Asymptotic approximations for American options

Sam Howison

Mathematical Institute and
Oxford-Man Institute for Quantitative Finance Oxford University

A Coruña October 15-16 2009

Short-time asymptotics of the heat equation

Consider

$$
u_{t}=\frac{1}{2} u_{x x}, \quad t>0,
$$

with initial data vanishing for $x<0$:

Initial behaviour as $x \rightarrow-\infty, t=O(1)$? (Or as $t \downarrow 0, x$ fixed.)

Various ways:

$$
\begin{align*}
u(x, t) & =\frac{1}{\sqrt{2 \pi t}} \int_{0}^{\infty} u_{0}(s) \mathrm{e}^{-(x-s)^{2} / 2 t} \mathrm{~d} s \\
& =\frac{\mathrm{e}^{-x^{2} / 2 t}}{\sqrt{2 \pi t}} \int_{0}^{\infty} u_{0}(s) \mathrm{e}^{x s / t-s^{2} / 2 t} \mathrm{~d} s \quad(*) \tag{*}\\
& =\frac{\mathrm{e}^{-x^{2} / 2 t}}{\sqrt{2 \pi t}}\left(\frac{-x}{t}\right) \int_{0}^{\infty} u_{0}(-t \xi / x) \mathrm{e}^{-\xi-t \xi^{2} / 2 x^{2}} \mathrm{~d} \xi \\
& \sim \frac{\mathrm{e}^{-x^{2} / 2 t}}{\sqrt{2 \pi t}} \times F(x / t) \quad \text { as } x \rightarrow-\infty
\end{align*}
$$

or do Laplace on (*) above,

$$
\frac{\mathrm{e}^{-x^{2} / 2 t}}{\sqrt{2 \pi t}} \int_{0}^{\infty} u_{0}(s) \mathrm{e}^{x s / t-s^{2} / 2 t} \mathrm{~d} s
$$

as $x / t \rightarrow-\infty$;
or expand $u_{0}(s)=\sum c_{n} s^{n}$ and get the answer as a sum of similarity solutions;
(both these conclude that the behaviour of u_{0} at the origin is paramount)
or

$$
u=\frac{\mathrm{e}^{-x^{2} / 2 t}}{\sqrt{2 \pi t}} v(x, t)
$$

gives

$$
t v_{t}+x v_{x}=\frac{1}{2} v_{x x}
$$

so put RHS $=0$ and say Euler; or put $x=X / \epsilon$ (or $t=\epsilon^{2} T$) and use the WKB ansatz

$$
u \sim A \mathrm{e}^{v / \epsilon^{2}}
$$

to get the same result via $v_{T}=\frac{1}{2} v_{X}^{2}$ etc.

The Stefan problem for small latent heat

Melting of a solid with small latent heat ϵ :

$$
u_{t}=\frac{1}{2} u_{x x}, \quad 0<x<s(t), \quad u(0, t)=1,
$$

with free boundary conditions

$$
u(s(t), t)=0, \quad u_{x}(s(t), t)=-\epsilon \dot{s}
$$

There is a similarity solution $u=U(x / \sqrt{t})$, $s=\alpha \sqrt{t}$ from which, as $\epsilon \rightarrow 0$, the relevant timescale is

$$
t=\delta T, \quad \delta=1 /|\log \epsilon|
$$

Then there is a 3-layer structure:
Boundary layer near $x=0, x=\delta^{\frac{1}{2}} X, t=$ δT, giving the usual error function solution.
'Outer region' $x=O(1), t=\delta T$, WKB solution (as above) of

$$
\frac{1}{\delta} u_{T}=u_{x x}
$$

Solution is $u \sim A \exp (v / \delta)$ with $v=-x^{2} / 2 T$, $A=(1 / \sqrt{2 \pi T})(T / x)$.

Inner layer $x=s(t)+\delta \xi, u=\epsilon U$, with a travelling wave solution of the heat equation satisfying the free boundary conditions, $U=$ $\frac{1}{2}(1-\exp (-2 \xi \dot{s}))$.

These all match and the scale δ follows from matching the outer region to the inner layer. Generalises to more than one dimension and the free boundary is close to the isotherm
$u=\epsilon$ of the corresponding pure heat conduction problem. Can also be done via an integral equation (Grinberg/Chekhmareva) but doesn't work in 2 or more dimensions.
(Addison, SDH, King, QAM 2005.)

American options in the Black-Scholes model

The BS model is the standard description of normal (?!) financial markets.

- Asset prices follow diffusions (SDEs driven by Wiener processes).
- Options are contracts paying a given function $P\left(S_{T}\right)$, the payoff, of the asset price S_{T} on a final date $t=T$.
- Options are valued as expectations; by FeynmanKac, option prices satisfy a backward parabolic equation in S, t, with final data $P(S)$: the BS PDE

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+(r-q) S \frac{\partial V}{\partial S}-r V=0
$$

A simple scaling and time-reversal

$$
t^{\prime}=\sigma^{2}(T-t)
$$

(so t^{\prime} is dimensionless) turns

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+(r-q) S \frac{\partial V}{\partial S}-r V=0
$$

into
$\frac{\partial V}{\partial t^{\prime}}=\frac{1}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+(\rho-\gamma) S \frac{\partial V}{\partial S}-\rho V$,

$$
\rho=\frac{r}{\sigma^{2}}, \quad \gamma=\frac{q}{\sigma^{2}},
$$

with the payoff as initial data.

An American option can be exercised at any time (not just at the final date).

Hence option value \geq payoff.

The American option is like a continous series of obstacle-type problems (a parabolic variational inequality).

Optimality \longrightarrow 'smooth pasting' free boundary conditions: V and $\partial V / \partial S$ are continuous at the interface $S=S^{*}(t)$:

$$
V=K-S, \quad \frac{\partial V}{\partial S}=-1, \quad S=S^{*}(t)
$$

Discrete dividend payments

When dividends are paid the asset price falls (in calendar time t):

$$
S_{\text {before }}=S_{\text {after }}+\text { dividend }
$$

The model above has dividends paid continuously at rate q, asset price process

$$
\frac{\mathrm{d} S_{t}}{S_{t}}=(r-q) \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

The corresponding scaled and forwardised BS PDE is

$$
\frac{\partial V}{\partial t^{\prime}}=\frac{1}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+(\rho-\gamma) S \frac{\partial V}{\partial S}-\rho V, \quad \rho=\frac{r}{\sigma^{2}}, \quad \gamma=\frac{q}{\sigma^{2}} .
$$

For discrete dividends, paying $q S_{t_{n}^{-}} \delta t$ at (equal) time intervals t_{n} separated by δt,

$$
S_{t_{n}^{+}}=(1-q \delta t) S_{t_{n}^{-}},
$$

or in scaled time $T-t=\sigma^{2} t^{\prime}$,

$$
S_{t_{n}^{\prime}-}=\left(1-\gamma \epsilon^{2}\right) S_{t_{n}^{\prime}+}, \quad \epsilon^{2}=\sigma^{2} \delta t
$$

Between these dates, zero-dividend forwardised BS PDE holds:

$$
\frac{\partial V}{\partial t^{\prime}}=\frac{1}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+\rho S \frac{\partial V}{\partial S}-\rho V
$$

At dividend dates, option value is continuous for each realisation of S_{t}, so $V\left(S_{t_{n}^{\prime}}, t_{n}^{\prime+}\right)=$ $V\left(S_{t_{n}^{\prime}-}, t_{n}^{\prime-}\right)$ which is

$$
V\left(S, t_{n}^{\prime+}\right)=V\left(\left(1-\gamma \epsilon^{2}\right) S, t_{n}^{\prime-}\right)
$$

for all $0<S<\infty$. That is, the option values are shifted to the right across a dividend date (in backwards time).

Discrete PDE + jump cond's to cont's PDE

Multiple scale ansatz $V\left(S, t^{\prime}, \tau\right)$ where

$$
t^{\prime}=t_{n}^{\prime}+\epsilon^{2} \tau
$$

so discrete problem is
$\frac{\partial V}{\partial t^{\prime}}+\frac{1}{\epsilon^{2}} \frac{\partial V}{\partial \tau}=\frac{1}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+\rho S \frac{\partial V}{\partial S}-\rho V, \quad 0<\tau<1$
with...

$$
V\left(S, t^{\prime}, 1^{+}\right)=V\left(\left(1-\gamma \epsilon^{2}\right) S, t^{\prime}, 1^{-}\right)
$$

and periodic in τ to eliminate secular terms, so

$$
V\left(S, t^{\prime}, 1^{+}\right)=V\left(S, t^{\prime}, 0^{+}\right)
$$

Expand

$$
V \sim V_{0}+\epsilon^{2} V_{1}+\cdots
$$

and find $V_{0}=V_{0}\left(S, t^{\prime}\right)$ only;
then
$\frac{\partial V_{1}}{\partial \tau}=\mathcal{L} V_{0}, \quad \mathcal{L}=$ zero-div BS operator.
So

$$
V_{1}=\tau \mathcal{L} V_{0}+F\left(S, t^{\prime}\right)
$$

and then periodicity plus expanding jump cond'n to $O\left(\epsilon^{2}\right)$ gives

$$
\mathcal{L} V_{0}=\gamma S \frac{\partial V_{0}}{\partial S}
$$

as required.

American option with discrete dividends

Cox \& Rubinstein 1985.

The discrete dividend payment lifts the value function off the payoff:

So the exercise boundary falls to $S=0$ just after (in backwards time) a dividend date.

With multiple dividend dates (cf Cox \& Rubinstein 1985):

A kind of 'mushy region' homogenised.

Asymptotics of typical inter-dividend period

Put $t^{\prime}=t_{n}^{\prime}+\epsilon^{2} \tau$ as before.

Set $V=K-S+W\left(S, t^{\prime}, \tau\right)$ and then
$\frac{\partial W}{\partial t^{\prime}}+\frac{1}{\epsilon^{2}} \frac{\partial W}{\partial \tau}=\frac{1}{2} S^{2} \frac{\partial^{2} W}{\partial S^{2}}+\rho S \frac{\partial W}{\partial S}-\rho W-\rho K$.
The free boundary cnditions are

$$
W=0, \quad \frac{\partial W}{\partial S}=0
$$

The payoff constraint is

$$
W \geq 0
$$

The initial condition (for a periodic solution) is (at leading order)

$$
W\left(S, t^{\prime}, 0\right)= \begin{cases}\epsilon^{2} \gamma S, & 0<S<S^{*}\left(t^{\prime}\right) \\ \epsilon^{2} F(S), & S>S^{*}\left(t^{\prime}\right)\end{cases}
$$

where F comes from the outer solution (as above) and it has a (known) second-derivative discontinuity at $S=S^{*}\left(t^{\prime}\right)$. Note it is linear for $S<S^{*}\left(t^{\prime}\right)$.

$\frac{\partial W}{\partial t^{\prime}}+\frac{1}{\epsilon^{2}} \frac{\partial W}{\partial \tau}=\frac{1}{2} S^{2} \frac{\partial^{2} W}{\partial S^{2}}+\rho S \frac{\partial W}{\partial S}-\rho W-\rho K$.
The term $-\rho K$ drags W down, but we have $W \geq 0$. Hence a free boundary $S=s^{*}(\tau)$, at which W vanishes.

Clearly $W \sim \epsilon^{2} W_{0}+\cdots$ and then we have

$$
\frac{\partial W_{0}}{\partial \tau}=-\rho K
$$

Hence

$$
W_{0}=\gamma S-\rho K \tau
$$

for $s^{*}(\tau)=\rho K \tau / \gamma<S<S^{*}\left(t^{\prime}\right)$, where W_{0} vanishes, but only for

$$
0<\tau<\tau^{*}=\frac{\gamma S^{*}\left(t^{\prime}\right)}{\rho K}
$$

Near $S=s^{*}(\tau)$ is a small travelling-wave region (as in Stefan) to allow both free boundary conditions to apply.

Meanwhile the curvature jump near $S=S^{*}\left(t^{\prime}\right)$ evolves: put

$$
S=S^{*}\left(t^{\prime}\right)(1+\epsilon x), \quad W=\epsilon^{2} w(x, \tau)
$$

for an inner region $-\infty<x<\infty$, to get

$$
\frac{\partial w}{\partial \tau}=\frac{1}{2} \frac{\partial^{2} w}{\partial \tau^{2}}-\rho K
$$

with initial data having a curvature jump.
Solution is in similarity form.

Transition

This solution only lasts until the free boundary 'sees' the far-field effect of the inner solution. There is a short transition time

$$
\tau=\tau^{*}+O(\epsilon \sqrt{|\log \epsilon|})
$$

(determined by 2-term matching. . .) in which the free boundary behaviour (still the loca-
tion of $W_{0}=0$) goes from

$$
s^{*}(\tau) \sim \rho K \tau / \gamma \quad \text { for } \quad \tau<\tau^{*}=\gamma S^{*}\left(t^{\prime}\right) / \rho K
$$

to
$s^{*}(\tau) \sim S^{*}\left(t^{\prime}\right)\left(1-\epsilon \sqrt{2 \tau^{*}}\left[\sqrt{-\log \left(\tau-\tau^{*}\right)}-\frac{3}{2} \frac{\log \sqrt{-\log }}{\sqrt{-\log (\tau}}\right.\right.$
as τ increases away from τ^{*}.

This is the 'initial' condition for a free boundary problem on $x^{*}(\tau)<x<\infty, \tau^{*}<\tau<1$. It is the Oxygen Consumption Problem
$\frac{\partial w}{\partial t}=\frac{1}{2} \frac{\partial^{2} w}{\partial x^{2}}-\rho K, \quad w \geq 0$,

$$
\tau>\tau^{*}, \quad x^{*}(\tau)<x<0
$$

with initial data
$w\left(x, \tau^{*}\right) \sim\left\{\begin{array}{l}\text { constant } \times x^{-3} \mathrm{e}^{-x^{2} / 2 \tau^{*}} \\ \text { constant } \times x^{2}\end{array}\right.$

$$
\begin{aligned}
& x \rightarrow-\infty \\
& x \rightarrow+\infty .
\end{aligned}
$$

At $\tau=1$ it all starts again. . .

continuous dividend

discrete dividend

