

- New systems of PDEs with uniqueness, stability...

suo!peo!jddV

[^0]
:sэ̣швиर्रव •
$(*)$ has been obtained by J-M. Lasry and P-L. Lions by passing to the limit
in stochastic differential games involving a very large number N of
identical rational agents (or players) with a (limited) global information

no fashion phenomenon)

0I

${ }^{\mathbf{j 0 0 . O}} \mathbf{d}$
II

2I

13

$S I$

Take $d=$
:Z
16
Notation:

- The discrete Laplace operator:

$$
\left(\Delta_{h} W\right)_{i, j}=-\frac{1}{h^{2}}\left(4 W_{i, j}-W_{i+1, j}-W_{i-1, j}-W_{i, j+1}-W_{i, j-1}\right) .
$$

- Right-sided finite difference formulas for $\partial_{1} w\left(x_{i, j}\right)$ and $\partial_{2} w\left(x_{i, j}\right)$:
$\left(D_{1}^{+} W\right)_{i, j}=\frac{W_{i+1, j}-W_{i, j}}{h}, \quad$ and $\quad\left(D_{2}^{+} W\right)_{i, j}=\frac{W_{i, j+1}-W_{i, j}}{h}$.
- The set of 4 finite difference formulas at $x_{i, j}$:
$\left[D_{h} W\right]_{i, j}=\left(\left(D_{1}^{+} W\right)_{i, j},\left(D_{1}^{+} W\right)_{i-1, j},\left(D_{2}^{+} W\right)_{i, j},\left(D_{2}^{+} W\right)_{i, j-1}\right)$.

where

where

8I

The argument for uniqueness should hold in the discrete case, so the
discrete Hamiltonian g should be used for (\dagger) as well.

For example, if the Hamiltonian is of the form

87
Assumptions on the Hamiltonian

$$
H(x, p)=\max _{\alpha \in \mathcal{A}}(p \cdot \alpha-L(x, \alpha)),
$$

where

- \mathcal{A} is a compact subset of \mathbb{R}^{2},
- L is a \mathcal{C}^{0} function on $\mathbb{T} \times \mathcal{A}$,
For the discrete Hamiltonian $g(x, q)$
- monotonicity, consistency.
- continuous with respect to x, \mathcal{C}^{1} with respect to q
- sublinear with respect to q,
- there $\operatorname{exists}^{\infty} g^{\infty}: \mathbb{R}^{4} \rightarrow \mathbb{R} \operatorname{monotonous~and~sublinear~s.t.~}^{\text {lim }}{ }_{\epsilon \rightarrow 0} \sup _{x}\left|\epsilon g\left(x, \frac{q}{\epsilon}\right)-g^{\infty}(q)\right|=0$.

It
Et

${ }_{\text {. }} \mathrm{d} . \mathrm{b} \cdot \mathrm{n}_{\mathrm{u}}$
tt

||1|||:|||
- Recent work on planification

[^0]:

