) ∪ Γ1 (t), where Γ0 (t) corresponds to the

lower flat boundary which is in contact with the Earth surface:

Γ0 (t) = {(x, z) /xhead(t) ≤ x ≤ xfront(t), z = 0},

and Γ1 (t) corresponds to the upper boundary that is contact with the atmosphere:

Γ1 (t) = {(x, z) /xhead(t) ≤ x ≤ xfront(t), z = η (t, x)}.

ΩG
ΩA(t)

0

zmax

xmaxxfront (t)

xhead (t)

Γ1(t)

ΩI(t)

Γ0(t)

Figure 4.1: Fixed domain and time-dependent subdomains and boundaries at time t

The fixed domain ΩG and the time-dependent subdomains and boundaries, ΩI (t),

ΩA (t), Γ0 (t) and Γ1 (t), are illustrated in Figure 4.1.
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4.4.1 Non-isothermal profile problem

Equation (4.1) is the basic model for the glacier profile. It consists of an integro-

differential equation which is more complex than the non-linear equation (3.3) ap-

pearing in Chapter 3, where an isothermal approach has been considered.

Notice that, as in Chapter 3, equation (4.1) is only valid at the points x where

η (t, x) > 0. Also, as in Chapter 3, the set of those points x is an additional unknown of

the departure problem because the basal extent of the glacier is unknown. Therefore,

these are the typical features of moving boundary problems. So, we pose the analogous

appropriate fixed domain formulation in the following paragraph:

Let (0, tA) be a large enough time interval and let Ω = (0, xmax) be also a large

enough bounded interval. Notice that Ω is the bottom boundary of the global fixed

domain ΩG. Moreover, if we consider a given accumulation-ablation rate function

a : (0, tA) × Ω → R and an initial glacier profile η0 : Ω → R, then the moving

boundary formulation can be stated as follows:

Find the ice covered region Γ (t) = (xhead (t) , xfront (t)) ⊂ Ω, ∀t ∈ [0, tA], and the

profile function η : P = Ut∈[0,tA] ({t} × Γ (t)) → R, such that:

Dη

Dt
+

∂

∂x

[
f1

(
1 − µ

∂η

∂x

)]
= a in P,

η > 0 in P,

η = 0 on (0, tA) × {xfront (t)},

η = 0 on (0, tA) × {xhead (t)},

η = η0 in {0} × (xhead (0) , xfront (0)) , (4.15)

where

f1 =

∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1 ∫ η

0

eγT (s)(η − s)n+1d s, (4.16)

and we use again the notation of material derivative in classical formulation:

Dη

Dt
=
∂η

∂t
+

∂

∂x
(ubη) .

In the previous formulation we have chosen the homogeneous Dirichlet boundary

condition (4.6) at the unknown upper margin of the glacier. If we had chosen the
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flux boundary condition (4.7), where xhead = 0 is the given head of the glacier, the

only difference with respect to previous formulation consists of replacing (4.15)4 by

the following condition:

Υ = Υ0 on (0, tA) × {0}. (4.17)

where Υ0 is the prescribed flux at the head. Note that with the prescribed flux bound-

ary condition the ice covered region is Γ (t) = (0, xfront (t)), so that the unknown free

boundary is the point xfront.

With both boundary conditions, the set P is an additional unknown of the prob-

lems. So, as in Chapter 3, we apply fixed domain methods for moving boundary

problems. These methods are based on the problem formulation in a fixed given

domain Q = (0, tA) × Ω, extending by zero the function η to the points of the set

Q/ P. So, the ’extended’ glacier profile function verifies a nonlinear equation with

multivalued operator.

Again, as in Chapter 3, for the sake of simplicity, we also denote by η the unknown

associated to the fixed domain. Then, the function η satisfies the equations:

Dη

Dt
+

∂

∂x

[
f1

(
1 − µ

∂η

∂x

)]
≥ a in Q,

η ≥ 0 in Q,
(
Dη

Dt
+

∂

∂x

[
f1

(
1 − µ

∂η

∂x

)])
η = a in Q,

η = 0 on (0, tA) × {xmax},

η = 0 on (0, tA) × {0},

η = η0 in {0} × Ω. (4.18)

Notice that in the ice covered region, Γ (t), the fact that η (t, x) > 0 jointly with

equation (4.18)4 imply equation (4.15)1. Once again, if we choose the flux bound-

ary condition (4.17) instead of the Dirichlet one, the only difference remains on the

substitution of (4.18)5 by (4.17).

Problem (4.18) is classically known in moving boundary literature as a nonlinear
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parabolic complementarity problem. The mathematical analysis of this complemen-

tarity problem (4.18) is an open question. However in the case of ice sheets the

theoretical analysis has been studied in [13].

The solution of the previous complementarity problem also provides, for each time

t, the glacier boundaries. That is, the necessary geometrical data Γ0 (t) and Γ1 (t) for

the other subproblems.

4.4.2 Velocity field problem

Equations (4.3)–(4.4) are the basic ones to compute the velocity field in the valley

glacier. These equations are not valid in the whole domain, ΩG, because they are just

valid in the ice region, ΩI(t).

So, we propose the stream function associated to the ice velocity field but now

extended to the whole domain in the form:

Υ (t, x, z) =






∫ z

0

u (t, x, s) ds if z ≤ η
∫ η

0

u (t, x, s) ds if z > η.
(4.19)

Therefore, the vertical velocity, v, can be obtained as follows:

v (t, x, z) =





− ∂

∂x
Υ (t, x, z) if z ≤ η

0 if z > η.
(4.20)

Notice that once the profile and the temperature functions are known, the velocity

field components can be obtained from expressions (4.3) and (4.4) by using numerical

differentiation and quadrature formulae.

4.4.3 Thermal problem

In order to pose a thermomechanical coupled problem, the temperature distribution

within the glacier has to be obtained from the SIA-approximation of the energy

equation appearing in the departure continuum mechanics model of Chapter 2 (see

equation (2.105)).
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Moreover, as we are dealing with polythermal glaciers, which include the presence

of temperate ice (i.e. ice at melting point, T = 0), and following previous works in

ice-sheets (see [20], for example), an appropriate two phase Stefan model is proposed.

Therefore, for each time t, the behavior of polythermal glacier temperature is

obtained by solving the following equations:

∂T

∂t
+ −→v · ∇T − β

∂2T

∂z2
+ αeγT

(∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣ (η − z)

)n+1

= 0 in ΩC (t) ,

T ≥ 0 in ΩT (t) ,

β
∂T

∂~n (t)
= Lc

∂s

∂t
on Σ (t) , (4.21)

where s = (s1 (t) , s2 (t)) is the parameterization of the moving boundary

Σ (t) = {(s1 (t) , s2 (t)) /t ∈ [0, tA]} ,

separating the cold and temperate regions:

ΩC (t) = {(x, z) ∈ ΩI (t) /T (t, x, z) < 0} ,

ΩT (t) = {(x, z) ∈ ΩI (t) /T (t, x, z) ≥ 0} .

Moreover, ~n (t) denotes the unitary normal vector to Σ (t) pointing towards ΩC (t),

and Lc is the dimensionless latent heat.

The nonlinear viscous dissipation term is given by:

F1 = αeγT

(∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣ (η − z)

)n+1

. (4.22)

The previous set of equations is completed with the boundary conditions defined

by equation (4.11) at the glacier surface, and the basal condition (4.9). Moreover, as

we are dealing with an evolutive problem an initial temperature has to be considered.

As we will explain later, in fact the enthalpy formulation of the thermal problem

only use actually one phase Stefan model (cold region) while the temperate region is

provided by the mushy region.
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4.5 Numerical methods for the non-isothermal cou-

pled problem

In this section we describe the numerical techniques for the thermomechanical prob-

lem. Thus, we propose a fixed point technique which splits the solution of the coupled

problem in the sequential solution of several uncoupled problems. These uncoupled

problems can be summarized as follows:

1. Ice profile evolution in terms of accumulation-ablation rate, sliding velocity

and temperature.

2. Surface temperature in terms of profile.

3. Velocity field in terms of profile and temperature.

4. Temperature in terms of profile, velocity field and surface temperature.

4.5.1 Numerical solution of the profile problem

In this section we describe the numerical techniques for the solution of problem (4.18)

for given functions a, T and ub.

Notice that the main difference between the non-isothermal profile problem and

the isothermal one is the integral term appearing in the function f1 in (4.16). In the

isothermal problem the result of this integral appears explicitly because we have an

isothermal approximation of the Arrhenius’s law, and so we can solve the integral

analytically.

As we mainly use the same numerical techniques than in the isothermal problem

described in Chapter 3, we just describe the numerical solution with Dirichlet bound-

ary conditions starting from the time discretization by the method of characteristics:
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For m = 0, 1, 2, . . . , find ηm+1 such that:

ηm+1 − Jm (ηm ◦ χm)

∆t
+

∂

∂x

(∣∣∣∣1 − µ
∂η

∂x

m+1
∣∣∣∣
2(

1 − µ
∂η

∂x

m+1)
×

×
∫ ηm

0

eγT (x,s) (ηm − s)4 ds

)
− am+1 ≥ 0 in Ω,

ηm+1 ≥ 0 in Ω,
[
ηm+1 − Jm (ηm ◦ χm)

∆t
+

∂

∂x

(∣∣∣∣1 − µ
∂η

∂x

m+1
∣∣∣∣
2(

1 − µ
∂η

∂x

m+1)
×

×
∫ ηm

0

eγT (x,s) (ηm − s)4 ds

)

− am+1

]

ηm+1 ≥ 0 in Ω,

ηm+1 = 0 on ∂Ω,

η0 = η0 (x) in Ω, (4.23)

where am+1 = a((m+ 1)∆t, ·), and ◦ denotes the composition symbol.

In order to solve (4.23), an iterative fixed point technique is applied on the non-

linear diffusive term. In this way, a sequence of linear complementarity problems

(indexed by k) is obtained. More precisely, for each m, we initialize ηm+1,0, for ex-

ample, ηm+1,0 = ηm, and the following problem has to be solved at each time step

k + 1:

Find ηm+1,k+1 such that:

ηm+1,k+1 − Jm (ηm ◦ χm)

∆t
+

+
∂

∂x

(
fm+1,k

1

(
1 − µ

∂η

∂x

m+1,k+1))
− am+1 ≥ 0 in Ω,

ηm+1,k+1 ≥ 0 in Ω,
[
ηm+1,k+1 − Jm (ηm ◦ χm)

∆t
+

+
∂

∂x

(
fm+1,k

1

(
1 − µ

∂η

∂x

m+1,k+1))
− am+1

]
ηm+1,k+1 = 0 in Ω,

ηm+1,k+1 = 0 on ∂Ω, (4.24)
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where

fm+1,k
1 =

∣∣∣∣1 − µ
∂η

∂x

m+1,k
∣∣∣∣
2 ∫ ηm

0

eγT (x,s) (ηm − s)4 .

Notice that problem (4.24) can be rewritten as follows:

Find ηm+1,k+1 such that:

ηm+1,k+1 − Jm (ηm ◦ χm)

∆t
+

+ µ
∂

∂x

(
fm+1,k

1

∂η

∂x

m+1,k+1)
+ fm+1,k

2 − am+1 ≥ 0 in Ω,

ηm+1,k+1 ≥ 0 in Ω,
[
ηm+1,k+1 − Jm (ηm ◦ χm)

∆t
+

+ µ
∂

∂x

(
fm+1,k

1

∂η

∂x

m+1,k+1)
+ fm+1,k

2 − am+1

]
ηm+1,k+1 = 0 in Ω,

ηm+1,k+1 = 0 on ∂Ω, (4.25)

where

fm+1,k
2 =

∂f1

∂x

m+1,k

=
∂

∂x

(∣∣∣∣1 − µ
∂η

∂x

m+1,k
∣∣∣∣
2 ∫ ηm

0

eγT (x,s) (ηm − s)4 ds

)
.

Now, to solve (4.25), we use the equivalent variational inequality formulation:

Find ηm+1,k+1 ∈ K such that:

1

∆t

∫

Ω

ηm+1,k+1
(
ϕ− ηm+1,k+1

)
dΩ +

+µ

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂

∂x

(
ϕ− ηm+1,k+1

)
dΩ ≥

≥ 1

∆t

∫

Ω

Jm (ηm ◦ χm)
(
ϕ− ηm+1,k+1

)
dΩ −

−
∫

Ω

fm+1,k
2

(
ϕ− ηm+1,k+1

)
dΩ +

+

∫

Ω

am+1
(
ϕ− ηm+1,k+1

)
dΩ, ∀ϕ ∈ K, (4.26)

where K = {ϕ ∈ H1
0 (Ω) /ϕ ≥ 0 a.e. in Ω}.
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For the classical relation between the variational inequality, the linear comple-

mentarity problem and the obstacle problem we direct the reader to Elliot–Ockendon

[30], for example. Notice that the nonlinear diffusive term in (4.26) is analogous to

the one appearing in the isothermal problem in (3.24). So, the duality algorithm

proposed in [5] is also applied to this variational inequality formulation. For this

purpose, inequality (4.26) is expressed in terms of the indicatrix function IK , of the

convex K, in the form:

Find ηm+1 ∈ K such that:

1

∆t

∫

Ω

ηm+1,k+1
(
ϕ− ηm+1,k+1

)
dΩ +

+µ

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂

∂x

(
ϕ− ηm+1,k+1

)
dΩ +

+IK (ϕ) − IK
(
ηm+1,k+1

)
≥

≥ 1

∆t

∫

Ω

Jm (ηm ◦ χm)
(
ϕ− ηm+1,k+1

)
dΩ −

−
∫

Ω

fm+1,k
2

(
ϕ− ηm+1,k+1

)
dΩ +

+

∫

Ω

am+1
(
ϕ− ηm+1,k+1

)
dΩ, ∀ϕ ∈ K, (4.27)

where

IK (ϕ) =

{
0 if ϕ ∈ K

∞ otherwise.
(4.28)

The subdifferential calculus leads to the equivalent formulation:

ξm+1,k+1 = −
(
A
(
ηm+1,k+1

)
− gm+1,k

)
∈ ∂IK

(
ηm+1,k+1

)
, (4.29)

where ∂IK (u) denotes the subdifferential of IK at the point u, the operator A :

H1
0 (Ω) → H−1 (Ω) is defined by:

(A (ϕ) , ψ) =
1

∆t

∫

Ω

ϕψ dΩ + µ

∫

Ω

fm+1,k
1

∂ϕ

∂x

∂ψ

∂x
dΩ, (4.30)

and the element gm+1,k ∈ H−1 (Ω) is given by:

(
gm+1,k, ψ

)
=

1

∆t

∫

Ω

Jm (ηm ◦ χm) ψ dΩ −
∫

Ω

fm+1,k
2 ψ dΩ +

∫

Ω

am+1 ψ dΩ. (4.31)
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Therefore, equation (4.29) is equivalent to the following problem:

Find ηm+1,k+1 ∈ H1
0 (Ω) such that:

1

∆t

∫

Ω

ηm+1,k+1 ψ dΩ +

∫

Ω

ξm+1,k+1 ψ dΩ +

µ
eγ T0

5ν

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂ψ

∂x
dΩ − 1

∆t

∫

Ω

Jm (ηm ◦ χm) ψ dΩ =

=

∫

Ω

am+1 ψ dΩ −
∫

Ω

fm+1,k
2 ψ dΩ, ∀ψ ∈ H1

0 (Ω) , (4.32)

with

ξm+1,k+1 ∈ ∂IK
[
ηm+1,k+1

]
(4.33)

The method proposed in [5] to solve the nonlinear problem (4.32)–(4.33) intro-

duces a new unknown, qm+1,k+1, (multiplier) defined by:

qm+1,k+1 ∈ ∂IK
[
ηm+1,k+1

]
− ωηm+1,k+1, (4.34)

in terms of a positive parameter ω. Thus, equation (4.32) can be written as follows:

Find ηm+1,k+1 ∈ H1
0 (Ω) such that:

1

∆t

∫

Ω

ηm+1,k+1 ψ dΩ +

∫

Ω

(
qm+1,k+1 + ω ηm+1,k+1

)
ψ dΩ+

+ µ
eγ T0

5ν

∫

Ω

fm+1,k
1

∂η

∂x

m+1,k+1 ∂ψ

∂x
dΩ =

1

∆t

∫

Ω

Jm (ηm ◦ χm) ψ dΩ+

+

∫

Ω

am+1 ψ dΩ −
∫

Ω

fm+1,k
2 ψ dΩ, ∀ψ ∈ H1

0 (Ω) , (4.35)

where qm+1,k+1 verifies (4.34).

As ∂IK is an maximal monotone operator, in [5] it is proved that the following

conditions are equivalent

qm+1,k+1 ∈ (∂IK − ωI)
(
ηm+1,k+1

)
, (4.36)

qm+1,k+1 = (∂IK)ω
λ

[
ηm+1,k+1 + λqm+1,k+1

]
, (4.37)

where (∂IK)ω
λ is the Yosida approximation of operator (∂IK − ωI) with parameter

λ > 0.



83

The duality algorithm proposed for the non-isothermal case is the same that the

algorithm proposed for the isothermal one, the only difference with respect to the

isothermal case remains in the expression of fm+1,k
1 . Next, in order to discretize in

space equations (4.35)–(4.37) we take the same mesh, finite elements spaces and sets

used for the isothermal problem (3.25)–(3.27). Then, the fully discretized profile

problem can be posed as follows:

Find ηm+1
l ∈ V0l such that:

(
1

∆t
+ ω

)∫

Ω

ηm+1,k+1
l ψl dΩ + µ

∫

Ω

fm+1,k
1l

∂ηl

∂x

m+1,k+1 ∂ψl

∂x
dΩ =

= −
∫

Ω

qm+1,k+1
l ψ dΩ +

1

∆t

∫

Ω

Jm (ηm
l ◦ χm) ψl dΩ+

+

∫

Ω

am+1
l ψl dΩ −

∫

Ω

fm+1,k
2l ψl dΩ, ∀ψl ∈ V0l.(4.38)

To compute the nonlinear diffusive coefficient, fm+1,k
1 , we use a quadrature trape-

zoidal rule in expression (4.16). More precisely, in the proposed time stepping algo-

rithm for the coupled problem explained in Section 4.5.5, we take the temperature in

the expression (4.16) as the corresponding to the previous time step, i.e. T = Tm.

Notice that Tm has been previously approximated in the thermal problem on the 2D

mesh nodes.

Therefore, in practice, the procedure to compute fm
1 by numerical integration

requires some technical skills to handle the appropriate quadrature nodes. More

precisely, first for each node xi in the 1D-mesh, the intersection points between the

triangle edges in the 2D ice domain mesh and the straight line from xi to η (xi)

must to be computed to define these points as quadrature nodes for the numerical

integration procedure. Moreover, the integrand values at the quadrature nodes are

obtained by using their barycentric coordinates and the associated piecewise linear

interpolation from the values at the corresponding triangle vertices.

Notice that the solution of the nonlinear problem (4.38)–(4.37) is obtained by a

fixed point iteration as in the isothermal case (see Chapter 3)
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4.5.2 Computation of the velocity field

In order to obtain the velocity field, we use appropriate numerical integration in

expressions (4.3) and (4.19) to approximate the horizontal velocity and the stream

functions, and numerical derivation in (4.20) to compute the vertical component of

the velocity. As the integrands appearing in (4.3) and (4.19) are known at the 2−D

mesh nodes, the technical skills in the numerical integration procedure are analogous

to the ones described for expression fm
1 .

4.5.3 Numerical computation of the glacier surface temper-

ature and atmosphere temperature

Both glacier surface and atmosphere temperature are obtained from expression (4.11).

More precisely, the value of this expression is prescribed in the thermal problem at

each 2D mesh node verifying zi ≥ η (xi) (in the same way as Dirichlet boundary

conditions are presented in finite element methods).

4.5.4 Numerical solution of the thermal problem

In this section we describe the numerical methods to obtain the ice temperature from

the profile function and velocity field.

For this purpose, following the ideas developed in [20] for the case of ice sheets,

we introduce the variational formulation of the thermal problem as a previous step

to build an appropriate numerical algorithm to simulate the temperature inside the

glacier.

In a first step to obtain the variational formulation, we introduce the Heaviside

multivalued operator:

H (s) =






1 if s > 0

[0, 1] if s = 0

0 if s < 0

to express the Signorini type basal boundary condition (4.9) on Γ0 (t) by means of
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this multivalued operator in the form:

∂T

∂~n
∈ (gb + τbub) (1 −H (T )) ⇔ ∂T

∂~n
− (gb + τbub) ∈ −(gb + τbub) H (T ) . (4.39)

Related to this boundary condition, the convex, lower semicontinuous functional

J :

J (ϕ) =

∫

Γ0

(gb + τbub)ϕ
+ dσ, ∀ϕ ∈ H1 (Ω)

is introduced, where symbol + denotes (·) = max (·, 0). So, we obtain the identity:

(gb + τbub) −
∂T

∂~n
∈ ∂J (T ) at Γ0, (4.40)

following classical subdifferential calculus (see [44], for example).

On the other hand, we shall consider the enthalpy formulation for a particular

two phase Stefan problem (see [30], for example). Thus, we introduce the enthalpy

operator in terms of the reference temperature and the dimensionless latent heat as

follows:

E (T ) =






T if T < 0,

[0, Lc] if T = 0,

Lc if T > 0.

Thus, in practice the computed temperature results to be nonpositive and only the

cold ice phase and the mushy region (temperate ice) appear [29]. As indicated in

[23], in the work of Aschwanden and Blatter [1] a different enthalpy formulation is

applied. More precisely, in [1] an enthalpy function is defined in terms of temperature

in cold ice region and the water content in the temperate region, associated to a

diffusion equation with discontinuous coefficients. Moreover, a regularization of the

enthalpy function based on sea ice modelling is chosen. In the present approach,

the multivalued enthalpy expression is exactly solved by a duality method, and not

by a regularization procedure. Computationally, enthalpy methods represent a clear

advantage with respect to front tracking ones.

So, we can write the variational formulation of the Stefan–Signorini problem as

follows:
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Find y (t, ·) ∈ VA (t) such that:

∫

ΩG

De

Dt
(ϕ− y)dΩ +

∫

ΩG

∂y

∂z

∂

∂z
(ϕ− y) dΩ + δ

∫

ΩG

∂y

∂x

∂

∂x
(ϕ− y) dΩ+

+

∫

ΩG

(
F1 ◦ Λ−1

)
(y) (ϕ− y) dΩ −

∫

Γ0(t)

g (ϕ− y) dΓ+

+ βJ (ϕ) − βJ (y) ≥ 0, ∀ϕ ∈ V0 (t) (4.41)

e ∈
(
E ◦ Λ−1

)
(y) , (4.42)

with the notation for the total derivative:

De

Dt
=
∂e

∂t
+ ~v · ∇e,

the classical Kirchoff change of variable:

y = Λ (T ) =

∫ T

0

β ds = β T, (4.43)

and a horizontal diffusion term controlled by the regularization parameter δ. More-

over, β represents the dimensionless thermal conductivity (2.53), and we use the

notation g = βgb. The Kirchoff change of variable (4.43) generalizes the case where

the thermal conductivity is not a constant. However, if we assume that β is a con-

stant, identity (4.43) gives a linear relation between the temperature and the new

variable y which makes the numerical computations easier.

The functional sets appearing in (4.41)–(4.42) are defined by the following expres-

sions:

V0 =
{
v ∈ H1 (Ω) /v = 0 on Γ1

}
,

VA =
{
v ∈ H1 (Ω) /v = Λ (TA) on Γ1

}
.

In order to apply a duality method for the numerical approximation, we use the

relations (4.39) and (4.40) between the functional J and the Heaviside operator H to

pose the problem (4.41)–(4.42) as follows:
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Find y (t, ·) ∈ VA such that:

∫

ΩG

De

Dt
(ϕ− y)dΩ +

∫

ΩG

∂y

∂z

∂

∂z
(ϕ− y) dΩ + δ

∫

ΩG

∂y

∂x

∂

∂x
(ϕ− y) dΩ+

+

∫

ΩG

(
F1 ◦ Λ−1

)
(y) (ϕ− y) dΩ −

∫

Γ0(t)

g (ϕ− y) dΓ+

+

∫

Γ0

g θ (ϕ− y) dΓ = 0, ∀ϕ ∈ V0 (t) , (4.44)

e ∈
(
E ◦ Λ−1

)
(y) , (4.45)

θ ∈
(
H ◦ Λ−1

)
(y) . (4.46)

For the semidiscretization in time of the problem (4.44)–(4.46), we have chosen

the particular upwind scheme of characteristics. Pironneau [2, 71] and Douglas–

Russell [28] introduced this idea for convection-diffusion equations and Navier–Stokes

equations. This method is based on the approximation of the material derivative in

the convection term by an upwind quotient in the direction of the integral paths of

the velocity field.

Denoting by ∆t the time step, the total derivative of the nonlinear enthalpy op-

erator is approximated as follows:

De

Dt
((m+ 1)∆t, x, z) ≈ em+1 − em ◦ χm

∆t
, (4.47)

where

em+1 = e ((m+ 1)∆t, x, z) ,

and χm is defined by:

χm (x, z) = S ((m+ 1) ∆t, x, z;m∆t) ,

with S the trajectory of the velocity field, being solution of the following final value

problem:

{
dS(t,x,z;s)

ds
= ~v (S (t, x, z; s) , s) ,

s (t, x, z; t) = (x, z) .
(4.48)
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In practice, the previous o.d.e. problem needs to be numerically solved for a general

velocity field. Then the substitution of the approximation (4.47) in (4.44) allow us

to pose the following sequence of problems:

Find ym+1 ∈ VA such that:

1

∆t

∫

ΩG

em+1 ψ dΩ − 1

∆t

∫

ΩG

(em ◦ χm) ψ dΩ +

∫

ΩG

∂y

∂z

m+1∂ψ

∂z
dΩ+

+ δ

∫

ΩG

∂y

∂x

m+1∂ψ

∂x
dΩ +

∫

ΩG

(
F1 ◦ Λ−1

) (
ym+1

)
ψ dΩ −

∫

Γ0(t)

g ψ dΓ+

+

∫

Γ0

g θm+1 ψ dΓ = 0, ∀ψ ∈ V0 (t) , (4.49)

em+1 ∈
(
E ◦ Λ−1

) (
ym+1

)
, (4.50)

θm+1 ∈
(
H ◦ Λ−1

) (
ym+1

)
. (4.51)

Once the semidiscretization in time has been applied, the highly nonlinear problem

(4.49)–(4.51) must be solved. In fact, we can distinguish three nonlinear aspects: the

Signorini type boundary condition on Γ0 (t), the enthalpy operator and the Frank-

Katmeneskii term that appears in the reaction function F1. Due to the fact that the

first two nonlinearities can be associated to a maximal monotone operator we will

treat them by means of duality methods. In the following paragraph we detail this

technique.

First, in order to apply the Bermudez–Moreno algorithm [5] to (4.51), as in Chap-

ter 3, we introduce a new unknown rm+1 and a positive parameter ω1 such that

rm+1 ∈
(
H ◦ Λ−1

) (
ym+1

)
− ω1 y

m+1,

and then we can rewrite the problem (4.49)–(4.51) in the following equivalent form:

1

∆t

∫

ΩG

em+1 ψ dΩ +

∫

ΩG

∂y

∂z

m+1∂ψ

∂z
dΩ + δ

∫

ΩG

∂y

∂x

m+1∂ψ

∂x
dΩ+

+

∫

ΩG

(
F1 ◦ Λ−1

) (
ym+1

)
ψ dΩ +

∫

Γ0(t)

g ω1 y
m+1 ψ dΓ =

=
1

∆t

∫

ΩG

(em ◦ χm) ψ dΩ −
∫

Γ0

g rm+1 ψ dΓ +

∫

Γ0

g ψ dΓ, ∀ψ ∈ V0 (t) , (4.52)

em+1 ∈
(
E ◦ Λ−1

) (
ym+1

)
. (4.53)



89

As the operator H ◦Λ−1 is maximal monotone, we can apply a Bermúdez–Moreno

Lemma [5] and get the following equivalence:

rm+1 ∈
(
H ◦ Λ−1 − ωI

) (
ym+1

)
⇔ rm+1 =

(
H ◦ Λ−1

)ω1

λ1

(
ym+1 + λ1 r

m+1
)
,

where the expression (H ◦ Λ−1)
ω1

λ1
denotes the Yosida approximation of the operator

((H ◦ Λ−1) − ω1I) with parameter λ1 > 0.

In a second step the same strategy can be use with the maximal monotone enthalpy

operator E ◦ Λ−1 by introducing a new variable:

sm+1 ∈
(
E ◦ Λ−1

) (
ym+1

)
− ω2 y

m+1

in terms of the positive real parameter ω2, and rewriting the problem (4.49)–(4.51)

as follows:

Find ym+1 ∈ VA such that:

ω2

∆t

∫

ΩG

ym+1 ψ dΩ +

∫

ΩG

∂y

∂z

m+1∂ψ

∂z
dΩ + δ

∫

ΩG

∂y

∂x

m+1∂ψ

∂x
dΩ+

+

∫

ΩG

(
F1 ◦ Λ−1

) (
ym+1

)
ψ dΩ +

∫

Γ0(t)

g ω1 y
m+1 ψ dΓ =

=
1

∆t

∫

ΩG

[(
E ◦ Λ−1

) (
ym+1

)]
◦ χm ψ dΩ −

∫

Γ0

g rm+1 ψ dΓ+

+

∫

Γ0

g ψ dΓ − 1

∆t

∫

ΩG

sm+1 ψ dΩ, ∀ψ ∈ V0 (t) , (4.54)

rm+1 =
(
H ◦ Λ−1

)ω1

λ1

(
ym+1 + λ1 r

m+1
)
, (4.55)

sm+1 =
(
E ◦ Λ−1

)ω2

λ2

(
ym+1 + λ2 s

m+1
)
, (4.56)

where the notation (E ◦ Λ−1)
ω2

λ2
represents the Yosida approximation of operator

((E ◦ Λ−1) − ω2 I) with parameter λ2 > 0.

The problem (4.54)–(4.56) is still nonlinear due to presence of the function F1. For

the treatment of this last nonlinear term we follow the work of Bermúdez–Durany–

Posse–Vázquez [4] about convection-diffusion-reaction equations in the context of

hypersonic flows. The technique is based on the Newton method to linearize the

problem and keeping in mind the finite element product approximations. In the



90

spatial discretization of (4.54) we use piecewise linear Lagrange finite elements (see

Ciarlet [24], for example).

For each positive real parameter l, let be τl a triangular finite elements mesh of

the domain ΩG. The functional space to approximate the formulation (4.54) is the

classical finite elements space Vl, and the subsets V0l and VAl are defined by:

Vl =
{
vl ∈ C0

(
ΩG

)
/vl|P ∈ P1, P ∈ τl

}
,

V0l =
{
vl ∈ Vl/vl|Γ1

= 0
}
,

VAl =
{
vl ∈ Vl/vl|Γ1

= Λ (TA)
}
.

We denote by N the dimension of Vl, which is equal to the number of nodes of

the finite elements mesh. Let {w1, . . . , wN} be the base of Vl such that the function

wi is determined by the conditions

wi (pj) = δij , j = 1, 2, . . . , N

where {pj, j = 1, . . . , N} is the set of nodes of the finite elements mesh. So we can

pose the discretized problem associated with (4.54)–(4.56) in the following form:

Find ym+1
l ∈ VAl such that:

ω2

∆t

∫

ΩG

ym+1
l ψl dΩ +

∫

ΩG

∂yl

∂z

m+1∂ψl

∂z
dΩ + δ

∫

ΩG

∂yl

∂x

m+1∂ψl

∂x
dΩ+

+

∫

ΩG

(
F1 ◦ Λ−1

) (
ym+1

l

)
ψl dΩ +

∫

Γ0(t)

g ω1 y
m+1
l ψl dΓ =

=
1

∆t

∫

ΩG

[(
E ◦ Λ−1

)
(ym

l )
]
◦ χm ψl dΩ −

∫

Γ0

g rm+1 ψl dΓ+

+

∫

Γ0

g ψl dΓ − 1

∆t

∫

ΩG

sm+1 ψl dΩ, ∀ψ ∈ V0 (t) , (4.57)

rm+1 (pi) =
(
H ◦ Λ−1

)ω1

λ1

(
ym+1

l + λ1 r
m+1
)
(pi) , (4.58)

sm+1 (pi) =
(
E ◦ Λ−1

)ω2

λ2

(
ym+1 + λ2 s

m+1
)
(pi) . (4.59)

In order to approximate the integral of the nonlinear reaction term associated to

F1 we propose the following finite elements product approximation:
∫

ΩG

(
F1 ◦ Λ−1

) (
ym+1

l

)
ψl dΩ ≈

N∑

j=1

∫

ΩG

(
F1 ◦ Λ−1

) (
ym+1

l (pj)
)
wj ψl dΩ,
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which is based on the following approximation of F1:

(
F1 ◦ Λ−1

) (
ym+1

l

)
≈

N∑

j=1

(
F1 ◦ Λ−1

) (
ym+1

l (pj)
)
wj .

So, equation (4.57) is equivalent to the nonlinear system:

(ω2

∆t
Ml +Kδ

l

)
Y m+1

l +Ml G
(
Y m+1

l

)
+Nl GB

(
Y m+1

l

)
=

=
1

∆t
Bl Y

m
l − bm+1

r − bg −
1

∆t
bm+1
s , (4.60)

where the expressions of the different matrices and vectors are given by:

(Ml)ij =

∫

ΩG

wj wi dΩ, (4.61)

(
Kδ

l

)
ij

=

∫

Ω

∂wj

∂z

∂wi

∂z
dΩ + δ

∫

Ω

∂wj

∂x

∂wi

∂x
dΩ, (4.62)

(Nl)ij =

∫

Γ0

wj wi dΓ, (4.63)

(Bl)ij =

∫

ΩG

wj ◦ χm
l wi dΩ (4.64)

(
bm+1
r

)
i
=

∫

Γ0

g rm+1wi dΓ, (4.65)

(bg)i =

∫

Γ0

g wi dΓ, (4.66)

(
bm+1
s

)
i
=

∫

ΩG

sm+1wi dΩ, (4.67)

and removing dependence of m for the sake of simplicity. The following notation has

been used:

Yl =





yl (p1)
...

yl (pN)



 , G (Yl) =





(F1 ◦ Λ−1) (yl (p1))
...

(F1 ◦ Λ−1) (yl (pN ))



 , GB (Yl) =





ω1 g yl (p1)
...

ω1 g yl (pN)





Notice that the matrix Bl, associated with characteristics discretization, cannot

be computed exactly. So we propose a numerical approximation of the coefficients
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based in the following quadrature formula:

(Bl)ij =
∑

P∈τl

Nq∑

r=1

ξP
r wj

(
χm
(
qP
r

))
wi

(
qP
r

)
,

where Nq is the number of quadrature nodes per triangle, qP
r is the r-th quadrature

node of the triangle P , and ξP
r is the weight associated to the r-th quadrature node

qP
r . Vertex, edge mid-points and the Gauss–Lobato formula (see Zienkiewicz–Taylor

[78], for example) constitute possible choices.

Moreover, for the same reason, the vectors bm+1
r and bm+1

s need to be numerically

approximated. A trapezoidal rule with one degree of precision seems to be adequate.

Now, we explain the numerical simulation algorithm for the fully discretized prob-

lem (4.60). First, equations (4.58) and (4.59) let us solve (4.60) at time-iterationm+1

using a sort of fixed point technique as follows:

Step 0:

• Initialize bm+1,0
r and bm+1,0

s , for example to bmr and bmp , respectively. Those values

have been computed in the previous iteration m.

Step j:

• Compute Y m+1,j
l solving the following nonlinear system:

( ω2

∆t
Ml +Kδ

l

)
Y m+1,j

l +MlG
(
Y m+1,j

l

)
+NlGB

(
Y m+1,j

l

)
=

=
1

∆t
Bl Y

M
l − bm+1,j−1

r − bg −
1

∆t
bm+1,j−1
s , (4.68)

• Update (bm+1
r )

j
and (bm+1

r )
j

using the formulae:

rm+1,j =
(
H ◦ Λ−1

)ω1

λ1

(
Y m+1,j

l + λ1 r
m+1,j−1

)
, (4.69)

sm+1,j =
(
E ◦ Λ−1

)ω2

λ2

(
Y m+1,j

l + λ2 s
m+1,j−1

)
, (4.70)

detailed in the Appendix A.

• Test the convergence of the iterations indexed by j



93

Several theoretical lemmas about convergence of this algorithm under hypotheses

of λ1 ω1 ≤ 0.5 and λ2 ω2 ≤ 0.5 are given in [5].

Notice that in the previous algorithm, at each step j we have to solve the nonlinear

system (4.68). So, we propose the classical Newton’s method. That is, we introduce

the vectorial function ~f and we suppress just for simplicity the dependence of l to

write the following nonlinear vectorial function:

~f
(
Y m+1,j

)
=
(ω2

∆t
M +Kδ

) (
Y m+1,j

)
+N GB

(
Y m+1,j

)
+

+ σM G
(
Y m+1,j

)
+ (1 − σ) M G

(
Y m+1,j−1

)
−

− 1

∆t
B Y m + bm+1,j−1

r − bg +
1

∆t
bm+1,j−1
s , (4.71)

with σ a real relaxation parameter such that 0 ≤ σ ≤ 1. So, if we choose σ = 1 we

get an implicit scheme, and for σ = 0 an explicit one. Moreover, the system (4.68)

can be written at each step j as follows:

~f
(
Y m+1,j

)
= ~0,

so that Newton’s iterations leads to the following algorithm:

Step 0: Initialize Y m+1,j,0 to Y m+1,j−1, for example

Step k + 1: Compute Y m+1,j,k+1 by solving the linear system:

D~f
(
Y m+1,j,k

)
Y m+1,j,k+1 = D~f

(
Y m+1,j,k

)
Y m+1,j,k − ~f

(
Y m+1,j,k

)
, (4.72)

where D~f
(
Y k
)

denotes the jacobian matrix of the vectorial function ~f at Y k,

given

by

D~f
(
Y k
)

=
( ω2

∆t
M +Kδ

) (
Y k
)

+N DGB

(
Y k
)

+ σM DG
(
Y k
)

with the diagonal jacobian matrices DG
(
Y k
)

and DGB

(
Y k
)

defined by:

DG
(
Y k
)

=
[
D
(
F ◦ Λ−1

)] (
Y k
)
, DGB

(
Y k
)

= w1gIN
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being IN the identity matrix of order N , and the vector ~f
(
Y m+1,j,k

)
defined by the

following expression:

~f
(
Y m+1,j,k

)
=
(ω2

∆t
M +Kδ

) (
Y m+1,j,k

)
+N GB

(
Y m+1,j,k

)
+

+ σM G
(
Y m+1,j,k

)
+ (1 − σ) M G

(
Y m+1,j−1

)
−

− 1

∆t
B Y m + bm+1,j−1

r − bg +
1

∆t
bm+1,j−1
s . (4.73)

Finally, at each step j, we have to solve the linear system (4.72) using the method

of preconditioned bi-conjugate stabilized gradient method (see [76] for details). The

use of this technique is due to the fact that the coefficient matrix is not always well

conditioned nor positive definite.

4.5.5 Algorithm for the fully coupled problem

The final objective is to compute the profile, the surface temperature, the velocity

and the temperature distribution of the valley glacier as well as the corresponding

basal magnitudes.

For this purpose, we sequentially solve the specific equations by using the previ-

ously described numerical strategies.

In fact, the pseudocode of the algorithm remains as follows:

Step 0:

• Fixed domains meshing: [0, xmax] for profile problem and ΩG for velocity and

temperature problems.

• Initialize temperature (T 0 = T0), surface temperature (T 0
A), and profile (η0 =

η0).

Step m+ 1: Compute the unknowns at time tm+1 = (m+ 1)∆t.

• From um
b and Tm, computation of ηm+1(x), xhead(t

m+1), xfront(t
m+1), by solv-

ing (4.38).

• Identification of the sets ΩI(t
m+1), ΩA(tm+1), Γ0(t

m+1) and Γ1(t
m+1).
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• Computation of the velocities, um+1 and vm+1, with the appropriate numerical

approximation of expressions (4.3) and (4.20).

• Obtain the surface temperature Tm+1
A from (4.11).

• Obtain Tm+1, by numerically solving (4.21) at step m+ 1.

• Update basal velocity and shear stress, um+1
b and τm+1

b , with the expressions

(4.10).

4.6 Numerical tests

In this section several numerical examples based on typical data for polar and tem-

perate glaciers are presented to illustrate the performance of the algorithm described

in the previous sections to solve the problem (4.1)–(4.4).

In our examples, the values of length and height are d1 = 10km and d2 = 132m,

respectively. Moreover, a slope of δ = 10◦ has been considered.

Thus, we always consider the reference domain ΩG defined by (4.12) with the

particular values of xmax = 3 and zmax = 4:

ΩG = {(x, z) /0 ≤ x ≤ 3, 0 ≤ z ≤ 4} .

As in the isothermal profile model, we have considered an accumulation-ablation

function of order O (1), with accumulation taking place on the left part (upper glacier

region) and ablation occurring on the right part (lower glacier region). More precisely,

we take expression (3.49) with c = 1:

a (t, x) = 1 − x. (4.74)

Moreover, also as in the case of isothermal glaciers, we have considered the zero

profile as initial condition. Besides, we select 271K as atmospheric temperature at

the bottom-right of the domain.

For the numerical simulation in the profile problem, a uniform finite element mesh

with 2001 nodes for the interval [0, 3] is considered. Moreover, for the domain ΩG
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Figure 4.2: Mesh over the fixed domain

we use the unstructured and locally refined triangular finite elements mesh which

is plotted in Fig. 4.2, with 9098 triangular finite elements and 4675 vertex. The

mesh has been generated from the software toolbox emc
2 (Edition de Maillages et de

Contours en 2 Dimensions) which is a portable, interactive and graphic software for

edition of two dimensional geometries and meshes [51].

In the profile problem, a time step of ∆t = 10−6, which represents 1.3158 ×
10−4 years (about 70 minutes), has been chosen, and the parameter ω = 1 in the

duality method has been considered. For the thermal problem, the analogous involved

parameters are ∆t = 10−4, which represents 0.0132 years (about 4.8 days), and

ω1 = 100 and ω2 = 10 in the duality method.

4.6.1 Example 1. Cold-based ice without prescribed flux

The first example corresponds to a glacier with polar regime at the base, so that the

geothermal heat must be small enough. The parameters used in this test are:

∆T = 40, γ = 5, gb = 0.2, α = 0.125, β = 2.9, and ε = 0.13.

Fig. 4.3 shows the time evolution of the glacier profile and velocity field. More

precisely, their behaviour at t = 1, 5, 15 and 20 are presented. Notice that the
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computed solutions for t = 20 correspond to the steady state. Moreover, the right

hand side free boundary point in the obstacle problem (which separates the ice-

covered and ice-free regions) is placed at x = 1 since almost the beginning of the time

evolution until it starts moving monotonically to the right once the slope of the profile

function reaches a large enough value. This kind of waiting time property has been also

observed in [13] for the case of ice sheets and also appears in all the following examples.

Fig. 4.4 shows the basal temperature which is everywhere below melting point, as

expected in the cold-based case. Moreover, in the ice free region the temperature

linearly decreases with altitude as assumed for the atmosphere temperature. Fig.

4.5 shows the basal stress. Notice that the computed basal velocity results to be

equal to zero, as expected for a polar basis. Finally, Fig. 4.6 shows the temperature

distribution in the glacier and the surrounding atmosphere for t = 5, t = 15 and

t = 20.

4.6.2 Example 2. Temperate-based ice without prescribed

flux

The second example corresponds to a glacier with temperate regime at the base. Here

the geothermal heat flux is considered to be greater than for the polar case. So, the

chosen parameters are the typical values for temperate-based glaciers:

∆T = 20, γ = 2.5, gb = 2.9, α = 0.25, β = 0.29, and ε = 0.13.

In this example, Fig. 4.7 shows the profile and velocity field evolution for t = 1,

5, 9 and 10 (steady state). Fig. 4.8 to 4.10 show the evolution of basal magnitudes

(temperature, stress and velocity) for the same dimensionless time values. Notice the

nonzero basal velocity in the region at meting point temperature. Figure 4.11 shows

the temperature distribution at t = 10.

4.6.3 Example 3. Cold-based ice with prescribed flux

The third example corresponds to a glacier with polar regime at the base as in Ex-

ample 1, but with an imposed flux boundary condition at the given head position
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Figure 4.4: Basal temperature for the cold-based ice without prescribed flux.
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Figure 4.6: Evolution of temperature for the cold-based ice without prescribed flux.
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Figure 4.7: Evolution of profile and velocity field for the temperate-based ice without
prescribed flux for t = 1, t = 5, t = 9 and t = 10 (steady state).
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Figure 4.8: Basal temperature for the temperate-based ice without prescribed flux.
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Figure 4.9: Basal stress for the temperate-based ice without prescribed flux.
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Figure 4.10: Basal velocity for the temperate-based ice without prescribed flux.
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(x = 0). In this example we expect to find a cold based region. The parameters used

here are the same than in Example 1 and the prescribed flux on the head is Υ0 = 0.1.

Fig. 4.12 shows the time evolution of the glacier profile and velocity field. More

precisely, their behaviour at t = 1, 5, 15 and 29 (steady state) are presented. Fig. 4.13

shows the basal temperature which is everywhere below melting point as expected

in the polar based case. Moreover, in the ice free region the temperature linearly

decreases with altitude as assumed for the atmosphere temperature. Fig. 4.14 shows

the basal stress. Notice that the computed basal velocity results to be equal to zero,

as expected for a polar basis. Finally, Fig. 4.15 shows the temperature distribution

in the glacier and the surrounding atmosphere for t = 5, t = 15 and t = 29.

4.6.4 Example 4. Temperate-based ice with prescribed flux

This example corresponds to a glacier with temperate base as in Example 2, but with

imposed flux boundary condition at the given head position (x = 0), as in Example 3.

In this example, Fig. 4.16 shows the profile and velocity field evolution for t = 1,

5, 8 and 9 (steady state). Fig. 4.17 to 4.19 show the evolution of basal magnitudes

(temperature, stress and velocity) for the same dimensionless time values. Notice the

nonzero basal velocity in the region at meting point temperature. Fig. 4.20 shows the

temperature distribution at t = 9.

4.7 Conclusions

In this chapter we have presented a new thermomechanical SIA model for glaciers

evolution. The main innovative aspect is the consideration of a non isothermal model

for the profile equation, thus fully coupled with the shallow ice approximation for the

velocity and the temperature equation. This new profile model is posed in terms of

a new obstacle problem associated to an integro-differential equation, the numerical

solution of which is addressed by the same techniques that in the isothermal model

jointly with numerical integration for the nonlocal diffusion coefficient function.
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Figure 4.13: Basal temperature for the cold-based ice with prescribed flux.
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Figure 4.15: Evolution of temperature for the cold-based ice with prescribed flux.
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Figure 4.16: Evolution of profile and velocity field for the temperate-based ice with
prescribed flux for t = 1, t = 5, t = 8 and t = 9 (steady state).
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Figure 4.17: Basal temperature for the temperate-based ice with prescribed flux.
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Figure 4.18: Basal stress for the temperate-based ice with prescribed flux.
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Figure 4.19: Basal velocity for the temperate-based ice with prescribed flux.

Figure 4.20: Temperature for the temperate-based ice with prescribed flux at t = 9.



111

In addition to the specific difficulties associated to the new profile model formula-

tion, different appropriate techniques have been applied for the numerical solution of

the temperature equation: an enthalpy formulation for the two phase Stefan problem,

a characteristics method for the time discretization, duality methods associated to

maximal monotone operators, a Newton method for the nonlinear term associated to

thermal viscous dissipation and piecewise linear finite elements for spatial discretiza-

tion. Moreover, specific numerical quadrature techniques are considered to compute

the velocity field.

Once each subproblem has been solved with the appropriate numerical techniques,

a fixed point iterative method is performed for the solution of the coupled problem,

which essentially solves sequentially each of the subproblems.

This set of numerical techniques has been applied to several test examples. Thus,

illustrative examples concerning the case of polar and temperate regimes have been

considered. Moreover, after the remarks in Chapter 3 concerning the appropriate

boundary conditions upstream, also the case of flux imposed or profile imposed bound-

ary condition at the left boundary of the glacier are presented. Again, as in the

isothermal model treated in Chapter 3, the computed numerical results show that

flux imposed boundary results to be more realistic due to the fact that the Dirichlet

boundary condition leads to almost infinite slopes at the left glacier boundary. Also

notice that, in the case of flux imposed boundary condition, the same technique de-

veloped in Chapter 3 allows to obtain the exact position of the free boundary. This

value has been very accurately verified by the computations, because the expected

value for an imposed flux of Υ0 = 0.1 and the chosen accumulation-ablation function

(4.74) is x∞front = 2.0954 and the computed values are x∞front = 2.013 in the polar case

(Example 3) and x∞front = 2.130 in the temperate case (Example 4).
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Chapter 5

Temperature Dependent Shear

Flow and the Absence of Thermal

Runaway in Valley Glaciers

5.1 Introduction

In this chapter we propose other two-dimensional model for valley glaciers in order to

reconsider the question of whether thermal runaway could be a viable mechanism for

the onset of creep instability in surging glaciers. The explanation of the mechanism

of why some glaciers surge has been a primary concern for glaciologists for many

years. Meier and Post [66] established many key properties of surging glaciers, and

these have been variously explained by a variety of theories since. A glacier surge

occurs when the glacier starts to slide rapidly at its base, and following the pioneering

studies of Kamb et al. on Variegated Glacier in the 1980’s [60], it is now generally

accepted that this rapid sliding is associated with subglacial water reaching elevated

pressure. The same idea was indicated earlier by Lliboutry in his theoretical studies

of glacier sliding [63, 64].

One possible way in which high water pressures could be achieved is through the

enhanced production of basal water, which in turn could be due to enhanced strain

heating. This notion led Clark et at. [25] to the suggestion that creep instability

113
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might be the cause of glacier surging, and in particular that the temperature in a

glacier might undergo thermal runaway. Thermal runaway in shear flows of viscous

fluids was studied by Gruntfest [48] and Joseph [58, 59], and it was suggested as a

possible causative surge mechanism by Clarke, Nitsan and Paterson [25] and Yuen

and Schubert [77]. These studies showed that multiple steady states were possible

in glacier flow models of prescribed depth, but their interpretation was criticized

by Fowler [31], on the basis that in reality one should prescribe the ice flux (via

the net accumulation) and not the depth. Subsequently, Fowler and Larson [37, 38]

showed that, at least when thermal advection was negligible, a non-isothermal model

for glacier flow indeed had a unique solution, and moreover this was linearly stable,

suggesting that surge-like oscillations were unlikely in that case.

The neglect of thermal advection was unlikely to be critical to those studies, since

one would expect advection to have a stabilizing tendency. However, the possibility

for thermal runaway could not be ruled out under conditions where the ice surface

responds more slowly than the temperature field. In this case, thermal runaway could

occur before the ice surface has time to respond.

The situation concerning thermal runaway is thus not entirely conclusive, and

although it is not of active concern in valley glacier studies, the same issue arises in

the study of ice streams, where the same precepts may be important [52, 70]. Whereas

in simple one-dimensional combustion studies one can prove the existence of thermal

runaway, for example Fujita [41], such precision is undoubtedly much harder in a

glacier flow model involving a free boundary together with a nonlinear advection term.

Our approach therefore is to seek an approximate theoretical framework which is

both apparently conductive to the occurrence of thermal runaway, and susceptible to

sufficient analysis that, within this framework, the issue can be satisfactorily resolved.

While this falls short of an absolute proof one way or the other, it lends strong support

to the more general validity of the conclusion, which is that runaway unlikely to occur.

In this chapter we examine the possibility of thermal runaway, by means of an
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approximation method based on the idea that shear is concentrated near the base of

an ice flow [67]. Formally we assume that the parameter γ that appears in the Frank–

Katmeneskii approximation (2.87) is large, indicating strong temperature dependence

of the flow law. This allows us to solve the temperature equation analytically, and

we are thus able to deduce an explicit evolution equation for the ice surface. Using

this approach, we will show that thermal runaway is still not possible, and remains

an unlikely cause of glacier surges.

We set out this chapter as follows. In Section 5.2, we take up the dimensionless

model of Chapter 2 and impose a new set of boundary conditions for temperature to

create a new asymptotical model. This new model is not a fully coupled model like in

Chapter 4 but it is a semi-coupled profile-temperature model. Also in Section 5.2, we

show how to reduce the model by solving the temperature equation asymptotically,

and we derive an effective equation for the ice surface evolution. In Section 5.3,

we present the numerical algorithms to solve the asymptotical model proposed in

Section 5.2. These numerical algorithms are analogous to the numerical algorithm

proposed in Chapter 3 to solve the profile problem because the two problems are very

similar. Moreover, we do not need a numerical algorithm to solve the temperature

problem because in this asymptotical model we deduce an explicit formula to compute

this temperature. In Section 5.4 we show solutions of several cases corresponding to

formation of cold-based and temperate-based glaciers, and emphasizing in doing so

the important rôle played by meltwater refreezing in warming the basal ice. We

also address the important issue of how best to prescribe the upstream boundary

condition. Conclusions of the study follow in Section 5.5.
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5.2 Asymptotic model

We depart from the dimensionless model derived in Chapter 2:

DT

Dt
= ατn+1A (T ) + β

∂2T

∂z2
,

∂u

∂z
= A (T ) τn,

τ =

(
1 − µ

∂η

∂x

)
(η − z),

∂η

∂t
= a− ∂

∂x

∫ η

b

u dz, (5.1)

The boundary conditions are taken to be the prescription of a constant surface

temperature −∆Θ, thus the dimensionless surface temperature is

T = −1 at z = η. (5.2)

The condition on the velocity is that of a basal sliding velocity ub, at least if the

basal temperature is at the melting point; however, if the basal temperature is below

freezing, then we prescribe an effective geothermal heat flux G∗, and the basal velocity

is then zero. The effective geothermal heat flux is the sum of the actual geothermal

heat flux G and a term which represents the latent heat release by refreezing of surface

(not basal) meltwater which finds its way to the base of the glacier through moulins

and crevasses. If the quantity of ice melted which heats the base in this way is denoted

V , measured as surface loss in elevation per year, then we have

G∗ = G+ ρLV, (5.3)

where L is the latent heat. It turns out that this heat source dwarfs the geothermal

heat flux in glaciers, and is instrumental in causing them to become warm at the

base. This condition does not imply that the basal temperature is at melting point:

think of the temperature regulation of a freezer where one regularly adds ice cube

trays containing water.
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In dimensionless terms, these conditions take the alternate forms, all applied at

the base z = b,

T < 0, −∂T
∂z

= gb, u = 0,

T = 0, −∂T
∂z

= gb + τbu, 0 < u < ub,

T = 0, 0 < −∂T
∂z

< gb + τbu, u = ub,

T = 0, 0 > −∂T
∂z

, u = ub, (5.4)

where

τb =

(
1 − µ

∂η

∂x

)
(η − b) (5.5)

is the basal stress, ub(τb) is the fully temperate sliding law, and a function of the basal

stress, and the dimensionless geothermal heat flux is

gb =
G∗d2

k∆Θ
. (5.6)

The four alternative conditions were provided by Fowler and Larson [38]. The

first three are referred to by them as cold, subtemperate and temperate, respectively,

and we may term the last condition as warm; it refers to the situation where the ice

above the bed is temperate and contains moisture. In this case, an enthalpy variable

generalizes the temperature, and the dimensionless temperature T is generalized to

T → T + r Stw, (5.7)

where

r =
ρw

ρ
, St =

L

cp∆T
, (5.8)

and ρw is the density of water, L is the latent heat, w is the volumetric water fraction

of temperate ice; St is the Stefan number. In the case that warm basal ice occurs,

the energy equation needs to be modified to allow for the different physical process

(Darcy flow) which allows transport of enthalpy. This has been discussed by Fowler

[35], for example, but is not pursued here.
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Table 5.1 contains the typical sub-polar and polar values of the model parameters,

and in Table 5.2 we estimate the other numerical parameters for polar and sub-polar

values using their definition. We distinguish between two sets of values, recognizing

that there is no one choice of values that can fit all locations. The primary difference

lies in whether we suppose surface ablation occurs. In the normal case where this

occurs (in sub-polar and temperate climates), some of the surface meltwater will find

its way to the bed, and if the base is frozen, some of this water is likely to re-freeze,

causing a release of latent heat. It may seem off to allow such basal re-freezing to

occur at temperatures below the melting point: surely re-freezing implies that the

basal temperature is at the melting point? The point is resolved by realizing that one

makes a distinction between the instantaneous temperature of an ice-water interface

and the average temperature of the combined system. In a freezer, one can import

trays of hot water and remove them when frozen, replacing them with more hot water.

While the water is freezing, its interfacial temperature will be at the melting point,

but the air temperature will be significantly lower. If the average temperature of the

freezer and its contents is computed, it will remain below the melting point, and the

net effect of the water input is to provide an effective source of heat. The latent heat

thus produced enhances the geothermal heat flux in a significant way. Where this

does not occur (in polar, continental climate such as in Antarctica), there may be

no melting at all, associated with a colder surface temperature (hence larger ∆Θ),

and decreased precipitation (hence smaller [a∗]). These two climatic examples act as

particular stereotypes in our investigations.

None of the parameters in table (5.2) are particularly small or large, but a number

of them conspire to suggest a useful means of approximation. The rate factor decreases

(if γ = 2.5) by a factor of 12 at the ice surface, and this decrease is enhanced by the

stress dependence of the flow law. Half way to the surface, the creep rate is 3.5 times

lower, but the consequent strain rate is then 28 times lower, because of the stress

dependence. This effect is further enhanced by the relatively small value of β, which

tends to concentrate the change of temperature (and thus also the shear) in a basal
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thermal boundary layer. Thus the shear is concentrated at the glacier bed, and we

can formally base an approximation scheme on this observation by considering the

limit in which γ ≫ 1, noting that the limits β → 0 and n → ∞ enhance the quality

of the approximation.

We write γT = φ, so that the temperature equation takes the form

1

αγ

∂φ

∂t
+

1

αγ
u.∇φ = τn+1eφ +

β

αγ

∂2φ

∂z2
. (5.9)

From this we see that φ will relax to equilibrium (if η is stationary) on a time scale of

O
(

1

αγ

)
, and this steady state will be linear outside a boundary layer of thickness

O
(√

β

αγ

)
, because the exponential term becomes transcendentally small away from

the boundary. Note that the advective term becomes small in this approximation, so

that the quasi-steady state for T is the solution of

β
∂2T

∂z2
+ ατn+1eγT = 0, (5.10)

together with the boundary conditions from (5.2) and (5.4)1. Noting that the viscous

heating term is ατ ∂u
∂z

, we can integrate this equation once to find

β
∂T

∂z

∣∣∣∣
η

b

= α

[
τbub −

(
1 − µ

∂η

∂x

)∫ s

b

u dz

]
, (5.11)

and using (5.1)4, we find that the evolution equation for η takes the form

∂η

∂t
= a +

∂

∂x

[
β ∂T

∂z

∣∣η
b
− ατbub

α
(
1 − µ ∂η

∂x

)
]

. (5.12)

We can progress further by noting that, since the exponential term in (5.10) is

negligible away from the base, we can replace τ in that equation by τb, and the

1There is a slight inaccuracy here. The advective term is certainly small in the boundary layer, but
both the exponential and conductive terms become small in the bulk flow, so that in fact the outer
problem for φ is the approximate equation u · ∇φ ≈ 0, if we suppose β ≪ 1, the solution to which is
φ = φ(ψ), where ψ is a stream function for the flow. With the constant surface temperature condition
(5.2), this makes no difference at all, and in fact even with a varying surface temperature, the
boundary layer solution is formally the same, provided we take the dimensionless surface temperature
T = −1 to be that at the head x = 0.



120

quasi-steady solution for T can then be written explicitly as

T = −2

γ
ln

[
B cosh

{√
λ

2

z

B
+ C

}]
, (5.13)

where

λ =
αγτn+1

b

β
, (5.14)

and B must be positive in order that T be real. The temperature gradient is calculated

from (5.13), and is

∂T

∂z
= −

√
2λ

γB
tanh

{√
λ

2

z

B
+ C

}
. (5.15)

To keep things simple, we now suppose that b = 0, i.e, it is a flat inclined plane,

and we suppose also that the sliding velocity ub is negligible. Thus the sub-temperate

part of the base shrinks to a point, and the temperate and warm parts of the base

satisfy the same condition. Thus we suppose that u = 0 at z = 0 always, and

T < 0, −∂T
∂z

= gb,

T = 0, −∂T
∂z

< gb, (5.16)

also at z = 0.

The condition T = −1 at z = η implies

∣∣∣∣∣C +

√
λ

2

η

B

∣∣∣∣∣ =
γ

2
− ln

B

2
− ln

[
1 + exp

{
−2

∣∣∣∣∣

√
λ

2

η

B
+ C

∣∣∣∣∣

}]
. (5.17)

Cold-based ice

It is well known [58, 59] that there are generally two solutions of the equation (5.10)

for λ less than some critical value λc; in the present case these are distinguished as

being a lower, cool branch, and an upper, warm branch.

For cold-based ice, we have in addition to (5.17) the equation

gb =

√
2λ

γB
tanhC, (5.18)
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which shows that C > 0. Since we take γ ≫ 1, (5.18) implies that B ≪ 1, and

therefore (5.17) is approximately

C +

√
λ

2

η

B
=
γ

2
+ ln

2

B
. (5.19)

If we first suppose that C ≤ O(1), then

B ≈
√

2λη

γ
, gbη ≈ tanhC, (5.20)

and

T |0 ≈
2

γ
ln γ > 0; (5.21)

this solution therefore corresponds to the warm branch.

Alternatively, if C ≫ 1, then

B ≈ B∞ =

√
2λ

γgb
, C ≈ γ

2
(1 − gbη) + ln

(

γgb

√
2

λ

)

, (5.22)

and in this case

T |0 ≈ − (1 − gbη) , (5.23)

and this is negative if gbη < 1, which is also the criterion that C ≫ 1. Thus this cool

lower branch is determined by (5.22), and thermal runaway occurs if gbη > 1, except

that in any case we then switch to the temperate-based case.

To compute ∂T
∂z

∣∣η
0
, we use (5.15), together with the approximation

tanh ξ ≈ 1 − 2e−2ξ (5.24)

for large ξ. We then find that

∂T

∂z

∣∣∣∣
η

0

≈ −λe
−γ

γ2gb

(eγgbη − 1) , (5.25)

and hence we find in this case that η satisfies

∂η

∂t
= a− e−γ ∂

∂x

[(
eγgbη − 1

γgb

)
ηn+1

(
1 − µ

∂η

∂x

)n]
. (5.26)
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Figure 5.1: Exact and approximate values of B(η) for the case of sub-polar and polar
climates. For the sub-polar climate, we use values γ = 2.5, gb = 2.9, and λ = 5, based
on a temperate-based shear stress of τb ≈ 0.8, with α = 0.25, β = 0.29; for the polar
climate, we use values γ = 5, gb = 0.2, and λ = 0.25, based on a cold-based shear
stress of τb ≈ 1.2, with α = 0.13, β = 2.9. In both cases, it is the upper (cool) branch
of the solution which is to be taken.

Because, particularly in the sub-polar case, γ is not in fact that large, one must

be careful that the approximations in (5.22) are reasonably accurate. Figure 5.1

shows two examples of the exact solutions for B as a function of η computed from the

solution of (5.17) and (5.18), together with the approximation B ≈ B∞. In each curve

the upper branch is the stable cool branch, and one can see that the approximate

value actually gives a good estimate, even though B∞ is not so very small. This gives

us some confidence in the use of (5.22).

Temperate-based ice

For the case that T = 0 at z = 0, we have instead of (5.18)

B coshC = 1. (5.27)

From (5.15) and (5.13), we see that if C > 0, then ∂T
∂z

∣∣
0
< 0, and T < 0 in z > 0,

whereas if C < 0, the opposite is true, and the basal ice is warm (actually, super-

heated). In addition, the cool branch is stable and the warm branch is unstable.

We can see from (5.27) that either B = O(1) or B ≪ 1. If B = O(1), then (5.17)

implies (since γ ≫ 1) that |C| ≫ 1, and hence in fact B ≪ 1 is the only possibility.
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The two possible solutions then correspond to ±C ≫ 1: for the stable, cool branch,

C ≫ 1, while for the unstable, warm branch, −C ≫ 1. From (5.27), we have

|C| ≈ − ln
B

2
− B2

4
. . . , (5.28)

and therefore, from (5.17), we obtain the approximations

C ≈ ln
2

B
, B ≈

√
2λη

γ
, C > 0,

C ≈ − ln
2

B
, B ≈

√
2λη

γ
, C < 0. (5.29)

Restricting our attention to the cool, stable case C > 0, we can now approximate ∂T
∂z

∣∣η
0

as before, using the definitions in (5.15) and (5.29), and the approximation (5.24).

The result is
∂T

∂z

∣∣∣∣
η

0

≈ −λ (1 − e−γ) η

γ2
. (5.30)

Finally, using the definition of λ in (5.14), we find that for temperate basal conditions,

the mass conservation equation (5.12) takes the form

∂η

∂t
= a− (1 − e−γ)

γ

∂

∂x

[
ηn+2

(
1 − µ

∂η

∂x

)n]
. (5.31)

The temperate-based evolution equation applies while − ∂T
∂z

∣∣
0
≈

√
2λ

γB
< gb, it is,

gbη > 1. (5.32)

The warm and cool branches must come together when C = O(1), and thus B = O(1).

Thermal runaway will thus occur if B = O(1). Formally this does not happen, since

B ≪ 1. If we suppose the approximate result in (5.29) can be extended, then it

suggests that runaway will occur if
√

2λη > γB for some value of B = O(1), or

ηn+3

(
1 − µ

∂η

∂x

)n+1

>
βγB2

2α
, (5.33)

but just as before, we can associate the transition from cool to warm branches with

the passage of the basal heat flux, − ∂T
∂z

∣∣
0
, through zero, and thus the onset of a

region of basal moist ice; again, thermal runaway does not occur.
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Global asymptotic model

Both cold and temperate based glacier models can be represented by the combined

form

∂η

∂t
= a− ∂

∂x

[
Kηn+2

(
1 − µ

∂η

∂x

)n]
, (5.34)

where K(η) can be defined by

K =






(
e−γ(1−gbη) − e−γ

)

γgbη
, gbη < 1 (cold),

1 − e−γ

γ
, gbη > 1 (temperate).

(5.35)

Note that K is a continuous function of η. The terms e−γ are formally negligible, but

are retained for the purpose of indicating the appropriate continuity at gbη = 1.

In computing the temperature field, we would use the approximation given by

(5.13), where the values of B and C should be as described above. With the approx-

imate formulae given by (5.22) and (5.29)1, the temperature field will be continuous

across the cold-temperate transition at gbη = 1, but the basal temperature will not be

exactly zero at the switch point, because (5.27) is only approximately satisfied there.

Because it represents the actual melting point, we want to ensure that the transition

occurs at T |0 = 0, and the simplest way to do this, if we want to retain explicit

approximations for B and C, rather than solving for them exactly at each value of

x, is to make the same approximation in (5.13) as we do in deriving the approximate

values of B and C.

Since this involves the supposition thatB is small and C is large, we make the same

approximation in (5.13), and after some algebra, this leads to the linear approximation

T =






−1 + gb(η − z), gbη < 1, (cold),

−z
η
, gbη > 1, (temperate).

(5.36)
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5.3 Numerical Methods

In deriving the effective non-isothermal surface evolution profile equation (5.34), we

have tacitly assumed ∂η
∂x
<

1

µ
, which physically implies the glacier surface is inclined

downhill, as we expect. More generally, the derivation of the equation leads to the

form
∂η

∂t
= a− ∂

∂x

[

Kηn+2

∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1(

1 − µ
∂η

∂x

)]

, (5.37)

and properly speaking, the equation must be solved in this form.

In this section we briefly describe the set of numerical methods that have been

used for the three models.

5.3.1 Boundary conditions

The issue of boundary conditions for a valley glacier is an interesting one. The second

order equation (5.37) requires two boundary conditions, upstream and downstream.

That at the snout of the glacier, assuming it terminates on land, is simply

η = 0 at x = xfront, (5.38)

where xfrontf is the position of the glacier front. The value of xfront is unknown (it

is a free boundary), but the condition (5.38) is sufficient to determine it, since the

equation is degenerate there (the diffusion coefficient is zero).

At the upstream end of the glacier x = 0, the position is less clear (as pointed in

Chapters 3 and 4). We might suggest

η = 0 at x = 0, (5.39)

but the flux

Υ = Kηn+2

∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1(

1 − µ
∂η

∂x

)
(5.40)

is then apparently zero unless ∂η
∂x

is infinite. Indeed, the condition η = 0 then requires

Υ ∼ ax > 0 near x = 0, and this requires ∂η
∂x

to be infinite and negative. Thus the
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only way one can maintain η = 0 at the head is to have a finite flux, and (since η

must be positive in x > 0), this must be a negative flux; that is to say, the glacier

actually grows into an ice sheet with an ice divide downstream of the head.

Physically, we need to represent the bergschrund of the glacier. One way to do

this is to allow a variable basal slope, thus replacing (5.37) by

∂η

∂t
= a− ∂

∂x

[
Kηn+2

∣∣∣∣Θ − µ
∂η

∂x

∣∣∣∣
n−1(

Θ − µ
∂η

∂x

)]
, (5.41)

where Θ is the scaled basal slope. We can represent a bergschrund by specifying

Θ ∼ 1

xν
as x→ 0, (5.42)

where 0 < ν < 1 in order that the mountain height be finite. Then we can have

positive downstream flux with Υ ∼ ax near x = 0 if η ∼ xσ, where

σ =
1

n + 2
+ nν. (5.43)

While this provides a convenient cosmetic resolution to the problem, and allows

us to prescribe (5.39), it introduces unnecessary numerical complication. Thus in

practice we have applied a flux boundary condition

Υ = Υ0 at x = 0. (5.44)

With a small positive value for Υ0, then ∂η
∂x
<

1

µ
, and η is finite at x = 0.

We write the equation (5.37) in the form

∂η

∂t
+

∂

∂x

[
F

(
η,
∂η

∂x

)(
1 − µ

∂η

∂x

)]
= a (5.45)

where

F

(
η,
∂η

∂x

)
= K(η)ηn+2

∣∣∣∣1 − µ
∂η

∂x

∣∣∣∣
n−1

, (5.46)

and K is given by (5.35).

Equation (5.45) is valid for the function η when η (x, t) > 0, the set of whose points

is an additional unknown. Thus, we use a fixed domain technique like in Chapter 3.
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For this purpose, let Q = (0, tA)× [0, xmax]; in our computations we use xmax = 3.

If we extend the function η to be zero in the ice free region, then the extended function

(still noted by η) satisfies the equations

∂η

∂t
+

∂

∂x

[
F

(
η,
∂η

∂x

)(
1 − µ

∂η

∂x

)]
− a ≥ 0 in Q,

η ≥ 0 in Q,
{
∂η

∂t
+

∂

∂x

[
F

(
η,
∂η

∂x

)(
1 − µ

∂η

∂x

)]
− a

}
η = 0 in Q,

η = 0 on (0, tA) × {xmax},

F

(
η,
∂η

∂x

)(
1 − µ

∂η

∂x

)
= Υ0 on (0, tA) × {0},

η (x, 0) = 0 in Ω. (5.47)

Notice that in the ice covered region, the fact that η (x, t) > 0 together with equation

(5.47)3 implies equation (5.45).

Next, in order to solve numerically the complementarity problem (5.47)1−4, an

implicit finite difference scheme for time discretization is applied together with an

iterative fixed point technique for the resulting nonlinear diffusive term.

So, for each m = 0, 1 . . . , we initialize ηm+1,0 and the following problem has to be

solved at step k + 1:
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Find ηm+1,k+1 such that:

ηm+1,k+1 − ηm

∆t
−

µ
∂

∂x

[
F

(
ηm+1,k,

∂η

∂x

m+1,k) ∂η

∂x

m+1,k+1]
− bm+1,k ≥ 0 in Ω,

ηm+1,k+1 ≥ 0 in Ω,

ηm+1,k+1

{
ηm+1,k+1 − ηm

∆t

−µ ∂

∂x

[
F

(
ηm+1,k,

∂η

∂x

m+1,k) ∂η

∂x

m+1,k+1]
− bm+1,k

}
= 0 in Ω,

ηm+1,k+1 = 0 on x = xmax,

F

(
ηm+1,k+1,

∂η

∂x

m+1,k+1)(
1 − µ

∂η

∂x

m+1,k+1)
= Υ0 on x = 0, (5.48)

where

bm+1,k = am+1 − ∂

∂x

[
F

(
ηm+1,k,

∂η

∂x

m+1,k)]
. (5.49)

In order to pose the variational formulation and the spatial discretization, we point

out that the relation between variational inequalities, complementarity problems and

obstacle problems can be reviewed in Elliott and Ockendon [30], for example.

Next, in order to discretize in space the variational inequality associated with

(5.48), a piecewise linear Lagrange finite element space is used. Thus, for a given

positive mesh stepsize ∆x, a uniform finite element mesh τl is built for the domain Ω

with nodes xi = (i − 1)∆x, i = 1, . . . , N + 1. The following classic spaces and sets

are introduced:

Vl = {ϕl ∈ C0 (Ω) : ϕl|E ∈ P1 ∀E ∈ τl},

V0l = {ϕl ∈ Vl : ϕl(xmax) = 0},

Kl = {ϕl ∈ Vl : ϕl ≥ 0 a.e. in Ω, ϕl(xmax) = 0}, (5.50)

where E denotes a standard finite element. In this way, the discretized problem can

be written as follows:
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Find ηm+1,k+1
l ∈ Kl such that:

1

∆t

∫

Ω

ηm+1,k+1
l

(
ϕl − ηm+1,k+1

l

)
dΩ+

+ µ

∫

Ω

F

(
ηm+1,k,

∂η

∂x

m+1,k) ∂ηl

∂x

m+1,k+1 ∂

∂x

(
ϕl − ηm+1,k+1

l

)
dΩ ≥

≥ 1

∆t

∫

Ω

ηm
l

(
ϕl − ηm+1,k+1

l

)
dΩ +

∫

Ω

bm+1,k
(
ϕl − ηm+1,k+1

l

)
dΩ+

+

(
Υ0 − F

(
ηm+1,k (xmax) ,

∂η

∂x

m+1,k

(xmax)

))(
ϕl(0) − ηm+1,k+1

l (0)
)
, ∀ϕl ∈ Kl.

(5.51)

In order to solve the discretized nonlinear problem (5.51) we use the same techniques

described in Chapter 3.

5.4 Numerical Test

In this section we present numerical results corresponding to three particular cases:

cold, temperate and polythermal (meaning that parts of the base are cold and parts

temperate). The results have been obtained by using the numerical methods briefly

described in the previous section, and detailed in Chapter 3.

The departure point for the numerical techniques is a fixed domain formulation

for the moving boundary problem. Particularly, we select the spatial domain Ω =

[0, xmax], where xmax is sufficiently large that Ω always contains the glacier profile.

In practice, we take xmax = 3. Next, we fix the boundary conditions at both ends of

the domain. As intimated above, these are

η = 0 at x = xmax, t > 0,

Υ = Υ0 at x = 0, t > 0, (5.52)

where Υ is given by (5.40) (and K by (5.35)). The initial condition is taken as

η = 0 for t = 0, x ∈ Ω. (5.53)
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In all runs we have chosen the accumulation rate function to be

a(x) = 1 − x (5.54)

and the Glen exponent n = 3.

For the numerical solution a spatial mesh stepsize ∆x = 10−4 and a timestep of

∆t = 10−6 have been used. Moreover, for the fixed point iteration to deal with the

nonlinear diffusive term a stopping test based on the error between two iterations

being less than 10−6 has been used, while for the duality method 10−9 has been

chosen.

In these tests we have imposed the accumulation-ablation function and the flux

at the left of the domain, so we can compute the x-axis point where flux are zero for

steady state (it is, when ∂η/∂t = 0). We rewrite equation (5.34) in steady state as

follows:

a (x, t) =
∂

∂x
Υ0 (t) , (5.55)

We integrate this equation between 0 and xfront (with xfront the point where Υ0 (t) =

0) and we get:
∫ xfront

0

a (x, t) dx =

∫ xfront

0

∂

∂x
Υ0 (t) dx⇒

∫ xfront

0

a (x, t) dx = −Υ0 (t) , (5.56)

and as in these tests, the value of the accumulation-ablation function, a (t, x), is given

by equation (5.54), so we can obtain the following equation that link the position of

the front of the glacier and the flux imposed at the left of the glacier,

2xfront − x2
front = −2Υ0 (t) . (5.57)

5.4.1 Example 1. Cold-based ice

The first example corresponds to the polar parameters which may be appropriate

for the case where the effective basal heating is very small, and we expect to find a

cold-based glacier. The parameters used are

γ = 5, gb = 0.2, µ = 0.13, α = 0.125, β = 2.9, Υ0 = 0.1. (5.58)
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Figure 5.2: Evolution of the surface on solving (5.34) with the polar choice of param-
eters γ = 5, gb = 0.2, µ = 0.13, α = 0.125, β = 2.9, Υ0 = 0.1.

With this set of parameters, the front of the glacier is at x = 2.09, that is the value of

xfront when equation (5.57) is solved using Υ0 = 0.1. Figure 5.2 shows the computed

profile evolution from t = 2 to t = 10 (when the profile has reached the steady state),

after numerically solving equation (5.34) and we can check that xfront is the expected

value. Figure 5.3 shows the computed temperature for t = 10 in the ice region,

obtained from (5.36).

5.4.2 Example 2. Temperate-based ice

The second example corresponds to the sub-polar parameters for which the effective

basal melting is large, and we expect a temperate-based glacier.2 The parameters

used are

γ = 2.5, gb = 2.9, µ = 0.13, α = 0.25, β = 0.29, Υ0 = 0.5. (5.59)

In this case, the expected front of the glacier is at x = 2.41, this value is computed

solving equation (5.57) with Υ0 = 0.5. In Figure 5.4 we show the computed profile

2Over most of the domain. Near the snout of the glacier, the base must become cold according
to the model.
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Figure 5.3: Ice temperature for the final steady state of the cold-based glacier; pa-
rameters as in Figure 5.2.

evolution from t = 1 to t = 4 (when it has again reached steady state), after numeri-

cally solving equation (5.34), and there we can check that the snout is at the expected

coordinate. Figure 5.5 shows the computed temperature for t = 4 in the ice region,

obtained from (5.36).

5.4.3 Example 3. Polythermal basal ice

The final example corresponds to a case where basal heat flux is smaller than for

the sub-polar parameters. We expect that as gb is reduced, the base will become

increasingly cold at the head and snout, and that eventually the glacier will become

cold based. Between the temperate-based and cold-based states, we find a mixed cold-

temperate, or polythermal basal régime at the base of the glacier. The parameters

used are

γ = 2.5, gb = 1, µ = 0.13, α = 0.125, β = 2.9, Υ0 = 0.5. (5.60)

. The position of the front of the glacier in this case is the same that in the previous ex-

ample, that is, x = 2.41, that is because the imposed interval, accumulation-ablation



133

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

x

z
η(t=1)

η(t=2)

η(t=3)

η(t=4)

Figure 5.4: Evolution of the surface on solving (5.26) with the sub-polar choice of
parameters γ = 2.5, gb = 2.9, µ = 0.13, α = 0.25, β = 0.29, Υ0 = 0.5.

Figure 5.5: Ice temperature for the final steady state of the temperate-based glacier;
parameters as in figure 5.4.
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Figure 5.6: Evolution of the surface on solving (5.34) with the choice of parameters
γ = 2.5, gb = 1, µ = 0.13, α = 0.125, β = 2.9, Υ0 = 0.5.

function and flux at the left are the same that in the temperate-based ice example,

Υ0 = 0.5. In Figure 5.6 we show the computed profile evolution from t = 1 to t = 5

(again at steady state), after numerically solving equation (5.34). Figure 5.7 shows

the computed temperature for t = 5 in the ice region, obtained from (5.36).

5.5 Conclusions

Our principal aim in this chapter was to consider the issue of whether thermal runaway

could properly happen in glacier flow, in a more comprehensive way than has been yet

been done. In doing so, there are two problems to consider. The first is to consider

whether thermal runaway can occur in the different possible basal thermal régimes

which can exist at the base of the glacier, and the second is to consider whether,

if runaway does occur, it leads in practice to an unlimited acceleration within the

same basal thermal régime. Earlier work has shown that thermal runaway in shear

flow models with fixed depth can occur, and this therefore remains a possibility if

the temperature equation can respond more rapidly than the ice surface. Formally,
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Figure 5.7: Ice temperature for the final steady state of the polythermal based glacier;
parameters as in Figure 5.6.

this is the case for strongly temperature-dependent rheology, here taken as the limit

γ ≫ 1. In indulging this limit, we therefore provide a glacier flow model which

would seem most likely to produce runaway, if it can occur at all. However, we have

found that the progressive adjustment of thermal boundary conditions from cold to

sub-temperate to temperate never in practice allows runaway occur, because one

simply switches basal boundary conditions at the point where runaway could occur.

The possibility of runaway when the basal ice (not boundary condition) becomes

temperate, and internal moisture is generated, remains a possibility, but realistic

modelling of temperate ice, allowing for moisture drainage, has not been done.

In building our approximate model to address this problem, we have constructed

an effective non-isothermal ice surface evolution equation (5.38) which represents in

a realistic way the evolution of the ice surface when the flow law is temperature

dependent. The derivation of this equation suggests that temperature variation has

very little effect on the overall motion of the glacier, other than mildly adjusting the

depth scale of the flow.

A particular revelation of this exercise has been the unexpected inadequacy of
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geothermal heat. As measured by the parameter gb, we have shown that a glacier

remains cold-based until its depth η >
1

gb

. If gb is computed using normal values

of geothermal heat flux, we find that it is so small that basal ice will never reach

the melting point. In reality, entirely cold-based glaciers are something of a rarity,

and we consider this to be due to the overwhelming importance of latent heat release

by buried surface meltwater and rainwater. In the absence of such enhanced basal

heating, glaciers would remain frozen at their base.
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Symbol Meaning Typical value Polar value
[a∗] accumulation rate 1 m y−1 0.1 m y−1

Am flow rate factor 0.17 bar−n y−1

cp specific heat 2 kJ kg−1 K−1

d2 depth 132 m
E creep activation energy 78.8 kJ mole−1

g gravity 9.81 m s−2

G geothermal heat flux 60 mW m−2

G∗ effective geothermal heat flux 1 W m−2 60 mW m−2

H elevation loss 1 km
k thermal conductivity 2.2 W m−1 K−1

d1 length 10 km
L latent heat 3.3 × 105 J kg−1

n Glen exponent 3
R gas constant 8.3 J mole−1 K−1

Θm melting temperature 273 K
[U ] velocity 76 m y−1

V effective surface melt rate 0.1 m y−1 0 m y−1

∆Θ surface temperature deficit 20 K 40 K
κ = k/ρcp thermal diffusivity 1.2 × 10−6 m2 s−1

ρ ice density 917 kg m−3

[τ ∗] stress 1.2 bar
sinχ slope 0.1

Table 5.1: Parameter values. The accumulation rate, surface temperature, surface
melt rate, and consequent effective geothermal heat flux take two values, representing
the essentially polar and sub-polar régimes.
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Parameter Definition Sub-polar value Polar value
r (5.8) 1.1
St (5.8) 8.25 4.13
α (2.54)3 0.25 0.13
β (2.53)2 0.29 2.9
γ (2.86) 2.5 5
gb (5.6) 2.9 0.17
µ (2.36) 0.13

Table 5.2: Dimensionless parameter values, using the estimates in table 5.1. Based on
the different sub-polar (typical) and polar values, we compute two different estimates
for parameters, as indicated. Where no polar value is indicated, the estimates do not
differ.



Chapter 6

Conclusions

Our objective in this work has been to contribute to the mathematical modelling and

numerical simulation of glaciers beheviour in the frame of shallow ice approximation

(SIA) models. For this purpose,isothermal and non isothermal models are formulated

in terms of systems of highly nonlinear partial differential equations, which eventually

involve moving boundary problems. For the numerical solution of the complex models

a variety of numerical techniques are proposed. In this final conclusion section, we

summarizes some of the conclusions already presented in each chapter.

More precisely, for the profile problem arising in the isothermal model the main

novelty relies on their formulation in terms of a new obstacle problem associated to

a highly nonlinear convection-diffusion equation. We use fixed domain formulations

where the unknown moving boundary between the ice covered and ice free regions is

implicitly obtained. The modelling of prescribed profile and prescribed flux at the

glacier head leads to two different fixed domain formulations, the second one being

the more innovative in view of the existing literature. The main advantage with

respect to some possible front-tracking alternatives (posing the nonlinear equation

in the unknown ice covered domain) comes from our use of a fixed domain and a

fixed mesh instead of updating the mesh associated to the ice covered domain at each

time step. For the numerical solution, a combination of characteristics method for

time discretization, a duality method for the nonlinear obstacle formulation and an

appropriate explicit treatment of the nonlinear diffusive term have been considered.
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Moreover, piecewise linear Lagrange finite elements for the spatial discretization have

been used.

Numerical results illustrate the performance of the proposed numerical algorithm

and techniques when applied to an academic example with closed form analytical

solution. When addressing problems with not know analytical solution, in polar

regimes the results show the presence of an infinite slope when a zero profile condition

at the head is prescribed. This is motivated by the appearance of unrealistic negative

fluxes at the head in this formulation. Therefore, an original and more realistic

formulation with prescribed flux at the head is proposed and numerical methods are

suitably adapted.

In the non isothemal case, main innovative aspect is the consideration of a non

isothermal model for the profile equation, thus fully coupled with the shallow ice

approximation for the velocity and the temperature equation. This new profile model

is posed in terms of a new obstacle problem associated to an integro-differential

equation, the numerical solution of which is addressed by the same techniques that

in the isothermal model jointly with numerical integration for the nonlocal diffusion

coefficient function.

In addition to the specific difficulties associated to the new profile model formula-

tion, different appropriate techniques have been applied for the numerical solution of

the temperature equation: an enthalpy formulation for the two phase Stefan problem,

a characteristics method for the time discretization, duality methods associated to

maximal monotone operators, a Newton method for the nonlinear term associated to

thermal viscous dissipation and piecewise linear finite elements for spatial discretiza-

tion. Moreover, specific numerical quadrature techniques are considered to compute

the velocity field.

Once each subproblem has been solved with the appropriate numerical techniques,

a fixed point iterative method is performed for the solution of the coupled problem,

which essentially solves sequentially each of the subproblems.

This set of numerical techniques has been applied to several test examples. Thus,
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illustrative examples concerning the case of polar, polythermal and temperate regimes

have been considered. Moreover, after the remarks in Chapter 3 concerning the

appropriate boundary conditions upstream, also the case of flux imposed or profile

imposed boundary condition at the left boundary of the glacier are presented. Again,

as in the isothermal model treated in Chapter 3, the computed numerical results

show that flux imposed boundary results to be more realistic due to the fact that

the Dirichlet boundary condition leads to almost infinite slopes at the left glacier

boundary. Also notice that, in the case of flux imposed boundary condition, the

same technique developed in Chapter 3 allows to obtain the exact position of the free

boundary. This value has been very accurately verified by the computations.

Also, the issue of whether thermal runaway, our principal aim in that chapter was

to consider the issue of whether thermal runaway could properly happen in glacier

flow, in a more comprehensive way than has been yet been done. In doing so, there

are two problems to consider. The first is to consider whether thermal runaway can

occur in the different possible basal thermal régimes which can exist at the base of

the glacier, and the second is to consider whether, if runaway does occur, it leads

in practice to an unlimited acceleration within the same basal thermal régime. Ear-

lier work has shown that thermal runaway in shear flow models with fixed depth

can occur, and this therefore remains a possibility if the temperature equation can

respond more rapidly than the ice surface. Formally, this is the case for strongly

temperature-dependent rheology, here taken as the limit γ ≫ 1. In indulging this

limit, we therefore provide a glacier flow model which would seem most likely to pro-

duce runaway, if it can occur at all. However, we have found that the progressive

adjustment of thermal boundary conditions from cold to sub-temperate to temperate

never in practice allows runaway occur, because one simply switches basal boundary

conditions at the point where runaway could occur. The possibility of runaway when

the basal ice (not boundary condition) becomes temperate, and internal moisture is

generated, remains a possibility, but realistic modelling of temperate ice, allowing for

moisture drainage, has not been done.
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In building our approximate model to address this problem, we have constructed

an effective non-isothermal ice surface evolution equation (5.38) which represents in

a realistic way the evolution of the ice surface when the flow law is temperature

dependent. The derivation of this equation suggests that temperature variation has

very little effect on the overall motion of the glacier, other than mildly adjusting the

depth scale of the flow.

A particular revelation of this exercise has been the unexpected inadequacy of

geothermal heat. As measured by the parameter gb, we have shown that a glacier

remains cold-based until its depth η >
1

gb
. If gb is computed using normal values

of geothermal heat flux, we find that it is so small that basal ice will never reach

the melting point. In reality, entirely cold-based glaciers are something of a rarity,

and we consider this to be due to the overwhelming importance of latent heat release

by buried surface meltwater and rainwater. In the absence of such enhanced basal

heating, glaciers would remain frozen at their base.

The main general conclusion is that the proposed set of numerical techniques

results to be appropriate for the numerical solution of the complex shallow ice math-

ematical models that govern the thermomechanical behaviour of polar, polythermal

and temperate glaciers, as it is also illustrated by the numerical results. We also

point out that the here developed work concerning to modelling and numerical simu-

lation poses interesting open problems related to the theoretical analysis of different

particular and global models.



Appendix A

Monotone Operators and Yosida

Approximations

A.1 Monotone operators

Throughout the present work, several nonlinear terms appearing in the complex math-

ematical models are numerically solved by means of the particular duality method

introduced in Bermúdez–Moreno [5]. The justification of this duality method requires

some concepts and results of the theory about maximal monotone operators. The con-

cepts and results are summarized in this appendix. A more detailed explanation and

the proof of some results can be found in Brezis [10].

Let us consider a Hilbert space W , equipped with the inner product denoted by

(·, ·) and the associated norm |·|.

Definition 1 An operatorG is an application of W in the set of parts ofW , denoted

by P (W ).

Definition 2 Let us denote the domain of the operator G by the set

D (G) = {x ∈W/G (x) 6= 0} .
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Definition 3 Let us denote the image of the operator G by the set

R (G) =
⋃

x∈W

G (x) .

Definition 4 The operator G is univalued if for all x ∈W , G (x) contains at most

one element. Otherwise, the operator is multivalued.

Definition 5 The graph of operator G is the W ×W subset given by

{(x, y) ∈W ×W/y ∈ G (x)} .

Definition 6 The operator G is monotone if ∀u1 ∈ G (y1) and ∀u2 ∈ G (y2) it

verifies that

(u1 − u2, y1 − y2) ≥ 0.

In the set of operators of W we define the following order relation in terms of the

graphs inclusion:

G1 ⊂ G2 ⇔ ∀x ∈W,G1 (x) ⊂ G2 (x) .

The set of monotone operators is inductive with respect to this relation, since it is

different of the empty set, and for the given fully ordered chain of monotone operators

G1 ⊂ G2 ⊂ . . . ⊂ Gj ⊂ Gj+1 ⊂ . . . , j ∈ J,

the monotone operator

G : x ∈W → G (x) =
⋃

j∈J

Gj (x) .

is an upper bound for the chain. Zorn Lemma ensures the existence of maximal

elements in the monotone operators set.

Definition 7 An operator G is maximal monotone if it is a maximal element in the

monotone operators set with respect to the previous relation.

The following characterization is important in the maximal monotone operators

study.
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Proposition 1 If G is a monotone operator, the following three properties are

equivalent:

1. G is maximal.

2. rang (I +G) = W.

3. ∀λ > 0, (I + λG)−1 is a contraction from W to W .

Definition 8 Let be G a given maximal monotone operator and λ > 0, the resolvent

of G of parameter λ is the operator from W to W , defined by

Jλ = (I + λG)−1 , λ > 0.

Definition 9 Let be G a maximal monotone operator and λ > 0, the Yosida ap-

proximation of G of parameter λ is the univalued operator defined by

Gλ =
I − Jλ

λ
, λ > 0.

In terms of the previous definition, the following proposition holds (see [5] for details).

Proposition 2 Let G be a maximal monotone operator. Then, for the real numbers

λ and ω such that λω < 1, λ > 0 and ω ≥ 0, given f ∈W , there exists a y ∈ W such

that f ∈ (1 − λω) y+ λG (y). The following result (see [5] for details) is fundamental

to justify the duality algorithm proposed to solve the problems throughout this Thesis.

Lemma 1 Let be G a maximal monotone operator in W . They are equivalent:

1. u ∈ G (y) − wy.

2. u = Gω
λ (y + λu) , λ > 0,

where Gω
λ denotes the Yosida approximation with real parameter λ of the operator

G− ωI.

In the previous result it appears the Yosida approximation of operator G − ωI,

the computation of which (in terms of Yosida approximation of G) we detail in the

following remark:
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Remark 1 If we denote by Jλ the resolvent operator of G and by Jω
λ the resolvent

operator of G− ωI, i.e.,

Jλ = (I + λG)−1 , Jω
λ = (I + λ (G− ωI))−1 ,

then the following identity holds:

Jω
λ (x) = J λ

1−λω

(
x

1 − λω

)
.

More precisely, for y ∈ Jω
λ (x) we have

x ∈ (I + λ (G− ωI)) (y) ⇔ x− (1 − λω) y

λ
∈ G (y) ⇔

x
1−λω

− y
λ

1−λω

∈ G (y) ,

and, consequently,

y ∈ J λ
1−λω

(
x

1 − λω

)
.

Next, if we compute the Yosida approximation of G− ωI, denoted by Gω
λ , we get

Gω
λ (x) =

(
I − Jω

λ

λ

)
(x) =

1

λ

[
x

1 − λω
− J λ

1−λω

(
x

1 − λω

)
− λω

1 − λω
x

]

=
1

1 − λω

1 − λω

λ

[
x

1 − λω
− J λ

1−λω

(
x

1 − λω

)]
− ω

1 − λω
x

=
1

1 − λω
G λ

1−λω

(
x

1 − λω

)
− ω

1 − λω
x,

where G λ
1−λω

denotes the Yosida approximation of the operator G with parameter

λ
1−λω

.

A.2 Yosida approximation of the enthalpy opera-

tor in the thermal problem

In the thermal problem appearing in Chapter 4, the operator E ◦ Λ−1 is maximal

monotone. Thus, using the previuos remark, the Yosida approximation of parameter

λ of the operator (E ◦ Λ−1) − ωI can be written as follows:

(
E ◦ Λ−1

)ω
λ

(Θ) =
1

1 − λω

(
E ◦ Λ−1

)
λ

1−λω

(
Θ

1 − λω

)
− ω

1 − λω
Θ.
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Therefore, if we denote

λ̄ =
λ

1 − λω
,

Θ̄ =
Θ

1 − λω
,

then we get the following identity:

(
E ◦ Λ−1

)ω
λ

(Θ) =
1

1 − λω

(
E ◦ Λ−1

)
λ̄

(
Θ̄
)
− ωΘ̄,

where
(
E ◦ Λ−1

)
λ̄

(
Θ̄
)

=
Θ̄ − Jλ̄

(
Θ̄
)

λ̄
, Jλ̄ =

[
I + λ̄

(
E ◦ Λ−1

)]−1
.

In the particular case where density (ρ), specific heat (c) and thermal conductivity

(k) are constant at each solid and liquid phase, we have the following expressions for

the enthalpy, the Kirchoff variable change and its inverse:

E (Θ) =






ρscsΘ if Θ < Tm,

[ρscsTm, ρscsTm + ρsLc] if Θ = Tm,

ρlclΘ + (ρscs − ρlcl)Tm + ρsLc if Θ > Tm,

(A.1)

Λ (Θ) =






ksΘ if Θ < Tm,

ksTm if Θ = Tm,

klΘ + (ks − kl)Tm if Θ > Tm,

(A.2)

Λ−1 (Θ) =






1
ks

Θ if Θ < ksTm,

Tm if Θ = ksTm,

1
kl

Θ +
(
1 − ks

kl

)
Tm if Θ > ksTm,

(A.3)

where the subindexes s and l indicate the solid and liquid phases respectively, Lc is

the latent heat and Tm is the phase change temperature.

Moreover, if we denote

A1 = ksTm + λ̄ρscsTm,

A2 = ksTm + λ̄ρscsTm + λ̄ρsLc,
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then the resolvent operator Jλ̄ is given by the following expression:

Jλ̄

(
Θ̄
)

=






1

1+ λ̄ρscs
ks

Θ̄ if Θ̄ < A1,

ksTm if A1 ≤ Θ̄ ≤ A2,

1

1+
λ̄ρlcl

kl

Θ̄ + (ksρlcl−klρscs)λ̄Tm−ρsklλ̄Lc

kl+λ̄ρlcl
Tm if Θ̄ > A2,

(A.4)

and therefore, (E ◦ Λ−1)λ̄ is given by:

(
E ◦ Λ−1

)
λ̄

(
Θ̄
)

=






ρscs

ks

(
1+ λ̄ρscs

ks

) Θ̄ if Θ̄ < A1,

1
λ̄

(
Θ̄ − ksTm

)
if A1 ≤ Θ̄ ≤ A2,

1

1+
λ̄ρlcl

kl

(
ρlcl

kl
Θ̄ + ksTm

(
ρscs

ks
− ρlcl

kl

)
+ ρsLc

)
if Θ̄ > A2,

In the particular case of the Stefan problem posed in Chapter 4, the previous expres-

sions result to be simplified to obtain:

E (Θ) =






Θ if Θ < 0,

[0, Lc] if Θ = 0,

Lc if Θ > 0,

Λ (Θ) = βΘ,

Λ−1 (Θ) =
1

β
Θ,

so, we have:

Jλ̄

(
Θ̄
)

=






1

1+ λ̄
β

Θ̄ if Θ̄ < 0,

0 if 0 ≤ Θ̄ ≤ λ̄Lc,

Θ̄ − λ̄Lc if Θ̄ > λ̄Lc,

(
E ◦ Λ−1

)
λ̄

(
Θ̄
)

=






Θ̄
β+λ̄

if Θ̄ < 0,

Θ̄
λ̄

if 0 ≤ Θ̄ ≤ λ̄Lc,

Lc if Θ̄ > λ̄Lc,

where β = ks = kl. Moreover, when λω = 1/2, the Yosida approximation of operator
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(E ◦ Λ−1) − ωI of parameter 1/2ω is given by:

(
E ◦ Λ−1

)ω
1

2ω

(Θ) =






2 2Θ
β+ 1

ω

− 2ωΘ if Θ < 0,

2ωΘ if 0 ≤ Θ ≤ Lc

2ω
,

2Lc − 2ωΘ if Θ > Lc

2ω
,

A.3 Yosida approximation of the Heaviside oper-

ator in the thermal problem

Also when considering the Signorini basal boundary condition in the nonlinear ther-

mal problem treated in Chapter 4, the multivalued Heaviside operator H appears.

So we need to obtain the Yosida approximation of the maximal monotone operator

H ◦Λ−1 which is denoted by
[
I + λ̄ (H ◦ Λ−1)

]−1
. We just have to repeat expressions

(A.1)–(A.4) with the following data:

Tm = 0, ρscs = 0, ρlcl = 0, ρsLc = 1, ks = 1, kl = 1.

So, we get the following expression for the resolvent of the operator H ◦ Λ−1:

[
I + λ̄

(
H ◦ Λ−1

)]−1 (
Θ̄
)

=






Θ̄ if Θ̄ < 0,

0 if 0 ≤ Θ̄ ≤ λ̄,

Θ̄ − λ̄ if Θ̄ > λ̄,

and the following one for the Yosida approximation:

(
H ◦ Λ−1

)
λ̄

(
Θ̄
)

=






0 if Θ̄ < 0,

Θ̄
λ̄

if 0 ≤ Θ̄ ≤ λ̄,

1 if Θ̄ > λ̄.

Finally, using the operator (H ◦ Λ−1)
ω
λ for the particular case λω = 1/2 is

(
H ◦ Λ−1

)ω
1

2ω

(Θ) =






−2ωΘ if Θ < 0,

2ωΘ if 0 ≤ Θ ≤ 1
2ω
,

2 (1 − ωΘ) if Θ > 1
2ω
.
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A.4 Yosida approximation of the subdifferential of

the indicatrix function of a convex

In the profile problems appearing in Chapters 3 and 4, the nonnegative profile func-

tion constraint gives rise to an associated convex set in the variational inequality

formulation.

The use of a duality method for the numerical solution involves the consideration

of a maximal monotone operator defined as the subdifferential of the indicatrix of

the convex set. At this section we detail the required computation for the use of

Bermudez–Moreno technique [5].

Let be W a Hilbert space, K a closed convex subset of W and ∂IK the subdiffer-

ential of the indicatrix function of the convex K. Then, the operator ∂IK is maximal

monotone.

If Kω
λ denotes the Yosida approximation of the operator ∂IK −ωI, this particular

Yosida approximation can be easily expressed in terms of the function PK , which

denotes the projection over the set K.

Note the Remark 1 in this appendix allow us to write:

Kω
λ (x) =

1

1 − λω
K λ

1−λω

(
x

1 − λω

)
− ω

1 − λω
x,

and, if we denote by:

λ̄ =
λ

1 − λω
,

x̄ =
x

1 − λω
,

we can obtain the following identity:

Kω
λ (x) =

1

1 − λω
Kλ̄ (x̄) − ωx̄,

where

Kλ̄ =
1

λ̄
(x̄− Jλ̄ (x̄)) , Jλ̄ =

(
I + λ̄∂IK

)−1
.
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Next, we compute the resolvent operator Jλ̄ =
(
I + λ̄∂IK

)−1
.

Given x ∈ W , let be y ∈ Jλ̄ (x) =
(
I + λ̄∂IK

)−1
(x). Then, we have the equiva-

lence:

x ∈
(
I + λ̄∂IK

)
(y) ⇔ x− y

λ̄
∈ ∂IK (y) .

So, if we use the definition of subdifferential we have

IK (z) − IK (y) ≥
(
x− y

λ̄
, z − y

)
, ∀z ∈W.

Therefore, the previous inequality leads to:

y ∈ K, IK (z) ≥
(
x− y

λ̄
, z − y

)
, ∀z ∈W,

or equivalently:

0 ≥
(
x− y

λ̄
, z − y

)
, ∀z ∈ K.

So, we have

y ∈ K, (x, z − y) ≤ (y, z − y) , ∀z ∈ K.

and the element can be characterized as:

y = PK (x) .

Thus, we can express Kλ̄ in the following way:

Kλ̄ (x̄) =
x̄− PK (x̄)

λ̄
.

Finally, the expression of Kω
λ for the particular case λω = 1/2 is given by:

Kω
1

2ω

(x) =

{
−2ωx if x ≥ 0,

2ωx if x < 0.
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Appendix B

Computer implementation

B.1 GLANUSIT: a software toolbox for the nu-

merical simulation of large ice masses evolu-

tion

In this section we present the GLAciology NUmerical SImulation Toolbox (glanusit),

that consist of a software application which provides a user friendly environment for

the numerical simulation of glaciers. This toolbox implements the numerical algo-

rithms proposed in this Thesis to solve the global coupled model. Nevertheless, as it

is a modular toolbox, it can be changed easily to incorporate other partial models or

improvements of the existing ones.

Both the highly specific techniques and the complexity of the coupling between

submodels explain the fact that there is no software toolbox for the numerical simula-

tion of the coupled process. A possible alternative, which consist of the solution of the

even more complex departure continuum mechanics models [55], might be offered by

certain commercial codes like Fluent or Comsol. Nevertheless, in such approach,

the equations become more complicated and the presence of several moving bound-

aries is neither available in the models nor in the codes. Nowadats, therefore there

exits a computer system that implements the Shallow Ice Approximation, this system

is called SiCoPolIS [45], but this system is valid for ice sheets, not for glaciers. Also
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for ice sheets a previous version of glanusit has been developed as it is described

in [15]. Therefore, glanusit is a software application motivated by this previous

necessities.

As in most finite element software libraries, the numerical methods developed in

glanusit kernel are written in Fortran 90 language. The existence of periodically

improved Fortran compilers for personal computers and for cluster of comput-

ers motivates the choice of this language for the glanusit kernel implementation.

Moreover, to present glanusit in a user-friendly environment, we have select the

multifunction system MatLab. Note that there exist several MatLab toolboxes

(PDE Toolbox, Comsol) to solve systems of partial differential equations with some

finite element methods [65], which do not include those handled by glanusit. The

appearance of their graphical user interfaces has been taken as a reference. The

combination of numerical computing in Fortran codes with the interface in the

MatLab environment can be additionally justified by several reasons. First, the use

of MatLab in finite element computations becomes very slow for fine enough meshes

to obtain the required accurate results. Secondly, the use of Fortran90 for the in-

terface programming part should be a possible alternative, more tedious than the

easier to handle MatLab commands. Thirdly, MatLab allows to execute Fortran

codes as internal functions.

B.1.1 Software design

In order to analyze and design the appropriate environment for the here described

software toolbox, glanusit, Object Oriented Methodology (OOM) is nowadays the

most adequate software development technology [42]. Particularly, Unified Modelling

Language (UML) can be used to easily describe the object-oriented model of the

environment [7]. Thus, in the case of this software application, the system contains

a session manager, a data management, a postprocessing and a main kernel (core)

which implements the numerical techniques for solving the model (see Figure B.1).

In the designing process, the main system requirements were: an input data and
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Post−processorData Manager

Main Window

Session ManagerCore

Figure B.1: Modules of glanusit system

a results management both user friendly and implemented with a graphical interface.

Moreover, our system must allow include new functionalities, both at the input and

output interface and it must let us introduce easily improvements in the core of the

system [15]. Concerning to the potential users, the software has been designed so

that not only researchers with more physical, glaciological or environmental science

background and interest, but also applied mathematicians and numerical analysts

can take the maximum advantage. Thus, for example, the possibility of adjusting the

parameters associated to the numerical methods is available.

In the session manager subsystem the basic element is the session (which identifies

the user’s workspace) characterized by its name, directory, state and associated folders

and files. In Figure B.2 the possible session states are sketched. In glanusit the

session manager controls the current available menu at the interface.

The data management package contains the controls of two data types: the phys-

ical data and the options and parameters of the numerical methods, Two windows at

the interface are available for reading, storing, showing, printing and updating both

data sets (see Fig. B.3). Moreover, the data manager transforms the physical data

according to the shallow ice scaling to obtain the corresponding dimensionless values

(see Chapter 2 for details about the shallow ice scaling). These dimensionless data

are the ones actually used by the numerical methods. Then, before the postprocess-

ing process, the inverse scaling of the dimensionless computed results to recover the

physical magnitudes is performed.
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Close

Valid numerical data

Valid data       

  Valid physical data

Open

Solution

delete

numerical data

new data

physical data / numerical data

new data

open

new data new data

physical data numerical data

numerical data physical data

compute

physical data

close

new

Figure B.2: States of glanusit system

The postprocessor module provides the resources for analyzing the different phys-

ical magnitudes computed by the numerical methods. For this purpose, the user can

choose among asking for numerical values, plotting or displaying movies of the dif-

ferent magnitudes. In the first case, to obtain the numerical valued of a 1D basal

magnitude (sliding velocity, basal temperature, basal stress and ice width above a

basal point) or a 2D one (velocity, temperature and stress), the appropriate data

(time and spatial coordinates) have to be introduced (see Fig. B.4). In the second

case, the user selects the set of magnitudes (either 1D or 2D) to be plotted for a

prescribed time (see Fig. B.5). In the third case, a movie with the evolution of the

selected magnitudes is played (see Fig. B.6). The core module contains the For-

tran90 code which develops the specific numerical methods to solve the complex

global shallow ice approximation model. The execution of the code is activated at
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Figure B.3: Input Data

Figure B.4: Numerical Solutions
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Figure B.5: Graphical Solution
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Figure B.6: Video Solution
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the Compute menu in the interface. A main program reads the dimensionless physi-

cal data and the options and parameters associated to the numerical methods in the

respective data files. Once the algorithm has computed the different dimensionless

values, they are rescaled so that the user can access to the real magnitudes in the

different formats provided by the postprocessor module.

B.2 Parallel implementation of the glacier prob-

lem

The algorithm described in Section 4.5.5 is implemented in a computer intensive

program, that requires significant CPU time when it runs over a sequential machine.

In this section we present a vectorial version to be run more efficiently than the

sequential one.

The structure of this program is very similar to the one developed to simulate

the behaviour of ice sheets. We have previously built a parallel version for the ice

sheets program and we run it over a machine with eight biprocessor Intel Xeon IV of

1.6GHz servers and 1 Gb of RAM and we have achieved speedups from 1.15 over two

processors to 1.20 over five processors (see further details in [16]). These speedups

indicate that the program is not very suitable to be parallelized. Moreover, the

parallel version is not scalable because adding more processors hardly increases the

speedup. This is due to the special characteristics of the program structure. As

most of these special characteristics are also kept in the program for glaciers we have

decided to vectorize the algorithm instead of parallelizing it. In the following section

we present the particular characteristics of the algorithm for glaciers simulation and

the vectorization technique.

B.2.1 Program characteristics

As we can see in the flowchart of the program sketched in Fig. B.7, we have an

iterative process which is composed by a time loop where the computed results at
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each time iteration are used in the following time iteration.

The functional block that computes the profile at each time step, fprofile, imple-

ments the algorithm described in Section 4.5.1. The functional block that computes

the temperature at each time step, ftemperature, implements the algorithm described

at the end of Section 4.5.4. Both algorithms are further sketched in Figs. B.8 and B.9.

At each time step, the computation of the profile and the temperature combines fixed

point techniques, finite elements and duality methods that involve additional nested

iterative processes. Furthermore, the total number of iterations for these nested loops

is a priori unknown because it depends on several convergence criteria.

A first approach to develop a parallel version of the algorithm could be to split the

different functional blocks that appear in Fig. B.7 into different processors, but this

is clearly not a valid approximation because the loads between the different computa-

tions should be unbalanced, as each block of the flowchart does not consume similar

execution times. Thus, for example, the computation of profile is more complex and

time consuming than the computation of the temperature in the atmosphere. These

arguments led us to try a loop level parallelism.

B.2.2 Parallel implementation

First, notice that in Fig. B.7 each functional block (except those ones corresponding to

profile and temperature computation) just involves a loop execution. The same occurs

in Fig. B.8 and B.9, where the exceptions are the functional blocks corresponding to

the linear system solvers. Therefore, we exploit a loop-level parallelism using the

Streaming SIMD Extensions (SSE) to vectorize the code.

The SSE is a Simple Instruction Multiple Data (SIMD) instructions set extension,

so the SSE allows to execute simultaneously the same operation on multiple pieces of

data. SIMD results to be specially well suited for matrix and vector operations, that

are the basic instructions of our program.

In the case of the profile problem, the linear system solver is the bottleneck for the

parallelization because it involves a direct method for solving a tridiagonal system.
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Figure B.7: Flowchart of the algorithm described in Section 4.5.5
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bm+1 =
∫

Ω
am+1 ψ dΩ

bm+1 = bm+1 + 1

∆t

∫

Ω
Jm (ηm ◦ χm) ψ dΩ

bm+1,k+1 = bm+1 − 1

∆t

∫

Ω
f

m+1,k
2 ψ dΩ

bm+1,k+1,j+1 = bm+1,k+1 −
∫

Ω
qm+1,k+1,j ψ dΩ

Linear system solver to obtain ηm+1,k+1,j+1

Compute: ∂η
∂x

m+1,k+1,j+1

Duality meth.
convergence?

qm+1,k+1,j+1 = (∂IK)
ω
λ

[

ηm+1,k+1,j+1 + λqm+1,k+1,j
]

Fixed point
convergence?

no

yes

no

yes

1

Figure B.8: Flowchart of the algorithm described in Section 4.5.1 to obtain the profile
at each time step



164

~fm+1,j = −bg

~fm+1,j = ~fm+1,j − 1

∆t
BY m

~fm+1,j = ~fm+1,j + 1

∆t
bm+1,j−1
s

~fm+1,j = ~fm+1,j + bm+1,j−1
r

~fm+1,j = ~fm+1,j − (1 − σ)M G
(

Y m+1,j−1
)

~fm+1,j = ~fm+1,j − σM G
(

Y m+1,j,k
)

~fm+1,j = ~fm+1,j − N GB

(

Y m+1,j,k
)

~fm+1,j = ~fm+1,j − ω2

∆t
M + Kδ

(

Y m+1,j,k
)

D~f
(

Y m+1,j,k
)

=
(

ω2

∆t
+N DGB + σM DG

) (

Y m+1,j,k
)

Compute preconditioner of D~f
(

Y m+1,j,k
)

Compute: D~f
(

Y m+1,j,k
)

Y m+1,j,k − ~f
(

Y m+1,j,k
)

Solve: D~f
(

Y m+1,j,k
)

Y m+1,j,k+1 = D~f
(

Y m+1,j,k
)

Y m+1,j,k − ~f
(

Y m+1,j,k
)

Newton meth.
convergence ?

rm+1,j =
(

H ◦ Λ−1
)ω1

λ1

(

Y m+1,j + λ1r
m+1,j−1

)

sm+1,j =
(

E ◦ Λ−1
)ω2

λ2

(

Y m+1,j + λ2s
m+1,j−1

)

Duality meth.
convergence?

no

yes

no

yes

1

Figure B.9: Flowchart of the algorithm described in Section 4.5.4 to obtain the tem-
perature at each time step
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N 100 10000
without SSE 11m 35s 275m 31s

with SSE 3m 59s 19d 3h 40m 55s

Table B.1: Execution time to compute the profile problem with analytical solution
without prescribed flux and ∆t = 10−6(see Section 3.6.1).

At this point, notice that in the tridiagonal case, if the system size is small enough

to be stored in the computer memory then it is not efficient to parallelize. This is

mainly due to the strong dependence between the data that would involve a great

number of communications among the processors.

In the case of the temperature problem, the linear system solver is based on the

biconjugate gradient method that is more suitable to be parallelized. Nevertheless in

this case the bottleneck of the algorithm is the sparsity of the matrix, that involves

a great number of communications after each matrix and vectorial computation.

Table B.1 shows the execution times obtained using the SSE to vectorize the code.

With this approach we divide by almost 3 the computational time. This improvement

is much better than the time reduction obtained with parallelization in the ice sheets

where 1.2 was the maximum speedup obtained. Moreover, when we compute the

solution for the nonisothermal problem without use the SSE the total time to reach

the steady state solution is 29d and with SSE the total time to reach the steady state

is 9d and 13h. This approach divides by 3 the computational and once again it is

much better than the time reduction that we can obtain with parallelization, that in

the coupled problem of ice sheets the maximum speedup obtained was 1.15.
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