Nonparametric Mixed Effects Models with
applications to Small Area Statistics:
Estimation and Parameter Choice

Maria Dolores Martinez Miranda *
Universidad de Granada

Abstract

Nonparametric modelling offers new perspectives for various problems
typically faced in small area statistics. A main purpose of small area statis-
tics is the estimation of parameters or prediction of variables for each of the
(geographical, climatic, etc.) area the given data are clustered by. In this
work we formulate a nonparametric one-way model which allows to analyze
data with special correlation structure as small area statistics, among other
relevant problems like longitudinal and clustered data. To estimate pop-
ulation parameters as the mean function, the classical approach for small
area prediction is based on parametric (linear) mixed models. The flexibil-
ity of the nonparametric modelling can play an important role in exploring
longitudinal/clustered data, and also it offers new perspectives for various
problems typically faced in small area statistics. Among the nonparametric
approaches the kernel methods as Local Polynomial Smoothers (Fan and Gi-
jbels 1996) are intuitive and simple exhibiting nice theoretical and practical
properties which make them very popular in a wide range of statistics prob-
lems. The local polynomial methods have been explored in mixed models
for the last three decades. Maybe the paper of Lin and Carroll (2000) was
that most popularized these methods in longitudinal/clustered data analy-
sis. The generalized estimating equation (GEE) introduces kernel-weights
to take into account only observations in a neighborhood which is controlled
by the bandwidth or smoothing parameter, and then a parametric model is
assumed only locally. Different ways to introduce the kernel-weights provide
different estimators exhibiting different theoretical and practical properties.
Several of these estimators are presented and explored in this work and also
the problem of choosing the smoothing parameter is addressed. Standard
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nonparametric methods without involving the correlation structure are not
suitable because they cannot pick up the extra variability. Previous works
in this problem focus mainly in cross-validation strategies (Wu and Zhang
2002, Park and Wu 2006, Gu and Ma 2005, Xu and Zhu 2009). We pro-
pose to use resampling methods to solve the bandwidth choice problem in
the spirit of the previous works of Gonzélez-Manteiga et al. (2004) and
Martinez-Miranda et al. (2008). Bootstrap approximations of the Mean
Squared Error provide simple local bandwidth selectors for the nonparamet-
ric estimators.

1 Introduction

Parametric (usually linear) mixed effects models and their extensions, generalized
parametric mixed effects models become popular statistical modelling approaches
for analyzing data with special correlation structure. To consider the usually called
“within-subject correlation” allows to deal with longitudinal and clustered data
which naturally arise for example in biomedical studies. Also mixed effects models
are particular suitable for small-areas estimation (Jiang and Lahiri 2006). In fact
these models incorporate area-specific random effects modelling the additional be-
tween area variations which cannot be explained by the fixed effect component.
Statistical inference with linear mixed effect models has also been studied a lot
in the context of panel data analysis (see for example Verbeke and Molenberghs
2000, Diggle et al. 2002). However parametric formulations may not always be
desirable because in many situations the dependence on covariates exhibits more
complicated manners. In the last years there has been a notable interest in ex-
tending parametric models to more flexible nonparametric formulations (see for
example Wu and Zhang 2006 for a recent and complete review).

In this paper we are interested in a one-way model with the following nonparamet-
ric formulation:

q
yij:m(xij)—l—vi(zij)—i—aij, jzl,...,ni, i:17...,q, Zni:n, (11)
i=1

with y;; being the observed responses and x;; (k x 1) and z;; (r x 1) observable
covariates. Here m(x;;) represents the fixed effect or population function, v;(z;;)
are the random-effects functions. The residual errors, €;;, are supposed to be
independent with mean 0 and variances 0?(x;;) (assuming a general heterocedastic
situation). Also v;(z;;) and ¢;; are independent, where v;(z;;) can be considered
realizations of a mean 0 smooth process with a covariate function v(z;j,,2;;,) =

Elvi(zij, )vi(2ij,)]-
The model (1.1) allows to generalize many interesting problems such as longitu-
dinal data, clustered data, nested-error regression models and random regression



coefficient models, among others. More specifically such models arisen in the fol-
lowing way.

Longitudinal data. Consider a longitudinal study involving ¢ subjects, where y;; is
taken from subject ¢ in the time point x;; = ¢;; (j = 1,...,n;). Observations from
different subjects are independent, while observations from the same subject are
naturally correlated. The intra-subject correlation may be modeled by v;(z;;) =
v;(t;;), these random effects can be interpreted as the subject effects which are
usually called “real effects”.

Clustered data. Consider observations from ¢ clusters, such as in multicenter stud-
ies, where y;; is taken from cluster ¢; with covariate x;; (j = 1,...,n;). Obser-
vations from different clusters are independent, while observations from the same
cluster may be correlated to various degrees. The intra-cluster correlation is usu-
ally modeled by v;(z;;) = b.,. Here the random effects b., are considered “latent
effects”.

The Nested-error regression models proposed by Battese et al. (1988) suppose a
population divided into g small areas (geographical areas), being n; the number
of sampled units in the area ith. Let y;; be the character of interest (response
variable) observed for the jth sampled unit in the 7th sample area and x;; the
corresponding values of a covariate (vector of k auxiliary variables).

A more general model in small areas is the random regression coefficient model
proposed by Dempster et al. (1981). The model is a (unidimensional) linear
regression model including a random slope

yij = B;UZ']’ + blx” -+ gij-

The flexibility of model (1.1) can play an important role in exploring longitu-
dinal/clustered data. Also nonparametric modelling offers new perspectives for
various problems typically faced in small area statistics. Evidently, apart from
more flexible modelling of either the variances (Gonzalez-Manteiga et al. 2009)
or the mean function (Opsomer et al. 2008), it can be also used for data mining
(Lombardia and Sperlich 2008) and specification testing (see Claeskens and Hart
2009).

Motivated from the above described appealing problems which are globally for-
mulated by (1.1), we aim to first introduce appropriate estimators and predictors.
In this sense we focus on kernel estimation and first we discuss about how should
be desirable to introduce the kernel weights and the correlation structure in the
estimating equations. In this paper we propose two different marginal and joint
strategies for the estimation are presented. By exploring the statistical properties
of the estimators we second deal with practical issues like feasible inference and
necessary parameter choices. Specifically the choice of smoothing (or bandwidth)



parameters becomes a technical but actually crucial task. Differently from data
mining, nonparametric estimation of densities or marginal impacts in regression,
neither intuition nor eye balling will help here. Also the standard nonparamet-
ric methods without involving the correlation structure are not suitable because
they cannot pick up the extra variability. When it has been conveniently made it
usually be considered cross-validation strategies to provide data-driven bandwidth
choices (Wu and Zhang 2002, Park and Wu 2006, Gu and Ma 2005, Xu and Zhu
2009, among others). In this paper we propose to use resampling methods to solve
the bandwidth choice problem in the spirit of the previous works of Gonzélez-
Manteiga et al. (2004) and Martinez-Miranda et al. (2008). These are based on
bootstrap estimations of the mean squared errors, which could be also used to
construct confidence intervals. introduced methods. In small areas statistics lit-
tle efforts have been spent on studying kernel estimation and bandwidth selection
under nonparametric models like (1.1).

Along the paper we deal with the estimation of several functions and parameters.
We aim to consider relevant problems in the above appealing situations (longitu-
dinal/clustered data, nested models, small areas etc.). In this sense we specifically
deal with the estimation of the population function, m(x), the mixed effects or
individual functions, n;(x,2) = m(x) + v;(z), and population parameters such as
©; = m(x;) + vi(z;) with m(x;) = >0 m(x;)/ni and vi(z;) = D50, vi(zij) /1,
which arise mainly in small area statistics.
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