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Financial industry; Banks at Work

Front office < Back office
Pricing, selling products < Price validation, research into alternative models

@ Pricing approach:
1. Define some financial product

2. Model asset prices involved (SDEs)
3. Calibrate the model to market data (Numerics, Optimization)
4. Model product price correspondingly (PDE, Integral)
5. Price the product of interest (Numerics, MC)
6. Set up hedge to remove the risk related to the product (Optimization)
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Financial mathematics aspects

@ Knowledge: What product are we dealing with?
» Contract specification (contract function)
» Early-exercise product, or not
» Product’s lifetime

= Determines the model for underlying asset (stochastic interest rate, ...

@ Financial sub-problem: Product pricing or parameter calibration

= All this determines the choice of numerical method
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Plain vanilla option

An option contract gives the holder the right to trade in the future at a
previously agreed strike price, K, but takes away the obligation.

s
veall(S, T) = max(St — K,0) =: E(S, T)
S, WK
Early exercise:
00 T V(S,t) = max{E(S,t), V(S,t)}.
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A pricing approach

V(S(to), to) = e " T"®EQ{V(S(T), T)|S(t0)}

Quadrature:

V(S(to), to) = e*f(T*%)/ V(S(T), T)F(S(T)|S(to))dS

R

@ Trans. PDF, f(S(T)|S(t)), typically not available, but its Fourier transform,
called the characteristic function, ¢, often is.
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Geometric Brownian Motion

@ Asset price, S, can be modeled by geometric Brownian motion:
dS; = rS;dt + o SAWE,

with W; Wiener process, r interest rate, o volatility.

= t6's Lemma: Black-Scholes equation: (for a European option)

oV

1,0V OV B
ot T30 2 ger T RHs ~ V=0
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Pricing: Feynman-Kac Theorem

Given the final condition problem

oV 1,2 20%V oV
ot + 50 S (952 +r585—rV 0,
V(5,T) = given

Then the value, V(5(t), t), is the unique solution of
V(S,t) = e (TOELV(S(T), T)IS(1)}

with the sum of the first derivatives of the option square integrable.
and S satisfies the system of stochastic differential equations:

dS; = rSidt + oS, dWR,

@ Similar relations also hold for other SDEs in Finance
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Numerical Pricing Approach

@ One can apply several numerical techniques to calculate the option price:
» Numerical integration,
» Monte Carlo simulation,
» Numerical solution of the partial-(integro) differential equation (P(I)DE)
@ Each of these methods has its merits and demerits.
@ Numerical challenges:

> Speed of solution methods (for example, for calibration)
» Early exercise feature (P(1)DE — free boundary problem)
» The problem’s dimensionality (not treated here)
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Motivation Fourier Methods

@ Derive pricing methods that

> are computationally fast
> are not restricted to Gaussian-based models
» should work as long as we have the characteristic function,

o(u) =E (ei”X) = /j:o e f(x)dx;

(available for Lévy processes and also for Heston's model).
> In probability theory a characteristic function of a continuous random variable
X, equals the Fourier transform of the density of X.
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Class of Affine Diffusion (AJD) processes

Duffie, Pan, Singleton (2000): The following system of SDEs:
dXt = ,u,(Xt)dt + U(Xt)th,
is of the affine form, if the drift, volatility, jump intensity and interest rate satisfy:

w(Xe) = ag+ ar1X; for (a9, a1) € R” x R"™",
U(Xf)a(xt)T - (CO)[J‘ + (Cl)/}—xt’ (COa Cl) c Rnxn X RanXn’

The discounted characteristic function then has the following form:
(b(Xt,t, T, u) _ eA(u,t,T)+B(u,t,T)TXt’

The coefficients A(u, t, T) and B(u,t, T)T satisfy a system of Riccati-type ODEs.
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The COS option pricing method,
based on Fourier Cosine Expansions
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Series Coefficients of the Density and the Ch.F.
@ Fourier-Cosine expansion of density function on interval [a, b]:
100 X —a
f(x) = Z _Fncos <n7rb — a) :

with x € [a, b] C R and the coefficients defined as
2 b X —a
Fn = P /a f(x) cos (mrb — a) dx.

@ F, has direct relation to ch.f., ¢(w) == [, f(x X (frypogy FX) &

—a) dx
a

For A, = bié)/ﬂ{{f(x)cos(nwz_

2 nm . ham
= b—aRe{(b(—b—a)eXp(_lb—a)}'
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Recovering Densities

@ Replace F, by A,, and truncate the summation:

2 N-1 _ _
f(x) =~ - azln:o Re {(/) (bn_ﬂa;x> exp <in7rb _aa> } cos <n7r); — z) ,

2
@ Example: f(x) = #e*? . [a, b] = [-10,10] and x = {—5,—4,--- ,4,5}.
N 4 8 16 32 64
error 0.2538 | 0.1075 | 0.0072 | 4.04e-07 | 3.33e-16
cpu time (sec.) | 0.0025 | 0.0028 | 0.0025 0.0031 0.0032

Exponential error convergence in V.
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Pricing European Options
@ Start from the risk-neutral valuation formula:

v(x, ty) = e MAtEQ [v(y, T)|x] = efrAt/]R v(y, T)f(y|x)dy.

@ Truncate the integration range:

Vi 1) = e A /[ YO Ty 4=

@ Replace the density by the COS approximation, and interchange summation

and integration:
L i 2
;X) e_’””b—a} Vi,
—a

N—1
U(x, o) = e—f“Z' _ Re {¢ (b”

where the series coefficients of the payoff, V,, are analytic. W o
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Pricing European Options

@ Log-asset prices: x :=In(So/K) and y :=In(S7/K),
@ The payoff for European options reads

vy, T) = [a- K(er = 1)]".

@ For a call option, we obtain

2 P —
vel = b—a/o K(ey—l)cos<k7r}; a)dy

—a

_ %K(Xk(o,b) — (0, b)),

@ For a vanilla put, we find

.2
Ve = oK (—xu(a,0) + tu(a.0).
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Heston model

@ The Heston stochastic volatility model can be expressed by the following 2D
system of SDEs

dSt = rtstdt + \/O'—tstths,
doe = —r(or —T)dt +7\/GrdWe,

@ With x; = log S; this system is in the affine form.
= Ité's Lemma: multi-D partial differential equation
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Characteristic Functions Heston Model

@ For Lévy and Heston models, the ChF can be represented by

H(WixX) = Qley(W) e with @y (w) = ¢(w;0),
P(wix, up) = Phes(w; o) - €,

@ The ChF of the log-asset price for Heston's model:
1— —DAt
S‘Qhes(W;UO) = &xp (iert + % (ﬁ) (H —ipyw — D)) ’
= 1— G —DAt
exp (:—Z <At(/<a —ipyw—D) =2 Iog(ﬁ))>7

with D = \/(k —ipyw)? + (@2 + iw)y? and G = E=LIep
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Heston Model

@ We can present the V as V, = UrK, where

72 (xk(0, b) — 1« (0,b))  for a call

U =
- 7= (—x«(a,0) + ¥« (a,0)) for a put.

N |

@ The pricing formula simplifies for Heston and Lévy processes:

IN—1 P X—a
v(x, tg) ~ Ke "™t . Re {Z 0¥ (%) U, - e"mb_a} ,

where p(w) := ¢(w; 0)
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Numerical Results

Pricing 21 strikes K = 50,55, 60, - - - , 150 simultaneously under Heston's model.
Other parameters: So =100,r =0,9g=0,T =1,k = 1.5768,7 = 0.5751,5 =
0.0398, 09 = 0.0175, p = —0.5711.

N 96 128 160
COS (msec.) 2.039 2.641 3.220
max. abs. err. 4.52e-04 2.61e-05 4.40e — 06
N 2048 4096 8192
Carr-Madan (msec.) 20.36 37.69 76.02
max. abs. error | 2.61le-01 | 2.15e — 03 2.08e-07

Error analysis for the COS method is provided in the paper.
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Numerical Results within Calibration

@ Calibration for Heston’s model: Around 10 times faster than Carr-Madan.

The convergence plot of calibration algorithm {optimum:
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Generalization

@ COS option pricing method, based on Fourier-cosine expansions

» Highly efficient for European and Bermudan options
» Lévy processes and Heston stochastic volatility for asset prices

@ Generalize to other derivative contracts

» Swing options (buy and sell energy, commodity contracts)
» Mean variance hedging under jump processes

@ Generalize to hybrid products
» Models with stochastic interest rate; stochastic volatility
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An exotic contract: A hybrid product

©

Based on sets of assets with different expected returns and risk levels.

[

Proper construction may give reduced risk and an expected return greater
than that of the least risky asset.

@ A simple example is a portfolio with a stock with a high risk and return and a
bond with a low risk and return.

[

Example:

T 1S 1B
—RQ (e Jo reds Z2r 2=t
V(S,t) =E <e max <0, >3, + > 0))
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Heston-Hull-White hybrid model

@ The Heston-Hull-White hybrid model can be expressed by the following 3D
system of SDEs

dSt = rtStdt—F \/O’tStd‘/‘/tS7
drr = M0y —r)dt+nrfdW,,
dO—t = —K/(O't —E)dt—}—’ywadetU,

@ Full correlation matrix

@ System is not in the affine form. The symmetric instantaneous covariance
matrix is given by:

Ot Px,cV0t pX-,f’r]rtp VOt
o(X)o(X)T = | * Ao Pro e \/oe
* * 772rtp

= Ité's Lemma: multi-D partial differential equation
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Reformulated HHW Model

9 A well-defined Heston hybrid model with indirectly imposed correlation, py ,:

dst = rtstdt + \/O'—tstthX + Qtrtf)stthr + A\/O'—tstthﬂ, SO > 0,
dre = MO — r;)dt +nrfdW/, o> 0,
doy = k(G — o¢)dt + v /o dWY, oo > 0,
with
dWEdWeS = pyo,
dWxdwf = 0,
dWe dW/ 0,

@ We have included a time-dependent function, €;, and a parameter, A.
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Basics

@ Decompose a given general symmetric correlation matrix, C, as C = LL",
where L is a lower triangular matrix with strictly positive entries.

@ Rewrite a system of SDEs in terms of the independent Brownian motions
with the help of the lower triangular matrix L.
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“Equivalence”

@ By exchanging the order of the state variables X; = [x¢, 04, r¢] to
X = [rt, 01, x¢], the HHW and HCIR models have p, , =0, px , # 0 and
px.o 7 0 and read: dXji =[...]dt+

0t 0 0 s
0 1V 0 dwe | . (1)

Px.r/TtSt  Pron/TtSt /TSty /1 = p2 . — P2, d W

@ The reformulated hybrid model is given, in terms of the independent

Brownian motions, by: dX; = [.. .|dt+
nre 0 0 dWr
0 Wor 0 dwe |,

QtrfSt \/J—tst (ﬁx,o’ + A) ﬁst\/ 1- ﬁ)2<70' thX
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“Equivalence”

@ The reformulated HHW model is a well-defined Heston hybrid model with
non-zero correlation, py ., for:

Qt - px,rr;p\/ Ot,
~2 2 2
pX,G’ = px,a’ + px7r7

A= Px,oc — pr,aa

@ In order to satisfy the affinity constraints, we approximate {2; by a
deterministic time-dependent function:

Qt ~ /)X_’,E (r;p\/a_t) - px,rE (r;p) E (\/E)7

assuming independence between r; and o;.

@ The model is in the affine class
= Fast pricing of options with the COS method
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Numerical Experiment; Implied vol

@ Implied volatilities for the HHW (obtained by Monte Carlo) and the
approximate (obtained by COS) models.

@ For short and long maturity experiments, we obtain a very good fit of the
approximate to the full-scale HHW model.

@ The parameters are 6 = 0.03, k = 1.2, 5 =0.08, v =0.09, A = 1.1, n = 0.1,
pPxv =—0.7, pxr =0.6, So =1, n =0.08, vop = 0.0625, a = 0.2813,
b= —0.0311 and ¢ = 1.1347.

Implied volalities for exact and approx. models (-5y)

= @ — Heston-HW (Monte—Carlo)
—@— H1-HW (FFT)

implied volatilty

" 02 04 06 08 1 12 14 16 18 2 [ ——
QT = 5y strike [K]
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Numerical Experiment; Instantaneous Correlation

@ We check, by means of Monte Carlo simulation, the behavior of the
instantaneous correlations between stock S; and the interest rate r;.

@ Three models: The HHW model, the model with A = 0, and constant ©Q,
and the approximate HHW model .

@ For the HHW and the H1-HW model, the instantaneous correlations are
stable and oscillate around the exact value, chosen to be 0.6.

‘Comparison of Instantaneous correlations (t=5y)

Heston-HW
- = —Hi-HW (]
=0 model

instantaneous correlation
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Conclusions

@ We presented the COS method, based on Fourier-cosine series expansions, for
European options.

@ The method also works efficiently for Bermudan and discretely monitored
barrier options.

@ COS method can be applied to affine approximations of HHW hybrid models.

@ Generalized to full set of correlations, to Heston-CIR, and
Heston-multi-factor models

@ Papers available: http://ta.twi.tudelft.nl/mf/users/oosterle /oosterlee/
http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee /oosterleerecent.html
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Pricing European Options

@ Log-asset prices: x :=In(So/K) and y :=In(S7/K),
@ The payoff for European options reads

vy, T) = [a- K(er = 1)]".

@ For a call option, we obtain

2 P —
vel = b—a/o K(ey—l)cos<k7r}; a)dy

—a

_ %K(Xk(o,b) — (0, b)),

@ For a vanilla put, we find

.2
Ve = oK (—xu(a,0) + tu(a.0).
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Market modeled by alternative processes

dSe

rSidt + oS dWSR

2
=S = Spe*, Xt:(r—%)t+UWtQ.

@ Compound Poisson (jump diffusion model)

2 N

~ Dt oW+ >,

Xe = (1 5
i=1

where N, is Poisson: P(N; = n) = e *(\t)"/n!, with intensity \, Y; i.i.d.
wi th law F, for example, normally distributed (mean i, variance 03).

C.W.Oosterlee (CWI) >



Lévy Processes

Lévy process {X:}+>0: process with stationary, independent increments.
Brownian motion and Poisson processes belong to this class
Combinations of these give Jump-Diffusion processes

¢ &6 ¢ ¢

Replace deterministic time by a random business time given by a Gamma
process: the Variance Gamma process [Carr, Madan, Chang 1998]. Infinite
activity jumps:
> small jumps describe the day-to-day "noise” that causes minor fluctuations in
stock prices;
> big jumps describe large stock price movements caused by major market upsets

ol
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SDE Simulation

) . |
] GBM, JD + - = . - . ' ‘ m‘ E3 7 o -

@ Variance Gamma process with gamma distributed times, positive drift
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Truncation Range
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Table: Cumulants of In(S¢/K) for various models.

BS Cc1 :(uféaz)t, C2:U21f7 =0
NIG :(,u—%0'2+w)t+5tﬂ/\/a2—
o = dta?(a? — §2)73/2
c = 36ta?(a? +452)( 2 _p32)-1/2
w=—8(/al = — /= (B IP)
Kou clzt(,u—&—%—&-%)

w =\

— P 4 1-p
C4—24t>\<ni; + 773 )

A A(1—
o=t <o’2 +27¢ +2—(n§”))

_1-p )
m+1 m—1

Merton | ¢ = t(p + AQ) o=
ca = tA (A% + 65212 + 35%N)

t (0 + Mg +52))

c = 3(c*v + 20403 + 4520%0°)t

VG ca=(p+0)t o = (0% +vh?)t
w = % In(1 — v — o?v/2)

CGMY | ¢ =pt+ CtI(1—Y) (MY~1 - GYY)
=0%t+ Ctr(2—Y) (MY~2+ GY?)
=Ctlr(4—Y) (MY=*+ GY~%)
w=—CIr(=Y)[(M—=1)Y = MY +(G+1)"

AR

C

I

_ GY]

where w is the drift correction term that satisfies exp(—
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American Options and Extrapolation

Let v(M) denote the value of a Bermudan option with M early exercise dates,
then we can rewrite the 3-times repeated Richardson extrapolation scheme as

vam(d) = 75 (64v(297%) — 56v(272) + 14v(2 )~ v(2)) . (2)

where vapy(d) denotes the approximated value of the American option.
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Numerical Results

Table: Parameters for American put options under the CGMY model

Test No. | Sy K T r Other Parameters
3 1] 1 | ot C=1,G6=5M=5Y=05
4 90 | 98 | 0.25 | 0.06 | C=0.42,G =4.37,M = 191.2, ¥ = 1.0102
d'in Eq. (2) Test.No. 3. . Test .No. 4 _
error time (milli-sec.) error time (milli-sec.)
0 4.41e-05 56.1 -2.80e-03 57.0
1 7.69e-06 111.6 -7.42e-04 1121
2 9.23e-07 223.9 -2.49e-04 223.3
3 3.04e-07 446.5 -1.62e-04 4447

ol
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Deficiencies of the Black-Scholes Model

@ Suppose we solve the 1D Black-Scholes equation

ov

Ll an®V OV B
ot T27° 5z TPs ~ V=0

for o, since V is known from the market.

@ We then find that the volatility, o, obtained for different K and dates T on
the same asset is not constant.

= Does not fit in Black-Scholes model, so look for market consistent asset price
models.
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Market modeled by Lévy processes

dS(t) = rS(t)dt + oSdW(t)
= S(t) = S5(0)e®, L(t):(u—%z)t+0W(t).

o Lévy process {X;}>0: process with stationary, independent increments.

@ Example: Replace deterministic time by a random business time given by a
Gamma process: the Variance Gamma process [Carr, Madan, Chang 1998].
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CGMY Parameters for “ABN AMRO Bank”
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Figure: Evolution of the CGMY parameters and densities of “ABN AMRO Bank”
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CGMY Parameters for “DSG International PLC"
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Figure: Evolution of the CGMY parameters and densities of “DSG International PLC"
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Pricing: Feynman-Kac Theorem

Given the system of stochastic differential equations:
dS; = rS;dt + 0S5, dWQ,
and an option, V/, such that
V(S,t) = e "T-IEQLV(S(T), T)[S(t)}

with the sum of the first derivatives of the option square integrable.

Then the value, V(5(t), t), is the unique solution of the
final condition problem

%—\t/ + 252(8952 +r5%g—rV:0,

V(§,T) = given

@ Similar relations also hold for other SDEs in Finance W e
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Characteristic Functions Heston Model

@ For Lévy and Heston models, the ChF can be represented by

H(WixX) = Qley(W) e with @y (w) = ¢(w;0),
P(wix, up) = Phes(w; o) - €,

@ The ChF of the log-asset price for Heston's model:

) o 1— e—DAt )
@hes(uﬁ Uo) = exp Iw/LAt + ? m ()\ — IpNw — D) .

A\ . 1 — Ge DPAt
exp <? <At()\ —ipnw — D) — 2|og(ﬁ)>),

with D = /(A — ipnw)? + (w2 + iw)p? and G = 71::;’2:;3
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Heston Model

@ We can present the V as V, = UrK, where

72 (xk(0, b) — 1« (0,b))  for a call

U =
- 7= (—x«(a,0) + ¥« (a,0)) for a put.

N |

@ The pricing formula simplifies for Heston and Lévy processes:

IN—1 P X—a
v(x, tg) ~ Ke "™t . Re {Z 0¥ (%) U, - e"mb_a} ,

where p(w) := ¢(w; 0)
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Pricing Bermudan Options

@ The pricing formulae

{ c(x,tm) = e At fR v(y, tmr1)f(y[x)dy
v(x,tm) = max(g(x, tm), c(x, tm))

and v(x, to) = e "2 [L v(y, ta)f(y|x)dy.
» Use Newton's method to locate the early exercise point x;,, which is the root
of g(x, tm) — c(x, tm) = 0.
> Recover V,(t1) recursively from V,(ty), Va(tm—1), -, Va(t2).
» Use the COS formula for v(x, to). W O
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V- Coefficients

@ Once we have x,, we split the integral, which defines Vi (t,):

(t) Ck(a, x5, tm) + G(x5, b), for a call,
Vi(tm) =
" Gi(a, xp) + Ck(xp, by tm), for a put,

form=M-—1M—2,--- 1. whereby

2 X2 —
Gi(x1, x2) == = a/ g(x, tm) cos (kﬂz a) dx.

X1 —a

and

2 X2 —
Ci(x1, x2, t) = y— / ¢(x, tm) cos <k7‘f'); — z> dx.

X1

Theorem

The Gi(x1,x2) are known analytically and the Cy(x1, %2, tm) can be computed in
O(N log,(N)) operations with the Fast Fourier Transform.
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Bermudan Details

@ Formula for the coefficients Ci(x1, x2, tm):

yN—1

i
Cu(x1, %0, tm) = e "A'Re {Z j—o Plew <t> Vi(tmi1) - Mk,j(X17X2)} ;

where the coefficients M, j(x1, x2) are given by

2 X2 x—a —
My j(x1, x2) = b a/ e’"b=a cos <k7rX a) dx,
x1

@ With fundamental calculus, we can rewrite M, ; as

i
My j(x1, x2) = - (M j(x1, x2) + Mg j(x1, x2))
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Hankel and Toeplitz

o Matrices M. = { Mg (x1,x)}} %y and My = {M; ;(x1,x)}} [, have special
structure for which the FFT can be employed: M. is a Hankel matrix,

mo m my ce my—1
M. =
my—2 MmMy—1 - myn-3
my—1 s man—3  MaN—-2 | oy

and M is a Toeplitz matrix,

Mo my o My—2 My-—1
m—1 mo my T my—2
M =
mz—n T m—i mo my
mi_n MmNy - m_i mo

NxN
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Bermudan puts with 10 early-exercise dates

Table: Test parameters for pricing Bermudan options

Test No. Model So K T r o Other Parameters
2 BS 100 110 1 0.1 0.2 -
3 CcGMY 100 80 1 0.1 0 C=1,G=5M=5Y=15
BS CGMY
-1 . : . , -1
—8— COS, L=8, N=32*d, d=1:5 =—8— COS, L=8, N=32*d, d=1:5
-2 k - # = CONV,3=20, N=2%, d=8:12 -2 . ~ « = CONV, 5=20, N=2¢, d=8:12
3% . T -3 i~ i
-4 e -4 Bl T P F
5 -6 & -e
° °
-7 -7
8 -8
9 -9
10 -10
10 20 30 40 50 10 20 30 40 50 60
milliseconds milliseconds B
(a) BS (b) CGMY with Y =1.5
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American Options

@ The option value must be greater than, or equal to the payoff, the
Black-Scholes equation is replaced by an inequality, the option value must be
a continuous function of S, the option delta (its slope) must be continuous.
@ The problem for an American call option contract reads:

. N2
ov + l(72526—\/ +(r—5)52—g -rvV <0

ot 2 052
V(S,t) > max(S—K,0)
V(5,T) = max(5—-K,0)

oV . .

% IS continuous

@ Variational Inequality or Linear Complementarity Problem,
with Projected Gauss-Seidel etc.
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Pricing Discrete Barrier Options

@ The price of an M-times monitored up-and-out option satisfies

c(x, tme1) = r(tm—tm— 1)f (x, tm)f (y|x)dy
v(x, tm_1) = e T IR, x> h
pm=1) = (X, tm-1), x < h

where h = In(H/K), and v(x, to) = e~"(tn=tn=1) [ v(x, t;)f(y|x)dy
@ The technique:

> Recover V,(t1) recursively, from V,(ty), Va(tm—1), -, Va(t2) in
O((M — 1)N log,(N)) operations.

» Split the integration range at the barrier level (no Newton required)
> Insert V,(t1) in the COS formula to get v(x, to), in O(N) operations
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Monthly-monitored Barrier Options

Table: Test parameters for pricing barrier options

Test No. | Model So K T r q Other Parameters
1 NIG | 100 | 100 | 1 | 0.05 | 0.02 | a =15,8= —5,6 = 0.5
Option Ref. Val. N time error
Type N | (milli-sec.)
DOP | 2139931117 | 27 3.7 1.28e-3
28 5.4 4.65e-5
29 8.4 1.39e-7
210 14.7 1.38e-12
DOC | 8.983106036 | 27 3.7 1.09e-3
28 5.3 3.99e-5
29 8.3 9.47¢-8
210 14.8 5.61e-13 w
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Credit Default Swaps (with W. Schoutens, H. Jonsson)

@ Credit default swaps (CDSs), the basic building block of the credit risk
market, offer investors the opportunity to either buy or sell default protection
on a reference entity.

@ The protection buyer pays a premium periodically for the possibility to get
compensation if there is a credit event on the reference entity until maturity
or the default time, which ever is first.

@ If there is a credit event the protection seller covers the losses by returning
the par value. The premium payments are based on the CDS spread.
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CDS and COS

@ CDS spreads are based on a series of default/survival probabilities, that can
be efficiently recovered using the COS method. It is also very flexible w.r.t.
the underlying process as long as it is Lévy.

@ The flexibility and the efficiency of the method are demonstrated via a
calibration study of the iTraxx Series 7 and Series 8 quotes.
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Lévy Default Model

@ Definition of default: For a given recovery rate, R, default occurs the first
time the firm's value is below the “reference value” RV.

@ As a result, the survival probability in the time period (0, t] is nothing but the
price of a digital down-and-out barrier option without discounting.

Poan(t) = Pg(Xs>InR,forall0<s<t)
Po ( min X5 > In R)

0<s<t

= [Eg {1 ( min Xs > InR)}
0<s<t
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Survival Probability

@ Assume there are only a finite number of observing dates.
Pourn(7) = Eqg {1 (xn e [InR, oo)) -I(XTZ e [InR, oo)) . 1(XW e [InR, oo))

where 7 = kA7 and AT =7/ M.
@ The survival probability then has the following recursive expression:

Psurv(T) = p(X = 0,7'0)
p(X77—m) = f”?oR fXTm+1|XTm()/|X)P()/a7'm+1) dy7 m = M_la 7271707
p(x,mm) = 1,x> In(R); p(x,7m) :=0,x < In(R)

fx.. .|x.,(:|") denotes the conditional probability density of X,

m+1

given X, .
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The Fair Spread of a Credit Default Swap

@ The fair spread, C, of a CDS at the initialization date is the spread that
equalizes the present value of the premium leg and the present value of the
protection leg, i.e.

(1-R) ( N exp(—r(s)s)deef(S))

C = T
Iy exp(—r(s)s)Peun (s)ds

@ It is actually based on a series of survival probabilities on different time
intervals:

J
- (1-R) Ej:o % [EXP(_rjtj) + exp(—erth)] [PsurV(tj) - PsurV(thrl)]
S0 & [exp(—rit;)Paun (1) + exp(—rjs1ti41)Paun (ti41)] At
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Convergence of Survival Probabilities

@ |deally, the survival probabilities should be monitored daily, i.e. AT =1/252.
That is, M = 2527, which is a bit too much for T =5,7,10 years.

@ For Black-Scholes’ model, there exist rigorous proof of the convergence of
discrete barrier options to otherwise identical continuous options [Kou,2003].

@ We observe similar convergence under NIG, CGMY:

0.987¢ —e—AT>1/252 0.987, ——AT> 1252
= = = A1 = 1/252, Daily-monitored| = = = AT = 1/252, Daily-monitored|

0.9865
0.986

0.9855

Survivial Probabilities under NIG

Survivial Probabilities under CGMY

0.985

@ Convergence of the 1-year survival probability w.r.t. A7.
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Error Convergence

@ The error convergence of the COS method is usually exponential in N

Log,  of the absoluie errors

d, N=2*

Figure: Convergence of Psn (AT = 1/48) w.r.t. N for NIG and CGMY
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Calibration Setting

@ The data sets: weekly quotes from iTraxx Series 7 (S7) and 8 (S8). After
cleaning the data we were left with 119 firms from Series 7 and 123 firms
from Series 8. Out of these firms 106 are common to both Series.

@ The interest rates: EURIBOR swap rates.

@ We have chosen to calibrate the models to CDSs spreads with maturities 1,
3,5, 7, and 10 years.
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The Objective Function

@ To avoid the ill-posedness of the inverse problem we defined here, the
objective function is set to

Fobj = rmse + v - || X2 — Xq]|2,

where

3

Z (market CDS spread — model CDS spread)?
rmse =
o &5 number of CDSs on each day

|| - ||2 denotes the L,—norm operator, and X, and X; denote the parameter
vectors of two neighbor data sets.
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Good Fit to Market Data

Table: Summary of calibration results of all 106 firms in both S7 and S8 of iTraxx quotes

RMSEs NIG in S7 | CGMY in S7 | NIGin S8 | CGMY in S8
Average (bp.) 0.89 0.79 1.65 1.54
Min. (bp.) 0.22 0.29 0.27 0.46
Max. (bp.) 2.29 1.97 4.27 3.52
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A Typical Example

Evolution of CDSs of ABN Amro Bank NV with maturity T = 1 year
T T
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An Extreme Case

Evolution of CDSs of DSG International PLC with maturity T = 1 year
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NIG Parameters for “ABN AMRO Bank”
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Figure: Evolution of the NIG parameters and densities of “ABN AMRO Bank”
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NIG Parameters for “DSG International PLC"
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Figure: Evolution of the NIG parameters and densities of “DSG International PLC"
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NIG vs. CGMY

Both Lévy processes gave good fits, but

@ The NIG model returns more consistent measures from time to time and
from one company to another.

@ From a numerical point of view, the NIG model is also more preferable.
» Small N (e.g. N = 2') can be applied.
» The NIG model is much less sensitive to the initial guess of the
optimum-searching procedure.
> Fast convergence to the optimal parameters are observed (usually within 200
function evaluations). However, averagely 500 to 600 evaluations for the
CGMY model are needed.

C.W.Oosterlee (CWI) -



Conclusions

@ The COS method is efficient for density recovery, for pricing European,
Bermudan and discretely -monitored barrier options

@ Convergence is exponential, usually with small N

@ We relate the credit default spreads to a series survival/default probabilities
with different maturities, and generalize the COS method to value these
survival probabilities efficiently.

@ Calibration results are also discussed. Both the NIG and the CGMY models
give very good fits to the market CDSs, but the NIG model turns out to be
more advantageous.
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