Numerical Option pricing in Feller Lévy models

Ch. Schwab (Seminar for Applied Mathematics, ETH Zürich) (joint w. O. Reichmann (ETH) and R. Schneider (TU-Berlin))
Workshop on Computational Finance, A Coruna, Spain, Oct 15\&16, 2009
October 20, 2009

Motivation

Theoretical background

Implementation

Numerical examples

Outlook

Markovian Projection of Semimartingales

(Bentata \& Cont, C.R.A.S. 2009)
$\square Y=\left(Y_{t}\right)_{t \geq 0} \subseteq G \subseteq \mathbb{R}^{q}$ Ito Semimartingale in \mathbb{R}^{q},
$\square \exists!X=\left(X_{t}\right)_{t \geq 0} \subset G \subseteq \mathbb{R}^{q}$, Markovian Projection of Y, solution of martingale problem for generator

$$
\begin{aligned}
& \left(A_{X}(t, x ; D) u\right)(t, x):= \\
& c^{Y}(t, x) u(x)+\gamma^{Y}(t, x)^{\top} \nabla_{x} u(t, x)+\frac{1}{2} \sigma^{Y}(t, x) \sigma^{Y}(t, x)^{\top} D^{2} u(t, x) \\
& + \\
& \int_{y \in \mathbb{R}^{d}}\left(u(x+y)-u(x)-\frac{y \cdot \nabla_{x} u(x)}{1+\|y\|^{2}}\right) N^{Y}(t, x ; d y)
\end{aligned}
$$

■ Numerical approximation of (weak!) solution $u(x, t) \in \operatorname{Domain}\left(A_{X}\right)$ in $G \subseteq \mathbb{R}^{q}$ of fwd Kolmogoroff PIDE

$$
u_{t}+\left(A_{X}(t, x ; D) u\right)(x)=f \in[0, T] \times G,\left.\quad u\right|_{t=0}=u_{0}
$$

Feller-processes I

Definition

Assume $q=1$ (e.g. Y index of a d-dimensional disc. Semimart. Market). Then X is a strong \mathbb{R}-valued Markov process and

$$
\left(T_{t} g\right)(x)=\mathbb{E}\left[g\left(X_{t}\right) \mid X_{0}=x\right] .
$$

X is called Feller iff

1. $T_{t}: C_{0}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$
2. $\lim _{t \rightarrow 0^{+}}\left\|u-T_{t} u\right\|_{L^{\infty}(\mathbb{R})}=0$ for all $u \in C_{0}(\mathbb{R})$.

Theorem
if $u \in D\left(A_{X}\right)$ and $\sup _{x \in \mathbb{R}} u(x)=u\left(x_{0}\right)>0$, then $\left(A_{X} u\right)\left(x_{0}\right) \leq 0$.

Feller-processes II

Theorem

Let A_{X} be the generator of a Feller-process with
$C_{0}^{\infty}(\mathbb{R}) \subset D\left(A_{X}\right)$, then $\left.A\right|_{C_{0}^{\infty}(\mathbb{R})}$ is a pseudodifferential operator (PDO):

$$
\begin{aligned}
\left(A_{X} u\right)(x)= & -a(x, D) u(x) \\
& =-(2 \pi)^{-\frac{1}{2}} \int_{\mathbb{R}} a(x, \xi) \hat{u}(\xi) e^{i x \xi} d \xi, u \in C_{0}^{\infty}(\mathbb{R})
\end{aligned}
$$

with symbol $a(x, \xi): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{C}$ which is measurable and locally bounded in (x, ξ) and which admits the Lévy-Khintchine representation.

Feller-processes III

$$
\begin{aligned}
a(x, \xi)= & c(x)-i \gamma(x) \xi+\frac{1}{2}(\sigma(x))^{2} \xi^{2} \\
& +\int_{\mathbb{R}}\left(1-e^{i y \xi}+\frac{i y \xi}{1+y^{2}}\right) N(x, d y)
\end{aligned}
$$

where $^{\sup _{x \in \mathbb{R}}} \int_{\mathbb{R}} \min \left(1, y^{2}\right) N(x, d y)<\infty$.

Examples:

1. Brownian motion (local vol) $a(x, \xi)=\frac{1}{2} \sigma(x)^{2} \xi^{2}$
2. Lévy process $a(x, \xi)=$

$$
c(x)-i \gamma(x) \xi+\frac{1}{2}(\sigma(x))^{2} \xi^{2}+\int_{\mathbb{R}}\left(1-e^{i y \xi}+\frac{i y \xi}{1+y^{2}}\right) \nu(d y)
$$

Martingale problem: which $a(x, \xi)$ define PDOs $A(x, D)$ that generate Feller processes?

Feller-processes IV

Definition

(Symbolclass $S_{\rho, \delta}^{m(x)}(\mathbb{R})$)
Let $0 \leq \delta \leq \rho \leq 1$ and $m(x) \in C^{\infty}(\mathbb{R})$.
A symbol $a(x, \xi)$ belongs to $S_{\rho, \delta}^{m(x)}(\mathbb{R})$ iff

1. $a(x, \xi) \in C^{\infty}(\mathbb{R} \times \mathbb{R})$,
2. $m(x)=s+\widetilde{m}(x)$ with $\widetilde{m}(x) \in S(\mathbb{R}), s \in \mathbb{R}$,
3. for $\alpha, \beta \in \mathbb{N}_{0}$ there are constants $c_{\alpha, \beta}$ such that

$$
\forall x, \xi \in \mathbb{R}: \quad\left|D_{x}^{\beta} D_{\xi}^{\alpha} a(x, \xi)\right| \leq c_{\alpha, \beta}\langle\xi\rangle^{m(x)-\rho \alpha+\delta \beta},
$$

where $\langle\xi\rangle:=\left(1+\xi^{2}\right)^{\frac{1}{2}}, \xi \in \mathbb{R}$.
The corresponding set of PDOs is denoted $\Psi_{\rho, \delta}^{m(x)}(\mathbb{R})$.

Feller-processes V

Theorem

(Komatsu, Strook, Jacod 1976, Hoh 1998)
For every symbol $a(x, \xi) \in S_{\rho, \delta}^{m(x)}$ there exists a unique Feller process X with generator A_{X}, .
Domain of A_{X} ? Answer: Sobolev spaces of variable order.

Definition

The PDO $\Lambda^{m(x)}$ with symbol $a(x, \xi)=\langle\xi\rangle^{m(x)} \in S_{1, \delta}^{m(x)}, \delta \in(0,1)$ is called (variable order) Riesz potential.

Corollary

$\left(\Lambda^{m(x)}\right)^{\top} \in \Psi_{1, \delta}^{m(x)}$ and $\left(\Lambda^{m(x)}\right)^{\top}\left(\Lambda^{m(x)}\right) \in \Psi_{1, \delta}^{2 m(x)}$.

Alternative characterization of PDOs

A PDO in distributional sense can be written as:

$$
\begin{aligned}
A u(x) & =\int_{\mathbb{R}} K_{A}(x, y) u(y) d y, \\
K_{A}(x, y) & =\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i(x-y) \xi} a_{A}(x, \xi, y) d \xi,
\end{aligned}
$$

where $K_{A}(x, y)$ is an oscillatory integral i.e.

$$
\begin{aligned}
K_{A}(x, y) & =\lim _{\epsilon \rightarrow 0} \frac{1}{2 \pi} \int_{\mathbb{R}} e^{i(x-y) \xi} a_{A}^{\epsilon}(x, \xi, y) d \xi \\
a_{A}^{\epsilon}(x, \xi, y) & =a_{A}(x, \xi, y) \mu(\epsilon y, \epsilon \xi), \quad \mu \in C_{0}^{\infty}(\mathbb{R} \times \mathbb{R}), \mu(0,0)=1
\end{aligned}
$$

Kikuchi \& Negoro 1997, Bass 2002:

$$
a_{\left(\Lambda^{m(x)}\right)^{\top}\left(\Lambda^{m(x)}\right)}(x, \xi, y)=\langle\xi\rangle^{m(x)+m(y)}
$$

Sobolev spaces of variable order I

In what follows we always assume $m(x) \in(0,1)$.

Definition

The Sobolev space of variable order is
$H^{m(x)}(\mathbb{R}):=\left\{u \in L_{2}(\mathbb{R}) \mid\|u\|_{H^{m(x)}(\mathbb{R})}<\infty\right\}$ where

$$
\|u\|_{H^{m(x)}(\mathbb{R})}^{2}:=\left\|\Lambda^{m(x)} u\right\|_{L_{2}(\mathbb{R})}^{2}+\|u\|_{L_{2}(\mathbb{R})}^{2}
$$

We have the following continuous embedding result for $\bar{m}=\sup _{x \in \mathbb{R}} m(x), \underline{m}=\sup _{x \in \mathbb{R}} m(x)$ due to Leopold '91:

$$
H^{\bar{m}}(\mathbb{R}) \hookrightarrow H^{m(x)}(\mathbb{R}) \hookrightarrow H^{\underline{m}}(\mathbb{R}) .
$$

On a bounded domain I we define the space

$$
\widetilde{H}^{m(x)}(I)=\left\{\left.u\right|_{I}\left|u \in H^{m(x)}(\mathbb{R}), \quad u\right|_{\mathbb{R} \backslash \bar{I}}=0\right\}
$$

Sobolev spaces of variable order II

The norm on $\widetilde{H}^{m(x)}(I)$ is given as

$$
\|u\|_{\tilde{H}^{m(x)}(I)}=\|\widetilde{u}\|_{H^{m(x)}(\mathbb{R})},
$$

where \widetilde{u} denotes the zero extension of u to \mathbb{R}. Intrinsically we could also write $\|\cdot\|_{\tilde{H}^{m(x)}(I)}$ using the Sobolev-Slobodeckij norm i.e.

$$
\begin{aligned}
\|u\|_{\widetilde{H}^{m(x)}(I)}^{2} & :=\|u\|_{L_{2}(I)}^{2}+|u|_{\widetilde{H}^{m(x)}(I)}^{2} \\
|u|_{\widetilde{H}^{m(x)}(I)}^{2} & :=\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|\widetilde{u}(x)-\widetilde{u}(y)|^{2}}{|x-y|^{1+m(x)+m(y)}} d x d y .
\end{aligned}
$$

Wavelets I

Aim: Prove a norm equivalence on $\widetilde{H}^{m(x)}(I)$ and obtain a preconditioner for the wavelet matrix of $N(x, d z)$. We require the following properties of the wavelets:

1. Biorthogonality i.e. $\psi_{l, k}, \widetilde{\psi}_{l^{\prime}, k^{\prime}}$ satisfy

$$
\left\langle\psi_{l, k}, \widetilde{\psi}_{l^{\prime}, k^{\prime}}\right\rangle=\delta_{l, l^{\prime}} \delta_{k, k^{\prime}}
$$

2. Local support:

$$
\operatorname{diam} \operatorname{supp} \psi_{l, k} \leq C 2^{-l}, \quad \operatorname{diam} \operatorname{supp} \tilde{\psi}_{l, k} \leq C 2^{-l}
$$

3. Conformity:

$$
\mathcal{W}^{l} \subset \widetilde{H}^{1}(I), \widetilde{\mathcal{W}}^{l} \subset \widetilde{H}^{\delta}(I) \quad \text { for some } \delta>0, l \geq-1
$$

4. Density: $\bigoplus_{l=-1}^{\infty} \mathcal{W}^{l}, \bigoplus_{l=-1}^{\infty} \widetilde{\mathcal{W}}^{l}$ dense in $L_{2}(I)$.

Wavelets II

Example: piecewise linear, biorthogonal wavelets

Wavelets III

Vanishing moments:

For inner wavelets:

$$
\left\langle\psi_{l, k}, x^{\alpha}\right\rangle=0 \quad \alpha=0, \ldots, p^{*}+1, l \geq 0
$$

For inner dual wavelets:

$$
\left\langle\tilde{\psi}_{l, k}, x^{\alpha}\right\rangle=0 \quad \alpha=0, \ldots, p+1, l \geq 0
$$

For the boundary wavelets:

$$
\left\langle\widetilde{\psi}_{l, k}, x^{\alpha}\right\rangle=0 \quad \alpha=1, \ldots, p+1, l \geq 0
$$

Estimates for extended symbols

Theorem

For any $\delta \in(0,1)$ the Schwartz kernel $K_{\left(\Lambda^{m(x)}\right)^{\top}\left(\Lambda^{m(x)}\right)}$ satisfies the Calderón-Zygmund type estimate
$\left|D_{x}^{\alpha} D_{y}^{\beta} K_{\left(\Lambda^{m(x)}\right)^{\top}\left(\Lambda^{m(x)}\right)}(x, y)\right| \leq C_{\alpha, \beta, \delta}|x-y|^{-(1+m(x)+m(y)+(1-\delta)(\alpha+\beta))}$
where $x \neq y$ and $|x-y|$ is small. For large values of $|x-y|$ the kernel decays faster than $|x-y|^{-N}$, for any $N \in \mathbb{N}$.
Proof:

- Littlewood Paley decomposition of unity
- Decomposition of the symbol

Norm Equivalences I

We consider the infinite matrix $\left(\lambda=(l, k), \lambda^{\prime}=\left(l, k^{\prime}\right)\right)$:

$$
\mathbf{M}:=\left(\left\langle\Lambda^{m(x)} \psi_{\lambda^{\prime}}, \Lambda^{m(x)} \psi_{\lambda}\right\rangle\right)_{\lambda, \lambda^{\prime} \in \mathcal{I}}=\left(\left\langle\left(\Lambda^{m(x)}\right)^{\top} \Lambda^{m(x)} \psi_{\lambda^{\prime}}, \psi_{\lambda}\right\rangle\right)_{\lambda, \lambda^{\prime} \in \mathcal{I}}
$$

The following variables will be useful:

$$
\begin{aligned}
\bar{m}_{\lambda} & =\sup \left\{m(x): x \in \Omega_{\lambda}\right\}, \quad \underline{m}_{\lambda}=\inf \left\{m(x): x \in \Omega_{\lambda}\right\} \\
\Omega_{\lambda} & =\bigcup_{l^{\prime}>l}\left\{\operatorname{supp} \psi_{\lambda^{\prime}}: \operatorname{supp} \psi_{\lambda} \cap \operatorname{supp} \psi_{\lambda^{\prime}} \neq \emptyset\right\}
\end{aligned}
$$

Norm Equivalences II

Several cases have to be considered and the entries of M have to be estimated in each case.

1. Case: $\psi_{\lambda}, \psi_{\lambda^{\prime}}$ have $p^{*}+1$ vanishing moments and disjoint support.
Taylor expansion of the Schwartz kernel in (x, y) and the Caldéron-Zygmund estimate give:

$$
\begin{aligned}
& \left|\left\langle\Lambda^{m(x)} \psi_{\lambda^{\prime}}, \Lambda^{m(x)} \psi_{\lambda}\right\rangle\right| \lesssim C_{\delta} 2^{-\left(l+l^{\prime}\right)\left(\frac{1}{2}+p+1\right)} \\
& \quad \times \operatorname{dist}\left(\operatorname{supp} \psi_{\lambda}^{\prime}, \operatorname{supp} \psi_{\lambda}\right)^{-(1+2 \bar{m}+2(1-\delta)(p+1))} .
\end{aligned}
$$

Norm Equivalences III

2. Case: Diagonal entries. Using the continuous embedding theorem for Sobolev spaces of variable order it can be shown:

$$
2^{2 l \underline{m}_{\lambda}} \lesssim\left|\left\langle\Lambda^{m(x)} \psi_{l, k}, \Lambda^{m(x)} \psi_{l, k}\right\rangle\right| \lesssim 2^{2 l \bar{m}_{\lambda}} .
$$

3. Case: $\operatorname{supp} \psi_{\lambda} \cap \operatorname{supp} \psi_{\lambda}^{\prime} \neq \emptyset$.

$$
\left|\left\langle\Lambda^{m(x)} \psi_{l, k}, \Lambda^{m(x)} \psi_{l^{\prime}, k^{\prime}}\right\rangle\right| \lesssim 2^{\bar{m}_{\lambda}+l^{\prime} \bar{m}_{\lambda}^{\prime} 2^{-\left|l-l^{\prime}\right| s}, ~}
$$

where s satisfies: $0 \leq \underline{m}-s$ and $\bar{m}+s \leq 1$.

Norm Equivalences IV

Theorem

Let $\mathbf{D}^{-m(x)}:=\left(2^{-l \bar{m}_{\lambda}} \delta_{\lambda, \lambda^{\prime}}\right)_{\lambda, \lambda^{\prime}}$ and

$$
\mathbf{A}:=\mathbf{D}^{-m(x)} \mathbf{M} \mathbf{D}^{-m(x)} .
$$

Then A is compressible i.e. there exists $s>0$ s.t.

$$
\left|A_{\lambda, \lambda^{\prime}}\right| \lesssim 2^{-\left|l-l^{\prime}\right|\left(s+\frac{1}{2}\right)}\left(1+\operatorname{dist}\left(\operatorname{supp} \psi_{\lambda}^{\prime}, \text { supp } \psi_{\lambda}\right)^{-1-2(d-\bar{m})(1-\delta)} .\right.
$$

Norm Equivalences V

As compressible matrices have a bounded spectral norm and $\mathbf{D}^{-m(x)} \mathbf{D}^{m(x)}$ also has a bounded spectral norm, we obtain the norm equivalence:

$$
\|u\|_{\tilde{H}^{m(x)(I)}} \sim u^{\top} \mathbf{D}^{2 m(x)} u .
$$

Open Pbm: Estimate matrix entries without PDO theory? Problems:

■ Global definition of $m(x)$
$■$ Calderon-Zygmund - type Estimates for kernel.

Implementation of the PIDE

■ Implementation of FFT methods for the PDO not feasible, due to nonstationarity of X
■ Alternative: solve PIDE in " x-space" \mathbb{R}^{q}

- Weak solutions: FEM

■ Compression of Jump Measure: Wavelets

Assumptions

Let $N(x, d z)=k(x, z) d z$. Assume that the jump density $k(x, z)$ satisfies: there exist constants $\beta^{-}>0$ and $\beta^{+}>1$, $0 \leq \delta \leq \rho \leq 1$ independent of x s.t.
1.

$$
k(x, z) \leq C \begin{cases}e^{-\beta^{-}|z|}, & z<-1 \\ e^{-\beta^{+} z}, & z>1\end{cases}
$$

2.

$$
\frac{1}{2}(k(x, z)+k(x,-z)) \geq C \frac{1}{|z|^{2 m(x)}}, \quad 0<|z| \leq 1
$$

3.

$$
\left|D_{x}^{\beta} D_{z}^{\alpha} k(x, z)\right| \leq c \alpha!\beta!|z|^{-1-2 m(x)-\alpha \rho-\beta \delta} \quad \forall \alpha, \beta \in \mathbb{N}_{0}, z \neq 0
$$

Martingale condition

\square Assume the risk-neutral dynamics of the underlying asset to be given by

$$
S_{t}=S_{0} e^{r t+X}
$$

where X is a Feller process with characteristic triple $(\gamma(x), \sigma(x), k(x, z) \mathrm{d} z)$ under a risk neutral measure \mathbb{Q} such that e^{X} is a martingale with respect to the canonical filtration of X.
■ Under the stated assumptions the martingale condition for X is equivalent to:

$$
\frac{\sigma(x)^{2}}{2}+\gamma(x)+\int_{\mathbb{R}}\left(e^{z}-1-z\right) k(x, z) \mathrm{d} z=0 \quad \forall x \in \mathbb{R}
$$

Derivation of the PIDE I

Let X be a pure jump process without drift. Then

$$
a(x, \xi)=\int_{\mathbb{R}}\left(1-e^{i z \xi}+i z \xi\right) k(x, z) d z
$$

We can derive for all $u(x) \in S(\mathbb{R})$:

$$
\begin{aligned}
\left(A_{X} u\right)(x)= & -\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i x \xi} a(x, \xi) \hat{u}(\xi) d \xi \\
& =\int_{\mathbb{R}}\left(u(x+z)-u(x)-z \partial_{x} u(x)\right) k(x, z) d z
\end{aligned}
$$

For sufficiently smooth u this can be written as:

$$
\left(A_{X} u\right)(x)=\int_{\mathbb{R}} u^{\prime \prime}(x+z) k^{(-2)}(x, z) d z
$$

where $k^{(-i)}$ is the i-th antiderivative w.r.t. z.

Derivation of the PIDE II

The bilinear form for a test function $v \in C_{0}^{\infty}(\mathbb{R})$ reads:

$$
\begin{aligned}
b(u, v)= & \int_{\mathbb{R}}\left(A_{X} u\right)(x) v(x) d x \\
= & -\int_{\mathbb{R}} \int_{\mathbb{R}} u^{\prime}(x+z) v^{\prime}(x) k^{(-2)}(x, z) d z d x \\
& -\int_{\mathbb{R}} \int_{\mathbb{R}} u^{\prime}(x+z) v(x) k_{x}^{(-2)}(x, z) d z d x
\end{aligned}
$$

Numerical quadrature

Density $k(x, z)$ of $N(x, d z)$ satisfies conditions of
Chernov, von Peterdorff \& Schwab 2009
■ Composite Gauss quadrature used to deal with singularity at $x=y$.
■ Idea: Geometric Quadrature Node refinement towards singularity of $k(x, z)$.
\square Exponential convergence of the tensorized (composite) Gauss quadrature
■ Regularized, "singularity-free" expression of Dirichlet Form of X (Reich, Schwab \& Winter '09).

Model problem I

We consider CGMY-type processes:

$$
\begin{aligned}
k(x, z) & =C \begin{cases}e^{-\beta^{-} z} z^{-1-\alpha(x)}, & z>0 \\
e^{-\beta^{+}|z|}|z|^{-1-\alpha(x)}, & z<0\end{cases} \\
\alpha(x) & =k e^{-x^{2}}+0.5
\end{aligned}
$$

(a) $\alpha(x)=1.75$

(b) $\alpha(x)=1.25 e^{-x^{2}}+0.5$

Model problem II

$$
\begin{aligned}
& k(x, z)=C \begin{cases}e^{-\beta^{-} z} z^{-1-\alpha(x)}, & z>0 \\
e^{-\beta^{+}|z|}|z|^{-1-\alpha(x)}, & z<0\end{cases} \\
& \alpha(x)=0.5+k \begin{cases}0.4 x, & 0.25>x>0 \\
0.8 x-0.1, & 0.5>x \geq 0.25 \\
-0.4 x+0.5, & 0.75>x \geq 0.5 \\
-0.8 x+0.8, & 1>x \geq 0.75 \\
0.5, & \text { else }\end{cases}
\end{aligned}
$$

Stiffness matrices

Stiffness matrices for Example I with $Y(x)=1.25 e^{-x^{2}}+0.5$:

Figure: Stiffness matrices

Preconditioning

(a) Model problem I

(b) Model problem II

Figure: Condition numbers for different levels and choices of k.

Compression scheme

Figure: Number of non-zero entries of the compressed/uncompressed stiffness matrix versus number of degrees of freedom corresponding to the Lévy kernel in model problem I and $k=1.25$.

Option prices

Figure: Option prices for several models for a European put option with $T=1$ and $K=100$.

Outlook

■ Early exercise contracts (American, Russian)

- Optimal Control Problems
- Quadratic Hedging

■ Analysis of model risk via hierarchical models, i.e. Local Vol, Additive Lévy , Local Lévy \subseteq Feller-Lévy,
■ Multidimensional models
■ Preconditioning methods for $\alpha(x) \approx 2$
■ Computable model sensitivity indicators
■ (piecewise) smooth time dependent coefficients

- Fast Calibration (P. Carr 2009)

