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Short-time asymptotics of the heat
equation

Consider
1
Ut — juxxa t > 07

with initial data vanishing for x < O:



u(x,0)
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Initial behaviour as £ — —oco, t = O(1)7 (Or
as t | 0, z fixed.)



Various ways:
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or do Laplace on (x) above,
e—a:2/2t

N /OOO ug(s)e

as x/t — —oo;

:L's/t—52/2td3.

or expand ug(s) = ~cps™ and get the answer
as a sum of similarity solutions:

(both these conclude that the behaviour of
ug at the origin is paramount)



or

e—a:2/2t
U = NGTT v(x,t)
gives
1

tvy + xvy = 5Vxx

so put RHS = 0 and say Euler; or put x = X/e
(or t = €2T) and use the WKB ansatz

U ~ Aev/62

to get the same result via vy = Jv% etc.
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The Stefan problem for small latent
heat

Melting of a solid with small latent heat e:

Uy = %uwx, 0 <z <s(t), u(0,t) = 1,

with free boundary conditions

u(s(t),t) =0, wux(s(t),t) = —es.



There is a similarity solution u = U(xz/V1),
s = o/t from which, as ¢ — 0O, the relevant

timescale is

t = 6T, 5=1/|10ge|.
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Then there is a 3-layer structure:

1
Boundary layer near x = 0, =z = 92X, t =
0T, giving the usual error function solution.

‘Outer region’ z = 0O(1), t = 6T, WKB
solution (as above) of
1
guT — Uxy
Solution is u ~ Aexp(v/§) with v = —z2/2T,

A = (1/v27T)(T/x).



Inner layer z = s(t) 4+ 6, u = €U, with a
travelling wave solution of the heat equation

satisfying the free boundary conditions, U =
(1 — exp(—2€5)).

These all match and the scale § follows from
matching the outer region to the inner layer.
Generalises to more than one dimension and

the free boundary is close to the isotherm
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u = € Oof the corresponding pure heat conduc-
tion problem. Can also be done via an inte-
gral equation (Grinberg/Chekhmareva) but

doesn’'t work in 2 or more dimensions.

(Addison, SDH, King, QAM 2005.)



American options in the Black-Scholes model

The BS model is the standard description of

normal (7!) financial markets.

e Asset prices follow diffusions (SDEs driven

by Wiener processes).
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e Options are contracts paying a given func-

tion P(Sp), the payoff, of the asset price
ST on a final date t ="1T.

e Options are valued as expectations; by Feynman-
Kac, option prices satisfy a backward parabolic
equation in S, t, with final data P(S): the
BS PDE

OV 1 5 0%V )%
1525 - (r — q)S— —rV = 0.
ot g5z T -5 5=

- 50



A simple scaling and time-reversal
t = o?(T —t)

(so t' is dimensionless) turns

oV 02V oV

5 | %0232 552 F(r — Q)Sﬁ —rV = 0.
INto
OV 1. 020°V oV o7
5 = 55 52 (p 7)5%—,0‘/, =75

with the payoff as initial data.



ov 1 0%V oV

— = S + (p=7)S4 5 —rV
ot 2”7 952 WP es TP
convexity increases V both decrease V
A\ Value ---Before final exercise

Payoff K — S
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An American option can be exercised at any

time (not just at the final date).
Hence option value > payoff.

The American option is like a continous se-
ries of obstacle-type problems (a parabolic

variational inequality).
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Put value Payoff K — S
A

Optimality — ‘smooth pasting’ free
boundary conditions: V and 9V/dS are
continuous at the interface S = S*(¢):

oV
V=K-5 —=-1, §=5%(%).
0S



Discrete dividend payments

When dividends are paid the asset price falls
(in calendar time t):

Sbefore = Safter T+ dividend

The model above has dividends paid contin-
uously at rate q, asset price process

ds
?tz(r—q)dt—l—ath
t
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T he corresponding scaled and forwardised BS
PDE is

OV 1. 00°V oV r

% — jS 952 | (P ’)/)S%—,OV, P —

- )
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For discrete dividends, paying ¢S, 4t at (equal)
time intervals t,, separated by dt,

S+ = (1—qdt)S,-,

or in scaled time T — t = o4

St;z_ = (1 — ’yez)St, 4, 2 = o5t

Between these dates, zero-dividend forwardised
BS PDE holds:
oV
ot

50V oV

1
—_— S
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At dividend dates, option value is continu-
ous for each realisation of S¢, SO V(St, +, t,’n+) =

V(S, —,t,") which is
V(S t,T) = V(1 —~€e2)S,t,7)

for all 0 < S < . That is, the option values
are shifted to the right across a dividend

date (in backwards time).
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A Value




Discrete PDE -+ jump cond’s to cont’s PDE

Multiple scale ansatz V(S,t,7) where
t = t;l -+ €2

sO discrete problem is

02V )%

oV | 10V
ot ' €20t
with...

_1g2
=15
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V(S t,1T) = V(1 —~e2)S,t',17)

and periodic in 7 to eliminate secular terms,
SO

V(S,t,1T) =V(S,¢,0T).
Expand
V~Vot etV + o
and find Vo = Vp(S,t) only;
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then
oV

8—1 = LV, L = zero-div BS operator.
T

So
Vi =71LVy+ F(S,t)

and then periodicity plus expanding jump cond’n
to O(e?) gives

0
LV = yS—2
0 Y PYS

as required.
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American option with discrete dividends

Cox & Rubinstein 1985.
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T he discrete dividend payment lifts the value
function off the payoff:

A Value A Value

So the exercise boundary falls to S = 0 just
after (in backwards time) a dividend date.
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With multiple dividend dates (cf Cox & Ru-
binstein 1985):

t A S = Sg(t,) t A

\
exercise
\
. \
exercise Y hold
\

\
exercise Y hold
\

\
exercise * hold
A
. \
exercise ¥ hold
W\ hold

S B S
continuous dividend discrete dividend

exercise hold

A kind of ‘mushy region’ homogenised.
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Asymptotics of typical inter-dividend
period

Put ¢/ =t/ + €27 as before.

exercise \ hold
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Set V=K-S+W(S,t,7) and then

OW  1OW | 50°W OW
| = =5 - oS W — pK.
ot " 2oar 20 gg2 PP ag TP TP
The free boundary cnditions are
01%%
W =0, = 0.

oS
T he payoff constraint is

W > 0.
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he initial condition (for a periodic solution)

is (at leading order)

€2~8, 0 < S < S*(t)

W(s,t,0) =
e2F(S), S > S*(t))

where F comes from the outer solution (as
above) and it has a (known) second-derivative
discontinuity at S = S*(¢/). Note it is linear
for S < S*(t).
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W(S,0
quadratic
linear

-

S

oW 10w _ l5282W oW

— L 1S W — oK.
o T 29r 27 gg2 " PPgg TP TP

The term —pK drags W down, but we have
W > 0. Hence a free boundary S = s*(7), at

which W vanishes.
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Clearly W ~ e2Wy 4+ --- and then we have

oWy
oT

= —pK.

Hence
Wo=~5 — pKT
for s*(7) = pK7/v < S < S*(t'), where Wy

vanishes, but only for

« yS*(t)
=

O<7rT<T
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Near S = s*(7) is a small travelling-wave re-
gion (as in Stefan) to allow both free bound-

ary conditions to apply.



Meanwhile the curvature jump near S = S*(¢/)

evolves: put
S = S*(t")(1 + ex), W = 2w(z, 1)

for an inner region —oo < x < oo, to get

ow _ 19%w
Or 2072

with initial data having a curvature jump.

pK,

Solution is in similarity form.
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Transition

T his solution only lasts until the free bound-
ary ‘sees’ the far-field effect of the inner so-

lution. There is a short transition time

T=171" O(e\/| l0g €|)

(determined by 2-term matching. .. ) in which

the free boundary behaviour (still the loca-
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tion of Wy = 0) goes from
s*(1) ~ pKT1/~ for 7 <71"=~8*{t)/pK
to

s* () ~ S*() (1 — V27" ||/~ log(r — %) z'ojfl_o';(i

as 7 increases away from 7*.



This is the ‘initial’ condition for a free bound-

ary problem on z*(7) <z < oo, 7" <7< 1. It

IS the Oxygen Consumption Problem

O 152
5;:281; oK, w >0, 7‘>7'*,
€T

with initial data

(

2 *
) constant x z—3e—%/27
w(x, 77) ~

constant x x2

(1) <z <o

r — —OC

r — +o0.
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At - = 1 it all starts again. ..

A Value A Value

31



W(S,0
quadratic
linear

-
-

S
|
T=1 |
exercise hold
T = k
7=0 | I‘\SZS;"(t’)
: >
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t A

S = S:(t)

exercise hold

continuous dividend

s

/ . \
" b exercise
\
. \
exercise Y hold
\
\
exercise ) hold
\
\
exercise . hold
\
. \
exercise \\ hold
\\
hold
AN .
S

discrete dividend
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