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M. C. Auśın∗, J. M. Vilar, R. Cao and C. González-Fragueiro.
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Abstract

This paper describes a Bayesian approach to make inference for aggregate loss models in the insurance

framework. A semiparametric model based on Coxian distributions is proposed for the approximation

of both the inter-arrival time between claims and the claim size distributions. A Bayesian density

estimation approach for the Coxian distribution is implemented using reversible jump Markov Chain

Monte Carlo (MCMC) methods. The family of Coxian distributions is a very flexible mixture model

that can capture the special features frequently observed in insurance claims such as long tails and

multimodality. Furthermore, given the proposed Coxian approximation, it is possible to obtain closed

expressions of the Laplace transforms of the total claim count and the total claim amount random

variables. This properties allow us to obtain Bayesian estimations of the distributions of the number

of claims and the total claim amount in a future time period, their main characteristics and credible

intervals. The possibility of applying deductibles and maximum limits is also analyzed. The methodology

is illustrated with a real data set provided by the insurance department of an international commercial

company.
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1 Introduction

In this paper, we are mainly interested in the estimation of the total claim amount up to time t,

S (t) =

N(t)X
j=1

Yj ,

where N (t) is the number of claims up to time t and Y1, Y2, ... are the claim sizes, with the usual convention

that S (t) = 0 if N (t) = 0. It is assumed that N (t) is a renewal process such that the inter-arrival times

between successive claims are independent and identically distributed (i.i.d.) and the claim sizes, Y1, Y2, ...,

are also i.i.d. random variables which are independent of the claim arrival process.

The selection of appropriate models for the claim arrival process and the claim size distribution is essential

in the estimation of the distributions of the total claim count, N(t), and the total claim amount, S(t). In

classical risk theory, it is very common to assume a homogeneous Poisson process for the claim arrival

process since this assumption simplifies the derivation of the total claim amount distribution. Also, a

gamma distribution model is frequently assumed to describe the usual right skewed shape of the claim size

distributions. However, the exponential or gamma distributions are not always realistic models in practice

as they cannot capture multimodality, heavy-tails or extreme events which are usually exhibited in insurance

data, see e.g. Cizek et al. (2005). Alternatively, in this paper, we propose a renewal model where both inter-

arrival claims and claim sizes follow Coxian distributions. The class of Coxian distributions is dense in the set

of positive distributions and then, any positive density can be arbitrarily closely approximated by a Coxian

distribution, see e.g. Asmussen (2000). Moreover, the Coxian model is a phase-type distribution, see e.g.

Neuts (1981), which essentially means that the distribution can be decomposed in a number of exponential

stages and then, closed expressions concerning quantities of interest, such as the total claim amount, can be

obtained.

In practice, the distributions and parameter values describing the behaviour of claims are unknown and

an insurance company only have past information about the frequency and amount of losses. Assume for

example that the company have collected data during a past time period, ([0, T ], observing a sequence of

claims at times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T . Letting τj = tj − tj−1, for j = 1, ..., n, we obtain a data

sample of n inter-ocurrence times, Dτ = {τ1, ..., τn}, which have been assumed to be i.i.d. On the other hand,

suppose that the company have observed a sample of n claim sizes which have also been assumed to be i.i.d.

and independent of the inter-ocurrence time data. Note that insurance claim size data present frequently

left-censoring as some claim sizes are only known to be smaller than certain values, e.g. the deductibles,

and their precise values are not registered by the insurance company as it is not in charge of their payment.
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Then, assume that we have a data sample of left-censored claim sizes, DY = {(X1, δ1), . . . , (Xn, δn)} , with

Xj = max(Yj , Cj), where Yj is the value of the j-th claim size, Cj is the censoring variable and δj is the

censoring indicator variable such that δj = I (Yj ≥ Cj). Thus, given the observed claim inter-arrivals and

claim sizes, {Dτ ,DY }, which have been collected during a past time period, the insurance company is mainly

interested in the total number of claims and the total claim amount in future time periods.

In classical actuarial methods, model and parameter uncertainty is frequently ignored when making

predictions for future time periods. For example, the total claim amount distribution is usually estimated

based on fitted distributions for the inter-claim times and claim sizes distributions without considering

the parameter uncertainty. Alternatively, several statistical approaches can be adopted to measure the

uncertainty in the estimation of unobserved future variables. In particular, the Bayesian methodology

provides a natural way to calculate predictive distributions which are much more informative than simple

density point estimates, see e.g. Klugman (1992) and Dickson et al. (1998). Given past claim data, Bayesian

future predictions are based on the posterior predictive densities of the total claim count and the total claim

amount. Predictive distributions incorporate both the uncertainty due to the stochastic nature of the model

and the parameter uncertainty, see e.g. Cairns (2000). Finally, using Bayesian prediction, we can also obtain

credible intervals for the main characteristics of the total claim count and the total claim amount, such as

the mean, median, standard deviation, quantiles, etc.

In this paper, we adopt a Bayesian approach for the estimation of predictive distributions of the total

claim count and total claim amount in a future time period. Firstly, we carry out Bayesian density estimation

based on Coxian distributions for the random variables representing the inter-ocurrence times between claims

and the claim sizes. A non-informative prior density is defined for the Coxian parameters in order to develop

objective Bayesian inference. Our approach also includes the possibility of censored claim sizes. Given the

estimated inter-arrival time and claim size distribution, we obtain estimations of the predictive distributions

for the total number of claims and aggregate losses in a future time period. Furthermore, we explore the

same problem under the presence of deductibles and policy limits.

The rest of this paper is organized as follows. In Section 2, we introduce the Coxian distribution model

which is assumed for both the inter-claim times and the claim sizes. In Section 3, we describe a Bayesian

density estimation method for the Coxian distribution given past claim data. Section 4 is devoted to the

estimation of the distribution of the number of claims and the total claim amount in a future time period.

Section 6 describes how to estimate the aggregate claim distribution when deductibles and maximum limits

are applied to the individual losses. A real application of the proposed methodology is presented in Section

5. Results are compared with a different statistical approach, developed in González-Fragueiro et al. (2006),

based on nonparametric estimation and bootstrap methods. Section 6 concludes with some discussion.
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Figure 1: Graphical illustration of the Coxian distribution model.

2 The Coxian distribution model

In this paper, we assume that each inter-ocurrence time, τ , between two consecutive claims follows a Coxian

distribution model with parameters θτ = {L,P,λ}, where P = (P1, ..., PL) and λ = (λ1, ..., λL) , that is,

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η1, with prob = P1,

η1 + η2, with prob = P2,

...
...

η1 + ...+ ηL, with prob = PL,

(1)

where ηr ∼ exp (λr) and
LP
r=1

Pr = 1. Then, the corresponding density function of τ can be expressed in terms

of a mixture model,

f (τ | L,P,λ) =
LX
r=1

Prfr (τ | λ1, ..., λr) , τ > 0, (2)

where fr is the density function of a sum of r exponentials, also called generalized Erlang, whose density is

given by,

fr (τ | λ1, ..., λr) =
rX

t=1

⎛⎝Y
s6=t

λs
λs − λt

⎞⎠λt exp{−λtτ}, (3)

when all rates are distinct, see Johnson and Kotz (1970). Note that, without loss of generality, it can be

assumed that λ1 ≥ λ2 ≥ ... ≥ λL. Figure 1 shows a graphical illustration of this distribution model.

Throughout, we will also assume that the claim size random variable, Y, follows a Coxian distribution

model with parameters θY = {M,Q,µ}, where Q = (Q1, ..., QL) and µ = (µ1, ..., µL) , as described above.

Then, the density function is given by,

f (y |M,Q,µ) =
MX
r=1

Qr

rX
t=1

Ctr µt exp{−µty}, y > 0, (4)
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where,

Ctr =
tY

s=1,s6=t

µs
µs − µt

. (5)

The Coxian distribution model is very flexible and appropriate to capture the special features frequently

observed in insurance claim sizes such as long tails, multimodality and extreme events. In fact, due to the

denseness property of the Coxian distributions, it is possible to approximate any continuous density function

over the positive real line by increasing the number of mixture components, L. Note that the Coxian model

is a mixture of generalized Erlang distributions and then, it contains the exponential, Erlang and exponential

mixture distributions, as special cases.

In the next section, we describe how to develop Bayesian density estimation for this mixture model

assuming that all parameters, including the number of mixture components are unknown. We make use of

the reversible jump MCMC methods introduced in Richardson and Green (1997) for normal mixtures and

considered for many mixtures models in the literature, see e.g. Robert and Mengersen (1999), Gruet et al.

(1999), Wiper et al. (2001) and Auśın et al. (2004).

3 Estimation of the claim interarrival and claim size distributions

Given a sample of n inter-occurrence times between claims, Dτ = {τ1, ..., τn}, following a Coxian distribution

with parameters, θτ = (L,P,λ), we wish to develop Bayesian inference and estimate the density of τ given

the observed data, Dτ . Thus, we might define a prior distribution for the model parameters, π (θτ ) , and

obtain the posterior distribution,

π (θτ | Dτ ) ∝ l (θτ | Dτ )π (θτ ) , (6)

where l (θτ | Dτ ) is the likelihood function. Given the posterior distribution, a Bayesian density estimation

of the inter-arrival time is given by the posterior mean of the Coxian density function, called the predictive

density of τ ,

f (τ | Dτ ) =

Z
Θτ

f (τ | θτ )π (θτ | Dτ ) dθτ , (7)

where f (τ | θτ ) is the Coxian density model given in (2). Unfortunately, analytical calculus of the posterior

distribution (6) is not straightforward for the Coxian parameters, θτ . However, given a prior distribution,

Bayesian inference may be performed using MCMC methods. These involve the construction of a Markov

chain {θ(k)τ : k = 1, 2, ...}, where θ(k)τ =
³
L(k),P(k),λ(k)

´
, with the posterior distribution π (θτ | Dτ ) as

its stationary distribution, see e.g. Gilks et al. (1996). Using a sample {θ(1)τ , ..., θ(B1)
τ } of the posterior
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distribution π (θτ | Dτ ), the predictive density (7) can be approximated by,

f(τ | Dτ ) '
1

B1

B1X
k=1

f
³
τ | θ(k)τ

´
, (8)

where f(τ | θ(k)τ ) is the density function (2) given the k-th set of parameters, θ(k)τ , of the MCMC sample.

Now, we define a suitable prior distribution for θτ and describe an MCMC algorithm that can be used

to sample from the posterior distribution. Firstly, we reparametrize the rates, λ, as follows,

λr = λ1υ2...υr, where 0 < υs ≤ 1, for r, s = 2, ..., L.

This reparameterization facilitates the derivation of a noninformative prior distribution and a straightforward

implementation of the MCMC algorithm. This kind of reparameterization has also been considered in Robert

and Mengersen (1999) for normal mixtures, and in Gruet et al. (1999) for exponential mixtures.

We now define the following non-informative prior distribution for the Coxian model parameters,

L ∼ Uniform (0, 20)

P ∼ Dirichlet (1, ..., 1) ,

π(λ1) ∝
1

λ1

υr ∼ Uniform(0, 1), for r = 1, ..., L.

This prior choice allows for the approximation of long-tailed distribution because no strong assumptions are

imposed on the size of the first mixture rate, λ1, and then, the mean of the remaining mixture components

can take values as large or as small as required. Note that the joint prior distribution is improper, although

it can be shown that it leads to a proper posterior distribution extending the arguments given in Gruet et

al. (1999).

Next, we construct an MCMC algorithm in order to obtain a sample from the posterior distribution

of θτ = (L,P, λ1,υ). This can be carried out by cycling repeatedly through draws of each parameter

conditional on the remaining parameters. Thus, we need to be able to sample from the conditional posterior

distribution of each parameter. This is facilitated in mixture models with a data augmentation procedure,

see for example Richardson and Green (1997), where each inter-occurrence time, τj, is assumed to arise from

a specific but unknown mixture component, zj , which is introduced as a missing observation, for j = 1, ..., n.

Given the missing data, z = (z1, ..., zn), the MCMC algorithm has the following scheme:
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MCMC algorithm

1. Set initial values θ(0)τ =
³
L(0),P(0), λ

(0)
1 ,υ(0)

´
.

2. Update z by sampling from z(k+1) ∼ z | Dτ , L
(k),P(k), λ

(k)
1 ,υ(k).

3. Update P by sampling from P(k+1) ∼ P | Dτ , z
(k+1), L(k).

4. Update λ1 by sampling from λ
(k+1)
1 ∼ λ1 | Dτ , z

(k+1), L(k),υ(k).

5. For r = 1, ..., L(k) :

Update υr by sampling from υ
(k+1)
r ∼ υr | Dτ , z

(k+1), L(k), λ
(k+1)
1 , υ

(k+1)
1 , ..., υ

(k+1)
r−1 , υ

(k)
r+1, ..., υ

(k)

L(k)
.

6. Update L by sampling from L(k+1) ∼ L | Dτ , z
(k+1),P(k+1), λ

(k+1)
1 ,υ(k+1).

7. k = k + 1. Go to 2.

In step 2, we sample from the conditional posterior distribution of z which is given by, for j = 1, ..., n,

Pr (zj = r | τj , L,P, λ1,υ) ∝ Prfr (τj | λ1, υ2, ..., υr) , for r = 1, ..., L,

where fr (τ | λ1, υ2, ..., υr) denotes the reparametrized Coxian density fr(τ | λ1, λ2, .., λr) given in (3).

In step 3, we sample from the conditional posterior distribution for the mixture weights which can be

shown to be given by,

P | τ , z, L ∼ Dirichlet(1 + n1, ..., 1 + nL),

where nr is the number of observations assigned to the r-th mixture component, for r = 1, ..., L.

In step 4, we sample from the conditional posterior distributions of λ1 whose density functions can be

evaluated up to the integration constants as,

π (λ1 | Dτ , z, L,υ) ∝
nQ
j=1

fzj
¡
τ | λ1, υ2, ..., υzj

¢
π (λ1) . (9)

Although we can not sample directly from this posterior distribution, we can make use of the Metropolis

Hastings method, see Hastings (1970), using a gamma candidate distribution. We generate a candidate

λ̃1 ∼ G
¡
2, 2/λ(k)

¢
which is accepted with probability,

min

⎧⎨⎩1, π
³
λ̃1| · · ·

´
G
³
λ
(k)
1 | λ̃1

´
π
³
λ
(k)
1 | · · ·

´
G
³
λ̃1 | λ(k)1

´
⎫⎬⎭

where π(λ̃1| · · · ) is given in (9) and G(λ̃1 | λ(k)1 ) is the gamma density used to generate λ̃1.
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In step 5, we sample from the conditional posterior distributions,

π (υr | Dτ , z, L, λ1,υ−r) ∝
nQ

j=1,zj≥r
fzj
¡
τj | λ1, υ2, ..., υzj

¢
π (υr) , for r = 2, ..., L,

where υ−r = (υ1, ..., υr−1, υr+1, ..., υL) . As before, we can make use of a Metropolis Hastings algorithm using

a beta candidate distribution to sample from this distribution.

In step 6, we can not either sample directly from the conditional posterior distribution of the mixture

size, L. However, we can generate values from this distribution by using the reversible jump methods

introduced for normal mixture models by Richardson and Green (1997). This procedure is a generalization

of the Metropolis Hastings algorithms for variable dimension parametric spaces, where candidate values are

proposed to change the number of mixture components from L to L ± 1. We consider the so called split

and combine moves where one mixture component, r , is split into two adjacent components, (r1, r2). We

consider analogous movements to the proposed in Gruet et al. (1999) for exponential mixtures.

The MCMC algorithm generates values from a Markov chain whose stationary distribution is the joint

posterior distribution of interest. Thus, in order to reach the equilibrium, we generate B0 burnin iterations,

which will be discarded, followed by another B1 iterations “in equilibrium” that will be used for the inference.

In the real application we have set B0 = B1 = 10 000. Given the MCMC sample of size B1, {θ(1)τ , ..., θ(B1)
τ },

we can now approximate the predictive density, f (τ | Dτ ), of the inter-arrival time between claims, τ, using

the approximation (8) based on the sample posterior densities {f(τ | θ(1)τ ), ..., f(τ | θ(B1)
τ )}. Also the

posterior median and 95% credible intervals for the density can be obtained by just calculating the median

and the 0.025 and 0.975 quantiles of this posterior sample, respectively. Analogously, we can approximate

the posterior mean, median and confidence intervals for the cumulated distribution function, F (τ | Dτ ).

Now, we consider Bayesian inference for the claim size variable, Y, which has been assumed to follow

a Coxian distribution with parameters, θY = (M,Q,µ), given the data sample of n possibly left-censored

claim sizes, DY = {(X1, δ1), . . . , (Xn, δn)} , as described in the introduction.

Censoring can be easily incorporated in an MCMC algorithm by using a data augmentation method as

follows. A new set of missing latent variables, y = (Y1, ..., Yn), is introduced such that Yj = Xj if δj = 1, and

Yj follows a Coxian distribution with parameters θY truncated to Yj < Cj if δj = 0. These missing data set

are considered as a new set of parameters that are updated in each iteration of the previous MCMC algorithm

by including a new step before step 2. In this new step, the missing values Yj with δj = 0 are simulated

from a Coxian random variable conditioned to be less than Cj , for j = 1, ..., n. Given the completed data

in each iteration, the remaining steps of the MCMC algorithm do not change as the conditional posterior
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distributions of the remaining parameters are the same as before.

Given the MCMC sample of size B1 from the joint posterior distribution of θY , we can estimate the

predictive density associated to the claim size using,

f(y | DY ) '
1

B1

B1X
k=1

f
³
y | θ(k)Y

´
, (10)

where f(y | θ(k)τ ) is given in (4). Analogously, the cumulative distribution F (y | DY ) can be estimated.

4 Estimation of the claim count and claim amount distribution

In this section, we are interested in the estimation of the total claim count and the total claim amount in

a future time period given past data = {Dτ ,DY } on claim inter-arrivals and claim sizes. For simplicity

of notation, we reset to zero the initial time of the future period such that we are concerned with the

distributions of N (t) and S (t). A Bayesian estimation of these distributions could be obtained by calculating

the posterior means of their cumulative distributions, also called their predictive cumulative distribution

functions,

Pr (N (t) ≤ m | data) =
Z
Θ

Pr (N (t) ≤ m | θ)π (θ | data) dθ, (11)

and,

Pr (S (t) ≤ x | data) =
Z
Θ

Pr (S (t) ≤ x | θ)π (θ | data) dθ, (12)

where θ = {θτ ,θY } are the model parameters of the Coxian distributions of τ and Y, and π (θ | data) is the

joint posterior distribution of these parameters given the observed data. Clearly, we do not have a explicit

expression of these predictive distributions, but we can make use of the MCMC sample simulated from the

posterior distribution, π (θ | data) , in the previous section, and approximate (11) and (12) by,

Pr (N (t) ≤ m | data) ' 1

B1

B1X
k=1

Pr
³
N (t) ≤ m | θ(k)

´
, (13)

and,

Pr (S (t) ≤ x | data) ' 1

B1

B1X
k=1

Pr
³
S (t) ≤ x | θ(k)

´
, (14)

respectively. In order to obtain these approximations, we also need explicit expression of the distributions of

N (t) and S (t) when the model parameters are known. That is, we need to know the value of the probabilities

Pr (N (t) ≤ m | θ) and Pr (S (t) ≤ u | θ) , given a set of fixed Coxian parameters of the distributions of the

inter-arrival claim time, τ, and the claim size, Y . Although these probabilities are not known directly, we can
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obtain closed expressions of their Laplace transforms, which can be numerically inverted using for example

the Euler algorithm, see Abate and Whitt (1992), which is quite fast an accurate.

Let us first consider how to obtain the Laplace transform of the probability Pr (N (t) ≤ m | θ). Note that

we assume now that the inter-arrival parameters θτ = (L,P,λ) are fixed. It is well known that in a renewal

process, as the considered claim arrival process, we have that, see e.g. Rolski et al. (1999),

Pr (N (t) ≥ m | θτ ) = Pr

⎛⎝ mX
j=1

τj ≤ t | θτ

⎞⎠ , (15)

The Laplace transform of the inter-arrival time, τ, which follows a Coxian distribution with parameters

θτ = (L,P,λ), is given by,

f∗τ (s | θτ ) = E
£
e−sτ | θτ

¤
=

LX
r=1

Pr

rY
i=1

µ
λi

λi + s

¶
. (16)

Then, the Laplace transform of the variable
Pm

j=1 τj , which is a sum of m Coxian variables, is the product

of the m Laplace transform of each Coxian distribution, that is,

f∗Στ (s | θτ ) = E

∙
e
−s
Pm

j=1τj | θτ
¸
=

"
LX
r=1

Pr

rY
i=1

µ
λi

λi + s

¶#m
.

And the Laplace transform of the cumulated distribution function of
Pm

j=1τj is given by,

F ∗Στ (s | θτ ) =
Z ∞
0

e−st Pr

⎛⎝ mX
j=1

τj ≤ t | θτ

⎞⎠ dt =
1

s

"
LX
r=1

Pr

rY
i=1

µ
λi

λi + s

¶#m
.

Finally, using the relation (15), we obtain that the Laplace transform of the probability of interest is given

by, Z ∞
0

e−st Pr (N (t) ≤ m | θτ ) dt =
1

s

⎛⎝1− " LX
r=1

Pr

rY
i=1

µ
λi

λi + s

¶#m+1⎞⎠ .

Then, given t, this Laplace transform can be numerically inverted for m = 0, 1, 2, ... to obtain the probability

Pr(N (t) ≤ m | θ(k)) for each value of the Coxian parameters θ(k) in the MCMC sample such that we can

evaluate the approximated predictive probabilities given in (13).

Using the obtained probabilities, Pr(N (t) = m | θ(k)), it is also possible to approximate the predictive
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mean of N (t) by,

E [N (t) | data] ' 1

B1

B1X
k=1

E
h
N (t) | θ(k)

i
=

1

B1

B1X
k=1

∞X
m=0

mPr
³
N (t) = m | θ(k)

´
. (17)

Furthermore, we can obtain a 95% predictive interval for the estimated mean by just calculating the 0.025 and

0.975 quantiles of the posterior sample of means, {E[N (t) | θ(1)], ..., E[N (t) | θ(B1)]}. Using an analogous

approach, we can estimate other characteristic measures of N (t) such as the variance, median, quantiles,

etc., together with their predictive intervals. Note that, in practice, we must truncate the infinite sum in

(17) up to a finite value m0 such that P (N (t) ≥ m0 | θ(k)) is very small.

Now, we consider how to obtain the Laplace transform of the probability Pr (S (t) ≤ x | θ). Note that we

assume now that the inter-arrival parameters, θτ = (L,P,λ), and the claim size parameters, θY = (M,Q,µ),

are fixed. It can be shown that the Laplace transform of an aggregate loss random variable, such as S (t) ,

is given by, see e.g. Rolski et al. (1999),

f∗S(t) (s | θ) = g∗N(t) [f
∗
Y (s | θY ) | θτ ] , (18)

where g∗N(t) [s] is the probability generating function of the claim count random variable N (t) and f∗Y (s | θY )

is the Laplace transform of the claim size, Y , which follows a Coxian distribution with parameters θY =

(M,Q,µ), and is given by,

f∗Y (s | θY ) = E
£
e−sY | θY

¤
=

MX
r=1

Qr

rY
t=1

µ
µt

µt + s

¶
. (19)

Then, from (18) we obtain that,

Z ∞
0

e−sx Pr (S (t) ≤ x | θ) dx = 1

s

∞X
m=0

"
MX
r=1

Qr

rY
t=1

µ
µt

µt + s

¶#m
Pr (N (t) = m) . (20)

Thus, given t and the probability distribution of N (t) obtained previously, this Laplace transform can be

numerically inverted in order to obtain the probability Pr(S (t) ≤ x | θ(k)) for each MCMC iteration and

use the approximation given in (14). Note that, in practice, we must truncate the infinite sum in (20) up to

the previously chosen finite value m0 such that P
³
N (t) ≥ m0 | θ(k)

´
is very small.

We can also obtain estimations of the mean and variance of S (t) using the following known relationships,
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see e.g. Rolski et al. (1999),

E [S (t) | θ] = E [N (t) | θτ ]×E [Y | θY ] ,

V [S (t) | θ] = E [N (t) | θτ ]× V [Y | θY ] +E [Y | θY ]2 V [N (t) | θτ ] ,
(21)

which can be obtained explicitly considering that the claim size random variable, Y, follows a Coxian distri-

bution a Coxian distribution with parameters θY = (M,Q,µ), and then,

E [Y | θY ] =
MX
r=1

Qr

rX
s=1

1

µs
,

E
£
Y 2 | θY

¤
=

MX
r=1

Qr

⎡⎣ rX
s=1

2

µ2s
+ 2

rX
s6=t

1

µsµt

⎤⎦ .
Then, the predictive mean of S (t) can be approximated by,

E [S (t) | data] ' 1

B1

B1X
k=1

E
h
S (t) | θ(k)

i
=

1

B1

B1X
k=1

E
h
N (t) | θ(k)τ

i
×E

h
S (t) | θ(k)Y

i
.

As before, we can also obtain predictive intervals for the mean of S (t) using the percentiles of the pre-

dictive sample of means, {E[S (t) | θ(1)], ..., E[S (t) | θ(B1)]}, and analogously, we can estimate the other

characteristic measures of S (t) such as the variance, median, quantiles, etc., together with their predictive

intervals.

5 Estimation under deductibles and maximum limits

In this section, we consider the estimation of the total claim amount distribution when claims are are subject

to deductibles and limits. This is a more realistic situation in practice since most insurance contracts contain

this kind of clauses. In these cases, the insurer will not pay those losses which are smaller than a previously

fixed amount, which is called the deductible, and this amount will be deducted from all payments. Further,

a maximum amount, called the limit, is also predetermined in the policy such that the insurer will not pay

more than this limit amount minus the deductible. Then, for each claim size, Y , we have the following layer

representing the loss from an excess-of-loss cover,

Ỹ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 0 < Y < a,

Y − a, if a ≤ Y < b,

b− a, if b ≤ Y ≤ ∞,

(22)
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where a is the deductible, also called the attachment point, and b is the limit, see e.g. Klugman et al. (2004).

Thus, the interest is now focussed on the estimation of the following aggregate claim amount,

S̃ (t) =
N(t)P
j=1

Ỹj ,

where Ỹj is obtained from the j-th claim size, Yj , according to the relation (22).

A Bayesian estimation of the distribution of S̃(t) can be obtained using a similar approach to the described

in the previous section as follows. Firstly, assume that the Coxian inter-arrival parameters, θτ = (L,P,λ),

and the claim size parameters, θY = (M,Q,µ), are fixed. Note that analogously to (18), the Laplace

transform of S̃(t), is given by,

f∗
S̃(t)

(s | θ) = g∗N(t)
£
f∗
Ỹ
(s | θY ) | θτ

¤
, (23)

where the Laplace transform of the variable Ỹ , defined in (22), which can be obtained using the Coxian

density (4) as follows,

f∗
Ỹ
(s | θY ) =

Z ∞
0

e−sỹf (ỹ | θY ) dỹ

= es0 Pr (Y < a | θY ) + esa
Z b

a

e−syf (y | θY ) dy + e−s(b−a) Pr (Y > b | θY )

=
MX
r=1

Qr

rX
t=1

Ctr

"Z a

0

µte
−µtydy + esa

Z b

a

µte
−(s+µt)ydy + e−s(b−a)

Z ∞
b

µte
−µtydy

#

=
MX
r=1

Qr

rX
t=1

Ctr

∙
1 +

³
e−µta − e−µtb−(b−a)s

´µ µt
µt+s

− 1
¶¸

,

where Ctr are the coefficients given in (5). Then, we can now invert the Laplace transform of S̃(t) for each

set of the parameters, θ(k), in the MCMC sample,

Z ∞
0

e−sx Pr
³
S̃ (t) ≤ x | θ(k)

´
dx =

1

s

∞X
m=0

h
f∗
Ỹ

³
s | θ(k)

´im
Pr
³
N (t) = m | θ(k)

´
,

and estimate the predictive distribution of S̃(t) using the following montecarlo approximation as usual,

Pr
³
S̃ (t) ≤ x | data

´
' 1

B1

B1X
k=1

Pr
³
S̃ (t) ≤ x | θ(k)

´
. (24)

As in the previous section, we can also estimate the main characteristics of S̃(t) such as the mean,

variance, quantiles, etc. using the mean of their values for each set of parameters in the MCMC sample. In

13



particular, we use the following formulae analogous to (21) to obtain the mean and variance for each θ,

E
h
S̃ (t) | θ

i
= E [N (t) | θτ ]×E

h
Ỹ | θY

i
,

V
h
S̃ (t) | θ

i
= E [N (t) | θτ ]× V

h
Ỹ | θY

i
+E

h
Ỹ | θY

i2
V [N (t) | θτ ] ,

where,

E
h
Ỹ | θY

i
= E [Y − a | a < Y < b, θY ] Pr (a < Y < b | θY ) + (b− a) Pr (Y > b | θY )

=
MX
r=1

Qr

MX
r=1

Ctr

"Z b

a

yµte
−µtydy − a

Z b

a

µte
−µtydy + (b− a)

Z ∞
b

µte
−µtydy

#

=
MX
r=1

Qr

MX
r=1

Ctr

∙
e−µta − e−µtb

µt

¸

and,

E
h
Ỹ 2 | θY

i
= E

h
(Y − a)2 | a < Y < b, θY

i
P (a < Y < b | θY ) + (b− a)2 P (Y > b | θY )

=
MX
r=1

Qr

MX
r=1

Ctr

"Z b

a

(y − a)2 µte
−µtydy + (b− a)2

Z ∞
b

µte
−µtydy

#

=
MX
r=1

Qr

MX
r=1

Ctr

∙
2e−µta

µ2t
− 2e

−µtb

µ2t
(1 + (b− a)µt)

¸
.

Finally, note that the same procedure can be considered for the estimation of the distribution, main

characteristics and confidence intervals for the total claim amount with alternative layer specifications to the

given in (22) such as,

Ỹ =

⎧⎪⎨⎪⎩ Y, if 0 < Y < a,

a, if a ≤ Y <∞,

which may be of the interest of the insured customer, or,

Ỹ =

⎧⎪⎨⎪⎩ 0, if 0 < Y < b,

Y − b, if b ≤ Y <∞,

which may be useful for the reinsurance company.
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6 Application to real data

In this section, we illustrate our methodology with a real data set provided by the insurance department of

an international company. A large data base was collected containing the dates and amounts of claims in

different sectors of activity in the company, such as commerce, transportation, public liability, etc. Claim

sizes presented left-censoring because those values smaller than previously fixed deductibles were not recorded

by the insurer company as it was not responsible of their payment. To preserve confidentiality, these original

data have been rescaled (multiplied by a constant) in this section.

We show here the results concerning two sectors of activity, namely, sector C and sector T, using two

random subsamples from the original data. The sample of sector C contains 600 observations, with 200

left-censored claim sizes, and the sample of sector T is given by 400 observations, with 100 left-censored

claim sizes, both observed during a past time interval. Assume, for example, that the company is interested

in making predictions for a future time period whose length is given by 200 units of time. Thus, we wish to

estimate the distributions of the total number of claims, N (200) , and the total claim amount, S (200) , in

this future time period for each sector separately and for the two sectors jointly. In the next subsections, we

firstly present the results obtained for sector C and then, the results for sectors C and T jointly, which have

been called the global sector.

6.1 Analysis of sector C

From this sector, we have a sample of 600 complete inter-ocurrence times and 600 left-censored claim sizes.

Table 1 shows some summary statistics of these data. Note that the statitistics for the censored claim size

variable, Y , have been calculated using the Kaplan-Meier weights.

τ Y
Mean 0.8381 2059.71
Median 0.5602 641.90
Std. Deviation 0.9892 4390.48
Skewness 2.6269 5.158
Kurtosis 11.7487 33.910
Percentile 95 2.8661 8 228.83
Percentile 99 4.3187 26 563.05

Table 1: Summary statistics for the sample of inter-claim times, τ , and claim sizes, Y , in sector C.

Firstly, we consider the sample of 600 complete inter-ocurrence times, τ , observed in sector C. The MCMC

algorithm introduced in Section 3 is run with B0 = 10 000 burn-in iterations and B1 = 10 000 iterations “in

equilibrium”. To assess the convergence of the Markov chain, we use the convergence diagnostic proposed in
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Figure 2: Empirical (dotted) and Bayesian estimation (solid) of the cumulative distribution function of the
inter-ocurrence time between claims in sector C.

Geweke (1992). Figure 2 illustrates the empirical and the Bayesian estimation of the cumulative distribution

function of the inter-ocurrence time between claims in sector C.

Now, we analyze the claim size distribution using the sample of 600 claim sizes, with 200 left-censored

data, observed in sector C. We run the MCMC algorithm described in Section 3 for left-censored data

using the same number of iterations as before and checking the convergence with the Geweke’s statistic.

Figure 3 shows the empirical and Bayesian estimation of the cumulative distribution function for the claim

size in sector C. The empirical distribution have been obtained using the usual Kaplan-Meier estimator for

right-censored data after multiplying each observation by −1 plus the maximum of the data sample.

Next, we develop Bayesian prediction for the total claim count and the total amount random variables

in a future time period. Using the MCMC output and following the approach described in Section 4, we

firstly estimate the cumulative distribution function of the total number of claims, N (200) , that will occur

in sector C up to time t = 200. Figure 4 shows the posterior mean, obtained with (13), the posterior median

and 95% predictive intervals, obtained as described in Section 4. Observe that the predictive intervals are

quite symmetric for the values of m which are close to the mean of the variable, and are left and right-skewed

for values of m that are quite smaller and larger, respectively, than the mean of N (200). Nevertheless, their

amplitudes are not very wide, meaning that the estimated probabilities are fairly accurate.

Table 2 shows the posterior means and 95% credible intervals for the main characteristic measures
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Figure 3: Empirical (dotted) and Bayesian estimation (solid) of the cumulative distribution function for the
claim sizes in sector C.
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Figure 4: Posterior mean, median and 95% credible interval for the cumulative distribution function of the
number of claims, N (200) , up to time t = 200 in sector C.
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associated with N (200) using the proposed Bayesian approach described in Section 4. These results are

compared with those obtained with a nonparametric approach developed Gonález-Fragueiro et al. (2006)

using the same real data set. Note that the results are comparable and the Bayesian credible intervals

always include the nonparametric point estimations and viceversa.

Measure BY estimation 95% BY interval NP estimation 95% NP interval
Mean 238.53 217.17 260.99 231.72 208.73 251.17
Median 238.31 217.00 261.00 231.00 207.00 250.00
Std. dev. 17.81 16.25 19.63 17.37 15.67 19.21

0.95 quantile 268.19 246.00 292.00 261.00 238.00 282.00
0.99 quantile 280.91 258.00 305.00 272.00 247.00 293.00

Table 2: Bayesian estimates (BY) and 95% credible intervals of some characteristic measures of N (200),
compared with the equivalent nonparametric (NP) point estimates and 95% confidence intervals in sector C.

Now, we present the results obtained for the total claim amount random variable. Figure 5 illustrates

the Bayesian estimations of the cumulative distribution function of the total claim amount, S (200) , that

will be paid in sector C in the next 200 units of time. Again we obtain the posterior mean, obtained with

(14), the posterior median and 95% credible intervals as described in Section 4. As before, the credible

intervals are quite symmetric when x is close to the mean of S (200), and left and right-skewed when x is

rather smaller and larger, respectively, than it. However, as before, there is not a large uncertainty in the

estimated probabilities.

Table 3 shows the Bayesian (BY) and nonparametric (NP) point estimations and 95% confidence intervals

for the main characteristic measures associated with S (200) . Estimation results are again comparable.

Measure BY estimation 95% BY interval NP Estimation 95% NP interval
Mean 496 818.42 406 103.26 605 286.56 539 260.85 344 325.73 609 162.04
Median 492 454.10 402 153.98 599 364.54 532 485.13 347 352.02 604 282.41
Std. dev. 77 860.13 61 817.98 102 269.34 96 871.05 27 508.60 110 454.63

0.95 quantile 631 955.73 516 584.37 775 230.65 707 480.58 392 685.38 788 830.90
0.99 quantile 696 602.77 569 205.56 858 758.21 794 422.38 393 147.98 887 291.18

Table 3: Bayesian estimates (BY) and 95% credible intervals of some characteristic measures of S (200),
compared with the equivalent nonparametric (NP) point estimates and 95% confidence intervals in sector C.

Finally, we analyze the same problem when the coverage is restricted by a deductible and maximum

limit. Assume for example that the insurance policy for sector C includes a deductible amount of a = 12 000

and a maximum limit of b = 16 000 monetary units. Then, we can estimate the distribution of total claim

amount S̃(t) as described in Section 5. Figure 6 illustrates the posterior mean, obtained with (24), the

posterior median and 95% credible intervals for the cumulative distribution function of S̃(t). Table 4 shows
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Figure 5: Posterior mean, median and 95% credible interval for the cumulative distribution function of the
total claim amount, S (200) , up to time t = 200 in sector C.

the estimated characteristics of this distribution with 95% credible intervals. Again in this case, these are

we compared with the estimations obtained in Gonález-Fragueiro et al. (2006) leading to similar results.

Measure BY estimation 95% BY interval NP Estimation 95% NP interval
Mean 25 313.12 15 589.21 37 412.36 36 504.26 15 277.85 44 843.92
Median 24 660.22 15 048.96 36 716.66 35 796.55 14 451.90 43 927.78
Std. dev. 9 640.26 7 546.71 11 885.85 11 618.72 8 895.56 13 283.07
0.95 quant. 42 230.53 28 970.45 58 104.65 56 754.88 31 315.10 67 986.48
0.99 quant. 50 403.21 35 813.18 67 637.69 66 162.25 38 920.00 78 510.05

Table 4: Bayesian estimates (BY) and 95% credible intervals of some characteristic measures of S̃ (200),
compared with the equivalent nonparametric (NP) point estimates and 95% confidence intervals in sector C.

6.2 Analysis of the global sector

We now present the results obtained for the two sectors jointly. Thus, we have a complete sample of 1000

inter-occurence times between claims and a sample of 1000 claim sizes, with 300 left-censored data. For

each of the two data samples, we run the corresponding MCMC algorithm described in Section 4. Using the

MCMC output, we are able to estimate the distributions and main characteristic measures of the total claim

count, NG (200) , and the total claim amount, SG (200) , that will be observed in the global sector using the
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Figure 6: Posterior mean, median and 95% credible interval for the cumulative distribution function of the
total claim amount, S̃ (200) , up to time t = 200 with a deductible amount, a = 12 000, and a limit amount,
b = 16 000, in sector C.

proposed procedure described in Section 4.

Tables 5 and 6 presents the Bayesian estimation results and predictive intervals with α = 0.05 for the

main characteristic measures associated to NG (200) and SG (200) , respectively. These are compared with

the equivalent nonparametric point estimates and confidence intervals. Observe that also for the global

sector the estimation results obtained with both approaches are rather comparable.

Measure BY estimation 95% BY interval NP Estimation 95% NP interval
Mean 399.28 369.71 429.49 385.23 354.34 411.85
Median 399.14 370.00 429.00 385.00 354.00 412.00
Std. dev. 24.12 22.11 26.73 23.24 21.21 25.48

0.95 quantile 439.18 409.00 471.00 423.00 391.00 449.00
0.99 quantile 456.03 425.00 489.00 438.00 405.00 464.00

Table 5: Bayesian estimates (BY) and 95% credible intervals of some characteristic measures of NG (200),
compared with the equivalent nonparametric (NP) point estimates and 95% confidence intervals for the
global sector.
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Measure BY estimation 95% BY interval NP Estimation 95% NP interval
Mean 1 211 905.35 1 005 404.50 1 484 856.03 1 282 345.55 806 030.49 1 424 752.83
Median 1 197 517.98 994 806.52 1 461 266.93 1 262 393.83 812 525.45 1 403 843.83
Std. dev. 191 285.88 140 767.39 279 941.64 229 816.85 35 309.81 275 564.40
0.95 quant. 1 548 429.41 1 259685.00 1 963 150.76 1 696 326.32 882 639.23 1 914 863.11
0.99 quant. 1 716 911.07 1 383 157.37 2 206 583.17 1 901 194.91 820 948.52 2 149 454.59

Table 6: Bayesian estimates (BY) and 95% credible intervals of some characteristic measures of SG (200),
compared with the equivalent nonparametric (NP) point estimates and 95% confidence intervals for the
global sector.

7 Comments and extensions.

We have developed a Bayesian approach to make inference for insurance aggregate loss models. A semipara-

metric density approximation based on Coxian distributions have been proposed for the estimation of the

claim inter-arrival and claim size distributions. We have constructed an MCMC algorithm to obtain samples

from the posterior distribution of the model parameters and then, we have combined this with Laplace in-

version methods to make predictions about the total number of claims and total claim amount in future time

periods. We have illustrated the proposed procedure with a real data set from the insurance department of

a commercial company. The estimation results have shown to be comparable with those obtained with a

non parametric approach developed in Gonález-Fragueiro et al. (2006).

A notable difference between the results obtained with the Bayesian and the nonparametric approach

is that point estimations of individual and aggregate claim sizes are in general larger with the proposed

Bayesian method. This can be due to differences in the tail estimation with both approaches. Note that

the Bayesian procedure is based on the Coxian distribution which is a parametric model and then, assigns

a positive (small) probability for very large claim sizes. In contrast, the nonparametric procedure gives zero

probability for those values which are larger than the maximum observed claim size. A second difference

between the results obtained with both approaches is that confidence intervals are in general narrower with

the Bayesian approach. The most probable reason for this is that the uncertainty is usually smaller using

a parametric method and then, provided that the parametric model is adequate, it leads to more accurate

estimations. Finally, the computational cost is sensibly larger using the proposed Bayesian approach than

the nonparametric method. For example, the total computational cost required to obtained all predictive

distributions, main characteristic measures and predictive intervals for three sectors individually and globally

was approximately 18 hours, while the nonparametric approach required approximately 11 hours, using

MATLAB (The MathWorks, Inc.) with both procedures.

Although the proposed Bayesian MCMC algorithm has been constructed for possibly left-censoring data,
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it is straightforward to modify it for the case of right-censoring or for the case that there are both right and

left-censored data in the sample. In these cases, we simply update the missing data in each MCMC iteration

by simulating from the corresponding Coxian distribution truncated to the non-censored region.

We have found that eventually a large number of mixture components are obtained with some over-fitting

problems such as giving a single mixture component for a small data subset of close to zero values. One

possibility could be assuming a Poisson prior distribution on the mixture size in order to penalize a large

number of components in the mixture.

Both claim arrival and claim size processes have been assumed to be renewal sequences of i.i.d. random

variables. This assumptions could not be very realistic in some practical situations where, for example,

time of day effects produce non-stationarity. Thus, more generally, we could assume for example a Markov

modulated claim arrival process and use the Bayesian procedure proposed in Scott and Smyth (2003) for

this process, such that we could extend our approach for this case and make inference for the claim count

and claim size random variables.

Finally, we could also extend our approach to make inference about other quantities of interest in insurance

aggregate loss models, such as the probability of ruin. An advantage of the Coxian model is that it is a

phase-type distribution and then, explicit expression for the ruin probabilities can be obtained when the

model parameters are known. Using this results, we could apply a similar approach to the proposed in this

article to make Bayesian inference on these probabilities. Related ideas are developed in Bladt et al. (2003).
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