
   
 

  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSIDADE DA CORUÑA 
Á

DEPARTAMENTO DE MATEMÁTICAS 

 
NONPARAMETRIC STATISTICAL

INFERENCE FOR RELATIVE CURVES

IN TWO-SAMPLE PROBLEMS 
 

 Elisa Mª Molanes López
Marzo 2007

Tesis Doctoral



   
 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DEPARTAMENTO DE MATEMÁTICAS 

 
NONPARAMETRIC STATISTICAL 

INFERENCE FOR RELATIVE CURVES 

IN TWO-SAMPLE PROBLEMS 
 

 Elisa Mª Molanes López
Marzo 2007

Tesis Doctoral



 



Realizado el acto público de defensa y mantenimiento de esta Tesis Doctoral el día
30 de marzo de 2007 en la Facultad de Informática de la Universidad de La Coruña,
ante el tribunal formado por:

Presidente: Dr. D. Wenceslao González Manteiga

Vocales: Dr. D. Noël Veraverbeke
Dra. Dña. Ingrid Van Keilegom
Dr. D. Kenneth R. Hess

Secretario: Dr. D. José Antonio Vilar Fernández

obtuvo la máxima cali�cación de SOBRESALIENTE CUM LAUDE, siendo director
de la misma el Dr. D. Ricardo Cao Abad.



 



To my family and friends



 



Acknowledgements

First of all, I would like to express how lucky and grateful I feel for having the chance to

get a national grant that supported me financially during my PhD and allowed me to write

this thesis under the supervision of people such as Ricardo Cao, Noël Veraverbeke, Paul
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Preface

Analyzing the duration of life is an interesting issue in many fields. Survival analysis

refers to all the statistical methodology developed for analyzing lifetimes or times till the

occurrence of an event of interest. There are many fields where these methods have been

widely used such as medicine, biology, engineering, and social and economic sciences. In

all of them the common and essential element is the presence of a nonnegative variable of

interest that sometimes may not be observed completely due to different phenomena such

as censoring and truncation. Censoring is a well-known setup in the literature that has

received considerable attention for a long time. Under right censoring it may happen that

the lifetime is only partially observed due to the previous occurrence of censoring. On

the other hand, truncation is another situation that may appear jointly with censorship

in survival applications. However, it has been appealed interesting more recently, mainly

because of the AIDS epidemic. Under left truncation, it may happen that the time origin

of the lifetime precedes the time origin of the study which makes impossible at all to

observe the case.

The analysis of survival data includes different methods, such as life tables, regression

models and two sample problems, among others. The oldest technique used to describe the

survival in a sample is to compute its corresponding life table, the earliest nonparametric

hazard rate estimate which is based on grouped lifetimes. When some covariates are

observed it may be interesting to study if they are correlated with the survival time. If

this is the case, then regression models appropriately defined, such as the Cox proportional

hazard model or a frailty model, are useful techniques to describe such effects. The main

difference between a frailty model and the Cox proportional hazard model is that the

former is specifically designed to deal with clustered survival data, where the units or

events of observation are grouped in clusters of fixed or variable size and sometimes show

a certain ordering within the cluster. The novelty of a frailty model is that it takes

into account the correlation structure observed between the events within a cluster by

introducing a frailty term for each cluster. Sometimes, the interest is to compare the

survival times of two populations. For example, in clinical trials when the objective is to
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study the effectiveness of a new treatment for a generally terminal disease. Comparing the

survival times of both groups (the treated group against the placebo group) can address

this question. ROC curves and PP plots are graphical procedures that provide a graphical

idea of possible differences between two lifetime distributions. More recent approaches are

the relative density, the relative distribution and the relative hazard function of a lifetime

with respect to another one.

In this monograph, kernel type estimators of the relative density and the relative dis-

tribution functions are presented and different global bandwidth selectors are designed to

appropriately select the smoothing parameter of the relative density kernel type estima-

tors.

In Chapter 1 a more detailed introduction to survival analysis, the bootstrap, non-

parametric curve estimation, two sample problems and relative curves is given.

The simplest case when the data are completely observed is studied in Chapter 2.

Several bandwidth selectors are designed for two kernel type estimators of the relative

density, based on plug-in ideas and the bootstrap technique. A simulation study presents

some results where the behavior of these and a classical selector are compared.

Chapter 3 deals with the problem of estimating the relative density and relative distrib-

ution with right censored and left truncated data. Three bandwidth selectors are proposed

for the relative density kernel type estimator considered for this scenario, and their per-

formance, under different percentages of censoring and truncation, is checked through a

simulation study.

In Chapter 4, a test of the null hypothesis of equal populations is designed using the

relative distribution function via the empirical likelihood approach.

Chapter 5 includes two applications to real data where the techniques studied in pre-

vious chapters and extensions of them are applied. One of the data sets is related to

prostate cancer (PC). The second data set contains information regarding patients who

suffer from gastric cancer (GC). While the PC data set contains complete information

regarding the variables of interest, this is not the case in the GC data set, which is a clear

example of left truncated and right censored data, two very common characteristics of the

data coming from survival analysis. After a descriptive study of both data sets, we apply

the methodology developed in this monograph. For example, estimates of the relative

density for different variables of interest registered in two groups that we wish to compare,

are computed using the kernel type estimators and the bandwidth selectors introduced in

Chapters 1–3.

Finally, in Chapter 6, we introduce some future research lines. The Appendix includes

some definitions, theorems and inequalities used along the thesis.
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It is interesting to mention here that all the simulation studies and practical applica-

tions carried out along this research have been implemented in Matlab 7.0.





Chapter 1

Introduction

— Todas aquellas cosas del sótano estaban ordenadas,

teńıan sentido, eran parte del pasado,

pero completaban la historia del presente.

Paulo Coelho

1.1 Survival analysis

The field of survival analysis emerged in the 20th century and experienced a big growth

during the second half of the century, specially due to the Kaplan-Meier method (1958)

to estimate the survival function of a sample with censored data, the Cox proportional

hazards model (1972) to quantify the effects of covariates on the lifetime or the martingale-

based approach to survival analysis introduced by Aalen (1975). Next, we concentrate on

a small part of the very rich field of survival analysis, the left truncated and right censored

model.

1.1.1 The LTRC model

Let X0, C0 and T0 denote respectively, the variable of interest with cdf F0, the variable of

censoring with cdf L0 and the variable of truncation with cdf G0.

When the data are subject to both left truncation and right censoring (LTRC), the sta-

tistician observes, for every individual in the sample, the random vector (T0, Y0, δ0), where

Y0 denotes the minimum between the variable of interest and the variable of censoring,

with cdf W0, and δ0 = 1{X0≤C0} indicates if the variable of interest is censored (δ0 = 0)

or not (δ0 = 1). Besides, the data are observable only when the condition T0 ≤ Y0 holds.

Otherwise, when T0 > Y0, nothing is observed. Therefore, under the LTRC model, the
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statistician is able to observe a sample of n vectors, {(T01, Y01, δ01) ,. . ., (T0n, Y0n, δ0n)},
where the observed sample size, n, is random as a consequence of the truncation mech-

anism. Denoting by N the real sample size, that is fixed but unknown, and defining α0

as the probability of absence of truncation in the population, α0 = P (T0 ≤ Y0), it follows

that n is a Bin(N,α0) random variable. By the Strong Law of Large Numbers (SLLN), it

is easy to prove that n
N → α0 almost surely as N →∞.

Considering that T0 ≤ Y0 holds, if the observation is uncensored (δ0 = 1), the variable

of interest is completely observed (Y0 = X0). However, when the observation is censored

(δ0 = 0), Y0 coincides with the censoring value C0 and one only knows that the variable

of interest, X0, is larger than the observed censoring value C0.

It is assumed that the random variables, X0, C0 and T0, are mutually independent and

that their cdf’s are continuous. Therefore, under these conditions, it is easy to prove that

W0 can be expressed in terms of F0 and L0 as follows:

1−W0 = (1− F0)(1− L0).

Without loss of generality we will assume that the random variables are positive and we

will use, for any cdf, say F , the following notation to denote respectively, its left-continuous

inverse or quantile function and the left and right endpoints of its support:

F−1 (t) = inf {x ∈ R : F (x) ≥ t} , (1.1)

aF = inf {x ∈ R : F (x) > 0} ,

bF = sup {x ∈ R : F (x) < 1} .

Conditional on the value of n, (T0i, Y0i, δ0i) , i = 1, . . . , n, are still iid and the joint

distribution of (Y0, T0) is given by

H0 (y, t) = P {Y0 ≤ y, T0 ≤ t|T0 ≤ Y0} = α−1
0

∫ y

0
G0(t ∧ z)dW0(z) for y, t > 0,

where ∧ denotes the minimum of two values.

Related to this model, we introduce below the following definitions that will be needed

later on for further discussion:

B0 (t) = P (T0 ≤ t ≤ Y0�T0 ≤ Y0) = α−1
0 P (T0 ≤ t ≤ Y0)

= α−1
0 G0 (t) (1− F0 (t)) (1− L0 (t)) = α−1

0 G0 (t) (1−W0 (t)) ,

W01 (t) = P (Y0 ≤ t, δ0 = 1�T0 ≤ Y0) = α−1
0 P (X0 ≤ t, T0 ≤ X0 ≤ C0)

=
∫ t

aF0

α−1
0 P (T0 ≤ y ≤ C0) dF0 (y)

=
∫ t

aF0

α−1
0 G0 (y) (1− L0 (y)) dF0 (y) ,
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and

ξ0i (Y0i, T0i, δ0i, z) =
1{Y0i≤z,δ0i=1}

B0(Y0i)
−
∫ z

aW0

1{T0i≤u≤Y0i}

B2
0(u)

dW01(u), (1.2)

where B0 denotes the difference between the marginal distribution functions of Y0 and

T0, given T0 ≤ Y0, W01 denotes the conditional subdistribution of the uncensored data

given T0 ≤ Y0, and ξ0i (Y0i, T0i, δ0i, z) , i = 1, . . . , n, are iid processes with mean zero and

covariance structure given by:

Γ(z1, z2) = Cov [ξ0i (Y0i, T0i, δ0i, z1) , ξ0i (Y0i, T0i, δ0i, z2)] (1.3)

= q0(z1 ∧ z2),

where

q0(z) =
∫ z

aW0

dW01(t)
B2

0(t)
. (1.4)

1.1.2 Distribution function estimation under LTRC data

For randomly left truncated and right censored data, the most widely used estimator of

the survival function is that proposed by Tsai, Jewell and Wang (1987). It is known

in the literature as the TJW product limit estimator and generalizes that proposed by

Kaplan and Meier (1958) for right censored data and the one by Lynden-Bell (1971) for

left truncated data. Assuming no ties in the data, the TJW product limit estimator is

defined as follows

1− F̂0n(x) =
∏

Y0i≤x

[
1− (nB0n(Y0i))

−1
]δ0i

, (1.5)

where B0n(z) denotes the empirical estimate of the function B0(z), introduced in Subsec-

tion 1.1.1:

B0n(z) = n−1
n∑

i=1

1{T0i≤z≤Y0i} = n−1
n∑

i=1

1{T0i≤z}1{z≤Y0i}.

There is a simple way to generalize (1.5) for addressing the presence of ties in the data.

Let assume that t01, . . . , t0s denote the s distinct failure times observed in the data. Then,

a modified version of (1.5) that takes into account the presence of ties is given by

1− F̃0n(x) =
∏

t0i≤x

[
1− D0n(t0i)

nB0n(t0i)

]
, (1.6)

where, for a given time point t, nB0n(t) represents the number of individuals at risk and

D0n(t) represents the number of individuals that fail at t, i.e.

D0n(t) =
n∑

j=1

1{Y0j=t,δ0j=1}.
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Some care is recommended when applying directly (1.6). In practical applications, it

may happen that at a given time point t0 ∈ {t01, . . . , t0s}, the number of individuals at

risk and failures are equal. In situations like this, the straightforward application of (1.6)

leads to 1− F̃0n(t) = 0 for all t ≥ t0, even when survivors and deaths are observed beyond

that point. One possibility to overcome this problem is to estimate the survival function

conditional on survival to a time for which it is guaranteed that this will never happen.

As it was pointed out by several authors, under the LTRC model, F0 is identifiable only

if some conditions on the support of F0 and G0 are satisfied. For right censored data it

can be difficult to handle the upper tail of F0. The presence of a random mechanism of left

truncation creates further complications in the lower tail that are propagated throughout

the entire observable range. Therefore, under the LTRC model, both the upper and the

lower tails of F0 are affected. Due to this fact, the product limit estimators (1.5) and (1.6)

show an unstable behaviour when the size of the risk set is small. A slightly modified

version of them, say F̌0n, was proposed by Lai and Ying (1991) to solve this problem.

Introducing a weight function that discards those factors of the product in (1.6) that

correspond to small risk set sizes, F̌0n is defined as follows:

1− F̌0n(x) =
∏

t0i≤x

[
1−

D0n(t0i)1{nB0n(t0i)≥cnα}

nB0n(t0i)

]
, (1.7)

where c and α are two previously specified values satisfying that c > 0 and 0 < α < 1.

Like (1.6) does, F̌0n takes into account the presence of ties in the data.

Table 1.1: Comparing the behaviour of F̃0n(t) vs F̌0n(t).

t nB0n(t) F0(t) F̃0n(t) F̌0n(t)

0.1000 76 0.0328 0.0485 0.0485
0.3053 72 0.0967 0.0989 0.0989
0.5105 59 0.1565 0.1387 0.1387
0.7158 50 0.2123 0.1719 0.1719
0.9211 40 0.2644 0.2425 0.2425
1.1263 33 0.3130 0.3025 0.3025
1.3316 28 0.3584 0.3475 0.3475
1.5368 24 0.4009 0.3736 0.3736
1.7421 19 0.4405 0.4035 0.4035
1.9474 13 0.4775 0.4718 0.4718
2.1526 5 0.5121 0.5925 0.5925
2.3579 4 0.5443 0.6944 0.6944
2.5632 3 0.5745 0.6944 0.6944
2.7684 3 0.6026 0.6944 0.6944
2.9737 2 0.6289 0.8472 0.6944
3.1789 1 0.6534 0.8472 0.6944

Next, an example is introduced with the objective of illustrating the behaviour of (1.6)
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and (1.7) when the risk sets become small. Let us consider {X01, . . . , X0n} a sample of

n iid exponential random variables with mean 3 that are subject to both right censoring

and left truncation. Let {T01, . . . , T0n} be a sample of n iid truncation variables with

distribution function G0 given by

G0(x) = (1 + exp (−x))−1, x ∈ (−∞,∞)

and let {C01, . . . , C0n} be a sample of n iid censoring variables with distribution function

L0 given by

L0(x) = 1−
(
1− x

5

)3
, x ∈ (0, 5).

Denoting by Y0i = min {X0i, C0i}, only those values that satisfy T0i ≤ Y0i are considered.

We use the index i = 1, . . . , n for the first n values satisfying this condition.

First, in Table 1.1 the values of F̃0n(t) and F̌0n(t) (with c = 1 and α = log10(3)/2) based

on a simulated sample of n = 100 observed data from this LTRC model are tabulated for

different values of t and compared with the true values. Also, the number of individuals

at risk is given. Note that based on the selected values for c and α, F̌0n(t) discards risk

sets of less than 3 individuals. Table 1.2 shows the mean squared error (MSE) obtained

as the average of the squared deviations between the true value of F0(t) and the estimates

(either F̃0n(t) or F̌0n(t)) obtained over 1000 simulations for different values of t. Also the

minimum, maximum, mean, median and standard deviation of the estimates are given in

this table.

Table 1.2: Results obtained from a simulation study performed to compare the behaviour of F̃0n(t)
vs F̌0n(t) when the risk sets associated to t are small.

min mean median max std MSE

F̃0n(3) 0.2918 0.6305 0.6248 1.0000 0.1074 0.0115
F̌0n(3) 0.2918 0.6212 0.6210 0.8651 0.0944 0.0090

F̃0n(4) 0.3351 0.7067 0.6930 1.0000 0.1425 0.0212
F̌0n(4) 0.3161 0.6488 0.6565 0.8618 0.0952 0.0167

F̃0n(5) 0.3552 0.7159 0.6998 1.0000 0.1499 0.0315
F̌0n(5) 0.3552 0.6484 0.6535 0.8701 0.0991 0.0363

F̃0n(6) 0.3688 0.7206 0.6985 1.0000 0.1494 0.0430
F̌0n(6) 0.3130 0.6505 0.6532 0.8691 0.0962 0.0551

After looking at Table 1.1 and the standard deviations shown in Table 1.2, it is evident

the unstable behaviour that (1.6) presents when the risk sets become small. However,

looking at the MSE of the estimates, which is a measure of the deviation between the real

value and the estimates, it is observed that (1.7) does not always outperform (1.6). The

reason is that even when the estimates given by F̌0n(t) present less variability, they tend
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to present larger biases. Since the MSE takes into account the variability and the bias of

the estimates jointly, the final MSE turns out to be larger for F̌0n(t) than for F̃0n(t), for

some values of t.

In the literature, several results have been proved for the TJW product limit estimator,

F̂0n. They are collected below in the following theorems.

Theorem 1.1.1. (Strong representation: Theorem 1 (c) in Gijbels and Wang (1993))

For aG0 < a0 ≤ z ≤ b0 < bW0, it follows that B0(z) ≥ ε for some ε > 0, and if aG0 < aW0,

then

F̂0n(z)− F0(z) = (1− F0(z))n−1
n∑

i=1

ξ0i (Y0i, T0i, δ0i, z) + s0n(z),

where the ξ0i’s have been defined in (1.2),

P

(
sup

0≤z≤b0

n |s0n(z)| > x + 4ε−2

)
≤ K

[
e−λx + (x/50)−2n + e−λx3

]
with some λ > 0, and this implies that

sup
0≤z≤b0

|s0n(z)| = O
(
n−1 lnn

)
a.s.

and

E

(
sup

0≤z≤b0

|s0n(z)|α
)

= O
(
n−α

)
, for any α > 0.

Theorem 1.1.2. (Weak convergence: Corollary 1 (d) in Gijbels and Wang (1993))

Assume that aG0 < aW0 and b0 < bW0. Then,

(a) For 0 < z < bW0, F̂0n(z) → F0(z) a.s.

(b) sup0≤z≤b0

∣∣∣F̂0n(z)− F0(z)
∣∣∣ = O

((
n−1 ln lnn

)1/2
)

a.s.

(c) The PL-process α0n(z) = n1/2
(
F̂0n(z)− F0(z)

)
converges weakly on D[0, b0] to a

Gaussian process with mean zero and covariance structure given by

[1− F0(z1)] [1− F0(z1)] Γ(z1, z2),

where Γ(z1, z2) is given in (1.3).

Theorem 1.1.3. (Strong Gaussian approximation when aG0 = aW0: Theorem 2 in Zhou

(1996))

Assuming that aG0 = aW0 and the integral condition,
∫∞
aW0

dF0(z)
G2

0(z)
< ∞, holds. Then,

F̂0n(z)− F0(z) = (1− F0(z))n−1
n∑

i=1

ξ0i (Y0i, T0i, δ0i, z) + s0n(z)
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uniformly in aW0 ≤ z ≤ b0 < bW0 with

sup
aW0

≤z≤b0

|s0n(z)| = O
(
n−1 ln1+ε n

)
a.s. for ε > 0.

Theorem 1.1.4. (Strong representation: Theorem 2.2 in Zhou and Yip (1999))

Suppose that aG0 ≤ aW0 and the integral condition,
∫ b0
aW0

dW01(z)
B3

0(z)
< ∞, is satisfied for some

b0 < bW0. Then, uniformly in aW0 ≤ z ≤ b0 < bW0, we have

F̂0n(z)− F0(z) = (1− F0(z))n−1
n∑

i=1

ξ0i (Y0i, T0i, δ0i, z) + s0n(z)

with

sup
aW0

≤z≤b0

|s0n(z)| = O
(
n−1 ln lnn

)
a.s.

It is worth mentioning here that Li (1995) obtained an almost sure representation of

the TJW product limit estimator analogously to the result given previously by Gijbels

and Wang (1993) and that we summarized in Theorem 1.1.1 above. While Gijbels and

Wang (1993) proved their result using the classical approach considered by Major and

Rejto (1988) for the censored case, Li (1995) used in his proof results of empirical U-

statistics processes. Apart from this subtle difference, the result given by Li (1995) covers

the case aG0 = aW0 which was not included in the previous result by Gijbels and Wang

(1993). Besides, Li (1995) requires that the integral condition,
∫∞
aW0

dF0(s)

P (T0≤s≤C0)2
< ∞,

is satisfied and states that the remainder term is of order O
(
n−1 ln3 n

)
a.s. instead of

order O
(
n−1 lnn

)
a.s. It is later on, in 1996 and 1999, when other authors study the

case aG0 = aW0 , obtaining similar results (see Theorems 1.1.3 and 1.1.4 above) to the

previously obtained by Li in 1995.

Theorem 1.1.5. (Exponential bound: Theorem 1 in Zhu (1996))

a) Let consider aG0 < aW0 and b0 < bW0.

Then, for ε > 8α2
0 (nG0(aW0)(1−W0(b0)))

−1, where α0 was defined in Subsection 1.1.1,

it follows that

P

{
sup

aW0
≤z≤b0

∣∣∣F̂0n(z)− F0(z)
∣∣∣ > ε

}
≤ D1 exp

{
−D2ε

2n
}
,

where D1 and D2 are absolute constants.

b) Let consider aG0 = aW0, aW0 < a0 < b0 < bW0 and∫ ∞

aW0

dF0(z)
G2

0(z)
< ∞.
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Then, for ε > 8α2
0 (nG0(a0)(1−W0(b0)))

−1 it follows that

P

{
sup

a0≤z≤b0

∣∣∣F̂0n(z)− F0(z)
∣∣∣ > ε

}
≤ D̃1 exp

{
−D̃2ε

2n
}

,

where D̃1 and D̃2 are absolute constants.

Theorem 1.1.6. (Functional law of the iterated logarithm: Corollary 2.2 in Zhou and

Yip (1999) and Theorem 2.3 in Tse (2003))

Suppose that aG0 ≤ aW0 and the integral condition,
∫ b0
aW0

dW01(z)
B3

0(z)
< ∞, holds for some

b0 < bW0. Then, it follows that

lim sup
n→∞

( n

2 ln ln n

)1/2
sup

aW0
<z≤b0

∣∣∣F̂0n(z)− F0(z)
∣∣∣ = sup

aW0
<z≤b0

σ0(z) a.s.

and

lim inf
n→∞

(n ln lnn)1/2 sup
aW0

<z≤b0

∣∣∣F̂0n(z)− F0(z)
∣∣∣

1− F0(z)
=

π

81/2
(q0(b0))1/2 a.s.,

where σ2
0(z) = (1− F0(z))2q0(z) for aW0 < z < bW0 and q0(z) has been defined in (1.4).

Theorem 1.1.6 above was first proved by Zhou and Yip (1999) invoking the approx-

imation theorems of Komlós, Major and Tusnády (1975) for the univariate empirical

process. They were able to find a strong approximation of the PL-process α0n(z) =

n1/2
(
F̂0n(z)− F0(z)

)
, by a two parameter Gaussian process at the almost sure rate of

O
(

ln ln n√
n

)
. Based on this fact, they established the functional law of the iterated log-

arithm for the PL-process as shown in Theorem 1.1.6. However, more recently, Tse

(2003) remarked that the KMT theorems are not directly applied for the LTRC model and

that the claim given by Zhou and Yip (1999) cannot be true without severe restrictions.

Therefore, under more general conditions, Tse (2003) proves the strong approximation

of the PL-process by a two parameter Kiefer type process at the almost sure rate of

O
(
(lnn)3/2/n1/8

)
, that even when it is not as fast as that claimed by Zhou and Yip

(1999), it still allows to prove Theorem 1.1.6.

Let µ0n(x, y) = α0n(x) − α0n(y) denote the oscillation modulus of the PL-process.

Consider three sequences of non-increasing positive constants, {an} and {cn}, such that

nan ↑ and ncn ↑.
Convergence results concerning the Lipschitz-1

2 oscillation modulus of the PL-process

are given in the following theorems.

Theorem 1.1.7. (Remark 2.1 in Zhou et al (2003))

Assume that
∫ b0
aW0

dW01(x)
B3

0(x)
< ∞, F0 has continuous derivative f0 and B0 is a γ-Hölder

continuous function with 1
2 < γ < 1 in a neighborhood of a fixed point x0 ∈ (aW0 , bW0).
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If an and cn satisfy

(i) nan
ln ln n →∞,

(ii)
ln cn

an
ln ln n → k, 0 ≤ k < ∞,

then, it follows that

lim sup
n→∞

sup
0≤t≤an

sup
0≤x≤cn

|µ0n(x0 + x, x0 + x + t)|√
2an ln lnn

= (k + 1)
1
2

√
f0(x0)(1− F0(x0))

B0(x0)
a.s.

and

lim sup
n→∞

sup
0≤x≤cn

|µ0n(x0 + x, x0 + x + an)|√
2an ln lnn

= (k + 1)
1
2

√
f0(x0)(1− F0(x0))

B0(x0)
a.s.

Theorem 1.1.8. (Remark 2.2 in Zhou et al (2003))

Assume that
∫ b0
aW0

dW01(x)
B3

0(x)
< ∞, F0 has continuous derivative f0 and B0 is a γ-Hölder

continuous function with 1
2 < γ < 1 in a neighborhood of a fixed point x0 ∈ (aW0 , bW0).

If an satisfies nan
ln ln n →∞, then, it follows that

lim sup
n→∞

sup
0≤t≤an

|µ0n(x0, x0 + t)|√
2an ln lnn

= lim sup
n→∞

|µ0n(x0, x0 + an)|√
2an ln lnn

=

√
f0(x0)(1− F0(x0))

B0(x0)
a.s.

In some biomedical studies or clinical trials, it may be interesting to predict the survival

time of a patient given a vector of covariables such as age, cholesterol or glucose level

in blood, etc. In this context of conditional survival analysis, different product limit

estimators have been considered for the setting in which the lifetime is subject to left

truncation and/or right censoring mechanisms. Beran (1981), González-Manteiga and

Cadarso-Suárez (1994), Van Keilegom and Veraverbeke (1997), Dabrowska (1989) and

Akritas (1994) considered a conditional product limit estimator for RC data and different

contexts such as fixed designs with weights of Gasser-Müller type and random designs

with Nadaraya-Watson or k-nearest neighbours weights. In a similar way, La Valley and

Akritas (1994) considered a conditional product limit estimator for LT data and more

recently, Iglesias-Pérez and González-Manteiga (1999) defined a product limit estimator

to estimate the survival function conditional on some covariates when the lifetimes are

subject to both censoring and truncation.

1.2 The bootstrap

The name ‘bootstrap’ refers to the analogy with pulling oneself up by one’s own boot-

straps. Efron (1979) introduces this statistical term to refer to a computer-intensive
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resampling method for estimating the variability of statistical quantities and obtain-

ing confidence regions. Efron’s bootstrap lies in to resample the data. More specif-

ically, let us consider a sample of independent and identically distributed data with

common distribution F0, {X01, . . . , X0n}, and let θ(F0) and θ(F0n) be respectively an

unknown population parameter and an estimate based on the observed sample. When

the objective is to estimate the probability distribution of
√

n (θ(F0n)− θ(F0)), let say

Gn(t) = P (
√

n (θ(F0n)− θ(F0)) ≤ t), Efron’s nonparametric method approximates Gn(t)

by the probability distribution function, G∗
n(t), of its bootstrap analogues,

√
n (θ(F ∗

0n)− θ(F0n)) ,

where now F ∗
0n denotes the empirical distribution function of the ‘bootstrap resample’, an

artificial random sample, {X∗
01, . . . , X

∗
0n}, drawn from F0n and

G∗
n(t) = P ∗

n

(√
n (θ(F ∗

0n)− θ(F0n)) ≤ t
)
,

where P ∗
n refers to probability corresponding to F0n, i.e. probability conditionally on the

observations {X01, . . . , X0n}.
Hall (1992) describes a physical analogue of the main principle of the bootstrap, con-

sidering a Russian nesting doll (also known as matryoshka), which is a nest of wooden

figures with slightly different features painted on each. Specifically, he considers the prob-

lem of estimating the number of freckles on the face of the outer doll, let say doll 0, using

the information given by the number of freckles appearing in the other dolls, let say, doll

1, doll 2 and so on, in decreasing order, from larger to smaller.

Let ni be the number of freckles painted on doll i. Since the doll 1 is smaller in size

than the doll 0, it is expected that n0 will be larger than n1, and therefore, n1 would be an

underestimate of n0. However, it seems reasonable to think that the relationship between

n0 and n1 will resemble the relationship existing between n1 and n2, and so n0/n1 ≈ n1/n2

and therefore ñ0 = n2
1/n2 could be a reasonable estimate of n0.

If we use this same idea and go deeply into the dolls, the estimate of n0 could be

further refined.

Formally, in a mathematical formulation, what we wish to determine is the value of t,

t0, that solves what we will call ‘the population equation’

E [ft(F0, F0n)�F0] = 0, (1.8)

where F0 and F0n denote, respectively, the population distribution function and the em-

pirical distribution of the sample {X01, . . . , X0n} drawn from F0. For example, let assume
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that the true parameter value is

θ0 = θ(F0) =
{∫

xdF0(x)
}3

,

i.e, the third power of the mean of F0. The bootstrap estimate θ̂ of θ0 is given by

θ̂ = θ(F0n) =
{∫

xdF0n(x)
}3

.

If we now wish to correct the bootstrap estimate of θ for bias, we first need to solve

the population equation (1.8), with ft(F0, F0n) = θ(F0n) − θ(F0) + t and to define the

bias-corrected estimate of θ by θ̂ + t0.

In the case of the Russian nesting doll, (1.8) is given by

n0 − tn1 = 0.

As it was explained before, the approach used to estimate the root of this equation, was

firstly to replace the pair (n0, n1) by (n1, n2), secondly to consider the solution t̂0 of the

equation n1 − tn2 = 0, the sample analogous of the population equation, and finally to

obtain the approximate of n0 by n̂0 = t̂0n1 with t̂0 = n1/n2.

To obtain an approximate of the root of (1.8), the same argument used in the Russian

nesting doll example, can be considered now. Therefore, the population equation is re-

placed by what we will call ‘the sample equation’

E [ft(F0n, F ∗
0n)�F0n] = 0,

where F ∗
0n denotes the distribution function of a sample drawn from F0n. Note that the

sample equation is always completely known and therefore it may be solved either exactly

or via Monte Carlo approximation.

The bootstrap principle is based on the idea that the solution of the population equa-

tion can be well approximated by the solution of the sample equation.

Coming back to the example of the bias-corrected estimate of the third power of the

mean of F0, it happens that the sample equation is given by

E [θ(F ∗
0n)− θ(F0n) + t�F0n] = 0,

whose solution is

t = t̂0 = θ(F0n)− E [θ(F ∗
0n)�F0n] .

If µ denotes the mean of F0, i.e., µ =
∫

xdF0(x), then θ(F0) = µ3. Let X̄0 =

n−1
∑n

i=1 X0i denote the sample mean of the sample drawn from F0 and consider the

nonparametric estimate of θ given by θ(F0n) = X̄3.
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Simple algebra yields an explicit expression for E [θ(F0n)�F0] in terms of the mean, µ,

the variance, σ2 = E
[
(X01 − µ)2

]
, and the skewness, γ = E

[
(X01 − µ)3

]
as given below

E [θ(F0n)�F0] = µ3 + n−13µσ2 + n−2γ.

Consequently,

t̂0 = X̄0
3 − X̄0

3 + n−13X̄0σ̂
2 + n−2γ̂,

where

σ̂2 = n−1
n∑

i=1

(
X0i − X̄0

)2
,

γ̂ = n−1
n∑

i=1

(
X0i − X̄0

)3
,

are, respectively, the sample variance and the sample skewness, and the bootstrap bias-

reduced estimate of µ3 is given by

θ̂1 = θ̂ + t̂0 = X̄0
3 + n−13X̄0σ̂

2 + n−2γ̂.

Sometimes, things may be more complicated than in this case and the value of t̂0 may

need to be obtained via Monte Carlo simulation. To exemplify how we should proceed in

those cases, we will consider again the last example analysed. In that case, the value of

E [θ(F ∗
0n)�F0n] could be approximated by first taking B resamples independently from

F0n, let say
{

X∗,b
01 , . . . , X∗,b

0n

}
, with 1 ≤ b ≤ B. Then, for each resample b, we compute

θ̂∗b = θ(F ∗b
0n), where F ∗b

0n denotes the distribution function of X∗,b
0 and we approximate

E [θ(F ∗
0n)�F0n] by the sample mean of θ̂∗b .

Taking into account the fact that the larger the number of resamples B is taken, the

more accurate the approximation will be, this procedure will be suitable for a large number

of resamples B.

1.3 Curve estimation

Curve estimation refers to all the statistical methods that have been proposed in the litera-

ture to estimate different curves of interest such as density functions, hazard rates, survival

functions or regression curves. This problem has been faced using different methodologies.

The classical approach consists in fitting a parametric model based on the observed data.

This approach, although straightforward, presents an important disadvantage when the

parametric assumptions are wrong. A more flexible approach allows the data to speak for

themselves in the sense that no parametric assumptions are considered. This approach is

known in the literature with the name of nonparametric curve estimation.
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1.3.1 The Parzen-Rosenblatt estimator

From here on, the interest will be pointed out in the kernel method, one of the most

widely used nonparametric methods for estimating a density function. Its origins go back

to the papers of Rosenblatt (1956) and Parzen (1962) and the basic idea of this method

is to place locally some bumps at the observations and sum them to get an estimate of

the density. The shape of these bumps is given by a so-called kernel function (K) while

the length of the interval around the observations where the bump is located is given by a

parameter (h), called smoothing parameter or simply bandwidth. Let {X01, X02, . . . , X0n}
be a sample of n iid observations coming from a population X0 with density function f0.

The kernel estimator of f0 is given by

f̃0h(x) =
1

nh

n∑
i=1

K

(
x−X0i

h

)
=

1
n

n∑
i=1

Kh (x−X0i)

=
∫

Kh(x− v)dF0n(v) = (Kh ∗ F0n)(x), (1.9)

where Kh(x) = h−1K
(

x
h

)
, F0n denotes the empirical distribution function of F0 based on

the sample {X01, X02, . . . , X0n} and ∗ denotes convolution.

−2 0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

Figure 1.1: True density (thick solid line) and kernel type density estimates for model (1.10) using
bandwidths of sizes h = 0.6 (dotted line), h = 0.4 (solid line) and h = 0.2 (dashed-dotted line).

It is always assumed that K integrates to one and usually that it is a symmetric probabil-

ity density function. Table 1.3 collects a list of possible kernels K of this type. While the

selection of K is not a crucial issue, however, the selection of the smoothing parameter

must be appropriately addressed. The results can vary considerably depending on how

much the data are smoothed. As h tends to zero, the bumps placed at the observations

in order to construct f̃0h(x) will tend to Dirac delta functions that take value 1 at the
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Table 1.3: Kernel functions.

Name Density function K(x)

Gaussian (2π)−1/2e−
x2
2

Cauchy (π(1 + x2))−1

Gamma(p) Γ (p)−1 xp−1e−x1{x>0}
Laplace 1

2
e−|x|

Uniform 1
2
1{|x|<1}

Epanechnikov 3
4
(1− x2)1{|x|<1}

Biweight 15
16

(1− x2)
2
1{|x|<1}

Triweight 35
32

(1− x2)
3
1{|x|<1}

Triangular (1− |x|)1{|x|<1}
Logistic ex/ (ex + 1)2

Extrem value exe−ex

observations. Consequently, the estimation of f0 becomes very spiked and simply repro-

duces the observed data. However, the larger the value of h chosen, the smoother the

curve becomes in the sense that all the information contained in the data is more and

more obscured as h tends to infinity. This is illustrated in Figure 1.1 where, based on 100

data generated from a mixture X0 of two Gaussian distributions, with density function

given by

f0(x) = 0.3N(3, 0.52) + 0.7N(6, 22), (1.10)

three kernel type estimates, f̃0h(x), are plotted using different sizes of bandwidths (h =

0.2, 0.4, 0.6).

Below, some theoretical properties of f̃0h(x) are collected.

Theorem 1.3.1. It follows that

E
[
f̃0h(x)

]
=

1
h

∫
K

(
x− y

h

)
f0(y)dy, (1.11)

V ar
[
f̃0h(x)

]
=

1
nh2

∫
K2

(
x− y

h

)
f0(y)dy − 1

n

{
1
h

∫
K

(
x− y

h

)
f0(y)dy

}2

. (1.12)

It seems reasonable to think that the discrepancy between the kernel estimate f̃0h

based on a bandwidth h and the theoretical density f0, will depend on h. Therefore,

having a way to measure the discrepancy between both curves can help to address the

question of how to select the bandwidth h. For example, trying to select the h minimizing

the discrepancy between both curves. Different discrepancy measures have been proposed

in the literature, either locally at a point x, such as the mean squared error,

MSE(f̃0h(x)) = E

[(
f̃0h(x)− f0(x)

)2
]

= Bias2
[
f̃0h(x)

]
+ V ar

[
f̃0h(x)

]
, (1.13)
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or globally, such as the mean integrated squared error,

MISE(f̃0h) = E

[∫ (
f̃0h(x)− f0(x)

)2
dx

]
= ISB(h) + IV (h), (1.14)

where

ISB(h) =
∫

Bias2
[
f̃0h(x)

]
dx,

IV (h) =
∫

V ar
[
f̃0h(x)

]
dx.

Using Theorem 1.3.1, it is easy to get exact expressions for the MSE and MISE. For

example, when f0(x) = φσ(x − µ), a N(µ, σ2) density, and K(x) = φ(x), the standard

normal, it follows that:

Bias
[
f̃0h(x)

]
= E

[
f̃0h(x)

]
− f0(x) = φ√σ2+h2(x− µ)− φσ(x− µ)

and

V ar
[
f̃0h(x)

]
=

1
n

{
1

2
√

πh
φq 1

2
h2+σ2

(x− µ)− φ2√
σ2+h2(x− µ)

}
.

However, excepting for special selections of the kernel function and parametric assump-

tions of the true density f0, the resulting expressions do not have any intuitive meaning.

Therefore, the most practical way to proceed is to get asymptotic expressions for (1.11)

and (1.12) under certain conditions and then to plug-in them in (1.13) and (1.14) to finally

get asymptotic expressions for the MSE and MISE depending on h.

Let define R(g) =
∫

g2(x)dx, for every integrable squared function g and consider that

f0, K and h satisfy respectively condition (D1), (K1) and (B1) below:

(D1) f0 has continuous derivatives up to order three, f
(2)
0 is square integrable and f

(3)
0 is

bounded.

(K1) K is a symmetric and square integrable function,
∫

K(t)dt = 1 and dK =
∫

t2K(t)dt

is not null.

(B1) {h = hn} is a sequence of bandwidths satisfying that h → 0 and nh → ∞ as the

sample size n tends to ∞.

Theorem 1.3.2. Assuming conditions (B1), (D1) and (K1), it follows that

Bias
[
f̃0h(x)

]
=

1
2
h2f

(2)
0 (x)dK + o

(
h2
)
,

V ar
[
f̃0h(x)

]
=

1
nh

f0(x)R(K) + o
(
(nh)−1

)
.
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Theorem 1.3.3. Assuming conditions (B1), (D1) and (K1), it follows that

ISB(h) ≈ 1
4
h4dK

2R
(
f

(2)
0

)
,

IV (h) ≈ 1
nh

R(K).

Based on Theorems 1.3.2 and 1.3.3, it is straightforward to obtain asymptotic expres-

sions for respectively, the MSE and MISE. Besides, they provide a theoretical justification

of the practical behaviour shown previously in Figure 1.1. The AMSE and AMISE tell us

that, when the smoothing parameter is selected in such a way that the bias is reduced, a

marked increase in the random variation (or variance component) is added. On the other

hand, when h is selected large enough to vanish the variance, then the absolute value of

the bias increases. Therefore, the optimal local bandwidth to estimate f0 at a given value

x should be found as a compromise between the bias and the variance of f̃0h(x). Selecting

h by minimizing the asymptotic MSE meets this compromise. If the objective, however,

is to find an optimal global bandwidth to estimate f0 at whatever point x, then, using

a similar argument, a way to find that compromise is by selecting the value of h which

minimizes, in this case, the asymptotic MISE. Using straightforward calculations it is easy

to get expressions for the asymptotic optimal bandwidths, either locally or globally. They

are shown in the following theorem.

Theorem 1.3.4. Assuming conditions (B1), (D1) and (K1), it follows that the values of

h minimizing AMSE and AMISE are respectively given by

hAMSE =

f0(x)R(K)

d2
Kf

(2)
0 (x)

2

 1
5

n−
1
5

and

hAMISE =

 R(K)

d2
KR

(
f

(2)
0

)
 1

5

n−
1
5 . (1.15)

So far we have seen that there are at least two ways of choosing the smoothing para-

meter, either locally, based on a local measure of discrepancy such as the MSE, or globally,

based on a global error criterion such as the MISE. However, a straightforward computa-

tion of the two optimal bandwidths obtained in Theorem 1.3.4 can not be used in practical

applications because they involve unknown values depending on the true density function

f0.

An overview of different global bandwidth selectors proposed in the literature is given

below.
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Cross validation selectors: There exist different methods that fall in this category. The

pseudolikelihood crossvalidation method was proposed by Habbema et al (1974) and

Duin (1976). Its basic idea consists in selecting h as the value that maximizes the

pseudo-likelihood given by
n∏

i=1

f̃0h(X0i). (1.16)

However, since this function has a trivial maximum at h = 0, the kernel estima-

tor f̃0h(x) in (1.16) is replaced by its leave-one-out modified version, f̃ i
0h(x), when

evaluated at X0i

f̃ i
0h(x) =

1
(n− 1)h

n∑
j=1,j 6=i

K

(
x−X0j

h

)
. (1.17)

This selector presents some nice properties. For example, it was shown that it

minimizes the Kullback-Leibler distance between the true density and f̃0h, and that

it has a nice behaviour in L1. Even so, it presents an important disadvantage: the

lack of consistency when estimating heavy-tailed densities.

The biased crossvalidation method was proposed by Scott and Terrell (1987). Con-

sidering the asymptotic expression obtained for the MISE, they estimate the un-

known quantity R
(
f

(2)
0

)
by R

(
f̃

(2)
0h

)
and derive a score function BCV (h) to be

minimized with respect to h. Based on simple algebra, it follows that

R
(
f̃

(2)
0h

)
=

1
nh5

R
(
K(2)

)
+

1
n2h5

∑∑
i6=j

K(2) ∗K(2)(X0i −X0j).

Besides, if the optimal bandwidth is of order n−
1
5 , Scott and Terrell (1987) show

that R
(
f̃

(2)
0h

)
yields a biased estimate of R

(
f

(2)
0

)
since it holds that

E
[
R
(
f̃2
0h

)]
= R

(
f

(2)
0

)
+ n−1h−5R

(
K(2)

)
+ O

(
h2
)
.

Consequently, based on this fact, these authors propose to estimate R
(
f

(2)
0

)
by

R
(
f̃

(2)
0h

)
−n−1h−5R

(
K(2)

)
and find the value of h which minimizes the resulting

bias crossvalidation function, BCV :

BCV (h) =
R(K)
nh

+ h4 d2
K

4n2

∑∑
i6=j

K
(2)
h ∗K

(2)
h (X0i −X0j).

The main disadvantage of this method is the fact that, with commonly used kernels,

it may happen that limh→0+ BCV (h) = ∞ and limh→∞ BCV (h) = 0 and when

4R(K) − d2
KK(0) > 0 (which holds for the Gaussian kernel), BCV (h) > 0 for all

h > 0. Consequently, in situations like this, no global minimum exists (see Cao et

al (1994)).
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The smoothed crossvalidation method was proposed by Hall et al (1992). It is based

on the exact expression of the MISE:

MISE(h) = IV (h) + ISB(h), (1.18)

where

IV (h) =
R(K)
nh

− 1
n

∫
(Kh ∗ f0)

2(x)dx,

ISB(h) =
∫

(Kh ∗ f0 − f0)
2(x)dx.

Marron and Wand (1992) showed that R(K)
nh yields a good approximation of the first

term in (1.18). Considering f̃0g, another kernel estimate of f0 based on a bandwidth

g and a kernel L, and replacing f0 in ISB(h) by f̃0g, an estimate of the second term

appearing in (1.18), is obtained. Adding both estimates, ÎV (h) + ÎSB(h), yields an

estimate of MISE(h), where

ÎV (h) =
R(K)
nh

and

ÎSB(h) =
∫ (

Kh ∗ f̃0g − f̃0g

)2
(x)dx.

After doing some algebra and defining ∆0 as the Dirac delta function for zero, it is

possible to rewrite ÎSB(h) as follows:

ÎSB(h) =
1
n2

n∑
i=1

n∑
i=1

(Kh ∗Kh − 2Kh + ∆0) ∗ Lg ∗ Lg(X0i −X0j).

Hall et al (1992) deleted in ÎSB(h) the terms in the double sum for which i = j and

considered the approximation n ≈ n − 1 to define the following score function that

approximates MISE(h):

SCV (h) =
R(K)
nh

+
1

n(n− 1)

∑∑
i6=j

(Kh ∗Kh − 2Kh + ∆0)

∗Lg ∗ Lg(X0i −X0j). (1.19)

The smoothed crossvalidation bandwidth is the value of h that minimizes (1.19). As

Cao et al (1994) showed, this method can be motivated using bootstrap ideas.

Plug-in selectors: These selectors are all based on the asymptotic expression obtained

for the optimal bandwidth that minimizes the MISE. As it was mentioned pre-

viously, the direct application of (1.15) is not plausible because the unknown quan-

tity, R
(
f

(2)
0

)
, depends on the true density f0.
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Direct plug-in methods first assume a parametric model for f0 such a Gaussian

density and based on it an estimation of the unknown quantity is obtained and

plugged in (1.15). Bandwidth selectors of this type are called in the literature rules

of thumb.

More sophisticated plug in selectors consist in estimating the unknown functional us-

ing kernel-type estimators such as, for example, R
(
f̃

(2)
0g

)
. Under sufficiently smooth-

ness conditions on f0, it follows that R
(
f

(`)
0

)
= (−1)`Ψ2`(f0), where

Ψ`(f0) =
∫

f
(`)
0 (x)f0(x)dx = E

[
f

(`)
0 (X0)

]
. (1.20)

Due to the fact that Ψ`(f0) can be expressed in terms of an expectation, a natural

kernel-type estimator of it can be defined as follows:

Ψ̃` (g;L) =
1
n2

n∑
i=1

n∑
j=1

L(`)
g (X0i −X0j) .

Therefore, under sufficiently smoothness conditions on f0, R
(
f

(2)
0

)
can be estimated

by Ψ̃4 (g;L). Proceeding in this way, another bandwidth g, so called pilot bandwidth,

has to be selected to estimate the unknown functional. In fact, after studying the

asymptotic MSE
(
Ψ̃4 (g;L)

)
it can be shown, for a second order kernel L satisfy-

ing some smoothness conditions, that the asymptotic optimal bandwidth has the

following expression

gAMSE,Ψ4(f0) =

(
2L(4)(0)
−dLΨ6(f0)

) 1
7

n−
1
7 .

However, once again, this expression can not be directly applied due to the unknown

quantity depending on f0, Ψ6(f0), that appears in it, which needs to be estimated

previously. There are at least two ways to proceed from here: using a parametric

estimation for this unknown quantity or a kernel type estimation. The second one

leads to another selection problem of a so called prepilot bandwidth. Different plug

in selectors based on this strategy will differ in how many stages or successive kernel

functional estimations are required till considering a parametric assumption on f0

and on the way in which the needed (pre-)pilot bandwidths are selected as well.

Another strategy consists in choosing h as the root of the following equation

h =

(
R(K)

d2
KΨ̃4 (γ(h);L)

) 1
5

n−
1
5 ,
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where the pilot bandwidth to estimate the functional Ψ4(f0) is considered to be a

function γ of h:

γ(h) =

(
2L(4)(0)d2

K

R(K)dL

) 1
7 (

−Ψ4(f0)
Ψ6(f0)

) 1
7

h
5
7 . (1.21)

Note that γ(h) is naturally motivated by the relationship existing between the

asymptotic optimal bandwidths hAMISE and gAMSE,Ψ4(f0):

gAMSE,Ψ4(f0) =

(
2L(4)(0)d2

K

R(K)dL

) 1
7 (

−Ψ4(f0)
Ψ6(f0)

) 1
7

h
5
7
AMISE .

As it is obvious, in order to apply (1.21), estimates of the functionals Ψ4(f0) and

Ψ6(f0) are required. Either parametric or kernel type estimations are plausible here

resulting in different solve-the-equation (STE) rules for selecting h. Likewise in most

of sophisticated plug in selectors, plugging kernel type estimations of these unknown

quantities in (1.21) leads to another stage selection problem. The novelty now is

that, in the last step of this procedure aimed to select h, an equation depending on

h must be solved using numerical methods.

Bootstrap selectors: Bootstrap-based choices of the bandwidth for kernel density esti-

mators have been proposed by several authors (see, for instance, Taylor (1989), Far-

away and Jhun (1990) and Cao (1993)). The basic idea behind all these proposals

consists of estimating MISE(h) using the bootstrap technique and then minimizing

over h.

As Faraway and Jhun (1990) explain, the direct implementation would be to resample{
X∗,j

01 , . . . , X∗,j
0n

}
from the empirical distribution F0n and then construct a large

number, B, of bootstrap estimates as follows

f̃∗j0h(x) = (nh)−1
n∑

i=1

K

(
x−X∗,j

0i

h

)
for j = 1, . . . , B.

Defining the bootstrapped approximations of the variance and the bias as follows,

V ar∗
[
f̃0h(x)

]
= B−1

B∑
j=1

(
f̃∗j0h(x)− f̄∗0h(x)

)2

and

Bias∗
[
f̃0h(x)

]
= f̄∗0h(x)− f̃0h(x),

where

f̄∗0h(x) = B−1
B∑

j=1

f̃∗j0h(x),
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it turns out that the estimate of the bias vanishes for every h. Since the bias

increases with h, its contribution to the MISE can be substantial for some values

of h. Therefore, this naive bootstrap selector fails in providing a good estimate of

MISE(h).

Faraway and Jhun (1990), being aware of this problem, consider an initial estimate of

the density f̃0g(x) and resample
{

X∗,j
01 , . . . , X∗,j

0n

}
from it. Then, estimating f̃∗j0h(x) as

before and defining the bootstrapped bias by f̄∗0h(x)− f̃0g(x), the modified bootstrap

MISE is defined as follows:

MISE∗(h, g) = B−1
B∑

j=1

∫ (
f̃∗j0h(x)− f̄∗0h(x)

)2
dx +

∫ (
f̄∗0h(x)− f̃0g(x)

)2
dx

= B−1
B∑

j=1

∫ (
f̃∗j0h(x)− f̃0g(x)

)2
dx.

Taylor (1989) considers a similar strategy but with h = g. Apart from avoiding the

selection problem of the pilot bandwidth g, Taylor (1989) realizes that the bootstrap

resampling can be avoided when using a Gaussian kernel because there exists a closed

expression for the bootstrap MISE

MISE∗(h) =
1

2n2h(2π)1/2

∑
i,j

exp
{
−(X0j −X0i)2

8h2

}

− 4
31/2

∑
i,j

exp
{
−(X0j −X0i)2

6h2

}

+21/2
∑
i,j

exp
{
−(X0j −X0i)2

4h2

}
+ n21/2

 .

However, as Cao et al (1994) point out, MISE∗(h) tends to zero as h tends to

infinity and consequently, it is an unsuitable estimator of MISE(h) for smoothing

purposes because it has no finite minimum. A different approach is given by Cao

(1993). Like Faraway and Jhun (1990), he considers a pilot bandwidth g, different

from h and like Taylor (1989) does, he finds a closed expression of the bootstrap

MISE, which does not depend on the resampled values. The main results obtained

in Cao (1993) can be summarized as follows:

(a) Based on Fubini’s theorem the exact expression of the bootstrap MISE is

MISE∗(h, g) = IV ∗(h, g) + ISB∗(h, g),

where

IV ∗(h, g) = (nh)−1dK + n−1

∫ (∫
K(u)f̃0g(x− hu)du

)2

dx
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and

ISB∗(h, g) =
∫ (∫

K(u)(f̃0g(x− hu)− f̃0g(x))du

)2

dx.

(b) Asymptotic expressions obtained for the MISE and the bootstrap MISE under

regularity conditions suggest that the pilot bandwidth g should be selected in order

to minimize the MSE of R
(
f̃

(2)
0g

)
. It can be shown that the dominant part of the

value g minimizing this MSE turns out to be of exact order n−
1
7 . This selection of

g leads to the following asymptotic bootstrap MISE:

MISE∗(h, g) = 4−1d2
Kh4R

(
f̃

(2)
0g

)
+ (nh)−1R(K)− n−1R

(
f̃0g

)
+OP (n−1h2) + OP (h6) + OP (n

2
7 h8).

(c) Denoting by hMISE and hMISE∗ the minimizers of MISE(f̃0h) and MISE∗(h, g),

respectively, it holds that

hMISE∗ − hMISE

hMISE
= O

(
n−

5
14

)
and

n
6
5 g

9
2 c1(hMISE∗ − hMISE) → N(0, 1) (weakly),

where c1 is a constant that depends on f0 and K.

Since there are some terms inflating artificially the bias, Cao (1993) also defines a

modified version of the bootstrap MISE, MMISE∗(h, g), where the terms in the

ISB∗ with i = j are removed. However, the minimizer of this modified bootstrap

MISE, let say hMMISE∗ , exhibits a worse behaviour than the previously proposed,

hMISE∗ , even when it is based on an improved estimator of the curvature of f0. For

example, it holds that

hMMISE∗ − hMISE

hMISE
= O

(
n−

4
13

)
and

n
6
5 g

9
2 c1(hMMISE∗ − hMISE) → N

(
3
2
, 1
)

(weakly).

This surprising behaviour can be explained by the fact that the positive bias that

arises when estimating the curvature of f0, is compensated by a negative bias

appearing when the asymptotic distribution of the selector is derived.
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1.3.2 Smoothed empirical distribution function

The empirical distribution function, F0n, is not a smooth estimation of F0. Even when

the steps of F0n are small, it is known that a second order improvement can be achieved

using the following kernel type estimate

F̃0h(x) =
∫

K
(

x− t

h

)
dF0n(t). (1.22)

It was Nadaraya (1964) who first proposed this estimator and proved under mild conditions

that F0n(x) and F̃0h(x) has asymptotically the same mean and variance. Although this

estimate can be obtained by simply integrating f̃0h(x) (see 1.9), the bandwidth parameters

that optimize global measures of the accuracy of F̃0h(x), such as the MISE, differ from

those of f̃0h(x). Therefore, in the literature there exist several papers that study the

optimal selection of h to estimate F0 via F̃0h. For instance, Polansky and Baker (2000)

designed a multistage plug in bandwidth selector in this setting using the asymptotic

expression of the MISE given by Azzalini (1981) and Jones (1990), under several conditions

on the bandwidth sequence, h = hn, the density f0 and the kernel K. In the following,

we first introduce the required conditions and then we summarize their result in Theorem

1.3.5.

Let consider the following condition:

(D2) The density f0 is a continuous and differentiable function with a finite mean and

with a continuous, bounded and square integrable first derivative, f
(1)
0 .

Theorem 1.3.5. Assume conditions (B1), (K1) and (D2). Then,

MISE(F̃0h) = n−1ν(F0)− n−1hDK +
1
4
h4d2

KR(f (1)
0 ) + o

(
n−1h + h4

)
,

where

ν(F0) =
∫ ∞

−∞
F0(x)(1− F0(x))dx, (1.23)

DK = 2
∫ ∞

−∞
xK(x)K(x)dx.

Remark 1.3.1. As in the setting of density estimation, the selection of K has little effect

on MISE(F̃0h) and, as Jones (1990) proved, a slight improvement can be achieved using

a uniform density on [−
√

3,
√

3].

Remark 1.3.2. From the asymptotic expression obtained for MISE(F̃0h) in Theorem 1.3.5,

it follows that the global bandwidth that minimizes AMISE(F̃0h) is given by

hAMISE,F0 =

 DK

d2
KR

(
f

(1)
0

)
1/3

n−1/3.
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Based on the expression obtained for hAMISE,F0 , Polansky and Baker (2000) proposed

different plug-in bandwidth selectors that we detail below. The simplest bandwidth se-

lector proposed by these authors relies on considering a parametric reference for f0 and

estimating the unknown functional, R
(
f

(1)
0

)
, appearing in hAMISE,F0 , using that para-

metric reference. Using a Gaussian reference, it is easy to obtain that

R(f (1)
0 ) =

∫ ∞

−∞

(x− µ)2

2πσ6
exp

{
−(x− µ)2/σ2

}
dx =

1
4σ3π1/2

.

Therefore,

hAMISE,F0 =

(
4σ3DKπ1/2

d2
K

)1/3

n−1/3,

which suggests the following simple bandwidth selector, known in the literature as the rule

of thumb

hN =

(
4σ̂3DKπ1/2

d2
K

)1/3

n−1/3,

where σ̂ is an estimator of the standard deviation, for example, the sample standard

deviation, S, or as Silverman (1986) suggested, the minimum between S and ÎQR/1.349,

where ÎQR denotes the sample interquartile range, i.e. ÎQR = F−1
0n (0.75) − F−1

0n (0.25),

where F−1
0n is the quantile function defined in (1.1). This last estimator is more suitable

for non-normal densities.

In the special case K = φ, where φ denotes the standard Gaussian density, it follows

that hAMISE,F0 = 1.587σn−1/3 and consequently hN = 1.587σ̂n−1/3.

More sophisticated plug-in bandwidth selectors rely on the same idea presented pre-

viously in Subsection 1.3.1, when different plug-in bandwidth selectors for f̃0h(x) (see

(1.9)) were introduced. Rather than using a parametric model for f0 to estimate the

unknown functional R(f (1)
0 ), a nonparametric estimate is used. Since, under sufficiently

smoothness conditions, it happens that R(f (1)
0 ) = Ψ2(f0) (see equation (1.20)), R(f (1)

0 )

can be estimated by Ψ̃2(gAMSE,Ψ2(f0);L), where

gAMSE,Ψ2(f0) =

(
2L(2)(0)
−dLΨ4(f0)

)1/5

n−1/5

and depends on the unknown density function, f0, through the functional Ψ4(f0).

If we wish to use Ψ̃4(gAMSE,Ψ4(f0);L) as an estimate of Ψ4(f0), we then need to pro-

pose a way to estimate the unknown quantity appearing in the expression of gAMSE,Ψ4(f0).

If we again use the same strategy as for gAMSE,Ψ2(f0), we arrive to a never-ending process.

Therefore, as Sheather and Jones (1991) proposed and it was already mentioned in Sub-

section 1.3.1, this iterative and never-ending process can be stopped at some stage by
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considering a parametric model for f0 and by estimating the unknown functional required

in that stage using that parametric model.

In case that a Gaussian reference with mean µ and variance σ2 is considered, there

exist simple expressions for the functionals Ψ`(f0). Specifically, it follows that

Ψ`(f0) =
(−1)`/2`!

(2σ)`+1(`/2)!π1/2
,

which suggests the following parametric estimate for Ψ`(f0):

Ψ̃GR
` =

(−1)`/2`!
(2σ̂)`+1(`/2)!π1/2

, (1.24)

where σ̂ was introduced above.

As Polansky and Baker (2000) suggest, this provides a b-stage plug in selector of h

which algorithm follows the steps given below:

Step 1. Calculate Ψ̃GR
2b+2 using (1.24).

Step 2. For ` = b, b− 1, . . . , 1, calculate Ψ̃2`(g2`;L) where

g2` =
(

2L2`(0)
−dLΨ̃2`+2(g2`+2;L)

)1/(2`+3)

n−1/(2`+3)

if ` < b, and

g2` =

(
2L2`(0)
−dLΨ̃GR

2b+2

)1/(2`+3)

n−1/(2`+3)

if ` = b.

Step 3. Calculate the b-stage plug-in bandwidth selector by

h̃b =

(
DK

d2
KΨ̃2(g2;L)

)1/3

n−1/3.

1.3.3 Density function estimation under LTRC data

A natural extension of (1.9) to the case of LTRC data, it is given by

f̂0h,n(x) =
∫

Kh (x− t) dF̂0n(t), (1.25)

where the empirical distribution function in (1.9) is replaced by the TJW product limit

estimator introduced in (1.5).

Using Theorem 1, Gijbels and Wang (1993) study the asymptotic behaviour of (1.25)

under condition (B1) introduced previously and condition (K2) below:
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(K2) For a positive integer p ≥ 1, K is a p-order kernel function in L2[−1, 1] of bounded

variation with support in [−1, 1].

Later on, Sánchez-Sellero et al (1999) obtain an asymptotic expansion for the MISE

of f̂0h,n under (B1) and the following conditions:

(D3) The density function f0 is six times differentiable and its sixth derivative is bounded.

The first, second, third and fourth derivatives of f0 are integrable, and the limits of

f0 and any of its first five derivatives at −∞ or ∞ are zero.

(K3) K is a symmetric probability density, three times continuously differentiable, with

first derivative integrable and satisfying that

lim
|x|→∞

xjK(j)(x) = 0, j = 0, 1, 2, 3.

(Q1) The function q0 is twice continuously differentiable.

(W1) w is a weight function compactly supported by a set of points x satisfying B0(x) ≥ ε

for some constant ε > 0 and is three times continuously differentiable.

The results given by Gijbels and Wang (1993) and Sánchez-Sellero et al (1999) are

collected below in Theorems 1.3.6 and 1.3.7.

Theorem 1.3.6. (Consistency and asymptotic normality of (1.25))

Assume (B1) and (K2). If aG0 < aW0 and f0 is a p times continuously differentiable

function at z with f0(z) > 0, for aG0 < z < bW0, then,

(i) f̂0h,n(z) = f0(z) + β0n(z) + σ0n(z) + e0n(z), where

β0n(z) = h−1

∫
F0(z − hx)dK(x)− f0(z),

σ0n(z) = (nh)−1
n∑

i=1

∫
[1− F0(z − hx)] ξ0i (Y0i, T0i, δ0i, z − hx) dK(x)

and e0n(z) satisfies

sup
0≤z≤b0

|e0n(z)| = O
(
(lnn)(nh)−1

)
a.s.

and

E sup
0≤z≤b0

|e0n(z)| = O
(
(nh)−α

)
, for any α > 0.

(ii)

Bias
[
f̂0h,n(z)

]
= hpf

(p)
0 (z)Mp + o (hp) + O

(
(nh)−1

)
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and

V ar
[
f̂0h,n(z)

]
= (nh)−1f0(z) [1− F0(z)] [B0(z)]−1R(K),

where Mp = (−1)p

p!

∫
xpK(x)dx.

(iii) f̂0h,n(z) → f0(z) a.s.

(iv) (nh)
1
2

{
f̂0h,n(z)− E

[
f̂0h,n(z)

]}
d→ N

(
0, σ2

0(z)
)
, where

σ2
0(z) = f0(z)[1− F0(z)][B0(z)]−1R(K).

(v) Let d = limn→∞ nh2p+1. If d < ∞, then,

(nh)
1
2

{
f̂0h,n(z)− f0(z)

}
d→ N

(
d

1
2 f

(p)
0 (z)Mp, σ

2
0(z)

)
,

where σ2
0(z) has been defined in (iv) and Mp in (ii).

Theorem 1.3.7. (Asymptotic expression of MISEw

(
f̂0h,n

)
: Theorem 2.1 in Sánchez-

Sellero et al (1999))

Assume conditions (B1), (D3), (K3), (Q1) and (W1). Then,

MISEw

(
f̂0h,n

)
=

1
4
d2

Kh4

∫
f

(2)
0 (x)

2
w(x)dx + n−1h−1R(K)∫

(1− F0(x))2B0(x)−2w(x)dW01(x)

+n−1

∫
(q0(x)−B0(x)−1)f0(x)2w(x)dx

+O(h6) + O(n−1h) + O((nh)
−3
2 ),

where

MISEw

(
f̂0h,n

)
=
∫

E

[(
f̂0h,n(t)− f0(t)

)2
]

w(t)dt.

Based on the asymptotic expression obtained for MISEw(f̂0h,n), Sánchez-Sellero et

al (1999) design two data driven bandwidth selectors based on plug-in ideas and the

bootstrap technique.

When densities are used for classification purposes, the possibility of obtaining tight

confidence bands can lead to a considerable reduction of the chance of misclassification.

With this objective in mind, Sun and Zhou (1998) design a fully sequential procedure for

constructing a fixed-width confidence band for f0 in a given interval [a, b] and such that

it has approximately a coverage probability of 1− α and determines each f0(x) to within

±ε, where ε denotes the desired precision. After introducing the required conditions, we

next collect in Theorems 1.3.8 and 1.3.9 the results given by Sun and Zhou (1998) .

Let assume aG0 ≤ aW0 , bG0 ≤ bW0 and
∫∞
aW0

dF0(x)
G2

0(x)
< ∞. Besides, let us consider the

following conditions on K, f0 and the cdf’s of T0 and C0.
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(K4) K is a symmetric and continuously probability kernel with support [−1, 1].

(D4) The cdf’s G0 and L0 have bounded first derivatives on [a− θ, b + θ] for some θ > 0.

The density f0 is continuous, bounded and bounded away from zero on [a− θ, b + θ]

with bounded second derivative on the same interval.

Theorem 1.3.8. (Asymptotic distribution for the maximal deviation between f̂0h,n and

f0: Theorem 1 in Sun and Zhou (1998))

Assume conditions (K4) and (D4) and consider that h = n−γ for 1
5 < γ < 1

2 . Then, it

follows that

P
{

(2γ lnn)
1
2

[
R(K)−

1
2 En − en

]
< x

}
→ exp (−2 exp (−x)),

where

En = (nh)
1
2 sup

a≤x≤b

{(
B0(x)

(1− F0(x))f0(x)

) 1
2
∣∣∣f̂0h,n(x)− f0(x)

∣∣∣} ,

en =
[
2 ln

(
b− a

n−γ

)] 1
2

+
[
2 ln

(
b− a

n−γ

)]− 1
2

ln

(
R
(
K(1)

)
4π2R(K)

) 1
2

 .

Based on Theorem 1.3.8, Sun and Zhou (1998) consider the following variable-width

confidence band for f̂0h:

f̂0h,n(x)±

(
(1− F̂0n(x))f̂0h,n(x)R(K)

n1−γB0n(x)

) 1
2
[

zα

(2γ lnn)
1
2

+ en

]
,

where zα satisfies exp (−2 exp(−zα)) = 1− α.

Using this confidence band, which asymptotically presents a coverage probability of

1− α, they consider Nε below as the stopping rule,

Nε = inf

n ≥ 1,

[
sup

a≤x≤b

(
(1− F̂0n(x))f̂0h,n(x)

n1−γB0n(x)

)
R(K)

] 1
2
(

zα

(2γ lnn)
1
2

+ en

)
≤ ε


and define the following confidence bands

f̂0h,Nε(x)±

(
(1− F̂0Nε(x))f̂0h,Nε(x)R(K)

N1−γ
ε B0Nε(x)

) 1
2
[

zα

(2γ lnNε)
1
2

+ eNε

]
(1.26)

and

f̂0h,Nε(x)± ε. (1.27)

The asymptotic properties of (1.26) and (1.27) are collected in Theorem 1.3.9 below.
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Figure 1.2: True density (thick solid line) and kernel type density estimates based on (1.9) (dotted
line) and (1.25) (thin solid line) using a bandwidth of size h = 0.15 and 4 samples of size 1000
generated from scenario (i).

Theorem 1.3.9. (Behaviour of confidence bands for f̃0h: Theorem 2 in Sun and Zhou

(1998))

Assume conditions (K4) and (D4) and consider that h = n−γ for 1
5 < γ < 1

2 . Then, it

follows that

P

f0(x) ∈ f̂0h,Nε(x)±


(
1− F̂0Nε(x)

)
f̂0h,Nε(x)R(K)

N1−γ
ε B0Nε(x)


1
2

(
zα

(2γ lnNε)
1
2

+ eNε

)
,∀a ≤ x ≤ b

)
→ 1− α

as ε → 0 and

lim inf
ε→0

P
{

f0(x) ∈ f̂0h,Nε(x)± ε,∀a ≤ x ≤ b
}
≥ 1− α.

Next we illustrate through two examples the importance of taking into account the

presence of censoring and truncation in the generation mechanism of the data when the

objective is to estimate their density function. Let consider the following two settings:

(i) f0(t) = 1
0.5

√
2π

exp
{
−0.5(t−2)2

0.25

}
, L0(t) = 1− exp {−t} and G0(t) = 1− exp {−2t},

(ii)f0(t) = 1
2.5

√
2π

exp
{
−0.5(t−3)2

6.25

}
, L0(t) = 1−exp

{
−3t

7

}
and G0(t) = 1−exp

{
−30t

7

}
.

For scenario (i), the objective is to estimate the normal density with mean 2 and

standard deviation 0.5, denoted by f0. However, for scenario (ii) the objective is to

estimate the normal density with mean 3 and standard deviation 2.5, also denoted by f0.

While the first scenario presents a 78 percent of censoring and 34 percent of truncation,

the second one only presents percentages of 68 and 21, respectively.
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Figure 1.3: True density (thick solid line) and kernel type density estimates based on (1.9) (dotted
line) and (1.25) (thin solid line) using a bandwidth of size h = 0.30 and 4 samples of size 100
generated from scenario (i).

Samples of 1000 and 100 data were obtained separately from both scenarios satisfying

the condition T0i ≤ Y0i. Using (1.9) and (1.25), kernel density estimates of f0 were

computed and plotted in Figures 1.2–1.5. From these figures, it is clearly observed the

improvement that (1.25) yields over (1.9) when dealing with LTRC data.

1.3.4 Smoothed distribution function estimation under LTRC data

From the definition of F̂0n(x), see (1.5), it is clear that it provides a stepwise estimate of

F0, and therefore it does not take into account the smoothness of F0 when it is absolutely

continuous. As in the case of complete data, in situations like this, it worths considering

the following kernel type estimate of F0

F̂0h(x) =
∫

K
(

x− t

h

)
dF̂0n(t). (1.28)

It is interesting to note here that, as in the case of complete data, F̂0h can now be obtained

via integrating an appropriate kernel type estimate of f0 (see 1.25) in the setting of LTRC

data. The estimator F̂0h was first proposed by Zhou and Yip (1999) who proved the law

of iterated logarithm for it. However, little detail was given regarding their asymptotic

properties. Briefly, it was stated that the asymptotic normality of F̂0h could be proved

in a similar way as in the case of the PL-estimator (see Corollary 2.1 in Zhou and Yip

(1999)).

It was later on, when Chen and Wang (2006) studied the asymptotic properties of

F̂0h in more detail. More precisely, they obtained an asymptotic expression of the MISE,
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Figure 1.4: True density (thick solid line) and kernel type density estimates based on (1.9) (dotted
line) and (1.25) (thin solid line) using a bandwidth of size h = 0.75 and 4 samples of size 1000
generated from scenario (ii).

proved the asymptotic normality of F̂0h and proposed a plug-in bandwidth selector based

on the asymptotically optimal smoothing parameter minimizing the AMISE.

Below, we first introduce some conditions that will be required for further discussion

and we next collect the results proved by Chen and Wang (2006).

(K5) The kernel K is a symmetric probability density of bounded variation and with

compact support [−c, c].

(D5) F−1
0 (p) has continuous derivatives at least to order q + ` at some p = F0(t), where

q = min
{

i : F
−1(i)
0 (F0(t)) 6= 0, i ≥ 1

}
, ` = min

{
i : F

−1(q+i)
0 (F0(t)) 6= 0, i ≥ 1

}
and

for a positive integer k, F
−1(k)
0 denotes the kth derivative of the quantile function of

X0, F−1
0 .

Theorem 1.3.10. (Theorem 2.1 in Chen and Wang (2006))

Assuming conditions (B1), (K5) and (D5). If aG0 < aW0, for 0 ≤ x < bW0, we have

Bias(F̂0h(t)) = −Aq`(t)h
`+1

q

∫
u

`+1
q K(u)du + o

(
h

`+1
q

)
+ O

(
n−1

)
,

V ar(F̂0h(t)) =
1
n

(1− F0(t))
2 q0(t)−

A1(t)
n

h

+
2
n

(1− F0(t))q0(t)Aq`(t)h
`+1

q

∫ ∫
u≥v

v
`+1

q K(v)dv

+o
(
hn−1 + h

`+1
q n−1

)
,
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Figure 1.5: True density (thick solid line) and kernel type density estimates based on (1.9) (dotted
line) and (1.25) (thin solid line) using a bandwidth of size h = 1 and 4 samples of size 100 generated
from scenario (ii).

where q0(t) was introduced in (1.4) and

A1(t) = −2
(1− F0(t))f0(t)

B0(t)

∫ ∫
u≥v

K(u)vK(v)dudv

=
(1− F0(t))f0(t)

B0(t)
DK > 0,

Aq`(t) =
q!

q+`+1
q F

−1(q+`)
0 (F0(t))

q(q + `)!
[
F
−1(q)
0 (F0(t))

] q+`+1
q

.

Corollary 1.3.11. (Corollary 2.1 in Chen and Wang (2006))

Under the assumptions of Theorem 1.3.10, it follows that

MSE(F̂0h(t)) =
1
n

(1− F (t))2q0(t)−
A1(t)h

n
+

Bq`(t)h
`+1

q

n
(1.29)

+Dq`(t)h
2`+2

q + o
(
hn−1 + h

`+1
q n−1 + h

2`+2
q

)
,

where

Bq`(t) = 2(1− F0(t))q0(t)Aq`(t)
∫

u
`+1

q K(u)du,

Dq`(t) = A2
q`(t)

(∫
u

`+1
q K(u)du

)2

.

If `+1 is larger than q and
∫

u
`+1

q K(u)du is not null, there exists an expression for the

asymptotically optimal bandwidth, hAMSE,F0(t)(t), which minimizes the sum of the second
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and fourth terms in the right handside of (1.29):

hAMSE,F0(t)(t) =
(

A1(t)
2(` + 1)Dq`(t)

) q
2(`+1)−q

n
− q

2(`+1)−q .

Remark 1.3.3. When f0(t) 6= ∞ and f
(1)
0 (t) 6= 0, it is satisfied that

MSE(F̂0h(t)) =
1
n

(1− F0(t))2q0(t)−
A1(t)h

n
+ A2

11(t)d
2
Kh4 + o

(
hn−1 + h4

)
=

1
n

(1− F0(t))2q0(t)−
(1− F0(t))f0(t)DKh

B0(t)n
+

1
4
f

(1)
0 (t)

2
d2

Kh4

+o
(
hn−1 + h4

)
and

hAMSE,F0(t)(t) =

(1− F0(t))f0(t)DK

B0(t)f
(1)
0 (t)

2
d2

K

1/3

n−1/3.

Now, the consistency and the asymptotic normality of F̂0h(t) as stated in Corollary

1.3.12 below, follows from Theorem 1.3.10 and Corollary 1.3.11.

Corollary 1.3.12. (Corollary 2.2 in Chen and Wang (2006))

Under the assumptions of Theorem 1.3.10. If aG0 < aW0, for 0 ≤ t < bW0 it follows that

F̂0h(t)− F0(t) → 0 a.s. as n →∞,

and, if nh
2`+2

q goes to zero, then

n1/2
(
F̂0h(t)− F0(t)

)
d→ N

(
0, σ2

0(t)
)
,

where σ2
0(t) was previously introduced in Theorem 1.1.6.

1.4 Two-sample problems

1.4.1 Nonparametric statistical tests

The study of differences among groups or changes over time is a goal in fields such as

medical research and social science research. The traditional method for this purpose is

the usual parametric location and scale analysis. However, this is a very restrictive tool,

since a lot of the information available in the data is unaccessible. In order to make a

better use of this information it is convenient to focus on distributional analysis, i.e., on

the general two-sample problem of comparing the cumulative distribution functions (cdf),

F0 and F1, of two random variables, X0 and X1 (see Gibbons and Chakraborti (1991) for

a detailed review of the general two-sample problem).
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Consider two independent random samples drawn independently from X0 and X1:

{X01, . . . , X0n0} and {X11, . . . , X1n1}

and consider that the hypothesis of interest, H0, is that they are drawn from identical

populations, i.e. H0 : F0(x) = F1(x) for all x.

If this common population is Gaussian and if it is assumed that in case a difference

between the populations exists, this is only due to a difference between means or only be-

tween variances, then the two-sample Student’s t test for equality of means and the F test

for equality of variances are respectively the best tests to use in these cases. Unfortunately,

it is not always the case that these conditions are satisfied. Sometimes, for example, there

is not enough information in the data to check the validity of these assumptions. In situ-

ations like this, when the validity of these assumptions is controversial, the best option is

to use nonparametric procedures to test the null hypothesis H0 for unspecified continuous

distributions.

Under H0, a single random sample of size n = n0+n1 can be considered as drawn from

this common distribution. Therefore, the combined ordered configuration of the n0 X0’s

and n1 X1’s random variables in the pooled sample, which is one of the
(
n0+n1

n0

)
possible

equally likely arrangements, can provide information about the differences that may exist

between the populations. In fact, most of the nonparametric tests designed in the literature

in this setting are based on some function of the pooled ordered configuration where the

type of function considered depends on the type of alternative the test is designed to

detect.

There are different alternatives to H0 that may be considered. The easiest to ana-

lyze using distribution-free techniques are those which state some functional relationship

between the two distributions:

• A general one-sided alternative, which specifies that one of the random variables is

stochastically larger than the other

H1
A : F0(x) ≥ F1(x) for all x

F0(x) > F1(x) for some x.

• A general two-sided alternative

H2
A : F0(x) 6= F1(x) for some x.

• The location alternative, interesting to detect a difference in location

HL
A : F1(x) = F0(x− θ) for all x and some θ 6= 0.
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• The scale alternative, useful to detect a difference in scale

HS
A : F1(x) = F0(θx) for all x and some θ 6= 1.

• The Lehmann-type alternative which specifies that X1 is distributed as the largest

of k X0 variables

HL
A : F1(x) = F k

0 (x) for all x and some positive integer k 6= 1.

There exists a large variety of nonparametric tests in the literature. Below we give some

details on three of them: the Wald-Wolfowitz runs test, the Kolmogorov-Smirnov two-

sample test and the Mann-Whitney U test.

The Wald-Wolfowitz runs test (Wald and Wolfowitz (1940)) is specially useful in a

preliminary analysis when no particular form of alternative is yet formulated. Then, if

the null hypothesis is rejected, further studies should be carried out with other tests

with the objective of detecting which type of difference there exists between the two

populations. Under H0, it is expected that X0 and X1 will be well mixed in the pooled

ordered configuration. Defining a run as a sequence of identical letters preceded and

followed by a different letter or no letter, the total number of runs in the ordered pooled

sample is indicative of the degree of mixing. If few runs are present, this fact would

suggest that the pooled sample is made of two different samples drawn from distinguishable

populations.

Defining R as the total number of runs, the test rejects H0 when R ≤ cα, such that cα

is the largest integer satisfying for an α level of significance that PH0(R ≤ cα) ≤ α. There

exists a simple expression for the null distribution of R,

fR(r) =


(n0−1

r
2−1 )(

n1−1
r
2−1 )

(n0+n1
n0

) if r is even,

(n0−1
r−1
2

)(n1−1
r−3
2

)+(n0−1
r−3
2

)(n1−1
r−1
2

)
(n0+n1

n0
) if r is odd,

(1.30)

for r = 2, 3, . . . , n. However, when the n0 and n1 are large values, the computation of fR(r)

becomes very laborious. So, for n0 and n1 both larger than 10 and assuming n0
n → κ2 and

n1
n → 1− κ2 where κ2 is fixed (0 < κ2 < 1), it follows that

E

(
R

n

)
→ 2κ2(1− κ2)

V ar

(
R

n1/2

)
→ 4(κ2)2(1− κ2)2.

Defining the following standardized random variable

Z =
R− 2nκ2(1− κ2)
2n1/2κ2(1− κ2)
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and denoting by fZ its density function, Wald and Wolfowitz (1940) showed that

ln fZ(z) → − ln
√

2π − 1
2
z2,

which proves that Z approaches a standard normal density as n tends to infinity. They

first obtained the density of Z using (1.30) and then evaluated the factorials appearing in

the resulting expression using the Stirling’s formula (see Appendix A).

The Kolmogorov-Smirnov test (Smirnov (1939)) is in fact a one-sample test that can be

adapted to the two-sample problem. While in the one sample case this statistic compares

the empirical distribution function of a random sample with a hypothesized cumulative

distribution function, in the two-sample case the comparison is carried out between the

empirical distributions of the two samples, F0n0 and F1n1 .

The two-sided Kolmogorov-Smirnov two-sample test, Dn0,n1 , is defined as follows:

Dn0,n1 = max
x
|F0n0(x)− F1n1(x)| .

Since the order is preserved under a monotone transformation, this statistic is distribution-

free for any continuous common distribution. There are several methods to compute the

exact distribution of Dn0,n1 under H0. However, they are only appropriate when the

sample sizes are small. When n0 and n1 approach infinity in such a way that n0/n1

remains constant, Smirnov (1939) proved that

lim
n0,n1→∞

P

(√
n0n1

n
Dn0,n1 ≤ d

)
= L(d)

where

L(d) = 1− 2
∞∑
i=1

(−1)i−1 exp
(
−2i2d2

)
.

As the Wald-Wolfowitz test, Dn0,n1 should be used in preliminary studies because it is

sensitive to all types of differences between the cumulative distributions functions.

The Mann-Whitney U test (Mann and Whitney (1947)) is based on the position of

the X1j ’s in the combined ordered sequence. When most of the X1j ’s are larger than

most of the X0i’s or vice versa, this would be an evidence against a random mixing and

then against the null hypothesis of identical distributions. Assuming that the possibility

X0i = X1j for some (i, j) does not need to be considered, since continuous distributions

are assumed, the Mann-Whitney U test is defined as the number of times an X1j precedes

an X0i in the combined ordered arrangement of the two samples in increasing order of

magnitude.

Defining

Dij =

{
1, if X1j < X0i, i = 1, . . . , n0,

0, if X1j > X0i, j = 1, . . . , n1,
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the Mann-Whitney U statistic can be rewritten in terms of these indicator variables, Dij ,

as follows:

U =
n0∑
i=1

n1∑
j=1

Dij .

The null hypothesis can be reparameterized to H0 : p = 1/2 where p = P (X1 < X0) =∫∞
−∞ F1(x)dF0(x). Based on the expressions of the mean and the variance of U ,

E

[
U

n0n1

]
= p,

V ar

(
U

n0n1

)
=

1
n0n1

{
p− p2(n− 1) + (n1 − 1)p1 + (n0 − 1)p2

}
,

where

p1 = P (X1j < X0i, X1k < X0i with j 6= k) ,

=
∫ ∞

−∞
F1(x)2dF0(x),

p2 = P (X0i > X1j , X0h > X1j with i 6= h) ,

=
∫ ∞

−∞
(1− F0(y))2dF1(y),

it is straightforward to show that U
n0n1

is a consistent estimator for p, since it is an unbiased

estimator of p and V ar
(

U
n0n1

)
→ 0 as the sample sizes increase.

When the objective is to determine rejection regions of size α corresponding to the

Mann-Whitmey test, we first need to find the null distribution of U . Under H0, it follows

that

Pn0,n1(u) = P (U = u) =
rn0,n1(u)(

n
n0

) ,

where Pn0,n1(·) denotes the probability mass function of U , rn0,n1(u) counts the number

of distinguishable arrangements of the n0 X0i’s and the n1 X1j ’s such that the number of

times that an X1j precedes an X0i is u. A systematic method to generate critical values,

defining the rejection region of U , is based on the following recurrence relationship:

rn0,n1(u) = rn0,n1−1(u) + rn0−1,n1(u− n1),

which implies that

(n0 + n1)Pn0,n1(u) = n0Pn0,n1−1(u) + n1Pn0−1,n1(u− n1)

if the following initial and boundary conditions are defined:

ri,j(u) = 0 for all u < 0

ri,0(0) = r0,i(0) = 1

ri,0(u) = 0 for all u 6= 0

r0,i(u) = 0 for all u 6= 0.
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When n0 and n1 are too large, the asymptotic probability distribution can be used instead

of the exact null distribution of the test.

Based on a generalization of the Central Limit Theorem, it follows that U approaches

to the standard normal as n0, n1 →∞ with n1/n0 → κ2. When H0 is true, it follows that

p1 = 1/3, p2 = 1/3 and p = 1/2, and therefore, it is satisfied that:

E [U |H0] = n0n1/2 and V ar (U |H0) = n0n1(n + 1)/12.

Consequently, it follows that

Z =
U − n0n1/2√
n0n1(n + 1)/12

can be approximated by a standard normal which gives reasonably accurate for n0 = n1

as small as 6.

Finally, it is worth mentioning here that the Mann Whitney test can be adapted to the

case in which X0i = X1j for some i and j. Besides, the Mann Whitney test is considered

as the best nonparametric test for location by many statisticians.

1.4.2 ROC curves

A basic classification tool in medicine is the discrete classifier or the binary test, which

yields discrete results, positive or negative, to infer whether a disease is present or absent.

It is common practice to assess the accuracy of these tests using measures of sensitivity

(SN) and specificity (SP ), where

SN =
TP

TP + FN

SP =
TN

TN + FP

and TN , TP , FN and FP represent, respectively, the number of true negatives, true

positives, false negatives and false positives, when the binary test is applied to a large

population.

In contrast to binary tests, continuous tests or classifiers produce numeric values in

a continuous scale. Considering that large values are indicative of a higher likelihood of

disease, one individual can be classified as ill (positive) or healthy (negative) depending

on if the value given by the continuous test exceeds or not the value given by a selected

threshold. It is obvious that choosing a high threshold produces a low likelihood of a

false positive result and a high likelihood of a false negative result, which is translated

respectively in a high specificity and a low sensitivity. Therefore, while there are two
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values of specificity and sensitivity that summarize the accuracy of a binary classifier, this

is not the case for continuous classifiers since a pair of values of sensitivity and specificity

exists for every threshold considered in the continuous scale.

The receiver operating characteristic (ROC) curve captures in a unique graph the

tradeoff between test’s sensitivity and specificity along the whole range of a continuous

test. Specifically, it plots SN vs (1−SP ) as the threshold varies. The ROC curve of a test

with perfect accuracy, would run vertically from (0,0) to (0,1) and then horizontally from

(0,1) to (1,1). A continuous test that does not perform better than a random guessing

would run diagonally from (0,0) to (1,1). In practice, ROC curves lie between these two

extremes. If the ROC curve of a test lies below the diagonal (0,0)-(1,1), in the lower right

of the unit square, this means that the test is incorrect more often than correct and it

could be improved reversing the labels of positive and negative.

Let X denote the diagnostic variable associated to a continuous test and let F0 and

F1 denote the distribution of the diagnostic variable conditional on membership of two

groups, P0 and P1. In the discussion above, P0 and P1 would be the healthy and the

disease group, respectively. When F0 is absolutely continuous, a formal definition of the

corresponding ROC curve is a plot of ROC(p) = 1−F1(F−1
0 (1− p)) against p, where F−1

0

denotes the quantile function of F0 introduced in (1.1). It is interesting to note here that

ROC(p) is nothing else than the distribution function of the random variable 1−F0(X1),

which is known in the literature as ‘placement value’ (see Cai (2004) and Pepe and Cai

(2004)). In statistical terms, the ROC curve represents the non-null distribution of the

p-value (1− F0(X1)) for testing the null hypothesis that an individual comes from P0.

Suppose that the diagnostic variable X is fully observed and that two independent

samples {X01, . . . , X0n0} and {X11, . . . , X1n1} are drawn from respectively, P0 and P1,

then a natural and simple way to estimate the ROC curve is obtained by replacing F0 and

F1 in ROC(p) by their corresponding empirical estimates, F0n0 and F1n1 , i.e.

ROCn0,n1(p) = 1− F1n1(F
−1
0n0

(1− p)).

In fact, this is equivalent to plot the empirical proportions # {X1j > θ} /n1 against # {X0i

> θ} /n0 for different values of the threshold θ. Before going on, it is interesting to mention

here the connection existing between this stepwise estimate of the ROC curve and the

Mann-Whitney U statistic, introduced previously in Subsection 1.4.1. The area under the

curve ROCn0,n1(p) is precisely 1− U
n0n1

, according to the notation used in Subsection 1.4.1.

A kernel type estimator of ROC(p), first proposed by Lloyd (1998) in a heuristic way,

is given by

R̂OCh0,h1(p) = 1− F̃1h1(F̃
−1
0h0

(1− p)),
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where F̃0h0 and F̃1h1 denote kernel type estimates of respectively, F0 and F1 as defined in

equation (1.22), with bandwidths h0 and h1.

Lloyd and Yong (1999) studied the asymptotic behaviour of these two estimators of

ROC(p) and showed that for any reasonable choice of the bandwidths, the kernel estimator

performs better than the empirical one for moderate to large sample sizes.

Below we collect in Theorems 1.4.1 and 1.4.2 the results proved by Lloyd and Yong

(1999). Let consider the following conditions:

(D6) The density functions, f0 and f1 are continuous at x = F−1
0 (1− p).

(D7) The density f0 is differentiable at x = F−1
0 (1 − p) and f

(1)
0 is continuous at x =

F−1
0 (1− p).

(D8) The density f1 is differentiable at x = F−1
0 (1 − p) and f

(1)
1 is continuous at x =

F−1
0 (1− p).

(D9) The second moment
∫

x2f0(x)dx is finite.

(K6) The kernel function K(t) is symmetric about zero, twice differentiable with K(2)(t)

continuous and bounded and it satisfies that dK = 1.

Theorem 1.4.1. (Theorem 1 in Lloyd and Yong (Lloyd and Yong ) for a symmetric

kernel)

Assume conditions (D6)-(D8) and (K6). If n0, n1 →∞ and h0, h1 → 0, we have that

V ar
(
R̂OCh0,h1(p)

)
=

ROC(p)(1−ROC(p))
n1

+
(ROC(1)(p))2p(1− p)

n0

−DKROC(1)(p)
[
h0f1(F−1

0 (1− p))
n0

+
h1f0(F−1

0 (1− p))
n1

]
+O

(
h2

0 + h2
1

n0

)
+ O

(
h4

1 + n−2
0

)
,

E
[
R̂OCh0,h1(p)

]
= ROC(p) + (h2

0 − h2
1)f

(1)
1 (F−1

0 (1− p)) + ROC(2)(p){
h2

0f
2
0 (F−1

0 (1− p)) +
p(1− p)

n0

}
−1

2
ROC(2)(p)DK

f0(F−1
0 (1− p))h0

n0
+ o

(
n−1

0 + h2
0

)
.

Theorem 1.4.2. (Theorem 2 in Lloyd and Yong (1999))

Assume conditions (D6), (D8) and (D9). If n0, n1 →∞, we have that

V ar (ROCn0,n1(p)) =
ROC(p)(1−ROC(p))

n1
+ (ROC(1)(p))2

p(1− p)
n0

+ O
(
n
−3/2
0

)
,

E [ROCn0,n1(p)] = ROC(p) + O
(
n
−3/4
0

)
.
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For further discussion, we need to introduce new definitions. Let n be n =
√

n0n1 and

let κ2
n be the ratio between the two sample sizes n1 and n0, i.e. κ2

n = n1/n0. Similarly, let

define h =
√

h1h0 and s2
n = h1/h0.

Let kn be the extra number of observations required for the empirical estimator to

perform as well as the kernel one in terms of the MSE criterion, i.e. MSE(ROCn0,n1(p)) ≤
MSE(R̂OCh0,h1(p)).

Furthermore, let us consider the following condition:

(S1) It is satisfied that κ2
n = n1

n0
→ κ2 > 0 and s2

n = h1
h0
→ s2 > 0.

Based on Theorem 1.4.3 below, it can be stated that the deficiency of the empirical

estimator ROCn0,n1(p) is of order nh which diverges by assumption and includes as well

the case of the asymptotically optimal bandwidth which is of order O
(
n−1/3

)
.

Theorem 1.4.3. (Theorem 3 in Lloyd and Yong (1999))

Assume conditions (D6)-(D9), (K6) and (S1). Then, a necessary and sufficient condition

for limn→∞ kn/n = 1, is that nh →∞ and nh4 → 0. In this case,

lim
n→∞

{
kn − n

nh

}
=

DKROC(1)(p)(κf1

(
F−1

0 (1− p)
)
/s + sf0

(
F−1

0 (1− p)
)
/κ)

ROC(p)(1−ROC(p))/κ + κ(ROC(1)(p))2p(1− p)
> 0.

Lloyd and Yong (1999) were the first who proposed an empirical method to select

the bandwidths h0 and h1. Specifically, they considered the problem of selecting these

bandwidths separately and they used for each one, the 2-stage plug-in selector detailed in

Subsection 1.3.2.

Later on, Hall and Hyndman (2003) considered the problem of estimating the band-

widths h0 and h1 jointly rather than separately. When F0 has much lighter tails than

F1, they realized that the error of an estimator of F0 in its tail can yield a relatively

large contribution to the error of the corresponding estimator of ROC(p). Therefore, with

the purpose of avoiding this problem, they considered a weighted global error criterion as

follows

MISEw(R̂OCh0,h1) =
∫

E
[
(R̂OCh0,h1(p)−ROC(p))2

]
f0(F−1

0 (p))dp.

Since it can be proved that

MISEw(R̂OCh0,h1) ≈
∫

E
[
F̃0h0(t)− F0(t)

]2
f2
1 (t)dt +

∫
E
[
F̃1h1(t)− F1(t)

]2
f2
0 (t)dt,

the bandwidths h0 and h1 can indeed be obtained separately but using, respectively the

error criteria:

MISEw0(F̃0h0) =
∫

E
[
F̃0h0(t)− F0(t)

]2
w0(t)dt,

MISEw1(F̃1h1) =
∫

E
[
F̃1h1(t)− F1(t)

]2
w1(t)dt,
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where w0(t) = f2
1 (t) and w1(t) = f2

0 (t). Based on asymptotic representations of these two

error criteria, Hall and Hyndman (2003) proved that the optimal bandwidths have the

following expressions:

h0 = n
−1/3
0 c(f0, f1) and h1 = n

−1/3
1 c(f1, f0),

where

c(f0, f1)3 =
{

ν(K)
∫

f0(u)f2
1 (u)du

}
/

{
d2

K

∫ [
f

(1)
0 (u)f1(u)

]2
du

}
and ν(K) is the functional introduced previously in (1.23) but with F0 replaced by K.

Note that, even when the constants differ, the order of these bandwidths coincides with

that of the bandwidths previously used by Lloyd and Yong (1999) in a more heuristic way.

Based on the expressions obtained for the optimal bandwidths h0 and h1, Hall and

Hyndman (2003) proposed two bandwidth selectors in this scenario. The first and simplest

one is the classical rule of thumb, where f0 and f1 in expressions c(f0, f1) and c(f1, f0) are

replaced by Gaussian densities. Their mean and scale are given respectively by the sample

mean and by the minimum between the sample interquartile range divided by 1.349 and

the sample standard deviation of respectively, the comparison sample {X01, . . . , X0n0} and

the reference sample {X11, . . . , X1n1}. Simple algebra gives

c(f0, f1) =

(
4
√

πν(K)
d2

K

σ3
0(σ

2
0 + σ2

1)
5/2

(σ2
1 + 2σ2

0)1/2
[
σ4

1 + σ2
1σ

2
0 + 2σ2

0(µ0 − µ1)2
])1/3

·
(

exp
[

(µ0 − µ1)2σ2
0

(σ2
0 + σ2

1)(2σ2
0 + σ2

1)

])1/3

.

Consequently, the bandwidth selectors of h0 and h1 based on Gaussian densities are given

by:

ĥGR
0 = n

−1/3
0 ĉGR(f0, f1) and ĥGR

1 = n
−1/3
1 ĉGR(f1, f0),

where

ĉGR(f0, f1) =

(
4
√

πν(K)
d2

K

σ̂3
0(σ̂

2
0 + σ̂2

1)
5/2

(σ̂2
1 + 2σ̂2

0)1/2
[
σ̂4

1 + σ̂2
1σ̂

2
0 + 2σ̂2

0(µ̂0 − µ̂1)2
])1/3

·
(

exp
[

(µ̂0 − µ̂1)2σ̂2
0

(σ̂2
0 + σ̂2

1)(2σ̂2
0 + σ̂2

1)

])1/3

,

with σ̂k = min
{

ÎQRk/1.349, Sk

}
, S2

k = 1
nk−1

∑nk
`=1 (Xk` − µ̂k)

2 and µ̂k = n−1
k

∑nk
`=1 Xk`

for k = 0, 1.

The second bandwidth selector proposed by Hall and Hyndman (2003) for h0 and h1

uses plug-in ideas in more steps and its algorithm is summarized below:
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Step 1. Compute the following quantities:

d̂ =
n

1/3
0 σ̂1

n
1/3
1 σ̂0

,

Ĵ(fGR
0 , fGR

1 ) = 64
∫

(fGR(1)
0 (u))2fGR

0 (u)(fGR
1 (u))3du,

Î(fGR(1)
0 , fGR

1 ) =
∫

f
GR(1)
0 (u)fGR(3)

0 (u)(fGR
1 (u))2du,

Î(fGR
1 , f

GR(1)
0 ) =

∫
fGR
1 (u)fGR(2)

1 (u)(fGR(1)
0 (u))2du,

and define the bandwidths g0 and g2 as follows:

g0 =

(
3Ĵ(fGR

0 , fGR
1 )√

2π
(1 + 2d̂2)3/2

[
2d̂2Î(fGR(1)

0 , fGR
1 ) + Î(fGR

1 , f
GR(1)
0 )

]2)1/7

·(n0n1)−1/7,

g2 = d̂g0.

Step 2. Estimate I1 =
∫

f0(u)f3
1 (u)du, I2 =

∫
f2
0 (u)f2

1 (u)du and I3 =
∫

f0(u)f1(u)f (2)
1 (u)du

using Gaussian references as follows:

Î1 =
∫

fGR
0 (u)(fGR

1 (u))3du,

Î2 =
∫

(fGR
0 (u))2(fGR

1 (u))2du,

Î3 =
∫

fGR
0 (u)fGR

1 (u)(fGR
1 (u))(2)du,

and compute:

g1 = n
−2/5
1

(
2n1

n0
R(K)Î1 + ρ(K)Î2

2d2
K(Î3)2

)1/5

,

where

ρ(K) =
∫ {∫

K(u)K(u + v)du

}2

dv.

Step 3. Compute ĉ(f0, f1)3 using the formula:

ĉ(f0, f1)3 =
(

ν(K)
d2

K

)
n−1

0

∑
1≤i≤n0

f̃2
1g1

(X0i)

n−1
1

∣∣∣∑1≤j≤n1
(f̃ (1)

0g2
(X1j))2f̃

j
1g0

(X1j)
∣∣∣ ,

where f̃ j
1g0

denotes the leave-one-out estimator of f1 introduced in (1.17) and

f̃2
1g1

(y) =
2

n1(n1 − 1)g2
1

∑ ∑
1≤j1<j2≤n1

K

(
y −X1j1

g1

)
K

(
y −X1j2

g1

)
,

(f̃ (1)
0g2

(y))2 =
2

n0(n0 − 1)g4
2

∑ ∑
1≤i1<i2≤n0

K(1)

(
y −X0i1

g2

)
K(1)

(
y −X0i2

g2

)
.
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Step 4. Analogously, ĉ(f1, f0)3 is obtained following the previous Steps 1-3 but interchanging

the roles of f0 and f1, {X01, . . . , X0n0} and {X11, . . . , X1n1}, n0 and n1 and σ̂0 and

σ̂1 in all the formulas.

Step 5. Finally, compute the bandwidths ĥ0 and ĥ1 by

ĥ0 = n
−1/3
0 ĉ(f0, f1),

ĥ1 = n
−1/3
1 ĉ(f1, f0).

Although it was not explicitly mentioned above, it is clear that in the previous steps we

have used the notation fGR
k (x) (with k = 1, 2) to refer a Gaussian density with mean µ̂k

and variance σ̂2
k and for any positive integer `, f

GR(`)
k denotes the `th derivative of fGR

k .

1.4.3 Relative curves

Useful tools for performing distributional comparisons are the relative distribution func-

tion, also called the two-sample vertical quantile comparison function, R (t), and the rel-

ative density function or grade density, r (t), of X1 with respect to (wrt) X0:

R (t) = P (F0 (X1) ≤ t) = F1

(
F−1

0 (t)
)
, 0 < t < 1,

where

r (t) = R(1) (t) =
f1

(
F−1

0 (t)
)

f0

(
F−1

0 (t)
) , 0 < t < 1.

These two curves, as well as estimators for them, have been studied by Gastwirth (1968),

Ćwik and Mielniczuk (1993), Hsieh (1995), Handcock and Janssen (1996, 2002), Hsieh

and Turnbull (1996) and Cao et al (2000, 2001) under different scenarios. Assuming that

F0 is continuous and F1 is absolutely continuous with respect to F0, the relative density,

r, exists and satisfies the equation above.

These functions are closely related to other statistical methods. For instance, the

ROC curve, used in the evaluation of the performance of medical tests for separating

two groups and that was introduced in Subsection 1.4.2, is related to R through the

relationship ROC(t)=1−R (1−t) (see, for instance, Holmgren (1995) and Li et al (1996)

for details) and the density ratio λ (x) = f1(x)
f0(x) , x ∈ R, used by Silverman (1978) is linked

to r through λ (x) = r (F0 (x)). The Kullback-Leibler divergence, DKL, is defined in terms

of the density ratio as follows:

DKL(F1, F0) =
∫ ∞

−∞
ln
(

f1(x)
f0(x)

)
dF1(x).
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Using a change of variable, it can be easily rewritten in terms of the Shannon entropy of

the relative density:

DKL(F1, F0) =
∫ 1

0
ln (r(t))r(t)dt.

Given the close relationship existing between the ROC curve and the relative distri-

bution, all the estimators introduced for ROC(p) in Subsection 1.4.2 are now applicable

to the relative distribution with minor modifications, when both samples are completely

observed. Specifically, ROCn0,n1(p) suggests to estimate R(t) empirically by:

Rn0,n1(t) = 1−ROCn0,n1(1− t) = F1n1

(
F−1

0n0
(t)
)
, (1.31)

and R̂OCh0,h1(p) suggests to estimate R(t) by the smooth estimator:

R̂h0,h1(t) = 1− R̂OCh0,h1(1− t) = F̃1h1

(
F̃−1

0h0
(t)
)

.

Relative density estimates can provide more detailed information about the perfor-

mance of a diagnostic test which can be useful not only in comparing different tests but

also in designing an improved one. To illustrate this idea, we consider here two normal

populations, X0, with mean 0 and variance 1, and X1, with mean 0.5 and variance 0.0625.

The densities of these two populations are displayed in the left-top panel of Figure 1.6.

Instead of considering a threshold that moves along the values of the interest variable,

X, as in the case of a ROC curve, we consider now, for every value ` for the relative

density, the two regions {t ∈ [0, 1] : r(t) ≥ `} and {t ∈ [0, 1] : r(t) < `}, which need not be

two intervals now. Let us consider for this example, ` = 1, then there exist two values,

c1 = F−1
0 (t1) = 0.0842 and c2 = F−1

0 (t2) = 0.9815, with t1 = 0.5335 and t2 = 0.8368, for

which r(ti) = ` = 1, for i = 1, 2. Considering that X0 measures the value of interest, X, in

the healthy population and X1 in the ill population, we now can define a diagnostic test

that classifies an individual in the healthy population if the value of X measured for this

person does not fall inside the interval (c1, c2). Otherwise, the individual is classified in

the ill population. Proceeding in this way, we have computed the curve of sensitivity and

specificity that result as the level ` moves between the maximum and the minimum values

attained by r(t). Analogously to the construction of the ROC curve, we have plotted the

obtained pairs ((1 − SP ),SN) in the left-bottom panel of Figure 1.6. Comparing this

curve, let us say S(t) with the ROC curve, ROC(t) (as plotted in the left-bottom panel

of Figure 1.6), it is clear that the new diagnostic test performs better than the classical

one, because ROC(t) is closer to the diagonal in the unit square in (0, 1).

There are different global measures that are used in the literature to compare medical

tests for separating two groups. The area under the ROC curve (AUC) or the proportion

of similar responses (PSR), also known as the overlapping coefficient, are two of them.
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Figure 1.6: Plot of a diagnostic test based on the relative density. The density of X0 (dashed line)
and X1 (solid line) are plotted in the left-top panel. The relative distribution of X1 wrt X0 (solid
line) and the corresponding ROC curve (dashed-dotted line) are plotted in the right-top panel.
The relative density of X1 wrt X0 (solid line) is plotted in the left-bottom panel and the ROC
curve (dashed-dotted line) is jointly plotted in the right-bottom panel with the new curve S(t)
(solid line).

The overlapping coefficient is defined as:

PSR(f0, f1) =
∫

min (f0(x), f1(x))dx,

where f0 and f1 denote the density functions of two populations, X0 and X1. A graphical

representation of PSR(f0, f1) is displayed in Figure 1.7.

There exists a close relationship between PSR(f0, f1) and the dissimilarity index or

area between the curves, ABC(f0, f1):

ABC(f0, f1) =
∫
|f0(x)− f1(x)|dx.

In fact, it can be easily proved that:

PSR(f0, f1) = 1− 1
2
ABC(f0, f1).

As Stine and Heyse (2001) mention, one of the important properties of PSR(f0, f1) is that

it is invariant under transformations of the populations.

Nonparametric estimates of the proportion of similar responses have been used in the

literature by replacing f0 and f1 by smoothed estimates. It is interesting to mention here

that PSR(f0, f1) can be rewritten in terms of the relative density of X1 wrt X0, r1
0(t),
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Figure 1.7: Graphical representation of PSR(f0, f1), where f0 is a N(0,1) density (dashed-dotted
line) and f1 is a N(1.5,0.25) density (solid line). The dark area represents the PSR(f0, f1).
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Figure 1.8: Graphical representation of PSR(f0, f1) based on r1
0(t), the relative density of X1 wrt

X0 (top panel) and r0
1(t), the relative density of X0 wrt X1 (bottom panel). The sum of the dark

areas gives the value of PSR(f0, f1).

and the relative density of X0 wrt X1, r0
1(t). From a simple reasoning, it is seen that:

PSR(f0, f1) =
∫

t:r1
0(t)<1

r1
0(t)dt +

∫
t:r0

1(t)<1
r0
1(t)dt.

Figures 1.7 and 1.8 correspond to two populations: X0, a normal distributed random

variable with mean 0 and variance 1, and X1, a normal distributed random variable with

mean 1.5 and variance 0.25. An alternative graphical representation of PSR(f0, f1), in

terms of the relative densities r1
0(t) and r0

1(t), can be found in Figure 1.8.

As Handcock and Morris (1999) point out, the differences between two distributions

can be basically divided into two components: differences in location and differences in

shape, a concept that comprises scale, skew and other distributional aspects. When F1

is simply a location-shifted version of F0, then F1(t) = F0(t − c) or F1(t) = F0(ct) for

some constant c. If this is not the case, then F0(t) can be always location-adjusted to
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force it to have the same location as F1(t). If the differences existing between these

two distributions, F0(t) and F1(t), are not only due to a shift in location, then all the

differences remaining after a location-adjustment will be due to changes in shape. With

this idea in mind, Handcock and Morris (1999) decompose the relative distribution into

two components, one of them, rL(t), representing differences in location and the other one,

rS(t), representing differences in shape:

r(t) = rL(t) · rS(RL(t)),

where

RL(t) = P (F0(X0L) ≤ t) = F0L(F−1
0 (t)),

RS(t) = P (F0L(X1) ≤ t) = F1(F−1
0L (t)),

rL(t) =
f0L(F−1

0 (t))
f0(F−1

0 (t))
,

rS(t) =
f1(F−1

0L (t))
f0L(F−1

0L (t))
,

and F0L and f0L denote the distribution and density function of a new random variable,

X0L, that has the shape of X0 but the location of X1.

This relationship is easily obtained from the fact that:

R(t) = RS(RL(t)).

Note that in the notation above, RL(t) and rL(t) refer respectively to the relative distribu-

tion and relative density of X0L wrt X0. Analogously, RS(t) and rS(t) denote respectively

the relative distribution and relative density of X1 wrt X0L. While RL(t) and rL(t) iso-

late the differences in location between X0 and X1, RS(t) and rS(t) collect the remainder

distributional differences, in scale, skew, etc.

Additionally, the shape component, rS(RL(t)), can be further decomposed. For instance,

we could wish to isolate the difference in scale existing between the two populations. In

that case, it follows that:

r(t) = rL(t) · rSc(RL(t)) · rrSh(RLSc(t)),

where

RSc(t) = P (F0L(X0LSc) ≤ t) = F0LSc(F−1
0L (t)),

RrSh(t) = P (F0LSc(X1) ≤ t) = F1(F−1
0LSc(t)),

RLSc(t) = P (F0(X0LSc) ≤ t) = F0LSc(F−1
0 (t)),
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rSc(t) =
f0LSc(F−1

0L (t))
f0L(F−1

0L (t))
,

rrSh(t) =
f1(F−1

0LSc(t))
f0LSc(F−1

0LSc(t))
,

rLSc(t) =
f0LSC(F−1

0 (t))
f0(F−1

0 (t))
,

and F0LSc and f0LSc denote the distribution and density function of a new random variable,

X0LSc, that has the residual shape of X0 but the location and scale of X1.

In the notation above, RSc(t) and rSc(t) refer respectively to the relative distribution

and relative density of X0LSc wrt X0L. Analogously, RrSh(t) and rrSh(t) denote respec-

tively the relative distribution and relative density of X1 wrt X0LSc and RLSc(t) and

rLSc(t) refer to respectively the relative distribution and relative density of X0LSc wrt X0.

While RSc(t) and rSc(t) isolate the differences in scale between X0 and X1, RrSh(t) and

rrSh(t) collect what we call the residual shape, i.e., the remainder distributional differences

excluding those in scale.

This approach of decomposing the relative density could be further extended to add

parametric effects and isolate the part of the residual shape following such parametric

model.

Several authors have considered the following smooth estimator of the relative density:

r̂h(t) =
∫ ∞

−∞
Kh (t− F0n0(v)) dF1n1(v) =

1
n1

n1∑
j=1

Kh (t− F0n0(X1j)) (1.32)

=
(
Kh ∗ F1n1F

−1
0n0

)
(t)

which can be derived in a natural way from the fact that

r(t) ≈ 1
h

∫ 1

0
K

(
t− z

h

)
dR (z) =

1
h

∫ ∞

−∞
K

(
t− F0 (z)

h

)
dF1 (z) ,

under sufficiently smooth conditions.

Ćwik and Mielniczuk (1993) and Handcock and Janssen (2002) studied the asymptotic

normality of r̂h(t) or a slightly modified version of it that corrects for possible boundary

effects. The result given by Handcock and Janssen (2002) is summarized in the following

theorem.

Theorem 1.4.4. (Asymptotic normality of r̂h(t): Theorem 1 in Handcock and Janssen

(2002))

Assume condition (K6) and that K has compact support. If t ∈ (0, 1) and the densities

f0(x) and f1(x) are smooth enough so that r(t) is uniformly continuous, then for each
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bandwidth sequence {h = hn1} such that h → 0, n1h
3 →∞, n1h

5 → 0 and n1/n0 → κ2 <

∞, we have √
n1h (r̂h(t)− r(t)) d→ N

(
0, r(t)R(K) + κ2r2(t)R(K)

)
.

It is worth mentioning here that Ćwik and Mielniczuk (1993) studied the MISE of only

the dominant part of r̂h(t) and proposed from it, a plug-in STE bandwidth selector. On

the other hand, Handcock and Janssen (2002) obtained the asymptotic bias and variance

of r̂h(t) for large sample sizes and also a more accurate expression of the variance for small

sample sizes. However, since these authors did not carry out a detailed study of the MISE

of r̂h(t), this will be done in the following chapter.

Motivated by the kernel relative density estimator (1.32) one can define a smooth

relative distribution function estimator:

R̂h(t) =
∫ t

−∞
r̂h(x)dx =

∫
K
(

t− F0n0(x)
h

)
dF1n1(x) (1.33)

=
1
n1

n1∑
j=1

K
(

t− F0n0(X1j)
h

)
.

This is a smoothed version of the estimator given in (1.31).



Chapter 2

Bandwidth selection for the

relative density with complete

data

— Don’t say, “Yes!”

Just take my hand and dance with me.

Oriah Mountain Dreamer

2.1 Kernel-type relative density estimators

Consider the two-sample problem with completely observed data:

{X01, . . . , X0n0}, {X11, . . . , X1n1},

where the X0i’s are independent and identically distributed as X0 and the X1j ’s are

independent and identically distributed as X1. These two sequences are independent each

other.

Throughout the whole thesis all the asymptotic results are obtained under the following

assumption:

(S2) Both sample sizes n0 and n1 tend to infinity in such a way that, for some constant

0 < κ2 < ∞, limn1→∞
n1
n0

= κ2.

Besides, we assume the following conditions on the underlying distributions, the kernels

K and M and the bandwidths h and h0 to be used in the estimators (see (1.32) above

and (2.1) and (2.2) below):
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(B2) h → 0 and n1h
3 →∞.

(B3) h0 → 0 and n0h
4
0 → 0.

(D10) F0 and F1 have continuous density functions, f0 and f1, respectively.

(D11) f0 is a three times differentiable density function with f
(3)
0 bounded.

(K7) K is a symmetric four times differentiable density function with compact support

[−1, 1] and K(4) is bounded.

(K8) M is a symmetric density and continuous function except at a finite set of points.

(R1) r is a twice continuously differentiable density with compact support contained in

[0, 1].

As it was mentioned at the end of Chapter 1, since 1
h

∫ 1
0 K

(
t−z
h

)
dR (z) is close to r (t)

and for smooth distributions it is satisfied that:

1
h

∫ 1

0
K

(
t− z

h

)
dR (z) =

1
h

∫ ∞

−∞
K

(
t− F0 (z)

h

)
dF1 (z) ,

a natural way to define a kernel-type estimator of r (t) is by replacing the unknown func-

tions F0 and F1 by some appropriate estimators. We consider two proposals, r̂h(t), as

introduced previously in (1.32), and the following one

r̂h,h0(t) =
∫ ∞

−∞
Kh

(
t−F̃0h0(v)

)
dF1n1(v) =

1
n1

n1∑
j=1

Kh

(
t−F̃0h0 (X1j)

)
(2.1)

=
(
Kh∗F1n1F̃

−1
0h0

)
(t),

where Kh(t) = 1
hK

(
t
h

)
, K is a kernel function, h is the bandwidth used to estimate r, F0n0

and F1n1 are the empirical distribution functions based on X0i’s and X1j ’s, respectively,

and F̃0h0 is a kernel-type estimate of F0 given by:

F̃0h0(x) = n−1
0

n0∑
i=1

M
(

x−X0i

h0

)
, (2.2)

where M denotes the cdf of the kernel M and h0 is the bandwidth used to estimate F0.
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2.2 Selection criterion based on the mean integrated squared

error

Using a Taylor expansion, r̂h(t) can be written as follows:

r̂h(t) =
∫ ∞

−∞
Kh (t− F0(z)) dF1n1(z)

+
∫ ∞

−∞
K

(1)
h (t− F0(z)) (F0(z)− F0n0(z)) dF1n1(z)

+
∫ ∞

−∞
(F0(z)− F0n0(z))2∫ 1

0
(1− s)K(2)

h (t− F0(z)− s (F0n0(z)− F0(z))) dsdF1n1(z).

Let us define Ũn0 = F0n0 ◦F−1
0 and R̃n1 = F1n1 ◦F−1

0 . Then, r̂h(t) can be rewritten in

a useful way for the study of its mean integrated squared error (MISE):

r̂h(t) = r̃h(t) + A1(t) + A2(t) + B(t), where

r̃h(t) =
∫ ∞

−∞
Kh (t− F0(z)) dF1n1(z) =

1
n1

n1∑
j=1

Kh (t− F0(X1j)) ,

A1(t) =
∫ 1

0

(
v − Ũn0(v)

)
K

(1)
h (t− v) d

(
R̃n1 −R

)
(v),

A2(t) =
1
n0

n0∑
i=1

∫ ∞

−∞
(F0(w)− 1{X0i≤w})K

(1)
h (t− F0(w)) dF1(w),

B(t) =
∫ ∞

−∞
(F0(z)− F0n0(z))2

∫ 1

0
(1− s)K(2)

h (t− F0(z)− s (F0n0(z)− F0(z))) dsdF1n1(z).

Proceeding in a similar way, we can rewrite r̂h,h0(t) as follows:

r̂h,h0(t) = r̃h(t) + A1(t) + A2(t) + Â(t) + B̂(t), where

Â(t) =
∫ (

F0n0(w)− F̃0h0(w)
)

K
(1)
h (t− F0(w)) dF1n1(w),

B̂(t)=
∫ ∞

−∞
(F0(z)− F̃0h0(z))

2
∫ 1

0
(1−s)K(2)

h

(
t− F0(z)− s

(
F̃0h0(z)− F0(z)

))
dsdF1n1(z).

Our main result is an asymptotic representation for the MISE of r̂h(t) and r̂h,h0(t).

Before presenting the main result, we include some useful lemmas.

Lemma 2.2.1. Assume conditions (S2), (B2), (B3), (D10), (D11), (K7), (K8) and (R1).

Then ∫ 1

0
E[(r̃h(t)− r(t))2]dt =

1
n1h

R(K) +
1
4
h4d2

KR
(
r(2)
)

+ o

(
1

n1h
+ h4

)
.
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The proof of Lemma 2.2.1 is not included here because it is a classical result in the

setting of ordinary density estimation in a one-sample problem (see Theorem 1.3.3 in

Subsection 1.3.1 or Wand and Jones (1995) for more details).

Lemma 2.2.2. Assume the conditions in Lemma 2.2.1. Then∫ 1

0
E[A2

2(t)]dt =
1

n0h
R(r)R(K) + o

(
1

n0h

)
= O

(
1

n0h

)
.

Proof of Lemma 2.2.2. Standard algebra gives

E[A2
2(t)] =

1
n2

0h
4

n0∑
i=1

n0∑
j=1

∫ ∞

−∞

∫ ∞

−∞
E
[
(F0(w1)− 1{X0i≤w1})(F0(w2)− 1{X0j≤w2})

]
K(1)

(
t− F0(w1)

h

)
K(1)

(
t− F0(w2)

h

)
dF1(w1)dF1(w2).

Due to the independence between X0i and X0j for i 6= j, and using the fact that

Cov(1{F0(X0i)≤u1}, 1{F0(X0i)≤u2}) = (1− u1)(1− u2)ω(u1 ∧ u2),

where ω(t) = t
1−t , the previous expression can be rewritten as follows

E[A2
2(t)] =

2
n0h4

∫ 1

0

∫ 1

u2

(1− u1)(1− u2)ω(u2)

K(1)

(
t− u1

h

)
K(1)

(
t− u2

h

)
r(u1)r(u2)du1du2

= − 1
n0h4

∫ 1

0
ω(u2)d

[∫ 1

u2

(1− u1)K(1)

(
t− u1

h

)
r(u1)du1

]2

.

Now, using integration by parts, it follows that

E[A2
2(t)] =

−1
n0h4

lim
u2→1−

ω(u2)Ω2(u2) +
1

n0h4
lim

u2→0+
ω(u2)Ω2(u2) (2.3)

+
1

n0h4

∫ 1

0
Ω2(u2)ω(1)(u2)du2,

where

Ω(u2) =
∫ 1

u2

(1− u1)K(1)

(
t− u1

h

)
r(u1)du1.

Since Ω is a bounded function and ω(0) = 0, the second term in the right hand side of

(2.3) vanishes. On the other hand, due to the boundedness of K(1) and r, it follows that

|Ω(u2)| ≤
∥∥K(1)

∥∥
∞ ‖r‖∞

(1−u2)2

2 , which let us conclude that the first term in (2.3) is zero

as well. Therefore,

E[A2
2(t)] =

1
n0h4

∫ 1

0
Ω(u2)2ω(1)(u2)du2. (2.4)
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Now, using integration by parts, it follows that

Ω(u2) =
⌈
−(1− u1)r(u1)hK

(
t− u1

h

)⌉1

u2

+
∫ 1

u2

hK

(
t− u1

h

)
[−r(u1) + (1− u1)r(1)(u1)]du1

= h(1− u2)r(u2)K
(

t− u2

h

)
+h

∫ 1

u2

K

(
t− u1

h

)
[(1− u1)r(1)(u1)− r(u1)]du1,

and plugging this last expression in (2.4), it is concluded that

E[A2
2(t)] =

1
n0h2

(I21(t) + 2I22(t) + I23(t)),

where

I21(t) =
∫ 1

0
r2(u2)K2

(
t− u2

h

)
du2,

I22(t) =
∫ 1

0

1
1− u2

r(u2)K
(

t− u2

h

)
∫ 1

u2

K

(
t− u1

h

)
[(1− u1)r(1)(u1)− r(u1)]du1du2,

I23(t) =
∫ 1

0

1
(1− u2)2

∫ 1

u2

∫ 1

u2

K

(
t− u1

h

)
[(1− u1)r(1)(u1)− r(u1)]

K

(
t− u∗1

h

)
[(1− u∗1)r

(1)(u∗1)− r(u∗1)]du1du∗1du2.

Therefore,∫ 1

0
E[A2

2(t)]dt =
∫ 1

0

1
n0h2

I21(t)dt + 2
∫ 1

0

1
n0h2

I22(t)dt +
∫ 1

0

1
n0h2

I23(t)dt. (2.5)

Next, we will study each summand in (2.5) separately. The first term can be handled

by using changes of variable and a Taylor expansion:∫ 1

0

1
n0h2

I21(t)dt =
1

n0h

∫ 1

0
r2(u2)

(∫ 1−u2
h

−u2
h

K2(s)ds

)
du2.

Let us define K2 (x) =
∫ x
−∞ K2 (s) ds and rewrite the previous term as follows∫ 1

0

1
n0h2

I21(t)dt =
1

n0h

∫ 1

0
r2(u2)

(
K2

(
1− u2

h

)
−K2

(
−u2

h

))
du2.
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Now, by splitting the integration interval into three subintervals: [0, h], [h, 1− h] and

[1− h, 1], using changes of variable and the fact that

K2 (x) =

{
R(K) ∀x ≥ 1,

0 ∀x ≤ −1,

it is easy to show that

∫ 1

0

1
n0h2

I21(t)dt =
1

n0h
R(K)R(r) + O

(
1
n0

)
.

To study the second term in the right hand side of (2.5), we first take into account the

fact that∣∣∣∣∫ 1

0
I22(t)dt

∣∣∣∣ ≤
∫ 1

0

∫ 1

0

r(u2)
1− u2

K

(
t− u2

h

)∫ 1

u2

K

(
t− u1

h

)
(1− u1)|r(1)(u1)|du1du2dt

+
∫ 1

0

∫ 1

0

r(u2)
1− u2

K

(
t− u2

h

)∫ 1

u2

K

(
t− u1

h

)
r(u1)du1du2dt.

Now, simple algebra, changes of variable and the Cauchy-Schwarz inequality lead to:∣∣∣∣∫ 1

0
I22(t)dt

∣∣∣∣ ≤
∫ 1

0

∫ 1

0
r(u2)K

(
t− u2

h

)
h‖r(1)‖∞

∫ 1

−1
K(s)dsdu2dt

+
∫ 1

0

∫ 1

0

r(u2)
1− u2

K

(
t− u2

h

)
[(∫ 1

u2

K2

(
t− u1

h

)
du1

) 1
2
(∫ 1

u2

r2(u1)du1

) 1
2

]
du2dt

≤ h2‖r(1)‖∞+h
3
2 R(K)

1
2 ‖r‖2

∞

∫ 1

0

1

(1− u2)
1
2

du2

= h2‖r(1)‖∞ + 2h
3
2 R(K)

1
2 ‖r‖2

∞.

Then, using conditions ‖r‖∞< ∞,
∥∥r(1)

∥∥
∞< ∞ and R(K) < ∞, we can conclude that

∫ 1

0

1
n0h2

I22(t)dt = O

(
1
n0

+
1

n0h
1
2

)
= O

(
1

n0h
1
2

)
.

Below, we will study the third term in the right hand of (2.5). First, we take into

account the fact that ∣∣∣∣∫ 1

0
I23(t)dt

∣∣∣∣ ≤ I
(1)
23 + 2I

(2)
23 + I

(3)
23 , where (2.6)
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I
(1)
23 =

∫ 1

0

∫ 1

0

1
(1− u2)

2

∫ 1

u2

K

(
t− u1

h

)
(1− u1)|r(1)(u1)|∫ 1

u2

K

(
t− u∗1

h

)
(1− u∗1)|r(1)(u∗1)|du∗1du1du2dt,

I
(2)
23 =

∫ 1

0

∫ 1

0

1
(1− u2)

2

∫ 1

u2

K

(
t− u1

h

)
(1− u1)|r(1)(u1)|∫ 1

u2

K

(
t− u∗1

h

)
r(u∗1)du∗1du1du2dt

and

I
(3)
23 =

∫ 1

0

∫ 1

0

1
(1− u2)

2

∫ 1

u2

K

(
t− u1

h

)
r(u1)∫ 1

u2

K

(
t− u∗1

h

)
r(u∗1)du∗1du1du2dt.

Then, using changes of variable and the Cauchy Schwarz inequality it is easy to show that,

after simple algebra, the terms in the right hand side of (2.6) can be bounded as follows:

I
(1)
23 ≤ ‖r(1)‖2

∞h2

∫ 1

0

∫ 1

0

(1− u2)2

(1− u2)2
du2dt = O

(
h2
)

= O
(
h

3
2

)
,

I
(2)
23 ≤

∫ 1

0

∫ 1

0

1
(1− u2)

2

∫ 1

u2

K

(
t− u1

h

)
(1− u1)|r(1)(u1)|(∫ 1

u2

K

(
t− u∗1

h

)2

du∗1

) 1
2(∫ 1

u2

r2(u∗1)du∗1

) 1
2

du1du2dt

= h
3
2 R(K)

1
2 ‖r‖∞‖r(1)‖∞

∫ 1

0

∫ 1

0
(1− u2)

− 1
2 du2dt

= 2h
3
2 R(K)

1
2 ‖r‖∞‖r(1)‖∞ = O

(
h

3
2

)
and

I
(3)
23 ≤

∫ 1

0

∫ 1

0

1
(1− u2)

2

∫ 1

u2

K

(
t− u1

h

)
r(u1)[(∫ 1

u2

K

(
t− u∗1

h

)
du∗1

) 1
2
(∫ 1

u2

K

(
t− u∗1

h

)
r2(u∗1)du∗1

) 1
2

]
du1du2dt

≤
∫ 1

0

∫ 1

0

1
(1− u2)

2

∫ 1

u2

K

(
t− u1

h

)
r(u1)[

h
1
2

(∫ 1

u2

K2

(
t− u∗1

h

)
du∗1

) 1
4
(∫ 1

u2

r4(u∗1)du∗1

) 1
4

]
du1du2dt

= h
3
2 ‖K‖

1
2∞‖r‖2

∞

∫ 1

0
(1− u2)

− 1
2 du2 = 2h

3
2 ‖K‖

1
2∞‖r‖2

∞ = O
(
h

3
2

)
.
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Consequently, we can conclude that∫ 1

0

1
n0h2

I23(t)dt = O

(
1

n0h
1
2

)
.

Therefore, it has been shown that∫ 1

0
E[A2

2(t)]dt =
1

n0h
R(r)R(K) + O

(
1
n0

)
+ O

(
1

n0h
1
2

)
.

Finally the proof concludes using condition (B2).

Lemma 2.2.3. Assume the conditions in Lemma 2.2.1. Then∫ 1

0
E[A2

1(t)]dt = o

(
1

n0h

)
.

Proof of Lemma 2.2.3. Direct calculations lead to

E[A2
1(t)] =

1
h4

E [I1(t)] , (2.7)

where

I1(t) = E

[∫ 1

0

∫ 1

0
(v1 − Ũn0(v1))(v2 − Ũn0(v2))K(1)

(
t− v1

h

)
(2.8)

K(1)

(
t− v2

h

)
d(R̃n1 −R)(v1)d(R̃n1 −R)(v2)/X01, . . . , X0n0

]
.

To tackle with (2.7) we first study the conditional expectation (2.8). It is easy to see that

I1(t) = V ar[V (t)/X01, . . . , X0n0 ],

where

V (t) =
1
n1

n1∑
j=1

(
X1j − Ũn0(X1j)

)
K(1)

(
t−X1j

h

)
.

Thus

I1(t) =
1
n1

{∫ 1

0

[
(v − Ũn0(v))K(1)

(
t− v

h

)]2

dR(v)

−
[∫ 1

0
(v − Ũn0(v))K(1)

(
t− v

h

)
dR(v)

]2
}

and

E[A2
1(t)] =

1
n1h4

∫ 1

0
E

{[
(v − Ũn0(v))

]2}[
K(1)

(
t− v

h

)]2

dR(v)

− 1
n1h4

∫ 1

0

∫ 1

0
E
[
(v1 − Ũn0(v1))(v2 − Ũn0(v2))

]
K(1)

(
t− v1

h

)
K(1)

(
t− v2

h

)
dR(v1)dR(v2).
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Taking into account that

E

[
sup

v
|(Ũn0(v)− v)|2

]
=
∫ ∞

0
P

(
sup

v
|(Ũn0(v)− v)|2 > c

)
dc,

we can use the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al (1956)), to con-

clude that

E

[
sup

v
|(Ũn0(v)− v)|2

]
≤
∫ ∞

0
2e−(2n0c)dc =

2
n0

∫ ∞

0
ye−y2

dy = O

(
1
n0

)
. (2.9)

Consequently, using (2.9) and the conditions ‖r‖∞ < ∞ and
∥∥K(1)

∥∥
∞ < ∞ we obtain

that E[A2
1(t)] = O

(
1

n1n0h4

)
. The proof is concluded using condition (B2).

Lemma 2.2.4. Assume the conditions in Lemma (2.2.1). Then∫ 1

0
E[B2(t)]dt = o

(
1

n0h

)
.

Proof of Lemma 2.2.4. By using a Taylor expansion, we can rewrite E
[
B2(t)

]
as it is

detailed below:

E
[
B2(t)

]
= E

[
T 2

1 (t) + T 2
2 (t) + T 2

3 (t) + 2T1(t)T2(t) + 2T1(t)T3(t) + 2T2(t)T3(t)
]

= E
[
T 2

1 (t)
]
+ E

[
T 2

2 (t)
]
+ E

[
T 2

3 (t)
]

+2E [T1(t)T2(t)] + 2E [T1(t)T3(t)] + 2 [T2(t)T3(t)] ,

where

T1(t) =
1

2h3

∫
|F0(z1)− F0n0(z1)|2

∫ 1

0
(1− s1)

∣∣∣∣K(2)

(
t− F0 (z1)

h

)∣∣∣∣
ds1dF1n1 (z1) ,

T2(t) =
1

2h3

∫
|F0(z1)− F0n0(z1)|2

∫ 1

0
(1− s1) s1

|F0n0(z1)− F0(z1)|
h∣∣∣∣K(3)

(
t− F0 (z1)

h

)∣∣∣∣ ds1dF1n1 (z1) ,

T3(t) =
1

2h3

∫
|F0(z1)− F0n0(z1)|2

∫ 1

0
(1− s1)

s2
1

2
(F0n0(z1)− F0(z1))

2

h2∣∣∣K(4) (ξn)
∣∣∣ ds1dF1n1 (z1)

with ξn0 a value between t−F0(z1)
h and t−F0n0 (z1)

h .

It will be enough to study only the terms E
[
T 2

i (t)
]

for i = 1, 2, 3. Using the bounds

obtained for these terms and the Cauchy-Schwarz inequality it is easy to bound the other

terms in E
[
B2(t)

]
. To deal with E

[
T 2

i (t)
]
, we proceed as follows. The first step is to
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consider the equation E[T 2
i (t)] = E

[
E
[
T 2

i (t)/X01, ..., X0n0

]]
. Next, by using the inde-

pendence between the two samples, the Dvoretzky-Kiefer-Wolfowitz inequality, changes of

variable and the conditions ‖r‖∞ < ∞,
∥∥K(1+i)

∥∥
∞ < ∞, it is straightforward to show that

E[T 2
1 (t)] = O

(
1

n2
0h4

)
, E[T 2

2 (t)] = O
(

1
n3

0h6

)
and E

[
T 2

3 (t)
]

= O
(

1
n4

0h10

)
. Consequently,

(B2) implies that E[T 2
i (t)] = o

(
1

n0h

)
. A direct application of the Cauchy-Schwarz in-

equality as well as the bounds obtained for the terms E
[
T 2

i (t)
]

and condition (B2) imply

E [Ti(t)Tj(t)] = o
(

1
n0h

)
with i 6= j.

Lemma 2.2.5. Assume the conditions in Lemma 2.2.1. Then∫ 1

0
E[2A1(t)(r̃h − r)(t)]dt = 0∫ 1

0
E[2A2(t)(r̃h − r)(t)]dt = 0∫ 1

0
E[2B(t)(r̃h − r)(t)]dt = o

(
1

n1h
+ h4

)
∫ 1

0
E[2A1(t)A2(t)]dt = o

(
1

n1h
+ h4

)
∫ 1

0
E[2A1(t)B(t)]dt = o

(
1

n1h
+ h4

)
∫ 1

0
E[2A2(t)B(t)]dt = o

(
1

n0h
+ h4

)
.

Proof of Lemma 2.2.5. In order to show that
∫ 1
0 E[2A1(t)(r̃h−r)(t)]dt = 0 we start study-

ing E [A1(t)(r̃h − r)(t)]:

E [A1(t)(r̃h − r)(t)] = E

[
(r̃h − r)(t)E

[
1
h2

∫
(v − Ũn0(v))K(1)

(
t− v

h

)
d(R̃n1 −R)(v)/X11, . . . , X1n1

]]
.

Below, we will show that

E

[
1
h2

∫
(v − Ũn0(v))K(1)

(
t− v

h

)
d(R̃n1 −R)(v)/X11, . . . , X1n1

]
= 0.

In fact,

E

[
1
h2

∫
(v − Ũn0(v))K(1)

(
t− v

h

)
d(R̃n1 −R)(v)/X11, . . . , X1n1

]
=

1
h2

∫
E

(
v −

∑n0
i=1 1{X0i≤F−1

0 (v)}

n0

)
K(1)

(
t− v

h

)
d(F1n1F

−1
0 − F1F

−1
0 )(v)

=
1
h2

∫ (
v − E(1{X0i≤F−1

0 (v)})
)

K(1)

(
t− v

h

)
d(F1n1F

−1
0 − F1F

−1
0 )(v)

=
1
h2

∫
(v − v)K(1)

(
t− v

h

)
d(F1n1F

−1
0 − F1F

−1
0 )(v) = 0.
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In order to show that
∫ 1
0 E[2A2(t)(r̃h−r)(t)]dt = 0 we start studying E[A2(t)(r̃h−r)(t)].

It follows that

E[A2(t)(r̃h − r)(t)]

=
1

n0h2
E

[
n0∑
i=1

∫
(F0(w)−1{X0i≤w})K

(1)

(
t−F0(w)

h

)
dF1(w)(r̃h−r)(t)

]

=
1
h2

E

[
E

[∫
(F0(w)−1{X0i≤w})K

(1)

(
t−F0(w)

h

)
dF1(w)(r̃h−r)(t)/X11, . . . , X1n1

]]
=

1
h2

E

[
(r̃h−r)(t)

∫
E

[
(F0(w)−1{X0i≤w})K

(1)

(
t−F0(w)

h

)
/X11, . . . , X1n1

]
dF1(w)

]
=

1
h2

E

[
(r̃h−r)(t)

∫
E

[
(F0(w)−1{X0i≤w})K

(1)

(
t−F0(w)

h

)]
dF1(w)

]
=

1
h2

E

[
(r̃h−r)(t)

∫
(F0(w)−F0(w))K(1)

(
t−F0(w)

h

)
dF1(w)

]
= 0.

The proof of the other results stated in Lemma 2.2.5 are omitted here. They can be

obtained as straightforward consequences from the Cauchy-Schwarz inequality and the

bounds obtained in the previous lemmas.

Lemma 2.2.6. Assume the conditions in Lemma 2.2.1. Then

(i)
∫ 1
0 E[Â2(t)]dt = o

(
1

n0h

)
.

(ii)
∫ 1
0 E[B̂2(t)]dt = o

(
1

n0h

)
.

Proof of Lemma 2.2.6. We start proving (i). Let us define Dn0(w) = F̃0h0(w)− F0n0(w),

then

E[Â2(t)] = E[E[Â2(t)/X11, . . . , X1n1 ]]

= E

[∫∫
E[Dn0(w1)Dn(w2)]K

(1)
h (t− F0(w1))K

(1)
h (t− F0(w2))dF1n1(v1)dF1n1(v2)

]
.

Based on the results set for Dn0(w) in Hjort and Walker (2001), the conditions (D11) and

(K8) and since E[Dn0(w1)Dn0(w2)] = Cov(Dn0(w1), Dn0(w2)) + E[Dn0(w1)]E[Dn0(w2)],

it follows that E[Dn0(w1)Dn0(w2)] = O
(

h4
0

n0

)
+ O(h4

0).

Therefore, for any t ∈ [0, 1], we can bound E[Â2(t)], using suitable constants C2 and

C3 as follows

E[Â2(t)] = C2
h4

0

h4

1
n1

∫ (
K(1)

(
t− F0(z)

h

))2

f1(z)dz + C3
h4

0

h4

(n1 − 1)
n1∫∫ ∣∣∣∣K(1)

(
t− F0(z1)

h

)∣∣∣∣ ∣∣∣∣K(1)

(
t− F0(z2)

h

)∣∣∣∣ f1(z1)f1(z2)dz1dz2.

Besides, condition (R1) allows us to conclude that
∫ (

K(1)
(

t−F0(z)
h

))2
f1(z)dz = O(h) and∫∫ ∣∣∣K(1)

(
t−F0(z1)

h

)∣∣∣ ∣∣∣K(1)
(

t−F0(z2)
h

)∣∣∣ f1(z1)f1(z2)dz1dz2 = O(h2) uniformly in t ∈ [0, 1].
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Therefore,
∫ 1
0 E

[
Â2(t)

]
dt = O

(
h4
0

n0h3

)
+ O

(
h4
0

h2

)
, which, taking into account conditions

(B2) and (B3), implies (i).

We next prove (ii). The proof is parallel to that of Lemma 2.2.4. The only difference

now is that instead of requiring E[sup |F0n0(x)− F0(x)|p] = O
(
n
− p

2
0

)
, where p is an integer

larger than 1, it is required that

E
[
sup

∣∣∣F̃0h0(x)− F0(x)
∣∣∣p] = O

(
n
− p

2
0

)
. (2.10)

To conclude the proof, below we show that (2.10) is satisfied. Define Hn0 =sup
∣∣∣F̃0h0(x)

−F0(x)|, then, as it is stated in Ahmad (2002), it follows that Hn0 ≤ En0 + Wn0 where

En0 = sup |F0n0(x)− F0(x)| and Wn0 = sup
∣∣∣EF̃0h0(x)− F0(x)

∣∣∣ = O
(
h2

0

)
. Using the bi-

nomial formula it is easy to obtain that, for any integer p ≥ 1, Hp
n0 ≤

∑p
j=0 Cp

j W p−j
n0 Ej

n0 ,

where the constants Cp
j ’s (with j ∈ {0, 1, . . . , p− 1, p}) are the binomial coefficients.

Therefore, since E[Ej
n0 ] = O

(
n
− j

2
0

)
and W p−j

n0 = O
(
h

2(p−j)
0

)
, condition (B3) leads to

W p−j
n0 E

[
Ej

n0

]
= O

(
n
− p

2
0

)
.

As a straightforward consequence, (2.10) holds and the proof of (ii) is concluded.

Theorem 2.2.7 (AMISE). Assume conditions (S2), (D10), (R1), (K7) and (B2). Then

MISE(r̂h) = AMISE(h) + o

(
1

n1h
+ h4

)
+ o

(
1

n0h

)
with

AMISE(h) =
1

n1h
R(K) +

1
4
h4d2

KR(r(2)) +
1

n0h
R(r)R(K).

If conditions (D11), (K8), and (B3) are assumed as well, then the same result is

satisfied for the MISE(r̂h,h0).

The proof of Theorem 2.2.7 is a direct consequence of the previous lemmas where each

one of the terms that result from expanding the expression for the MISE are studied. As

it was proved above, some of them produce dominant parts in the final expression for the

MISE while others yield negligible terms.

Remark 2.2.1. From Theorem 2.2.7 it follows that the optimal bandwidth, minimizing the

asymptotic mean integrated squared error of any of the estimators considered for r, is

given by

hAMISE = Cn
− 1

5
1 , where C =

(
R(K)(R(r)κ2 + 1)

d2
KR(r(2))

) 1
5

. (2.11)

Remark 2.2.2. Note that AMISE(h) derived from Theorem 2.2.7 does not depend on the

bandwidth h0. A higher-order analysis should be considered to address simultaneously

the bandwidth selection problem of h and h0.
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2.3 Plug-in and STE selectors

2.3.1 Estimation of density functionals

It is very simple to show that, under sufficiently smooth conditions on r (r ∈ C(2`)(R)),

the functionals

R
(
r(`)
)

=
∫ 1

0

(
r(`) (x)

)2
dx (2.12)

appearing in (2.11), are related to other general functionals of r, denoted by Ψ2`(r):

R
(
r(`)
)

= (−1)`
∫ 1

0
r(2`) (x) r (x) dx = (−1)` Ψ2`(r), (2.13)

where

Ψ`(r) =
∫ 1

0
r(`) (x) r (x) dx = E

[
r(`) (F0 (X1))

]
.

The equation above suggests a natural kernel-type estimator for Ψ`(r) as follows

Ψ̂`(g;L) =
1
n1

n1∑
j=1

[
n1∑

k=1

1
n1

L(`)
g (F0n0 (X1j)− F0n0 (X1k))

]
, (2.14)

where L is a kernel function and g is a smoothing parameter called pilot bandwidth.

Likewise in the previous section, this is not the only possibility and we could consider

another estimator of Ψ`(r),

Ψ̃`(g, h0;L) =
1
n1

n1∑
j=1

[
n1∑

k=1

1
n1

L(`)
g

(
F̃0h0 (X1j)− F̃0h0 (X1k)

)]
, (2.15)

where F0n0 in (2.14) is replaced by F̃0h0 . Since the difference between both estimators

decreases as h0 tends to zero, it is expected to obtain the same theoretical results for both

estimators. Therefore, we will only show theoretical results for Ψ̂`(g;L).

We will obtain the asymptotic mean squared error of Ψ̂`(g;L) under the following

assumptions.

(R2) The relative density r ∈ C(`+6) (R).

(K9) The kernel L is a symmetric function of order 2, L ∈ C(`+7) (R) and satisfies that

(−1)
`
2
+2 L(`) (0) dL > 0, L(`)(1) = L(`+1)(1) = 0, with dL =

∫∞
−∞ x2L(x)dx.

(B4) g = gn1 is a positive-valued sequence of bandwidths satisfying

lim
n1→∞

g = 0 and lim
n1→∞

n1g
max{α,β} = ∞,

where

α =
2 (` + 7)

5
, β =

1
2

(` + 1) + 2.
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Condition (R2) implies a smooth behaviour of r in the boundary of its support, con-

tained in [0, 1]. If this smoothness fails, the quantity R
(
r(`)
)

could be still estimated

through its definition, using a kernel estimation for r(`) (see Hall and Marron (1987) for

the one-sample problem setting). Condition (K9) can only hold for even `. In fact, since

(−1)(
`
2
+2) would be a complex number for odd `, condition (K9) does not make sense

for odd `. Observe that in condition (B4) for even `, max {α, β} = α for ` = 0, 2 and

max {α, β} = β for ` = 4, 6, . . .

Theorem 2.3.1. Assume conditions (S2), (B4), (D10), (K9) and (R2). Then it follows

that

MSE
(
Ψ̂`(g;L)

)
=

[
1

n1g`+1
L(`) (0)

(
1 + κ2Ψ0(r)

)
+

1
2
dLΨ`+2(r)g2 (2.16)

+O
(
g4
)

+ o

((
n0g

`+1
)−1

)]2

+
2

n2
1g

2`+1
Ψ0(r)R

(
L(`)

)
+o

((
n2

1g
2`+1

)−1
)

+ O
(
n−1

0

)
.

Proof of Theorem 2.3.1. Below, we will briefly detail the steps followed to study the

asymptotic behaviour of the mean squared error of Ψ̂`(g;L) defined in (2.14). First of

all, let us observe that

Ψ̂`(g;L) =
1
n1

L(`)
g (0) +

1
n2

1

n1∑
j=1

n1∑
k=1,j 6=k

L(`)
g (F0n0 (X1j)− F0n0 (X1k)) ,

which implies:

E
[
Ψ̂`(g;L)

]
=

1
n1g`+1

L(`) (0) +
(

1− 1
n1

)
E
[
L(`)

g (F0n0 (X11)− F0n0 (X12))
]
.

Starting from the equation

E
[
L(`)

g (F0n0 (X11)− F0n0 (X12))
]

= E
[
E
[
L(`)

g (F0n0 (X11)− F0n0 (X12)) /X01, ..., X0n0

]]
= E

[∫ ∞

−∞

∫ ∞

−∞
L(`)

g (F0n (x1)− F0n0 (x2)) f1 (x1) f1 (x2) dx1dx2

]
=
∫ ∞

−∞

∫ ∞

−∞
E
[
L(`)

g (F0n (x1)− F0n0 (x2))
]
f1 (x1) f1 (x2) dx1dx2

and using a Taylor expansion, we have

E
[
L(`)

g (F0n0 (X11)− F0n0 (X12))
]

=
7∑

i=0

Ii, (2.17)
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where

I0 =
∫ ∞

−∞

∫ ∞

−∞

1
g`+1

L(`)

(
F0 (x1)− F0 (x2)

g

)
f1 (x1) f1 (x2) dx1dx2,

Ii =
∫ ∞

−∞

∫ ∞

−∞

1
i!g`+i+1

L(`+i)

(
F0 (x1)− F0 (x2)

g

)
E
[
(F0n0 (x1)− F0 (x1)− F0n0 (x2) + F0 (x2))

i
]
f1 (x1) f1 (x2) dx1dx2,

i = 1, . . . , 6,

I7 =
∫ ∞

−∞

∫ ∞

−∞

1
7!g`+7+1

E
[
L(`+7) (ξn) (F0n0 (x1)− F0 (x1)− F0n0 (x2) + F0 (x2))

7
]

f1 (x1) f1 (x2) dx1dx2

and ξn0 is a value between F0(x1)−F0(x2)
g and F0n0 (x1)−F0n0 (x2)

g .

Now, consider the first term, I0, in (2.17). Using changes of variable and a Taylor

expansion, it is easy to show that I0 = Ψ`(r)+ 1
2dLΨ`+2(r)g2+O

(
g4
)
. Assume x1 > x2 and

define Z =
∑n0

i=1 1{x2<X0i≤x1}. Then, the random variable Z has a Bi(n0, p) distribution

with p = F0 (x1) − F0 (x2) and mean equal to µ = n0p. It is easy to show that, for

i = 1, . . . , 6,

Ii =2
∫ ∞

−∞

∫ ∞

x2

1
i!g`+i+1

L(`+i)

(
F0 (x1)− F0 (x2)

g

)
f1 (x1) f1 (x2)

1
ni

0

µi (Z) dx1dx2, (2.18)

where

µr (Z) = E [(Z − E [Z])r] =
r∑

j=0

(−1)j

(
r

j

)
mr−jµ

j (2.19)

and mk denotes the kth non-central moment of Z, mk = E
[
Zk
]
.

Let mdf
k be the k-th descending factorial moment of a discrete distribution, let say Z,

mdf
k = E [Z!/(Z − k)!] .

Since Z!/(Z − k)! =
∑k

j=0 s(k, j)Zj with s(k, j)’s the Stirling numbers of first kind (see

Appendix A), it follows that

mdf
k =

k∑
j=0

s(k, j)mj .

Similarly, since Zk =
∑k

j=0
S(k,j)Z!
(Z−j)! where the S(k, j)’s denote the Stirling numbers of

second kind (see Appendix A), it follows that

mk =
k∑

j=0

S(k, j)mdf
j . (2.20)
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Now, let FMG(t) be the factorial moment generating function of Z, FMG(t) = E
[
tZ
]
.

Since it is satisfied that

FMG(1 + t) = 1 +
∑
k≤1

mdf
k tk

k!
, (2.21)

the factorials moments of Z can be obtained straightforwardly from the corresponding

factorial moment generating function associated to Z.

In particular, for Z, a binomial distribution with parameters n0 and p, there exists a

closed expression for FMG(t) given in terms of n0 and p:

FMG(t) = (1 + pt)n0 .

Therefore, based on this expression and the relationship existing between FMG(1 + t)

and the descending factorial moments of Z (see (2.21)), it is easily proved that

mdf
k =

n0!pk

(n0 − k)!
.

Consequently, replacing mdf
j in (2.20) by the equation above, the non central moments of

Z can be rewritten as follows

mk =
k∑

j=0

S (k, j) n0!pj

(n0 − j)!
, (2.22)

where

S (k, j) =
∑k

`=0

(
k
`

)
(−1)` (k − `)j

k!
.

Therefore, based on the previous formulas (2.18), (2.19) and (2.22), and after straight-

forward calculations, it is easy to show that:

I1 = 0,

I2 =
1

n0g`+1
Ψ0(r)L(`) (0) + O

(
1

n0g`

)
, (2.23)

Ii = O

(
1

n2
0g

`+2

)
, for i = 3, 4,

Ii = O

(
1

n3
0g

`+3

)
, for i = 5, 6.

Coming back to the last term in (2.17) and using the Dvoretzky-Kiefer-Wolfowitz in-

equality and condition (K9), it is easy to show that I7 = O

(
1

n
7
2
0 g`+8

)
. Therefore, using

condition (B4), it follows that

E
[
Ψ̂`(g;L)

]
= Ψ`(r) +

1
2
dLΨ`+2(r)g2 +

1
n1g`+1

L(`) (0) +
1

n0g`+1
L(`) (0)Ψ0(r)

+O
(
g4
)

+ o

(
1

n0g`+1

)
.
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For the sake of brevity we will only prove (2.23). Similar arguments can be used to handle

the terms I3, I4, I5 and I6.

First of all, since the integrand is a symmetric function in (x1, x2),

I2 =
∫ ∞

−∞

∫ ∞

x2

1
g`+1+2

L(`+2)

(
F0 (x1)− F0 (x2)

g

)
f1 (x1) f1 (x2)

1
n2

µ2 (Z) dx1dx2,

where µ2 (Z) = n0 (F0 (x1)− F0 (x2)) (1− F0 (x1) + F0 (x2)), which implies that

I2 =
1

n0g`+1+2

∫ ∞

−∞

∫ ∞

x2

L(`+2)

(
F0 (x1)− F0 (x2)

g

)
f1 (x1) f1 (x2)

(F0 (x1)− F0 (x2)) (1− F0 (x1) + F0 (x2)) dx1dx2.

Now, standard changes of variable give

I2 =
1

n0g`+1+2

∫ 1

0

∫ 1

v
L(`+2)

(
u− v

g

)
(u− v) (1− u + v) r (u) r (v) dudv

=
1

n0g`+1+2

∫ 1

0

∫ 1−v
g

0
L(`+2) (x) (gx) (1− gx) r (v + gx) r (v) gdxdv.

A Taylor expansion for r (v + gx) and Fubini’s theorem imply

I2 =
1

n0g`+1

∫ 1
g

0

∫ 1−gx

0
L(`+2) (x) xr2 (v) dvdx + O

(
1

n0g`

)
.

Now, choosing n0 such that g = gn0 < 1 and using condition (K9),

I2 =
1

n0g`+1

∫ 1

0

∫ 1

0
L(`+2) (x) xr2 (v) dvdx + O

(
1

n0g`

)
.

On the other hand, condition (K9) implies that∫ 1

0
xL(`+2) (x) dx =

⌈
xL(`+1) (x)

⌉1

0
−
∫ 1

0
L(`+1) (x) dx

= L(`+1) (1)−
[
L(`) (1)− L(`) (0)

]
= L(`) (0) .

Thus,

I2 =
1

n0g`+1
Ψ0(r)L(`) (0) + O

(
1

n0g`

)
,

which proves (2.23).

In order to study the variance of Ψ̂`(g;L), note that

V ar
[
Ψ̂`(g;L)

]
=

3∑
i=1

cn1,iV`,i, (2.24)
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where

cn1,1 =
2 (n1 − 1)

n3
1

,

cn1,2 =
4 (n1 − 1) (n1 − 2)

n3
1

,

cn1,3 =
(n1 − 1) (n1 − 2) (n1 − 3)

n3
1

,

V`,1 = V ar
[
L(`)

g (F0n0 (X11)−F0n0 (X12))
]
, (2.25)

V`,2 = Cov
[
L(`)

g (F0n0 (X11)−F0n0 (X12)) , L(`)
g (F0n0 (X12)−F0n0 (X13))

]
, (2.26)

V`,3 = Cov
[
L(`)

g (F0n0 (X11)−F0n0 (X12)) , L(`)
g (F0n0 (X13)−F0n0 (X14))

]
. (2.27)

Therefore, in order to get an asymptotic expression for the variance of Ψ̂`(g;L), we

will start getting asymptotic expressions for the terms (2.25), (2.26) and (2.27) in (2.24).

To deal with the term (2.25), we will use

V`,1 = E

[(
L(`)

g (F0n0 (X11)− F0n0 (X12))
)2
]

−E2
[
L(`)

g (F0n0 (X11)− F0n0 (X12))
]

(2.28)

and study separately each term in the right hand side of (2.28). Note that the expectation

of L
(`)
g (F0n0 (X11)− F0n0 (X12)) has been already studied when dealing with the expecta-

tion of Ψ̂`(g;L). Next we study the first term in the right hand side of (2.28). Using a

Taylor expansion around F0(x)−F0(y)
h ,

L(`)

(
F0n0(x)− F0n0(y)

h

)
= L(`)

(
F0(x)− F0(y)

h

)
+ L(`+1)

(
F0(x)− F0(y)

h

)
(

F0n0(x)− F0(x)− (F0n0(y)− F0(y))
h

)
+

1
2
L(`+2) (ξn0)

(
F0n0(x)− F0(x)− (F0n0(y)− F0(y))

h

)2

,

where ξn0 is a value between F0n0 (x)−F0n0 (y)

h and F0(x)−F0(y)
h . Then, the term:

E

[(
L(`)

g (F0n0 (X11)− F0n0 (X12))
)2
]

= E

[
E

[(
L(`)

g (F0n0 (X11)− F0n0 (X12))
)2

/X01, ..., X0n0

]]
= E

[∫ ∞

−∞

∫ ∞

−∞
L(`)2

g (F0n0 (x)− F0n0 (y)) f1 (x) f1 (y) dxdy

]
=
∫ ∞

−∞

∫ ∞

−∞
E
[
L(`)2

g (F0n0 (x)− F0n0 (y))
]
f1 (x) f1 (y) dxdy
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can be decomposed in a sum of six terms that can be bounded easily. The first term

in that decomposition can be rewritten as 1
g2`+1 Ψ0(r)R

(
L(`)

)
+ o

(
1

g2`+1

)
after applying

some changes of variable and a Taylor expansion. The other terms can be easily bounded

using the Dvoretzky-Kiefer-Wolfowitz inequality and standard changes of variable. These

bounds and condition (B4) prove that the order of these terms is o
(

1
g2`+1

)
. Consequently,

V`,1 =
1

g2`+1
Ψ0(r)R

(
L(`)

)
+ o

(
1

g2`+1

)
− (Ψ`(r) + o (1))2

=
1

g2`+1
Ψ0(r)R

(
L(`)

)
−Ψ2

`(r) + o

(
1

g2`+1

)
+ o (1) .

The term (2.26) can be handled using

V`,2 = E
[
L(`)

g (F0n0 (X11)− F0n0 (X12))L(`)
g (F0n0 (X12)− F0n0 (X13))

]
(2.29)

−E2
[
L(`)

g (F0n0 (X11)− F0n0 (X12))
]
.

As for (2.28), it is only needed to study the first term in the right hand side of (2.29).

Note that

E
[
L(`)

g (F0n0 (X11)− F0n0 (X12))L(`)
g (F0n0 (X12)− F0n0 (X13))

]
= E

[
E
[
L(`)

g (F0n0 (X11)− F0n0 (X12))L(`)
g (F0n0 (X12)− F0n0 (X13)) /X01,...,X0n0

]]
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E
[
L(`)

g (F0n0 (y)− F0n0 (z))L(`)
g (F0n0 (z)− F0n0 (t))

]
f1 (y) f1 (z) f1 (t) dydzdt.

Taylor expansions, changes of variable, the Cauchy-Schwarz inequality and the Dvoretzky-

Kiefer-Wolfowitz inequality, give:

E
[
L(`)

g (F0n0 (X11)− F0n0 (X12))L(`)
g (F0n0 (X12)− F0n0 (X13))

]
=
∫ 1

0
r(`)2 (z) r (z) dz + O

(
1
n0

)
+ O

(
1
n2

0

)
+ O

(
1
n3

0

)
+ O

(
1

n4
0g

2((`+1)+4)

)
.

Now, condition (B4) implies

E
[
L(`)

g (F0n0 (X11)− F0n0 (X12))L(`)
g (F0n0 (X12)− F0n0 (X13))

]
=
∫ 1

0
r(`)2 (z) r (z) dz + o (1) .

Consequently, using (2.29), V`,2 = O(1).

To study the term V`,3 in (2.27), let us define

A` =
∫ ∞

−∞

∫ ∞

−∞

[
L(`)

g (F0n0 (y)− F0n0 (z))− L(`)
g (F0 (y)− F0 (z))

]
f1 (y) f1 (z) dydz.
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It is easy to show that:

V`,3 = V ar (A`) .

Now a Taylor expansion gives

V ar (A`) =
N∑

k=1

V ar (Tk) +
N∑

k=1

N∑
`=1
k 6=`

Cov (Tk, T`) , (2.30)

where

A` =
N∑

k=1

Tk,

Tk =
∫ ∞

−∞

∫ ∞

−∞

1
k!g`+1

L(`+k)

(
F0 (y)− F0 (z)

g

)
f1 (y) f1 (z)(

F0n0 (y)− F0n0 (z)− (F0 (y)− F0 (z))
g

)k

dydz, for k = 1, . . . , N − 1,

and

TN =
∫ ∞

−∞

∫ ∞

−∞

1
N !g`+1

L(`+N) (ξn) f1 (y) f1 (z)(
F0n0 (y)− F0n0 (z)− (F0 (y)− F0 (z))

g

)N

dydz,

for some positive integer N . We will only study in detail each one of the first N summands

in (2.30). The rest of them will be easily bounded using the Cauchy-Schwarz inequality

and the bounds obtained for the first N terms.

Now the variance of Tk is studied. First of all, note that

V ar(Tk) ≤ E
[
Tk

2
]

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
1

k!g`+k+1

)2

f1(y1)f1(z1)f1(y2)f1(z2)

L(`+k)

(
F0(y1)− F0(z1)

g

)
L(`+k)

(
F0(y2)− F0(z2)

g

)
hk(y1, z1, y2, z2)dy1dz1dy2dz2,

where

hk(y1, z1, y2, z2) = E
{

[F0n0 (y1)− F0n0 (z1)− (F0 (y1)− F0 (z1))]
k

[F0n0 (y2)− F0n0 (z2)− (F0 (y2)− F0 (z2))]
k
}

. (2.31)

Using changes of variable we can rewrite E
[
T 2

k

]
as follows:
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E
[
Tk

2
]

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
1
k!

)2

r(s1)r(t1)r(s2)r(t2)L(`+k)
g (s1 − t1)

L(`+k)
g (s2 − t2) hk(F−1

0 (s1), F−1
0 (t1), F−1

0 (s2), F−1
0 (t2))ds1dt1ds2dt2

=
∫ 1

0

∫ s2

s2−1

∫ 1

0

∫ s1

s1−1

(
1
k!

)2

r(s1)r(s1−u1)r(s2)r(s2−u2)L(`+k)
g (u1)

L(`+k)
g (u2) hk(F−1

0 (s1), F−1
0 (s1−u1), F−1

0 (s2), F−1
0 (s2−u2))du1ds1du2ds2.

Note that closed expressions for hk can be obtained using the expressions for the mo-

ments of order r = (r1, r2, r3, r4, r5) of Z, a random variable with multinomial distribution

with parameters (n0; p1, p2, p3, p4, p5). Based on these expressions, condition (R2) and

using integration by parts we can rewrite E
[
Tk

2
]

as follows:

E
[
Tk

2
]

=
∫ 1

0

∫ s2

s2−1

∫ 1

0

∫ s1

s1−1

(
1
k!

)2

Lg (u1) Lg (u2)

∂2(`+k)

∂u`+k
1 ∂u`+k

2

(h̃k(u1, s1, u2, s2))du1ds1du2ds2,

where

h̃k(u1, s1, u2, s2) = r(s1)r(s1 − u1)r(s2)r(s2 − u2)

·hk(F−1
0 (s1), F−1

0 (s1 − u1), F−1
0 (s2), F−1

0 (s2 − u2)).

On the other hand Lemma 2.3.2 implies that supz∈R4 |hk(z)|= O
(

1
nk

0

)
. This result and

condition (R2) allow us to conclude that V ar (Tk) ≤ E
[
T 2

k

]
= O

(
1

nk
0

)
, for 1 ≤ k < N ,

which implies that V ar (Tk) = o
(

1
n0

)
, for 2 ≤ k < N .

A Taylor expansion of order N = 6, gives V ar (T6) = O
(

1
nN

0 g2(N+`+1)

)
, which using

condition (B4), proves V ar (T6) = o
(

1
n0

)
. Consequently,

V ar
[
Ψ̂`(g;L)

]
=

2
n2

1g
2`+1

Ψ0(r)R
(
L(`)

)
+ O

(
1
n0

)
+ o

(
1

n2
1g

2`+1

)
,

which concludes the proof.

Lemma 2.3.2. For hk(y1, z1, y2, z2) defined previously in (2.31), we have that:

sup
z∈R4

|hk(z)|= O

(
1
nk

0

)
.

Proof of Lemma 2.3.2. We will show below how closed expressions for hk can be obtained

from the multinomial moments of order r = (r1, r2, r3, r4, r5), mr (Z) = E
[∏5

i=1 N ri
i

]
,
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where the Ni’s for i = 1, . . . , 5 denote the five components of the multinomial variable Z,

i.e. Z = (N1, N2, N3, N4, N5). Since the way of proceeding will be the same for all k, for

the sake of brevity, we will next consider only some values of k, k = 1, 2.

First of all, note that the multinomial moments introduced above, mr(Z), can be

rewritten as follows:

mr (Z) =
r1∑

i1=0

· · ·
r5∑

i5=0

S (r1, i1) · · ·S (r5, i5) m(i) (Z) ,

where

m(i) (Z) = m((i1,i2,i3,i4,i5)) (Z) = E

[
5∏

i=1

N
(ri)
i

]
= n

(
P5

i=1 ri)
0

5∏
i=1

pri
i ,

N
(ri)
i = Ni (Ni − 1) · · · (Ni − ri + 1) ,

n
(
P5

i=1 ri)
0 = n0 (n0 − 1) · · ·

(
n0 −

5∑
i=1

ri + 1

)
and

S (rj , ij) =
∑ij

k=0

(ij
k

)
(−1)k (ij − k)rj

ij !
.

Using the expressions above, we next find the value of h1(y1, z1, y2, z2) for the six

possible arrangements of z1, z2, y1 and y2 given below:

(1) z1 < y1 ≤ z2 < y2,

(2) z2 < z1 ≤ y1 < y2,

(3) z1 < z2 < y1 < y2,

(4) y1 < z1 ≤ y2 < z2,

(5) y2 < y1 ≤ z1 < z2,

(6) y1 < y2 < z1 < z2.

Due to the symmetry property, it is enough to study the cases (1)-(3). Let start with

scenario (1). In this case, it follows that:

h1(y1, z1, y2, z2) =
1
n2

0

E[(N2 − µ2)(N4 − µ4)],

where

N2 =
n0∑

j=1

1{z1≤X0j≤y1},

E[N2] = µ2 = n0p
(1)
2 , with p

(1)
2 = P (z1 ≤ X0j ≤ y1) ,

N4 =
n0∑

j=1

1{z2≤X0j≤y2},

E[N4] = µ4 = n0p
(1)
4 , with p

(1)
4 = P (z2 ≤ X0j ≤ y2) .
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Consequently, when (1) holds, it follows that:

h1(y1, z1, y2, z2) =
1
n2

0

{E[N2N4]− µ2µ4}

=
1
n2

0

{
n0(n0 − 1)p(1)

2 p
(1)
4 − n2

0p
(1)
2 p

(1)
4

}
=

1
n0

{
(n0 − 1)p(1)

2 p
(1)
4 − n0p

(1)
2 p

(1)
4

}
= − 1

n0
p
(1)
2 p

(1)
4 .

Proceeding in a similar way when (2) holds, it follows that

h1(y1, z1, y2, z2) =
1
n2

0

E[(N3 − µ3)(N4 − µ4 + N3 − µ3 + N2 − µ2)],

where

N2 =
n0∑

j=1

1{z2≤X0j≤z1},

E[N2] = µ2 = n0p
(2)
2 , with p

(2)
2 = P (z2 ≤ X0j ≤ z1) ,

N3 =
n0∑

j=1

1{z1≤X0j≤y1},

E[N3] = µ2 = n0p
(2)
3 , with p

(2)
3 = P (z1 ≤ X0j ≤ y1) ,

N4 =
n0∑

j=1

1{y1≤X0j≤y2},

E[N4] = µ4 = n0p
(2)
4 , with p

(2)
4 = P (y1 ≤ X0j ≤ y2) .

Therefore, under scenario (2), it follows that

h1(y1, z1, y2, z2) =
1
n2

0

{
E[N3N4] + E[N2

3 ] + E[N2N3]− µ3µ4 − µ2
3 − µ2µ3

}
=

1
n2

0

{
n0(n0 − 1)p(2)

3 p
(2)
4 + n0p

(2)
3 ((n0 − 1)p(2)

3 + 1) + n0(n0 − 1)p(2)
2 p

(2)
3

−n2
0p

(2)
3 p

(2)
4 − n2

0p
(2)
2 p

(2)
3 − n2

0

(
p
(2)
3

)2
}

= − 1
n0

p
(2)
3 (1− p

(2)
4 − p

(2)
3 − p

(2)
2 ).

Finally, when scenario (3) holds, it follows that

h1(y1, z1, y2, z2) =
1
n2

0

E[(N3 − µ3 + N2 − µ2)(N4 − µ4 + N3 − µ3)],
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where

N2 =
n0∑

j=1

1{z1≤X0j≤z2},

E[N2] = µ2 = n0p
(3)
2 , with p

(3)
2 = P (z1 ≤ X0j ≤ z2) ,

N3 =
n0∑

j=1

1{z2≤X0j≤y1},

E[N3] = µ2 = n0p
(3)
3 , with p

(3)
3 = P (z2 ≤ X0j ≤ y1) ,

N4 =
n0∑

j=1

1{y1≤X0j≤y2},

E[N4] = µ4 = n0p
(3)
4 , with p

(3)
4 = P (y1 ≤ X0j ≤ y2) .

After some simple algebra, it can be shown that

h1(y1, z1, y2, z2) =
1
n0

{
p
(3)
3 − (p(3)

3 + p
(3)
2 )(p(3)

4 + p
(3)
3 )
}

when (3) holds. As a consequence, supz∈<4 |h1(z)| = O
(

1
n0

)
.

The value of h2(y1, z1, y2, z2) under the different arrangements of z1, z2, y1 and y2, can

be obtained in a similar way. After simple algebra it follows that:

h2(y1, z1, y2, z2) =
1
n3

0

{
p
(1)
2 p

(1)
4 (n0 − 1) +

(
p
(1)
2

)2
p
(1)
4 (2− n0)

+p
(1)
2

(
p
(1)
4

)2
(2− n0) +

(
p
(1)
2

)2 (
p
(1)
4

)2
(−6 + 3n0)

}
if (1) holds,

h2(y1, z1, y2, z2) =
1
n3

0

{
p
(2)
3 + (n0 − 3)p(2)

2 p
(2)
3 + (n0 − 3)p(2)

3 p
(2)
4

+(3n0 − 7)
(
p
(2)
3

)2
− (2n0 − 4)p(2)

2 p
(2)
3 p

(2)
4

−(7n0 − 14)p(2)
2

(
p
(2)
3

)2
− (n0 − 2)

(
p
(2)
2

)2
p
(2)
3

−(n0 − 2)p(2)
3

(
p
(2)
4

)2
− (7n0 − 14)

(
p
(2)
3

)2
p
(2)
4

−(6n0 − 12)
(
p
(2)
3

)3
+ (6n0 − 12)p(2)

2

(
p
(2)
3

)3

+(6n0 − 12)
(
p
(2)
3

)3
p
(2)
4 + (3n0 − 6)

(
p
(2)
2

)2 (
p
(2)
3

)2

+(3n0 − 6)
(
p
(2)
3

)2 (
p
(2)
4

)2
+ (6n0 − 12)p(2)

2

(
p
(2)
3

)2
p
(2)
4

+(3n0 − 6)
(
p
(2)
3

)4
}
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if (2) holds and

h2(y1, z1, y2, z2) =
1
n3

0

{
p
(3)
3 + (n0 − 3)p(3)

2 p
(3)
3 + (n0 − 1)p(3)

2 p
(3)
4

(n0 − 3)p(3)
3 p

(3)
4 − (8n0 − 16)p(3)

2 p
(3)
3 p

(3)
4

+(3n0 − 7)
(
p
(3)
3

)2
− (6n0 − 12)

(
p
(3)
3

)3
+ (3n0 − 6)

(
p
(3)
3

)4

−(7n0 − 14)p(3)
2

(
p
(3)
3

)2
− (n0 − 2)

(
p
(3)
2

)2
p
(3)
3

+(6n0 − 12)p(3)
2

(
p
(3)
3

)3
− (n0 − 2)p(3)

2

(
p
(3)
4

)2

−(n0 − 2)
(
p
(3)
2

)2
p
(3)
4 − (n0 − 2)p(3)

3

(
p
(3)
4

)2

−(7n0 − 14)
(
p
(3)
3

)2
p
(3)
4 + (6n0 − 12)

(
p
(3)
3

)3
p
(3)
4

+(6n0 − 12)p(3)
2 p

(3)
3

(
p
(3)
4

)2

+(12n0 − 24)p(3)
2

(
p
(3)
3

)2
p
(3)
4

+(6n0 − 12)
(
p
(3)
2

)2
p
(3)
3 p

(3)
4

+(3n0 − 6)
(
p
(3)
2

)2 (
p
(3)
3

)2
+ (3n0 − 6)

(
p
(3)
2

)2 (
p
(3)
4

)2

+(3n0 − 6)
(
p
(3)
3

)2 (
p
(3)
4

)2
}

if (3) holds. Consequently, supz∈<4 |h2(z)| = O
(

1
n2

0

)
.

Remark 2.3.1. If equation (2.17) is replaced by a three-term Taylor expansion
∑2

i=1 Ii+I∗3 ,

where

I∗3 =
1

3!g`+4

∫∫
E
[
L(`+3) (ζn) (F0n0 (x1)− F0 (x1)− F0n0 (x2) + F0 (x2))

3
]

f1 (x1)f1 (x2)dx1dx2

and ζn0 is a value between F0(x1)−F0(x2)
g and F0n0 (x1)−F0n0 (x2)

g , then I∗3 = O

(
1

n
3
2
0 g`+4

)
and

we would have to ask for the condition n0g
6 →∞ to conclude that I∗3 = o

(
1

n0g`+1

)
. How-

ever, this condition is very restrictive because it is not satisfied by the optimal bandwidth

g` with ` = 0, 2, which is g` ∼ n
− 1

`+3

0 . We could consider
∑3

i=1 Ii + I∗4 and then we would

need to ask for the condition n0g
4 →∞. However, this condition is not satisfied by g` with

` = 0. In fact, it follows that n0g
4
` → 0 if ` = 0 and n0g

4
` → ∞ if ` = 2, 4, . . . Something

similar happens when we consider
∑4

i=1 Ii +I∗5 or
∑5

i=1 Ii +I∗6 , i.e., the condition required

in g, it is not satisfied by the optimal bandwidth when ` = 0. Only when we stop in I∗7 ,

the required condition, n0g
14
5 →∞, is satisfied for all even `.
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If equation (2.30) is reconsidered by the mean value theorem, and then we define

A` = T ∗
1 with

T ∗
1 =

∫∫
1

g`+2
L(`+1) (ζn) [F0n0 (y)− F0n0 (z)− (F0 (y)− F0 (z))] f1 (x1) f1 (x2) dydz,

it follows that V ar (A`) = O
(

1
n0g2(`+2)

)
. However, assuming that g → 0, it is impossible

to conclude from here that V ar (A`) = o
(

1
n0

)
.

Remark 2.3.2. The first term in the right-hand side of (2.16) corresponds to the main

squared bias term of MSE. Note that, using (K9) and (2.13), the bias term vanishes by

choosing g = g`

g` =

(
2L(`) (0)

(
1 + κ2Ψ0(r)

)
−dLΨ`+2(r)n1

) 1
(`+3)

=

(
2L(`)(0)d2

KΨ4(r)
−dLΨ`+2(r)R(K)

) 1
`+3

h
5

`+3

AMISE ,

which is also the asymptotic MSE-optimal bandwidth.

Note that g` only has sense if the term in brackets is positive. Since

Ψ`+2(r) = Ψ2( `
2
+1)(r) = (−1)

`
2
+1R

(
r( `

2
+1)
)

and R
(
r( `

2
+1)
)

is positive by definition, the required condition to guarantee that

2L(`)(0)(1 + κ2Ψ0(r))
−dLΨ`+2(r)n1

> 0

is that (−1)
`
2
+2L(`)(0)dL > 0, which is exactly condition (K9) introduced previously.

2.3.2 STE rules based on Sheather and Jones ideas

As in the context of ordinary density estimation, the practical implementation of the

kernel-type estimators proposed here (see (1.32) and (2.1)), requires the choice of the

smoothing parameter h. Our two proposals, hSJ1 and hSJ2 , as well as the selector b3c

recommended by Ćwik and Mielniczuk (1993), are modifications of Sheather and Jones

(1991). Since the Sheather & Jones selector is the solution of an equation in the bandwidth,

it is also known as a solve-the-equation (STE) rule. Motivated by formula (2.11) for the

AMISE-optimal bandwidth and the relation (2.13), solve-the-equation rules require that

h is chosen to satisfy the relationship

h =

R (K)
(
κ2Ψ̃0 (γ1(h), h0;L) + 1

)
d2

KΨ̃4 (γ2 (h) , h0;L) n1


1
5

,
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where the pilot bandwidths for the estimation of Ψ0(r) and Ψ4(r) are functions of h (γ1(h)

and γ2(h), respectively).

Motivated by Remark 2.3.2, we suggest taking

γ1 (h) =

(
2L (0) d2

KΨ̃4 (g4, h0;L)
−dLΨ̃2 (g2, h0;L) R(K)

) 1
3

h
5
3

and

γ2 (h) =

(
2L(4) (0) d2

KΨ̃4 (g4, h0;L)
−dLΨ̃6 (g6, h0;L) R(K)

) 1
7

h
5
7 ,

where Ψ̃j (·), (j = 0, 2, 4, 6) are kernel estimates (2.15). Note that this way of proceeding

leads us to a never ending process in which a bandwidth selection problem must be solved

at every stage. To make this iterative process feasible in practice one possibility is to

propose a stopping stage in which the unknown quantities are estimated using a parametric

scale for r. This strategy is known in the literature as the stage selection problem (see

Wand and Jones (1995)). While the selector b3c in Ćwik and Mielniczuk (1993) used

a Gaussian scale, now for the implementation of hSJ2 , we will use a mixture of betas

based on the Weierstrass approximation theorem and Bernstein polynomials associated

to any continuous function on [0, 1] (see Kakizawa (2004) and references therein for the

motivation of this method). Later on we will show the formula for computing the reference

scale above-mentioned.

In the following we denote the Epanechnikov kernel by K, the uniform density in

[−1, 1] by M and we define L as a β(9, 9) density function rescaled to the interval [−1, 1]:

L(x) =
Γ(18)

2Γ(9)Γ(9)

(
x + 1

2

)8(
1− x + 1

2

)8

1{−1≤x≤1}.

Next, we detail the steps required in the implementation of hSJ2 . Since the selector

hSJ1 is a modified version of hSJ2 , a brief mention to it will be given later on after a more

detailed presentation of hSJ2 .

Step 1. Obtain Ψ̂PR
j (j = 0, 4, 6, 8), parametric estimates for Ψj(r) (j = 0, 4, 6, 8), with

the replacement of r(x) in R
(
r(j/2)

)
(see (2.12)), by a mixture of betas, b̃(x;N,R),

as it will be explained later on (see (2.33)).

Step 2. Compute kernel estimates for Ψj(r) (j = 2, 4, 6), by using Ψ̃j(gPR
j , h0;L) (j =

2, 4, 6), with

gPR
j =

2L(j) (0)
(
κ2Ψ̂PR

0 + 1
)

−dLΨ̂PR
j+2n1


1

j+3

, j = 2, 4, 6.



82 Bandwidth selection for the relative density with complete data

Step 3. Estimate Ψk(r) (k = 0, 4), by means of Ψ̃0(γ̂1(h), h0;L) and Ψ̃4(γ̂2(h), h0;L),

where

γ̂1 (h) =

(
2L (0) d2

KΨ̃4

(
gPR
4 , h0;L

)
−dLΨ̃2

(
gPR
2 , h0;L

)
R (K)

) 1
3

h
5
3

and

γ̂2 (h) =

(
2L(4) (0) d2

KΨ̃4

(
gPR
4 , h0;L

)
−dLΨ̃6

(
gPR
6 , h0;L

)
R (K)

) 1
7

h
5
7 .

Step 4. Select the bandwidth hSJ2 as the one that solves the following equation in h:

h =

R (K)
(
κ2Ψ̃0 (γ̂1 (h) , h0;L) + 1

)
d2

KΨ̃4 (γ̂2 (h) , h0;L) n1


1
5

.

In order to solve the equation above, it will be necessary to use a numerical algorithm.

In the simulation study we will use the false-position method. The main reason is that

the false-position algorithm does not require the computation of the derivatives, which

simplifies considerably the implementation of the proposed bandwidth selectors. At the

same time, this algorithm presents some advantages over others because it tries to combine

the speed of methods such as the secant method with the security afforded by the bisection

method. Figure 2.1 below exemplifies how the false-position method works.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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h
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h
0

h
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h
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Figure 2.1: Graphical representation of the false-position algorithm.
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Unlike the Gaussian parametric reference, used to obtain b3c, the selector hSJ2 uses in

Step 1 a mixture of betas. Since we are trying to estimate a density with support in [0, 1]

it seems more suitable to consider a parametric reference with this support. A mixture

of betas is an appropriate option because it is flexible enough to model a large variety

of relative densities, when derivatives of order 1, 3 and 4 are also required. This can be

clearly observed in Figure 2.2 where the theoretical relative density, r(x) = β(x, 4, 5), the

function b̃(x;N,R) with N = 14, 74 (for a pair of samples coming from that model), and

the above-mentioned derivatives of both functions are shown.
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Figure 2.2: Relative density r(x) = β(x, 4, 5) (solid lines) and b̃(x, N,R) (with N = 14 dotted
lines, with N = 74 dashed lines) for a pair of samples with sizes n0 = n1 = 200: r(x) and b̃(x, N,R)
(left-top panel); r(1)(x) and b̃(1)(x, N,R) (right-top panel); r(3)(x) and b̃(3)(x, N,R) (left-bottom
panel); r(4)(x) and b̃(4)(x,N,R) (right-bottom panel).

Let β(x, a, b) be the beta density

β(x, a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1, x ∈ [0, 1],

and let B(x;N,G) be the Bernstein polynomial associated to any continuous function G

on the closed interval [0, 1]:

B(x;N,G) = (N + 1)−1
N+1∑
j=1

G

(
j − 1
N

)
β(x, j, N − j + 2)

=
N∑

j=0

G

(
j

N

)
N !

j!(N − j)!
xj(1− x)N−j .
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Applying Weierstrass’s theorem it is known that B(x;N,G) converges to G(x) uniformly

in x ∈ [0, 1] as N tends to ∞. For a distribution function, G, on [0, 1], it follows

that B(x;N,G) is a proper distribution function with density function b(x;N,G) =

B(1)(x;N,G), i.e.

b(x;N,G) =
N∑

j=1

(
G

(
j

N

)
−G

(
j − 1
N

))
β(x, j, N − j + 1). (2.32)

Based on this idea, we propose for r(x) the following parametric fit b̃(x;N,R) where the

unknown relative distribution function R in (2.32) is replaced by a smooth estimate, R̃gR̃
,

as follows:

b̃(x;N,R) =
N∑

j=1

(
R̃gR̃

(
j

N

)
− R̃gR̃

(
j − 1
N

))
β(x, j, N − j + 1), (2.33)

where

R̃gR̃
(x) = n−1

1

n1∑
j=1

M

(
x− F̃0h0(X1j)

gR̃

)
, (2.34)

gR̃ =

(
2
∫∞
−∞ xM (x) M (x) dx

n1d2
MR

(
rPR(1)

) ) 1
3

and N is the number of betas in the mixture. We refer to the interested reader to Kakizawa

(2004) for more details with respect to this choice.

Note that, for the sake of simplicity, we are using above the AMISE-optimal bandwidth

(gAMISE,R) for estimating a distribution function in the setting of a one-sample problem

(see Polansky and Baker (2000) for more details in the kernel-type estimate of a distribu-

tion function). The use of this bandwidth requires the previous estimation of the unknown

functional, R
(
r(1)
)
. We will consider a quick and dirty method, the rule of thumb, that

uses a parametric reference for r to estimate the above-mentioned unknown quantity. More

specifically, our reference scale will be a beta with parameters (p, q) estimated from the

smoothed relative sample
{

F̃0h0(X1j)
}n1

j=1
, using the method of moments.

Following the same ideas as for (2.34), the bandwidth selector used for the kernel-

type estimator F̃0h0 introduced in (2.2) is based on the AMISE-optimal bandwidth in the

one-sample problem:

h0 =

2
∫∞
−∞ xM (x) M (x) dx

n0d2
MR

(
f

PR(1)
0

)
 1

3

.

As it was already mentioned above, in most of the cases this methodology will be applied

to survival analysis, so it is natural to assume that our samples come from distributions
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with support on the positive real line. Therefore, a gamma distribution, Gamma(α, β),

has been considered as the parametric reference for f0, let say fPR
0 , where the parameters

(α, β) are estimated from the comparison sample {X0i}n0
i=1, using the method of moments.

For the implementation of hSJ1 , we proceed analogously to that of hSJ2 above. The

only difference now is that throughout the previous discussion, Ψ̃j(·) and F̃0h0(·) are

replaced by, respectively, Ψ̂j(·) and F0n0(·).
As a variant of the selector that Ćwik and Mielniczuk (1993) proposed, b3c is obtained

as the solution to the following equation:

b3c =

R(K)
(
1 + κ2Ψ̂0(a)

)
d2

KΨ̂4 (α2 (b3c))n1


1
5

,

where a = 1.781σ̂n
− 1

3
1 , σ̂ = min

{
Sn1 , ÎQR/1.349

}
, Sn1 and ÎQR denote, respectively,

the empirical standard deviation and the sample interquartile range of the relative data,

{F0n0(X1j)}n1

j=1,

α2 (b3c) = 0.7694

(
Ψ̂4

(
gGS
4

)
−Ψ̂6

(
gGS
6

)) 1
7

b
5
7
3c,

where GS stands for standard Gaussian scale,

g4
GS =1.2407σ̂n

− 1
7

1 , g6
GS =1.2304σ̂n

− 1
9

1

and the estimates Ψ̂j (with j = 0, 4, 6) were obtained using (2.14), with L replaced by the

standard Gaussian kernel and with data driven bandwidth selectors derived from reducing

the two-sample problem to a one-sample problem.

Remark 2.3.3. The explicit formula of b3c detailed previously and used in the simulation

study later on, is equation (3.7) appearing in Ćwik and Mielniczuk (1993) but generalized

now to the case of different sample sizes. The constant appearing in α2 (b3c) differs slightly

from that in Section 5 of Sheather and Jones (1991) because different kernel functions were

used. While we use the Epanechnikov kernel for estimating r and the Gaussian kernel for

estimating the functionals Ψj(r), Ćwik and Mielniczuk (1993) used the Gaussian kernel

for both. The expression given by gGS
4 and gGS

6 correspond to, respectively, a and b given

in Section 5 of Sheather and Jones (1991). The differences observed in the constants come

from the fact that we estimate the dispersion of the relative data using the minimum of the

empirical standard deviation and the ratio of the sample interquartile range (ÎQR) over

1.349. However, Sheather and Jones (1991) use ÎQR/1.349 to estimate the dispersion of

the relative data. Therefore, replacing σ̂ in gGS
4 and gGS

6 by ÎQR /1.349 gives expressions

a and b in Section 5 of Sheather and Jones (1991).
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It is interesting to note that all the kernel-type estimators presented previously (r̂h(t),

r̂h,h0(t), R̃gR̃
(x) and F̃0h0 (x)) were not corrected to take into account, respectively, the

fact that r and R have support on [0, 1] instead of on the whole real line, and the fact that

f0 is supported only on the positive real line. Therefore, in order to correct the boundary

effect in practical applications we will use the well known reflection method (as described

in Silverman (1986)), to modify r̂h(t), r̂h,h0(t), R̃gR̃
(x) and F̃0h0 (x), where needed.

2.3.3 A simulation study

We compare, through a simulation study, the performance of the bandwidth selectors hSJ1

and hSJ2 , proposed in Subsection 2.3.2, with the existing competitor b3c recommended by

Ćwik and Mielniczuk (1993). Although we are aware that the smoothing parameter N

introduced in (2.33) should be selected by some optimal way based on the data, this issue

goes beyond the scope of this research. Consequently, from here on, we will consider

N = 14 components in the beta mixture reference scale model given by (2.33).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

(a)(b) (b)

(c)

(d)

Figure 2.3: Plots of the relative densities (a)-(d).

We will consider the first sample coming from the random variate X0 = W−1 (U) and

the second sample coming from the random variate X1 = W−1 (S), where U denotes a

uniform distribution in the compact interval [0, 1], W is the distribution function of a

Weibull distribution with parameters (2, 3) and S is a random variate from one of the

following seven different populations (see Figures 2.3 and 2.4):

(a) V = 1
4 (U1 + U2 + U3 + U4), where U1, U2, U3, U4 are iid U [0, 1].

(b) A mixture consisting of V1 with probability 1
2 and V2 with probability 1

2 , where
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Figure 2.4: Plots of the relative densities (e)-(g).

V1 = V
2 , V2 = V +1

2 and V as for model (a).

(c) A beta distribution with parameters 4 and 5 (β (4, 5)).

(d) A mixture consisting of V1 with probability 1
2 and V2 with probability 1

2 , where

V1 = β (15, 4) and V2 = β (5, 11).

(e) A beta distribution with parameters 14 and 17 (β (14, 17)).

(f) A mixture consisting of V1 with probability 4
5 and V2 with probability 1

5 , where V1 =

β (14, 37) and V2 = β (14, 20).

(g) A mixture consisting of V1 with probability 1
3 and V2 with probability 2

3 , where V1 =

β (34, 15) and V2 = β (15, 30).

Note that here we are considering that the relative distribution is the distribution of

S and that the role of W is just to transform both samples for not restricting the study

to the case that X0 is U [0, 1].

Choosing different values for the pair of sample sizes n0 and n1 and under each of the

models presented above, we start drawing 500 pairs of random samples and, according to

every method, we select the bandwidths ĥ. Then, in order to check their performance we

approximate by Monte Carlo the mean integrated squared error, EM , between the true

relative density and the kernel-type estimate for r, given by (1.32) when ĥ = b3c, hSJ1 or

by (2.1) when ĥ = hSJ2 .

The computation of the kernel-type estimations can be very time consuming when using

a direct algorithm. Therefore, we will use linear binned approximations that, thanks to
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Table 2.1: Values of EM for hSJ1 , hSJ2 and b3c for models (e)-(g).

EM Model (e) Model (f) Model (g)

(n0, n1) hSJ1 hSJ2 b3c hSJ1 hSJ2 b3c hSJ1 hSJ2 b3c

(50, 50) 0.8437 0.5523 1.2082 1.1278 0.7702 1.5144 0.7663 0.5742 0.7718
(100, 100) 0.5321 0.3717 0.6654 0.6636 0.4542 0.7862 0.4849 0.3509 0.4771
(200, 200) 0.2789 0.2000 0.3311 0.4086 0.2977 0.4534 0.2877 0.2246 0.2830

(100, 50) 0.5487 0.3804 0.7162 0.6917 0.4833 0.8796 0.4981 0.3864 0.4982
(200, 100) 0.3260 0.2443 0.3949 0.4227 0.3275 0.4808 0.3298 0.2601 0.3252
(400, 200) 0.1739 0.1346 0.1958 0.2530 0.1924 0.2731 0.1830 0.1490 0.1811

(50, 100) 0.8237 0.5329 1.1189 1.1126 0.7356 1.4112 0.7360 0.5288 0.7135
(100, 200) 0.5280 0.3627 0.6340 0.6462 0.4288 0.7459 0.4568 0.3241 0.4449
(200, 400) 0.2738 0.1923 0.3192 0.3926 0.2810 0.4299 0.2782 0.2099 0.2710

Table 2.2: Values of EM for hSJ2 and b3c for models (a)-(d).

EM Model (a) Model (b) Model (c) Model (d)

(n0, n1) hSJ2 b3c hSJ2 b3c hSJ2 b3c hSJ2 b3c

(50, 50) 0.1746 0.3493 0.4322 0.5446 0.1471 0.3110 0.2439 0.3110
(100, 100) 0.1208 0.2034 0.2831 0.3471 0.1031 0.1750 0.1474 0.1892
(200, 200) 0.0608 0.0964 0.1590 0.1938 0.0524 0.0827 0.0874 0.1068

(100, 50) 0.1241 0.2165 0.3319 0.3911 0.1139 0.2064 0.1897 0.2245
(200, 100) 0.0835 0.1227 0.1965 0.2286 0.0712 0.1029 0.1152 0.1351
(400, 200) 0.0462 0.0641 0.1089 0.1250 0.0399 0.0529 0.0661 0.0760

(50, 100) 0.1660 0.3308 0.3959 0.5117 0.1256 0.2615 0.2075 0.2826
(100, 200) 0.1073 0.1824 0.2577 0.3240 0.0898 0.1548 0.1281 0.1685
(200, 400) 0.0552 0.0897 0.1457 0.1820 0.0448 0.0716 0.0757 0.0953

their discrete convolution structures, can be efficiently computed by using the fast Fourier

transform (FFT) (see Wand and Jones (1995) for more details).

The values of this criterion for the three bandwidth selectors, hSJ1 , hSJ2 and b3c, can be

found in Table 2.1 for models (e)-(g). Since from this table it is clear the outperformance

of hSJ2 over hSJ1 , only the values for selectors hSJ2 and b3c were shown for models (a)-(d)

(see Table 2.2).

A careful look at the tables points out that the new selectors, especially hSJ2 , present a

much better behaviour than the selector b3c, particularly when the sample sizes are equal or

when n1 is larger than n0. The improvement is even larger for unimodal relative densities

(models (a), (c) and (e)). The ratio n1
n0

produces an important effect on the behaviour

of any of the two selectors considered. For instance, it is clearly seen an asymmetric

behaviour of the selectors in terms of the sample sizes.

In Figures 2.5 and 2.6 we plot the histograms of the 500 values of the bandwidths b3c

and hSJ2 obtained in the simulation study for model (e) and sample sizes of, respectively,

(n0, n1) = (50, 50) and (n0, n1) = (100, 100).
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Figure 2.5: Histograms of the 500 values of b3c, hSJ1 and hSJ2 (from left to right) obtained under
model (e) and (n0, n1) = (50, 50).
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Figure 2.6: Histograms of the 500 values of b3c, hSJ1 and hSJ2 (from left to right) obtained under
model (e) and (n0, n1) = (100, 100).

Table 2.3 includes, for models (a)–(d), the mean of the CPU times required per trial

in the computation of b3c and hSJ2 . Since the CPU times required to compute hSJ1 were

very similar to the ones obtained for hSJ2 , they were omitted in Table 2.3.

Other proposals for selecting h have been investigated. For instance, versions of hSJ2

were considered in which either the unknown functionals Ψ` are estimated from the view-

point of a one-sample problem or the STE rule is modified in such a way that only the

function γ2 is considered in the equation to be solved (see Step 4 in Subsection 2.3.2). In a

simulation study similar to the one detailed here, but now carried out for these versions of

hSJ2 , it was observed a similar practical performance to that observed for hSJ2 . However,

a worse behaviour was observed when, in the implementation of hSJ2 , the smooth estimate

of F0 is replaced by the empirical distribution function F0n0 . Therefore, although hSJ2

requires the selection of two smoothing parameters, a clear better practical behaviour is
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Table 2.3: Mean of the CPU time (in seconds) required per trial in the computation of bandwidths
hSJ2 and b3c for models (a)–(d).

CPU time Model (a) Model (b) Model (c) Model (d)

(n0, n1) hSJ2 b3c hSJ2 b3c hSJ2 b3c hSJ2 b3c

(50, 50) 4.9024 0.0588 4.9252 0.1603 4.8988 0.0662 3.4335 0.0682
(100, 100) 4.7759 0.0879 4.5524 0.0812 4.7797 0.1075 3.3601 0.0637
(200, 200) 5.7760 0.1099 4.7692 0.1170 5.9758 0.1025 3.4739 0.0743

(100, 50) 4.8467 0.0536 4.9455 0.1328 4.8413 0.0702 3.4431 0.0564
(200, 100) 4.8545 0.0843 4.4674 0.0713 4.7913 0.0929 3.3451 0.0622
(400, 200) 5.6559 0.1079 4.8536 0.1140 5.8951 0.0993 3.3867 0.0839

(50, 100) 4.9909 0.0811 5.0604 0.1696 4.9540 0.0904 3.5827 0.0863
(100, 200) 3.1026 0.1078 4.8804 0.1151 5.1038 0.1116 3.6372 0.0785
(200, 400) 6.3867 0.1254 5.6517 0.1320 6.5351 0.1131 4.0607 0.1061

observed when considering the smoothed relative data instead of the non-smoothed ones.

A brief version of the contents of Sections 2.1–2.3 has been accepted for publication in

the Annals of the Institute of Statistical Mathematics (see Molanes and Cao (2006a)).

2.4 Bootstrap selectors

2.4.1 Exact MISE calculations

As Cao (1993) points out, in the case of a one-sample problem, there exists a closed

expression for the mean integrated squared error of the Parzen Rosenblatt estimator of

an ordinary density function, f0. Using Fubini’s theorem and decomposing the mean

integrated squared error into the integrated variance and the integrated squared bias, it

follows that:

MISE(f̃0h) =
∫ (∫

K(u) (f0(x− hu)− f0(x)) du

)2

dx

+
R(K)
nh

+
1
n

∫ (∫
K(u)f0(x− hu)du

)2

dx.

We next prove a similar result for the two-sample problem, when estimating the relative

density function, r(t).

Let us consider the following assumptions:

(D12) F0(X1) is absolutely continuous.

(K10) L is a bounded density function in (−∞,∞).
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Theorem 2.4.1. Assume conditions (D12) and (K10). Then, the MISE of the kernel

relative density estimator in (1.32) can be written as follows:

MISE (r̂h) =
∫

r2 (t) dt− 2
n0∑
i=0

Ci
n0

an0,r(·) (i)
∫

Lh

(
t− i

n0

)
r (t) dt

+
(Lh ∗ Lh) (0)

n1

+2
n1 − 1

n1

n0∑
i=0

n0∑
j=i

P i,j−i,n0−j
n0

bn0,r(·) (i, j) (Lh ∗ Lh)
(

j − i

n0

)
,

where

an0,r(·) (i) =
∫ 1

0
si (1− s)n0−i r (s) ds,

bn0,r(·) (i, j) =
∫ 1

0
(1− s2)

n0−j r (s2) sj+1
2

∫ 1

0
si
3 (1− s3)

j−i r (s2s3) ds3ds2, for j ≥ i,

(Lh ∗ Lh) (t) =
∫

Lh (t− s) Lh (s) ds,

Ci
n0

and P i,j−i,n0−j
n0 denote, respectively, the binomial coefficient

(
n0

i

)
and the multinomial

coefficient n0!
i!(j−i)!(n0−j)! .

Proof of Theorem 2.4.1. Standard bias-variance decomposition of MSE gives:

MISE (r̂h) =
∫

[E [r̂h (t)]− r (t)]2 dt +
∫

V ar [r̂h (t)] dt. (2.35)

For the first term, it is easy to check that

E [r̂h (t)] = E [Lh (t− F0n0 (X1))] = E [E [Lh (t− F0n0 (X1)) /X01, ..., X0n0 ]]

= E

[∫
Lh (t− F0n0 (y)) f1 (y) dy

]
=
∫

E [Lh (t− F0n0 (y)) f1 (y)] dy

=
n0∑
i=0

Lh

(
t− i

n0

)(
n0

i

)∫
F0 (y)i (1− F0 (y))n0−i f1 (y) dy

=
n0∑
i=0

Lh

(
t− i

n0

)(
n0

i

)∫
si (1− s)n0−i r (s) ds. (2.36)
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On the other hand it is straightforward to see that

V ar [r̂h (t)] =
1
n1

V ar [Lh (t− F0n0 (X1))]

+
n1 − 1

n1
Cov [Lh (t− F0n0 (X11)) , Lh (t− F0n0 (X12))]

=
1
n1

E
[
L2

h (t− F0n0 (X1))
]
− 1

n1
E2 [Lh (t− F0n0 (X1))]

+
n1 − 1

n1
V ar

[∫
Lh (t− F0n0 (y)) f1 (y) dy

]
=

1
n1

E
[
L2

h (t− F0n0 (X1))
]
− E2 [Lh (t− F0n0 (X1))]

+
n1 − 1

n1
E

[(∫
Lh (t− F0n0 (y)) f1 (y) dy

)2
]

. (2.37)

In order to get a more explicit expression for the variance, we study the expectations

in the right hand-side of the expression above.

The first expectation is

E
[
L2

h (t− F0n0 (X1))
]

= E
[
E
[
L2

h (t− F0n0 (X1)) /X01, ..., X0n0

]]
=

∫
E
[
L2

h (t− F0n0 (y))
]
f1 (y) dy

=
n0∑
i=0

L2
h

(
t− i

n0

)(
n0

i

)∫
F0 (y)i (1− F0 (y))n0−i f1 (y) dy

=
n0∑
i=0

L2
h

(
t− i

n0

)(
n0

i

)∫
si (1− s)n0−i r (s) ds. (2.38)

The last expectation can be written as

E

[(∫
Lh (t− F0n0 (y)) f1 (y) dy

)2
]

= E

[∫ ∫
Lh (t− F0n0 (y1))Lh (t− F0n0 (y2)) f1 (y1) f1 (y2) dy1dy2

]
= 2A,
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based on the symmetry of the integrand, where

A =
∫ ∫

y2>y1

E [Lh (t− F0n0 (y1))Lh (t− F0n0 (y2))] f1 (y2) f1 (y1) dy2dy1

=
n0∑
i=0

n0∑
j=0
i≤j

Lh

(
t− i

n0

)
Lh

(
t− j

n0

)
n0!

i! (j − i)! (n0 − j)!∫ ∫
y2>y1

F0 (y1)
i (F0 (y2)− F0 (y1))

j−i (1− F0 (y2))
n0−j f1 (y2) f1 (y1) dy2dy1

=
n0∑
i=0

n0∑
j=0
i≤j

Lh

(
t− i

n0

)
Lh

(
t− j

n0

)
n0!

i! (j − i)! (n0 − j)!∫ ∫
s2>s1

si
1 (s2 − s1)

j−i (1− s2)
n0−j r (s2) r (s1) ds2ds1.

Therefore,

E

[(∫
Lh (t− F0n0 (y)) f1 (y) dy

)2
]

= 2
n0∑
i=0

n0∑
j=0
i≤j

Lh

(
t− i

n0

)
Lh

(
t− j

n0

)
n0!

i! (j − i)! (n0 − j)!∫ ∫
s2>s1

si
1 (s2 − s1)

j−i (1− s2)
n0−j r (s2) r (s1) ds2ds1. (2.39)

Using (2.38), (2.36) and (2.39) in (2.37) and (2.36) and (2.37) in (2.35) gives

MISE (r̂h) =
∫ ( n0∑

i=0

Lh

(
t− i

n0

)(
n0

i

)
an0,r(·) (i)− r (t)

)2

dt

+
1
n1

n0∑
i=0

(
n0

i

)
an0,r(·) (i)

∫
L2

h

(
t− i

n0

)
dt

−
∫ ( n0∑

i=0

Lh

(
t− i

n0

)(
n0

i

)
an0,r(·) (i)

)2

dt

+2
n1 − 1

n1

n0∑
i=0

n0∑
j=i

n0!
i! (j − i)! (n0 − j)!

bn0,r(·) (i, j)

∫
Lh

(
t− i

n0

)
Lh

(
t− j

n0

)
dt
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and consequently we get that

MISE (r̂h) =
∫ ( n0∑

i=0

Lh

(
t− i

n0

)
Ci

n0
an0,r(·) (i)− r (t)

)2

dt

+
1
n1

n0∑
i=0

Ci
n0

an0,r(·) (i) (Lh ∗ Lh) (0)

−
∫ ( n0∑

i=0

Lh

(
t− i

n0

)
Ci

n0
an0,r(·) (i)

)2

dt

+2
n1 − 1

n1

n0∑
i=0

n0∑
j=i

P i,j−i,n0−j
n0

bn0,r(·) (i, j) (Lh ∗ Lh)
(

j − i

n0

)
.

Some simple algebra concludes the proof.

2.4.2 Resampling schemes

When using the bootstrap technique to estimate the MISE of, either r̂h or r̂h,h0 , one

possibility would be to approximate the distribution function of the ISE process and then

compute its expectation. To this aim we first need to define a resampling scheme that

imitates the procedure from which the two original samples were drawn. As pointed out in

Cao (1993) for the setting of ordinary density estimation, this can be achieved by replacing

the role of the true target density, in this case r, by some estimator of it. Since we are

in a two-sample setting we need to draw a pair of resamples of n0 and n1 observations

respectively, the first one coming from a population, say X∗
0 , and the last one coming

from another one, say X∗
1 . Besides, the relative density of X∗

1 wrt X∗
0 should coincide

with the kernel relative density estimator. Therefore, the ideas presented in Cao (1993)

require some modifications to be adapted to this new setting. There exist at least two

ways to proceed. Either replacing the roles of the densities, f0 and f1, by some appropriate

estimators or considering a uniform distribution on [0, 1] for X∗
0 and a distribution with

density equal to the relative density estimator for X∗
1 . The second possibility is justified by

noting that the sampling distribution of r̂h only depends on the two populations through

their relative density, r.

We now present a bootstrap procedure to approximate MISE(r̂h):

(a) Select a pilot bandwidth, g, and construct the relative density estimator r̂g (see

(1.32)).

(b) Draw bootstrap resamples
{
X∗

01, . . . , X
∗
0n0

}
, from a uniform distribution on [0, 1], and{

X∗
11, . . . , X

∗
1n1

}
, with density function r̂g.
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(c) Consider, for each h > 0, the bootstrap version of the kernel estimator (1.32):

r̂∗h(x) = n−1
1

n1∑
j=1

Lh(x− F ∗
0n0

(X∗
1j)),

where F ∗
0n0

denotes the empirical distribution function of
{
X∗

01, . . . , X
∗
0n0

}
.

(d) Define the bootstrap mean integrated squared error as a function of h:

MISE∗(r̂∗h) = E∗
[∫

(r̂∗h(x)− r̂g(x))2 dx

]
. (2.40)

(e) Find the minimizer of (2.40). This value, denoted by h∗MISE(r̂h), is a bootstrap ana-

logue of the MISE bandwidth for r̂h.

By definition, the bootstrap MISE function in (2.40) does not depend on the resamples.

Therefore, in case that a closed expression could be found for it, Monte Carlo approxima-

tion could be avoided. In other words, there would be no need of drawing resamples (steps

(b) and (c) in the bootstrap procedure sketched above) which always means an important

computational load. In the one-sample problem this approach was plausible (see Cao et

al (1994)) and yielded a considerable saving of computing time.

A bootstrap version for Theorem 2.4.1 can be proved using parallel arguments:

Theorem 2.4.2. Assume condition (K10). Then,

MISE∗ (r̂∗h) =
∫

r̂2
g (t) dt− 2

n0∑
i=0

Ci
n0

an0,r̂g(·) (i)
∫

Lh

(
t− i

n0

)
r̂g (t) dt (2.41)

+
(Lh ∗ Lh) (0)

n1

+2
n1 − 1

n1

n0∑
i=0

n0∑
j=i

P i,j−i,n0−j
n0

bn0,r̂g(·) (i, j) (Lh ∗ Lh)
(

j − i

n0

)
,

where

an0,r̂g(·) (i) =
∫

si (1− s)n0−i r̂g (s) ds

and

bn0,r̂g(·) (i, j) =
∫ 1

0
(1− s2)

n0−j r̂g (s2) sj+1
2

∫ 1

0
si
3 (1− s3)

j−i r̂g (s2s3) ds3ds2.

Based on the bootstrap scheme shown previously and the closed expression obtained

for MISE∗, we propose two bootstrap bandwidth selectors. Both consist in approximating

MISE∗ and finding its minimizer (which yields an approximation of h∗MISE(r̂h)). While

the first one, say h∗CE , approximates (2.40) using the closed expression (2.41), the second
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proposal, say h∗MC , estimates (2.40) by Monte Carlo taking a large number of resamples

as described in steps (b) and (c).

Bandwidth selection is also an important issue when dealing with the estimator defined

in (2.1). However, it is not easy to find a closed expression for the MISE of this estima-

tor. Below we present two bootstrap procedures to approximate MISE(r̂h,h0). The first

proposal is as follows:

Smooth Uniform Monte Carlo Bootstrap resampling plan (SUMC)

(a) Select two pilot bandwidths, g and g0, and construct the estimator r̂g,g0 (see (2.1)) of

the relative density r. Let H be the cdf of a uniform random variable on [0,1] and

consider

H̃b(x) = n−1
0

n0∑
i=1

U
(

x− Ui

b

)
,

a kernel-type estimate of H based on the uniform kernel U on [−1, 1] (with dis-

tribution function U), the bandwidth parameter b and the sample {U1, . . . , Un0}
coming from H. Approximate the MISE function of H̃b by Monte Carlo and find its

minimizer b0.

(b) Draw bootstrap samples
{
X∗

01, . . . , X
∗
0n0

}
and

{
X∗

11, . . . , X
∗
1n1

}
from, respectively, a

uniform distribution on [0, 1] and the density function r̂g,g0 .

(c) Consider, for each h > 0, the bootstrap version of the kernel estimator (2.1):

r̂∗h,b0(x) = n−1
1

n1∑
j=1

Lh(x− F̃ ∗
0b0(X

∗
1j)),

where F̃ ∗
0b0

denotes a kernel-type cdf estimate based on the bootstrap resample {X∗
01,

. . . , X∗
0n0

}
, the uniform kernel on [−1, 1] and the bandwidth parameter b0 computed

previously in (a).

(d) Define the bootstrap mean integrated squared error as a function of h:

MISE∗(r̂∗h,b0) = E∗

[∫ (
r̂∗h,b0(x)− r̂g,g0(x)

)2 dx

]
. (2.42)

(e) Find a numerical approximation of the minimizer of (2.42). This value, denoted by

h∗SUMC , is a bootstrap version of the MISE bandwidth for r̂h,h0 .

Since we do not have a closed expression for MISE∗(r̂∗h,b0
), this function is approxi-

mated by Monte Carlo.

The second proposal is sketched below.

Smooth Monte Carlo Bootstrap resampling plan (SMC)
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(a) Select three pilot bandwidths, g, g0 and g1, and construct the estimators r̂g,g0 and

f̃0g1 of, respectively, the relative density r and the density f0.

(b) Draw bootstrap resamples
{
X∗

01, . . . , X
∗
0n0

}
from f̃0g1 and

{
Z∗

1 , . . . , Z∗
n1

}
from r̂g,g0 .

Define X∗
1j = F̃−1

0g1
(Z∗

j ), j = 1, 2, . . . , n1.

(c) Consider, for each h > 0, the bootstrap version of the kernel estimator (2.1):

r̂∗h,h0
(x) = n−1

1

n1∑
j=1

Lh(x− F̃ ∗
0h0

(X∗
1j))

with F̃ ∗
0h0

a smooth estimate of F0 based on the bootstrap resample
{
X∗

01, . . . , X
∗
0n0

}
.

(d) Define the bootstrap mean integrated squared error as a function of h:

MISE∗(r̂∗h,h0
) = E∗

[∫ (
r̂∗h,h0

(x)− r̂g,g0(x)
)2 dx

]
. (2.43)

(e) Find the minimizer of (2.43), h∗SMC , which is a bootstrap analogue of the MISE

bandwidth for r̂h,h0 .

Once more, a Monte Carlo approach has to be used to approximate the function in

(2.43).

2.4.3 A simulation study

Although in the previous subsection several bootstrap selectors have been proposed, some

aspects of them remain unspecified such as, for example, how the required pilot band-

widths, g, g0 or g1, are chosen. In the following we denote by L the Gaussian kernel.

Let us start with the proposals h∗CE and h∗MC . The pilot bandwidth g is selected based

on the AMSE-optimal bandwidth, gAMSE,Ψ4(r), to estimate the value of Ψ4(r) through

Ψ̂4(g;L) (see (2.14)). Note that, under regularity assumptions on r, Ψ4(r) is equal to

R
(
r(2)
)
, the curvature of r. Based on the rule of thumb, the unknown quantities de-

pending on r that appear in gAMSE,Ψ4(r), are replaced by parametric estimates based on

an appropriate fit for r. This procedure leads us to define g as follows

g =

(
−2L(4)(0)(1 + κ2Ψ̂PR

0 )
dLΨ̂PR

6

) 1
7

n
− 1

7
1 ,

where Ψ̂PR
0 and Ψ̂PR

6 are parametric estimates of, respectively, Ψ0(r) and Ψ6(r), based on

the parametric fit, b̂(x;N,R), considered for r(x), similar to (2.33) but with F̃0h0 replaced

by F0n0 in (2.34).
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In practice we have used a number of N = 2n1 beta distributions in the mixture.

For implementing h∗SUMC and h∗SMC , g is obtained proceeding in the same way as

explained above for selectors h∗CE and h∗MC . The only difference now is that F̃0h0 in

(2.34), is replaced by the smooth estimate

F̃0g0 (x) = n−1
0

n0∑
i=1

U
(

x−X0i

g0

)
,

g0 =

2
∫∞
−∞ xU (x) U (x) dx

n0d2
UR
(
f

PR(1)
0

)
 1

3

,

where R
(
f

PR(1)
0

)
denotes a parametric estimate of R

(
f

(1)
0

)
based on a gamma fit for f0,

denoted by fPR
0 . Note that the definition of g0 follows the same strategy as the definition

of gR̃ given above. The only difference now is that the target distribution is F0 rather

than R and therefore a parametric scale needs to be assumed for f0 (and not for r).

The selector h∗SMC entails a third pilot bandwidth, g1. In this case, we consider the

AMSE-optimal bandwidth, gAMSE,Ψ4(f0), to estimate Ψ4(f0) in the case of a one-sample

problem (see Wand and Jones (1995)). Note that, under regularity conditions on f0,

Ψ4(f0) is equal to R
(
f

(2)
0

)
, the curvature of f0. Using again the rule of thumb, the

bandwidth g1 is defined as follows

g1 =

(
−2L(4)(0)
dLΨ̂PR

6

) 1
7

n
− 1

7
1 ,

where Ψ̂PR
6 is a parametric estimate of Ψ6(f0), based on considering a gamma fit for f0.

It is worth mentioning here that all the kernel type estimates required in the com-

putation of the pilot bandwidths are boundary corrected using the well-known reflection

method. Likewise, all the kernel estimates required in steps (a) and (c) for implementing

h∗SUMC and h∗SMC , are boundary corrected. However, for selectors h∗CE and h∗MC only r̂g

(in step (a)) is boundary corrected.

These bootstrap bandwidth selectors are compared with the plug-in STE bandwidth

selector hSJ2 proposed previously and the slightly modified version of the bandwidth se-

lector given by Ćwik and Mielniczuk (1993), b3c.

The simulations were carried out for different sample sizes and the performance of

the different data-driven selectors was examined for the seven models considered for r in

Subsection 2.3.3.

For each one of the seven relative populations listed in Subsection 2.3.3, a number of

250 pairs of samples were taken. For each pair of samples, the six bandwidth selectors



2.4.3 A simulation study 99

were computed and, based on each one, the kernel-type relative density estimate, (1.32) or

(2.1), was computed. For each bandwidth selector, let say ĥ, we obtained 250 estimations

of r. Based on them, the following global error measure was approximated by Monte

Carlo:

EM = E

[∫
(r̂(t)− r(t))2 dt

]
,

where r̂ denotes r̂ĥ, for selectors h∗CE , h∗MC and b3c, and the boundary corrected version

of r̂ĥ,h0
for selectors h∗SUMC , h∗SMC and hSJ2 . These results are collected in Tables 2.4

and 2.5. Since for sample sizes of n0 = n1 = 50 (see Table 2.4), the bandwidth selectors

b3c, h∗CE and h∗MC show a worse practical behaviour, we only summarize in Table 2.5 the

results obtained for the three best bandwidth selectors, hSJ2 , h∗SUMC and h∗SMC .

Table 2.4: Values of EM for b3c, hSJ2 , h∗CE , h∗MC , h∗SUMC and h∗SMC for models (a)-(g).

EM Model

(n0, n1) Selector (a) (b) (c) (d) (e) (f) (g)

(50, 50) b3c 0.3493 0.5446 0.3110 0.3110 1.2082 1.5144 0.7718
(50, 50) hSJ2 0.1746 0.4322 0.1471 0.2439 0.5523 0.7702 0.5742
(50, 50) h∗

CE 0.2791 0.5141 0.2095 0.2630 0.7905 1.0784 0.7675
(50, 50) h∗

MC 0.2404 0.4839 0.1951 0.2911 0.8103 0.9545 0.7195
(50, 50) h∗

SUMC 0.1719 0.3990 0.1473 0.2517 0.6392 0.7246 0.5917
(50, 50) h∗

SMC 0.1734 0.3996 0.1486 0.2372 0.5984 0.7093 0.5918

Table 2.5: Values of EM for hSJ2 , h∗SUMC and h∗SMC for models (a)-(g).

EM Model

(n0, n1) Selector (a) (b) (c) (d) (e) (f) (g)

(50, 100) hSJ2 0.1660 0.3959 0.1256 0.2075 0.5329 0.7356 0.5288
(50, 100) h∗

SUMC 0.1565 0.3733 0.1276 0.2076 0.5386 0.7199 0.5576
(50, 100) h∗

SMC 0.1580 0.3716 0.1376 0.2015 0.5655 0.7296 0.5509

(100, 50) hSJ2 0.1241 0.3319 0.1139 0.1897 0.3804 0.4833 0.3864
(100, 50) h∗

SUMC 0.1291 0.3056 0.1020 0.1914 0.4403 0.5129 0.4310
(100, 50) h∗

SMC 0.1297 0.3060 0.1021 0.1845 0.4324 0.5048 0.4393

(100, 100) hSJ2 0.1208 0.2831 0.1031 0.1474 0.3717 0.4542 0.3509
(100, 100) h∗

SUMC 0.1095 0.2718 0.0905 0.1467 0.3789 0.4894 0.3741
(100, 100) h∗

SMC 0.1105 0.2712 0.0871 0.1499 0.3686 0.4727 0.3639

(100, 150) hSJ2 0.1045 0.2528 0.0841 0.1318 0.3305 0.4648 0.3345
(100, 150) h∗

SUMC 0.1136 0.2552 0.0951 0.1344 0.3719 0.4887 0.3528
(100, 150) h∗

SMC 0.1147 0.2543 0.0863 0.1439 0.3814 0.4894 0.3477

When implementing h∗CE , numerical estimates of an0,r̂g(·) (i) and bn0,r̂g(·) (i, j), are re-

quired. Using the binomial formula, these integrals can be rewritten as follows:

an0,r̂g(·) (i) =
n0−i∑
k=0

(−1)k

(
n0 − i

k

)∫
si+kr̂g(s)ds, (2.44)
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bn0,r̂g(·) (i, j) =
j−i∑
q=0

n0−j∑
p=0

(−1)q

(
j − i

q

)
(−1)p

(
n0 − j

p

)∫ ∫
s1

si+q
1 sj−i−q+p

2 r̂g(s2)r̂g(s1)ds2ds1.

(2.45)

Therefore a possible strategy to compute an0,r̂g(·) (i) and bn0,r̂g(·) (i, j), could be based

on numerical estimates of the terms in the right hand side of (2.44) and (2.45). However,

from a practical point of view, this procedure presents the disadvantage of having to take

into account more than one approximation error which finally leads to worse approxima-

tions of the quantities of interest, an0,r̂g(·) (i) and bn0,r̂g(·) (i, j). Therefore, in the present

simulation study, we estimated these quantities in a straightforward way.

While the practical implementation of h∗CE is very time consuming, one can make the

simulation study faster for a given pair of fixed sample sizes (n0, n1). The fact is that there

are some computations that do not need to be carried out for every pair of simulated sam-

ples because they only depend on the sample sizes but not on the observations themselves.

Therefore, carrying out these computations previously can lead to a considerable gain in

computing time. In the simulation study carried out here, we took advantage of this fact.

From the simulation study carried out here, we conclude that all the proposed boot-

strap selectors improve the one proposed by Ćwik and Mielniczuk (1993). However, only

two of them, h∗SUMC and h∗SMC , show a similar behaviour to the plug-in selector of best

performance studied in Subsection 2.3.2, hSJ2 . Sometimes, it is even observed a slight im-

provement over hSJ2 . However, this is not always the case. These facts and the intensive

computing time required for any of the bootstrap selectors compared to the time required

for any of the plug-in selectors make hSJ2 be a good choice in this setting.



Chapter 3

Relative density and relative

distribution with LTRC data

— Cuando alguien encuentra su camino, no puede tener miedo.

Tiene que tener el coraje suficiente para dar pasos errados.

Las decepciones, las derrotas, el desánimo

son herramientas que Dios utiliza para mostrar el camino.

Paulo Coelho

3.1 Kernel-type relative density estimator

Let (X0, T0, C0) denote a random vector for the reference population, where X0 is the

variable of interest with cdf F0, T0 is a random left truncation variable with cdf G0 and C0

is a random right censoring variable with cdf L0. Similar definitions apply for the random

vector (X1, T1, C1) for the target population.

We assume that the cdf’s are continuous and that the three random variables in each

vector are independent. In this setting, for the reference population, we observe (T0, Y0, δ0)

if T0 ≤ Y0 where Y0 = min {X0, C0} with cdf W0, and δ0 = 1{X0≤C0} is the indicator of

uncensoring. The following equation is satisfied (1−W0) = (1− F0) (1− L0). When

T0 > Y0 nothing is observed. A similar setting holds for the target population.

The data consist of two independent samples of LTRC data {(T11, Y11, δ11) , . . . , (T1n1 ,

Y1n1 , δ1n1)} and {(T01, Y01, δ01) ,. . ., (T0n0 , Y0n0 , δ0n0)}, where the observed sample sizes n1

and n0 are random and the real sample sizes (say N1 and N0) are unknown.

Let α0 = P (T0 ≤ Y0) and α1 = P (T1 ≤ Y1) be the probabilities of absence of trunca-

tion in the reference and target populations, respectively, a straightforward consequence

of the SLLN (Strong Law of Large Numbers) is that n1
N1

→ α1 and n0
N0

→ α0 almost surely.
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Consider the following definitions that will be needed later on

B0 (t) = P (T0 ≤ t ≤ Y0�T0 ≤ Y0) = α−1
0 P (T0 ≤ t ≤ Y0)

= α−1
0 G0 (t) (1− F0 (t)) (1− L0 (t)) = α−1

0 G0 (t) (1−W0 (t)) ,

W01 (t) = P (Y0 ≤ t, δ0 = 1�T0 ≤ Y0) = α−1
0 P (X0 ≤ t, T0 ≤ X0 ≤ C0)

=
∫ t

aF0

α−1
0 P (T0 ≤ y ≤ C0) dF0 (y)

=
∫ t

aF0

α−1
0 G0 (y) (1− L0 (y)) dF0 (y) .

Similar definitions for the target population are omitted here.

A natural kernel-type estimator for the relative density is as follows

řh (t) =
1
h

∫
K

(
t− F̂0n0 (y)

h

)
dF̂1n1 (y) , (3.1)

where F̂0n0 (y) denotes the TJW product limit estimator (see Tsai et al (1987)) for the

reference distribution and F̂1n1 (y) denotes the TJW product limit estimator for the target

distribution.

Below we state a result by Zhou and Yip (1999) and two useful representations for

two empirical processes related in a two-sample setup. The proofs of the last two are

straightforward using the first result.

Lemma 3.1.1. (Theorem 2.2 in Zhou and Yip (1999)) Assume aG1 ≤ aW1 and that for

some b1 such that aW1 < b1 < bW1, it is satisfied that∫ b1

aW1

dW11 (z)
B3

1 (z)
< ∞.

Then, we have, uniformly in aW1 ≤ x ≤ b1

F̂1n1 (x)− F1 (x) = L̂1n1 (x) + ŝ1n1 (x) ,

where

L̂1n1 (x) =
1
n1

n1∑
i=1

ξ̂1i (Y1i, T1i, δ1i, x) ,

ξ̂1i (Y1i, T1i, δ1i, x) = (1− F1 (x))

{
1{Y1i≤x,δ1i=1}

B1 (Yi)
−
∫ x

aW1

1{T1i≤v≤Y1i}

B2
1 (v)

dW11 (v)

}
,

sup
aW1

≤x≤b1

|ŝ1n1 (x)| = O
(
n−1

1 ln lnn1

)
a.s.
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It is worth mentioning that the ξ̂1i (Y1i, T1i, δ1i, x) are zero mean, iid processes with

covariance structure given by

Cov
(
ξ̂11 (Y11, T11, δ11, x1) , ξ̂11 (Y11, T11, δ11, x2)

)
= (1− F1 (x1)) (1− F1 (x2))

·Q1 (F0 (x1 ∧ x2)) ,

where Q1 (s) = q1

(
F−1

0 (s)
)
, with

q1 (t) =
∫ t

aW1

dW11 (u)
B2

1 (u)
.

To obtain the appropriate approximation for the relative density estimator given above,

we need asymptotic representations for the TJW product limit estimator based on each

one of the pseudosamples:

{(F0 (T11) , F0 (Y11) , δ11) , . . . , (F0 (T1n1) , F0 (Y1n1) , δ1n1)}

and

{(F0 (T01) , F0 (Y01) , δ01) , . . . , (F0 (T0n0) , F0 (Y0n0) , δ0n0)} .

We denote these estimators by R̃n1(t) and Ũ0n0(t). It is easy to check that

R̃n1(t) = F̂1n1(F
−1
0 (t)) (3.2)

and

Ũ0n0(t) = F̂0n0(F
−1
0 (t)). (3.3)

First, we will show that, in fact, R̃n1 (t) = F̂1n1

(
F−1

0 (t)
)
. Since

1− R̃n1(t) =
∏

F0(Y1j)≤t

(
1− {n1Bn1(F0(Y1j))}−1

)δ1j

with

Bn1(z) =
1
n1

n1∑
j=1

1{F0(T1j)≤z≤F0(Y1j)}

and

1− F̂1n1(t) =
∏

Y1j≤t

(
1− {n1B1n1(Y1j)}−1

)δ1j

with

B1n1(z) =
1
n1

n1∑
j=1

1{T1j≤z≤Y1j},

it follows that Bn1(z) = B1n1(F
−1
0 (z)) or equivalently, Bn1(F0(s)) = B1n1(s).
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Consequently,

1− F̂1n1(F
−1
0 (t)) =

∏
Y1j≤F−1

0 (t)

(
1− {n1Bn1(F0(Y1j))}−1

)δ1j

=
∏

F0(Y1j)≤t

(
1− {n1Bn1(F0(Y1j))}−1

)δ1j

= 1− R̃n1(t).

A similar argument leads to conclude that: Ũ0n0 (t) = F̂0n0

(
F−1

0 (t)
)
.

First of all let us define

W̃1 (t) = P (F0 (Y1i) ≤ t) = W1

(
F−1

0 (t)
)
,

B̃1 (t) = P (F0 (T1i) ≤ t ≤ F0 (Y1i) �F0 (T1i) ≤ F0 (Y1i)) = B1

(
F−1

0 (t)
)
,

W̃11 (t) = P (F0 (Y1i) ≤ t, δ1i = 1�F0 (T1i) ≤ F0 (Y1i)) = W11

(
F−1

0 (t)
)
.

Based on the definitions it is easy to show that aW̃1
= aW1◦F−1

0
and bW̃1

= bW1◦F−1
0

. In

fact,

aW1◦F−1
0

= inf
{
y : W1 ◦ F−1

0 (y) > 0
}

= inf
{
y : W1(F−1

0 (y)) > 0
}

= inf
{

y : W̃1(y) > 0
}

= aW̃1
.

Let G̃1 be the cdf of F0 (T1i). The following two lemmas are a straightforward conse-

quence of Lemma 3.1.1.

Lemma 3.1.2. Assume aG̃1
≤ aW̃1

and that for some b̃1, such that aW̃1
< b̃1 < bW̃1

, it is

satisfied that ∫ b̃1

aW̃1

dW̃11 (z)

B̃1
3
(z)

≡
∫ F−1

0 (b̃1)

aW1

dW11 (z)
B3

1 (z)
< ∞.

Then, we have, uniformly in aW̃1
≤ t ≤ b̃1

R̃n1 (t)−R (t) = L̃n1 (t) + s̃n1 (t) ,

where

L̃n1 (t) =
1
n1

n1∑
i=1

ξ̃1i (Y1i, T1i, δ1i, t) ,

ξ̃1i (Y1i, T1i, δ1i, t) = ξ̂1i

(
Y1i, T1i, δ1i, F

−1
0 (t)

)
,

sup
aW̃1

≤t≤b̃1

|s̃n1 (t)| = O
(
n−1

1 ln lnn1

)
a.s.
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Note that ξ̃1i (Y1i, T1i, δ1i, x) are zero mean iid processes with covariance structure given

by

Cov
(
ξ̃11 (Y11, T11, δ11, x1) , ξ̃11 (Y11, T11, δ11, x2)

)
= (1−R (x1)) (1−R (x2))

∫ x1∧x2

aW̃1

[
B̃1 (v)

]−2
dW̃11 (v)

= (1−R (x1)) (1−R (x2))Q1 (x1 ∧ x2) .

Let us define G̃0 the cdf of F0 (T0i), and

W̃0 (t) = P (F0 (Y0i) ≤ t) = W0

(
F−1

0 (t)
)
,

B̃0 (t) = P (F0 (T0i) ≤ t ≤ F0 (Y0i) �F0 (T0i) ≤ F0 (Y0i)) = B0

(
F−1

0 (t)
)
,

W̃01 (t) = P (F0 (Y0i) ≤ t, δ0i = 1�F0 (T0i) ≤ F0 (Y0i)) = W01

(
F−1

0 (t)
)
.

Note that aW̃0
= aW0◦F−1

0
and bW̃0

= bW0◦F−1
0

.

Lemma 3.1.3. Assume aG̃0
≤ aW̃0

and that for some b̃0 such that aW̃0
< b̃0 < bW̃0

, it is

satisfied that ∫ b̃0

aW̃0

dW̃01 (z)
B̃3

0 (z)
≡
∫ F−1

0 (b̃0)

aW0

dW01 (z)
B3

0 (z)
< ∞.

Then, we have, uniformly in aW̃0
≤ t ≤ b̃0

Ũ0n0 (t)− t = L̃0n0 (t) + s̃0n0 (t) ,

where

L̃0n0 (t) =
1
n0

n0∑
i=1

ξ̃0i (Y0i, T0i, δ0i, t) ,

ξ̃0i (Y0i, T0i, δ0i, t) = (1− t)

{
1{Y0i≤F−1

0 (t),δ0i=1}
B0 (Y0i)

−
∫ F−1

0 (t)

aW0

1{T0i≤v≤Y0i}

B2
0 (v)

dW01 (v)

}
,

sup
aW̃0

≤t≤b̃0

|s̃0n0 (t)| = O
(
n−1

0 ln lnn0

)
a.s.

Once again ξ̃0i (Y0i, T0i, δ0i, x) are zero mean iid processes with covariance structure

given by

Cov
(
ξ̃01 (Y01, T01, δ01, x1), ξ̃01 (Y01, T01, δ01, x2)

)
= (1−x1) (1−x2)

∫ x1∧x2

aW̃0

[
B̃0 (v)

]−2
dW̃01 (v)

= (1−x1) (1−x2) Q0 (x1 ∧ x2) ,
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where Q0 (s) = q0

(
F−1

0 (s)
)

with

q0 (t) =
∫ t

aW0

dW01 (u)
B2

0 (u)
.

3.1.1 Asymptotic properties

Consider a fixed value of t. Using a Taylor expansion the following expression for řh (t) is

obtained:

řh (t) =
1
h

∫
K

(
t− F0(y)

h

)
dF̂1n1(y)

+
1
h

∫
F0(y)− F̂0n0(y)

h
K(1)

(
t− F0(y)

h

)
dF̂1n1(y) (3.4)

+
1
h

∫
(F0(y)− F̂0n0(y))2

2h2
K(2)(∆ty)dF̂1n1(y)

with ∆ty a value between t−F̂0n0 (y)

h and t−F0(y)
h .

For further discussion we now state some conditions that will be used along the proofs.

(B5) The bandwidth h satisfies h → 0 and n1h3

(ln ln n1)2
→∞.

(E1) The endpoints of the supports satisfy aG1 < aW0 < bW1 < bW0 , aG̃1
< aW̃1

and

aG̃0
< aW̃0

.

(I1) There exist some b̃1 < bW̃1
and b̃0 < bW̃0

such that

∫ b̃1

aW̃1

dW̃11 (s)

B̃1
3
(s)

< ∞ and
∫ b̃0

aW̃0

dW̃01 (s)
B̃3

0 (s)
< ∞.

(K11) K is a twice differentiable density function on [−1, 1] with K(2) bounded.

(K12) K is a differentiable density function on [−1, 1] with K(1) bounded.

(Q2) Q0 is differentiable in a neighborhood of t, with Q
(1)
0 (t) continuous at t.

(Q3) The functions Q0 and Q1 are twice continuously differentiable at t.

(R3) The relative distribution function, R, is Lipschitz continuous in a neighborhood of

t with Lipschitz constant CL.

(R4) The relative density, r, is twice continuously differentiable at t.

(R5) The relative density, r, is continuously differentiable at t.
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Assumptions (K11), (K12), (Q2), (Q3), (R3), (R4) and (R5) are standard regularity

conditions on the kernel and on some populational functions, while (B5) is a typical

assumption about the sample size and the smoothing parameter. Condition (E1) is needed

for identifiability and (I1) is needed to bound negligible terms.

Based on (3.4), it is easy to rewrite

řh (t) = An1 (t) + Bn0,n1 (t) + Rn0,n1 (t)

with

An1 (t) =
1
h

∫
K

(
t− v

h

)
dR̃n1 (v) ,

Bn0,n1 (t) =
1
h2

∫ (
v − Ũ0n0 (v)

)
K(1)

(
t− v

h

)
dR̃n1 (v) ,

Rn0,n1 (t) =
1

2h3

∫ (
F0 (y)− F̂0n0 (y)

)2
K

(2)
(∆ty) dF̂1n1 (y) ,

where Ũ0n0 and R̃n1 were introduced previously in (3.3) and (3.2).

Applying Lemma 3.1.2 we obtain

An1 (t) = A(1)
n1

(t) + A(2)
n1

(t) + A(3)
n1

(t),

where

A(1)
n1

(t) =
∫

K (u) r (t− hu) du,

A(2)
n1

(t) =
1

n1h

n1∑
i=1

∫
ξ̃1i (Y1i, T1i, δ1i, t− hu) K(1) (u) du,

A(3)
n1

(t) = O
(
n−1

1 ln lnn1

)
a.s.

Consider the following decomposition for Bn0,n1 (t)

Bn0,n1 (t) = B(1)
n0,n1

(t) + B(2)
n0,n1

(t) ,

where

B(1)
n0,n1

(t) =
1
h2

∫ (
v − Ũ0n0 (v)

)
K(1)

(
t− v

h

)
dR (v) ,

B(2)
n0,n1

(t) =
1
h2

∫ (
v − Ũ0n0 (v)

)
K(1)

(
t− v

h

)
d
(
R̃n1 −R

)
(v) .

Applying Lemma 3.1.3, a further decomposition is obtained for both terms in Bn0,n1 (t):

B(1)
n0,n1

(t) = B(11)
n0,n1

(t) + B(12)
n0,n1

(t) ,
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where

B(11)
n0,n1

(t) = − 1
n0h2

n0∑
i=1

∫
ξ̃0i (Y0i, T0i, δ0i, v) K(1)

(
t− v

h

)
r (v) dv

= − 1
n0h

n0∑
i=1

∫
ξ̃0i (Y0i, T0i, δ0i, t− hu) K(1) (u) r (t− hu) du,

B(12)
n0,n1

(t) = − 1
h2

∫
s̃0n0 (v) K(1)

(
t− v

h

)
r (v) dv (3.5)

and

B(2)
n0,n1

(t) = B(21)
n0,n1

(t) + B(22)
n0,n1

(t) ,

where

B(21)
n0,n1

(t) = − 1
h2

∫
L̃0n0 (v) K(1)

(
t− v

h

)
d
(
R̃n1 −R

)
(v) , (3.6)

B(22)
n0,n1

(t) = − 1
h2

∫
s̃0n0 (v) K(1)

(
t− v

h

)
d
(
R̃n1 −R

)
(v) . (3.7)

Let us state the main result.

Theorem 3.1.4. Assume conditions (S2), (B5), (E1), (I1), (K11), (Q2) and (R3) and

let t < min
{

b̃0, b̃1

}
, then

řh (t) = A(1)
n1

(t) + A(2)
n1

(t) + B(11)
n0,n1

(t) + Cn0,n1 (t)

with Cn0,n1 (t) = oP

(
(n1h)−

1
2

)
and E

[
|Cn0,n1 (t)|d

]
= o

(
(n1h)−

d
2

)
for d = 1, 2.

Note that Cn0,n1 is the sum of all the remainder terms, i.e.

Cn0,n1(t) = A(3)
n1

(t) + B(12)
n0,n1

(t) + B(21)
n0,n1

(t) + B(22)
n0,n1

(t) + Rn0,n1(t).

Proof of Theorem 3.1.4. First we will study the term B
(12)
n0,n1 (t). We will show that B

(12)
n0,n1 (t)

= O
(
(n0h)−1 ln lnn0

)
a.s.

Recall (3.5). Since K has support on [−1, 1],∣∣∣B(12)
n0,n1

(t)
∣∣∣ ≤ 1

h2

∥∥∥K(1)
∥∥∥
∞

sup
t−h≤v≤t+h

|s̃0n0 (v)|
∫ t+h

t−h
r (v) dv

=
1
h2

∥∥∥K(1)
∥∥∥
∞

sup
t−h≤v≤t+h

|s̃0n0 (v)| [R (t + h)−R (t− h)] .

Based on the Lipschitz continuity of R and using Lemma 3.1.3∣∣∣B(12)
n0,n1

(t)
∣∣∣ ≤ 2CL

h

∥∥∥K(1)
∥∥∥
∞

sup
t−h≤v≤t+h

|s̃0n0 (v)|

= O
(
(n0h)−1 ln lnn0

)
a.s.
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Below we will study the terms B
(21)
n0,n1 (t) and B

(22)
n0,n1 (t). We will show that

B(21)
n0,n1

(t) = oP

(
(n1h)−

1
2

)
,

B(22)
n0,n1

(t) = O

(
ln lnn0

n0h2

[
h +

{
(lnn1)

2

n1
∨
(

h lnn1

n1

) 1
2

}])
a.s.

To deal with B
(21)
n0,n1(t) in equation (3.6), first we will find a bound for the order of

E

[
B

(21)
n0,n1(t)

2
]
. Using the covariance structure of ξ̃0i (Y0i, T0i, δ0i, t), taking into account the

independence between the samples {(X0i, T0i, C0i)} and {(X1j , T1j , C1j)}, and considering

conditional expectations, we finally obtain that

E

[(
B(21)

n0,n1
(t)
)2
]

= E

[
2

n0h4

∫ t+h

t−h

[∫ t+h

u
(1− v) K(1)

(
t− v

h

)
d
(
R̃n1 −R

)
(v)
]

(1− u) Q0 (u) K(1)

(
t− u

h

)
d
(
R̃n1 −R

)
(u)
]

.

Using integration by parts we can rewrite the inner integral as follows:∫ t+h

u
(1− v) K(1)

(
t− v

h

)
d
(
R̃n1 −R

)
(v)

=
1
h

∫ t+h

u

(
R̃n1 −R

)
(v) (1− v) K(2)

(
t− v

h

)
dv

− (1− u) K(1)

(
t− u

h

)(
R̃n1 −R

)
(u)

+
∫ t+h

u

(
R̃n1 −R

)
(v) K(1)

(
t− v

h

)
dv.

Consequently

E

[(
B(21)

n0,n1
(t)
)2
]

=
2

n0h4
{E [I1(t)]− E [I2(t)] + E [I3(t)]}

with

I1(t) =
∫ t+h

t−h

{
1
h

∫ t+h

u
(1− v) K(2)

(
t− v

h

)(
R̃n1 −R

)
(v) dv

}
Q0 (u) (1− u) K(1)

(
t− u

h

)
d
(
R̃n1 −R

)
(u) ,

I2(t) =
∫ t+h

t−h
Q0 (u) (1− u)2 K(1)

(
t− u

h

)2

(
R̃n1 −R

)
(u) d

(
R̃n1 −R

)
(u) ,
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I3(t) =
∫ t+h

t−h

{∫ t+h

u
K(1)

(
t− v

h

)(
R̃n1 −R

)
(v) dv

}
Q0 (u) (1− u) K(1)

(
t− u

h

)
d
(
R̃n1 −R

)
(u) .

Rewriting I2(t) as follows

I2(t) =
1
2

∫ t+h

t−h
Q0 (u) (1− u)2 K(1)

(
t− u

h

)2

d
(
R̃n1 −R

)2
(u)

and applying integration by parts, it is easy to obtain

I2(t) = I21(t) + I22(t) + I23(t),

where

I21(t) =
1
2

∫ t+h

t−h

(
R̃n1 −R

)2
(u) 2Q0 (u) (1− u) K(1)

(
t− u

h

)2

du,

I22(t) = −1
2

∫ t+h

t−h

(
R̃n1 −R

)2
(u) Q

(1)
0 (u) (1− u)2 K(1)

(
t− u

h

)2

du,

I23(t) =
1
h

∫ t+h

t−h

(
R̃n1 −R

)2
(u) Q0 (u) (1− u)2 K(1)

(
t− u

h

)
K(2)

(
t− u

h

)
du.

Standard algebra gives

E [|I2(t)|] ≤ E

[
sup

aW̃≤x≤b̃1

∣∣∣(R̃n1 −R
)

(x)
∣∣∣2] ·{h

2

∥∥∥Q(1)
0

∥∥∥
∞

∫
K(1)(u)

2
du

+ ‖Q0‖∞
∥∥∥K(1)

∥∥∥
∞

∫ ∣∣∣K(2)(u)
∣∣∣ du + h ‖Q0‖∞

∫
K(1)(u)

2
du

}
.

Theorem 1 in Zhu (1996) can be applied for aG̃1
< aW̃1

≤ b̃1 < bW̃1
and ε > 0, to

obtain

P

 sup
aW̃1

≤x≤b̃1

∣∣∣(R̃n1 −R
)

(x)
∣∣∣ > ε

 ≤ C1 exp
{
−n1D1ε

2
}

, for some C1, D1 > 0.

Consequently,

E

[
sup

aW̃≤x≤b̃

∣∣∣(R̃n1 −R
)

(x)
∣∣∣2] =

∫ ∞

0
P

(
sup

aW̃≤x≤b̃

∣∣∣(R̃n1 −R
)

(x)
∣∣∣ > u

1
2

)
du

≤ C1

∫ ∞

0
exp {−n1D1u}du = O

(
1
n1

)
,

which implies that E [|I2(t)|] = O
(

1
n1

)
.

Using integration by parts, the Cauchy-Schwarz inequality and conditions (K11) and

(Q2), we can show that E [|I1(t) + I3(t)|] = O
(

1
n1

)
.
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These calculations are shown below in some more detail:

E[I1(t)] = E

[∫ t+h

t−h

1
h

∫ t+h

u
(1− v)K(2)

(
t− v

h

)
(R̃n1 −R)(v)dv

Q0(u)(1− u)K(1)

(
t− u

h

)
d(R̃n1 −R)(u)

]
= E

[
1
h

⌉∫ t+h

u
(1− v)K(2)

(
t− v

h

)
(R̃n1 −R)(v)dv

Q0(u)(1− u)K(1)

(
t− u

h

)
(R̃n1 −R)(u)

⌉u=t+h

u=t−h

]

−E

[∫ t+h

t−h
(R̃n1 −R)(u)

∂

∂u

[
Q0(u)(1− u)K(1)

(
t− u

h

)
1
h

∫ t+h

u
(1− v)K(2)

(
t− v

h

)
(R̃n1 −R)(v)dv

]]
.

Then E[I1(t)] = E[I11(t)]− E[I12(t)] + E[I13(t)] + E[I14(t)], where

I11(t) =
∫ t+h

t−h
(R̃n1 −R)(u)

{
1
h

(1− u)K(2)

(
t− u

h

)
(R̃n1 −R)(u)

}
Q0(u)(1− u)K(1)

(
t− u

h

)
du,

I12(t) =
∫ t+h

t−h
(R̃n1 −R)(u)

{
1
h

∫ t+h

u
(1− v)K(2)

(
t− v

h

)
(R̃n1 −R)(v)dv

}
Q

(1)
0 (u)(1− u)K(1)

(
t− u

h

)
du,

I13(t) =
∫ t+h

t−h
(R̃n1 −R)(u)

{
1
h

∫ t+h

u
(1− v)K(2)

(
t− v

h

)
(R̃n1 −R)(v)dv

}
Q0(u)K(1)

(
t− u

h

)
du,

I14(t) =
∫ t+h

t−h
(R̃n1 −R)(u)

{
1
h

∫ t+h

u
(1− v)K(2)

(
t− v

h

)
(R̃n1 −R)(v)dv

}
Q0(u)(1− u)

1
h

K(2)

(
t− u

h

)
du.

Now we study the term E[I11(t)]:

E[|I11(t)|] ≤ E

[∫ t+h

t−h
|(R̃n1 −R)(u)|1

h
|1− u|

∣∣∣∣K(2)

(
t− u

h

)∣∣∣∣ |(R̃n1 −R)(u)||

Q0(u)||1− u|
∣∣∣∣K(1)

(
t− u

h

)∣∣∣∣ du

]
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≤ 1
h

E

[
sup |(R̃n1 −R)(u)|2 ‖Q0‖∞

∫ t+h

t−h

∣∣∣∣K(2)

(
t− u

h

)∣∣∣∣ · ∣∣∣∣K(1)

(
t− u

h

)∣∣∣∣ du

]
= E

[
sup |(R̃n1 −R)(u)|2 ‖Q0‖∞

∫ 1

−1

∣∣∣K(2) (z)
∣∣∣ · ∣∣∣K(1) (z)

∣∣∣ dz

]
= E

[
sup |(R̃n1 −R)(u)|2

]
‖Q0‖∞

∫ 1

−1

∣∣∣K(2) (z)
∣∣∣ · ∣∣∣K(1) (z)

∣∣∣ dz.

Therefore E[|I11(t)|] = O
(

1
n1

)
.

In order to study E[|I12(t)|] we start from the inner integral in I12(t):

∣∣∣∣∫ t+h

u
(1− v)K(2)

(
t− v

h

)
(R̃n1 −R)(v)dv

∣∣∣∣
≤
∫ t+h

u
|1− v|

∣∣∣∣K(2)

(
t− v

h

)∣∣∣∣ ∣∣∣(R̃n1 −R)(v)
∣∣∣ dv

≤ sup
∣∣∣(R̃n1 −R)(v)

∣∣∣h∫ ∣∣∣K(2)(z)
∣∣∣ dz

= h sup
∣∣∣(R̃n1 −R)(v)

∣∣∣ ∫ ∣∣∣K(2)(z)
∣∣∣ dz.

Then

E[|I12(t)|]

≤ E

[∫ t+h

t−h
sup

∣∣∣(R̃n1 −R)(u)
∣∣∣∫ ∣∣∣K(2)(z)

∣∣∣ dz sup |(R̃n1 −R)(u)|
∥∥∥Q(1)

0

∥∥∥
∞

∣∣∣∣K(1)

(
t− u

h

)∣∣∣∣ du

]
≤ hE

[
sup |(R̃n1 −R)(u)|2

∥∥∥Q(1)
0

∥∥∥
∞

(∫ ∣∣∣K(2)(z)
∣∣∣ dz

)(∫ ∣∣∣K(1) (z)
∣∣∣ dz

)]
≤ h

∥∥∥Q(1)
0

∥∥∥
∞

(∫ ∣∣∣K(2)(z)
∣∣∣ dz

)(∫ ∣∣∣K(1)(z)
∣∣∣ dz

)
E
[
sup |(R̃n1 −R)(u)|2

]
= O

(
h

n1

)
,

which implies that E[|I12(t)|] = O
(

h
n1

)
= o

(
1
n1

)
.

In order to study E[|I13(t)|] we note that the inner integral in it is the same as the one

appearing in I12(t), which has been previously studied. Then

E[|I13(t)|]

≤E

[∫ t+h

t−h
sup |(R̃n1−R)(u)|

∫ ∣∣∣K(2)(v)
∣∣∣ dv sup |(R̃n1−R)(u)| ‖Q0‖∞

∣∣∣∣K(1)

(
t−u

h

)∣∣∣∣ du

]
≤hE

[
sup |(R̃n1 −R)(u)|2 ‖Q0‖∞

(∫ ∣∣∣K(2)(z)
∣∣∣ dz

)(∫ ∣∣∣K(1)(z)
∣∣∣ dz

)]
≤hE

[
sup |(R̃n1 −R)(u)|2

]
‖Q0‖∞

(∫ ∣∣∣K(2)(z)
∣∣∣ dz

)(∫ ∣∣∣K(1)(z)
∣∣∣ dz

)
=O

(
h

n1

)
= O

(
1
n1

)
.



3.1.1 Asymptotic properties 113

Proceeding in a similar way we can show that E[|I14(t)|] = O
(

1
n1

)
. Parallel algebra

also shows that E[|I3(t)|] = O
(

1
n1

)
. Therefore, we can conclude that E

[
B

(21)
n0,n1 (t)

2
]

=

O
(

1
n2

1h4

)
, which implies (n1h)

1
2 B

(21)
n0,n1 (t) = oP (1), using conditions (S2) and (B5).

The term B
(22)
n0,n1 (t) in (3.7) can be bounded as follows:∣∣∣B(22)

n0,n1
(t)
∣∣∣ ≤ 1

h2

∥∥∥K(1)
∥∥∥
∞

sup
t−h≤v≤t+h

|s̃0n0 (v)|{(
R̃n1 (t + h)− R̃n1 (t− h)

)
+ (R (t + h)−R (t− h))

}
≤ B(221)

n0,n1
(t) + B(222)

n0,n1
(t),

where

B(221)
n0,n1

(t) =
1
h2

∥∥∥K(1)
∥∥∥
∞

sup
t−h≤v≤t+h

|s̃0n0 (v)| |2 (R (t + h)−R (t− h))| ,

B(222)
n0,n1

(t) =
1
h2

∥∥∥K(1)
∥∥∥
∞

sup
t−h≤v≤t+h

|s̃0n0 (v)|

·
∣∣∣R̃n1 (t + h)− R̃n1 (t− h)− (R (t + h)−R (t− h))

∣∣∣ .
Using the Lipschitz-continuity of R and Lemma 3.1.3 it follows that

B(221)
n0,n1

(t) = O

(
ln lnn0

n0h

)
a.s.

Lemma 3.1 in Zhou and Yip (1999) and Lemma 3.1.3 imply∣∣∣B(222)
n0,n1

(t)
∣∣∣ = O

(
ln lnn0

n0h2

)
2 sup
|s|≤2h

∣∣∣R̃n1 (t + s)− R̃n1 (t)− (R(t + s)−R(t))
∣∣∣

= O

(
ln lnn0

n0h2

)
O

n
− 1

2
1 (lnn1)

2

n
1
2
1

∨ (h (− lnh))
1
2

n
1
2
1


= O

(
ln lnn0

n0h2

)(lnn1)
2

n1
∨ (h lnn1)

1
2

n
1
2
1

 a.s.,

where ∨ denotes maximum.

Consequently, we conclude from the previous results that∣∣∣B(22)
n0,n1

(t)
∣∣∣ = O

(
ln lnn0

n0h2

{
h +

(
(lnn1)

2

n1
∨
(

h lnn1

n1

) 1
2

)})
a.s.

Below we will show that Rn0,n1 (t) = oP

(
(n1h)−

1
2

)
:

|Rn0,n1 (t)| ≤ 1
2h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0

∫
1 {|∆ty| ≤ 1}dF̂1n1 (y) ,

∆0n0 = sup
aF0

≤y≤F−1
0 (b̃0)

∣∣∣F̂0n0 (y)− F0 (y)
∣∣∣ .
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Since F−1
0

(
b̃0

)
< bW0 , aG1 ≤ aW0 and

∫ bW

aW0

dW01(z)
C3

0 (z)
< ∞, we have, by Lemma

2.5 in Zhou and Yip (1999) and Lemma 3.1.1, the following order for ∆0n0 , ∆0n0 =

O

((
ln ln n0

n0

) 1
2

)
a.s. We further have that

1{|∆ty |≤1} ≤ 1{t−h−∆0n0≤F0(y)≤t+h+∆0n0}.

Then

|Rn0,n1 (t)| ≤ 1
2h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0{

F̂1n1

(
F−1

0 (t + h + ∆0n0)
)
− F̂1n1

(
F−1

0 (t− h−∆0n0)
)}

= R(1)
n0,n1

(t) + R(2)
n0,n1

(t)

with

R(1)
n0,n1

(t) =
1

2h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0{

F̂1n1

(
F−1

0 (t + h + ∆0n0)
)
− F1

(
F−1

0 (t + h + ∆0n0)
)}

− 1
2h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0{

F̂1n1

(
F−1

0 (t− h−∆0n0)
)
− F1

(
F−1

0 (t− h−∆0n0)
)}

R(2)
n0,n1

(t) =
1

2h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0{

F1

(
F−1

0 (t + h + ∆0n0)
)
− F1

(
F−1

0 (t− h−∆0n0)
)}

.

The identity R = F1 ◦ F−1
0 and condition (R3) imply∣∣∣R(2)

n0,n1
(t)
∣∣∣ ≤ 1

h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0

CL (h + ∆0n0) .

Using the order of ∆0n0 and condition (B5), it follows that (n1h)
1
2 R

(2)
n0,n1 (t) = oP (1).

On the other hand,

R(1)
n0,n1

(t) ≤ 1
2h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0

sup
|s|≤h+∆0n0

∣∣∣R̃n1 (t + s)− R̃n1 (t)− (R (t + s)−R (t))
∣∣∣

≤ 1
2h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0

sup
|s|≤2h

∣∣∣R̃n1 (t + s)− R̃n1 (t)− (R (t + s)−R (t)) + 1 {∆0n0 > h}
∣∣∣ .
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Applying Lemma 3.1 in Zhou and Yip (1999) and using (B5) we obtain

sup
|s|≤2h

∣∣∣(R̃n1 (t + s)− R̃n1 (t)
)
− (R (t + s)−R (t))

∣∣∣
= O

(
ln2 n0

n0
∨
(

h lnn1

n0

) 1
2

)
a.s.

Now, the exponential bound in Theorem 1 in Zhu (1996), gives

1{∆0n0>h} = OP

(
exp

{
−n0h

2
})

.

As a final conclusion we obtain (n1h)
1
2 R

(1)
n0,n1 (t) = oP (1).

Consequently, under conditions (B5), (E1), (I1), (K11), (Q2), (R3) and (S2) and for

t < min
{

b̃0, b̃1

}
, we have the following expression for řh (t):

řh (t) = A(1)
n1

(t) + A(2)
n1

(t) + B(11)
n0,n1

(t) + Cn0,n1 (t)

with Cn0,n1 (t) = oP

(
(n1h)−

1
2

)
. It remains to prove that E

[
|Cn0,n1 (t)|d

]
= o

(
(n1h)−

d
2

)
,

for d = 1, 2.

First of all, note that,

Cn0,n1 (t) = A(3)
n1

(t) + B(12)
n0,n1

(t) + B(21)
n0,n1

(t) + B(22)
n0,n1

(t) + Rn0,n1 (t)

= A(3)
n1

(t) + B(12)
n0,n1

(t) + B(2)
n0,n1

(t) + Rn0,n1 (t) .

Using Theorem 1 (c) in Gijbels and Wang (1993) it can be proved that

E

[
sup

t−h≤v≤t+h
|s̃0n0 (v)|

]
= O

(
1
n0

)
.

Now, condition (R3) and

E
[∣∣∣B(12)

n0,n1
(t)
∣∣∣] ≤ 1

h2

∥∥∥K(1)
∥∥∥
∞

[R (t + h)−R (t− h)]E

[
sup

t−h≤v≤t+h
|s̃0n0 (v)|

]

imply E
[∣∣∣B(12)

n0,n1 (t)
∣∣∣] = o

(
1√
n0h

)
. Similar arguments give E

[∣∣∣A(3)
n1 (t)

∣∣∣] = o
(

1√
n0h

)
.

Using Hölder inequality and condition (B5):

E
[∣∣∣B(21)

n0,n1
(t)
∣∣∣] ≤ E

[∣∣∣B(21)
n0,n1

∣∣∣2] 1
2

= o

(
1√
n0h

)
.

Secondly, we study the term B
(22)
n0,n1 (t). Using similar arguments as above, Theorem 1

(c) in Gijbels and Wang (1993), E
[
sup

∣∣∣R̃n1 (v)−R (v)
∣∣∣]=O

(
1√
n1

)
and condition (B5),
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it is easy to prove that:

E
[∣∣∣B(22)

n0,n1
(t)
∣∣∣] ≤ 2

h2

∥∥∥K(1)
∥∥∥
∞

E

[
sup

t−h≤v≤t+h
|s̃0n0 (v)|

]
|(R (t + h)−R (t− h))|

+
2
h2

∥∥∥K(1)
∥∥∥
∞

E

[
sup

t−h≤v≤t+h
|s̃0n0 (v)|

]
E

[
sup

∣∣∣R̃n1 (v)−R (v)
∣∣∣] = o

(
1√
n0h

)
.

To deal with Rn0,n1(t) we use some previous results:

R(1)
n0,n1

(t) ≤ 1
2h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0

sup
|s|≤2h

∣∣∣R̃n1 (t + s)− R̃n1 (t)− (R (t + s)−R (t)) + 1{∆0n0>h}
∣∣∣ ,

1{∆0n0>h} = OP

(
exp

{
−n0h

2
})

,∣∣∣R(2)
n0,n1

(t)
∣∣∣ ≤ 1

h3

∥∥∥K(2)
∥∥∥
∞

∆2
0n0

CL (h + ∆0n0) .

By using similar arguments as above, it can be proved that E
[
∆2

0n0

]
= O

(
1
n0

)
. Now

the order E
[
sup

∣∣∣R̃n1 (v)−R (v)
∣∣∣] = O

(
1√
n1

)
can be used to conclude

E
[
R(1)

n0,n1
(t)
]

≤ 1
2h3

∥∥∥K(2)
∥∥∥
∞

E
[
∆2

0n0

]
2E
[
sup

∣∣∣R̃n1 (v)−R (v)
∣∣∣]

+
1

2h3

∥∥∥K(2)
∥∥∥
∞

[
E
(
∆4

0n0

)] 1
2 [P (∆0n0 > h)]

1
2

= O

(
1

n
3/2
0 h3

)
+ O

exp
(
−n0h2

2

)
n0h3

 = o

(
1√
n0h

)
.

On the other hand,

E
[
R(2)

n0,n1
(t)
]

= O

(
1

n0h2

)
+ O

 1

n
3
2
0 h3

 = o

(
1√
n0h

)
.

Collecting all the bounds, E [|Cn0,n1(t)|] = O
(
(n1h)−

1
2

)
.

To bound the second moment of Cn0,n1(t),

Cn0,n1(t)
2 = A(3)

n1
(t)

2
+ B(12)

n0,n1
(t)

2
+ B(2)

n0,n1
(t)

2
+ Rn0,n1(t)

2

+2A(3)
n1

(t)B(12)
n0,n1

(t) + 2A(3)
n1

(t)B(2)
n0,n1

(t) + 2A(3)
n1

(t)Rn0,n1(t)

+2B(12)
n0,n1

(t)B(2)
n0,n1

(t) + 2B(12)
n0,n1

(t)Rn0,n1(t) + 2B(2)
n0,n1

(t)Rn0,n1(t).

Using the Cauchy-Schwarz inequality, to bound E
[
Cn0,n1(t)

2
]
, it will be enough to

study the main terms E

[
A

(3)
n1 (t)

2
]
, E

[
B

(12)
n0,n1(t)

2
]
, E

[
B

(2)
n0,n1(t)

2
]

and E
[
Rn0,n1(t)

2
]
.
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First of all

E
[
|B(12)

n0,n1
(t)|2

]
≤ 1

h4

∥∥∥K(1)
∥∥∥2

∞
|R(t + h)−R(t− h)|2E

[
sup |s̃0n0(v)|2

]
= O

(
1

n2
0h

2

)
= o

(
1

n0h

)
.

Similarly, it is not difficult to prove that E

[
A

(3)
n1 (t)

2
]

= o
(

1
n0h

)
.

To handle E

[
B

(2)
n0,n1(t)

2
]
, it is enough to study: E

[
B

(21)
n0,n1(t)

2
]

and E

[
B

(22)
n0,n1(t)

2
]
.

We already know that E

[
B

(21)
n0,n1(t)

2
]

= O
(

1
n2

1h4

)
= o

(
1

n0h

)
. On the other hand

B(22)
n0,n1

(t)
2 ≤

(
B(221)

n0,n1
(t) + B(222)

n0,n1
(t)
)2

.

Standard arguments give:

E
[
B(221)

n0,n1
(t)

2
]

= O

(
1

n2
0h

2

)
= o

(
1

n0h

)
,

E
[
B(221)

n0,n1
(t)

2
]

= O

(
1

n3
0h

4

)
= o

(
1

n0h

)
.

Finally, the second moment of Rn0,n1(t) can be bounded by proving that

E
[
R(1)

n0,n1
(t)

2
]

= o

(
1

n0h

)
and E

[
R(2)

n0,n1
(t)

2
]

= o

(
1

n0h

)
,

using similar arguments as for the first moment.

Corollary 3.1.5. Assume conditions (S2), (B5), (E1), (I1), (K11), (Q2), (Q3), (R3),

(R4) and let t < min
{

b̃0, b̃1

}
, then

E [řh (t)] = r (t) +
1
2
r(2) (t) dKh2 + o

(
h2
)

+ o
(
(n1h)−

1
2

)
,

V ar [řh (t)] =
R(K)σ2(t)

n1h
+ o

(
(n1h)−1

)
,

where

σ2(t) = Q
(1)
1 (t) (1−R (t))2 + κ2Q

(1)
0 (t) r2 (t) (1− t)2

=
r(t) (1−R (t))

B1(F−1
0 (t))

+ κ2 (1− t)r2(t)
B0(F−1

0 (t))
.

Note that this result generalizes those presented in Cao et al (2000) and Handcock

and Janssen (2002) for, respectively, right censored data and complete data.
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Proof of Corollary 3.1.5. To study the bias of řh (t), we use the order for the first moment

of Cn0,n1(t):

E [řh (t)] =
∫

K (u) r (t− hu) du + o
(
(n1h)−

1
2

)
= r (t) +

1
2
r(2) (t) dKh2 + o

(
h2
)

+ o
(
(n1h)−

1
2

)
.

To handle the variance we use the bound for the second moment of Cn0,n1(t) and the

Cauchy-Schwarz inequality:

V ar [řh (t)] = V ar
(
A(2)

n1
(t)
)

+ V ar
(
B(11)

n0,n1
(t)
)

+o
(
(n1h)−1

)
+ o

(
(n1h)−

1
2

(
V ar

(
A(2)

n1
(t)
)) 1

2

)
+o

(
(n1h)−

1
2

(
V ar

(
B(11)

n0,n1

)) 1
2

)
.

Then, we first obtain expressions for the variances of A
(2)
n1 (t) and B

(11)
n0,n1 (t):

V ar
(
A(2)

n1
(t)
)

= E
[
A(2)

n1
(t)

2
]

=
1

n1h2

∫ 1

−1

∫ 1

−1
E
[
ξ̂1i

(
Y1i, T1i, δ1i, F

−1
0 (t− hu)

)
ξ̂1i

(
Y1i, T1i, δ1i, F

−1
0 (t− hv)

)]
K(1) (u) K(1) (v) dudv

=
2

n1h2

∫ 1

−1

∫ v

−1
(1−R (t− hu)) (1−R (t− hv))Q1 (t− hv) K(1) (u) K(1) (v) dudv.

Using Taylor expansions it is easy to derive:

V ar
(
A(2)

n1
(t)
)

=
2

n1h2

∫ 1

−1

∫ v

−1

(
1−

{
R (t)− hur (t) + h2u2r(1) (η1)

})
(
1−

{
R (t)− hvr (t) + h2v2r(1) (η2)

})
{

Q1 (t)− hvQ
(1)
1 (t) +

1
2
h2v2Q

(2)
1 (η)

}
K(1) (u) K(1) (v) dudv

= A(t) + B(t) + C(t) + D(t) + O

(
1
n1

)
,

where η1 is a value between t− hu and t, η and η2 are some values between t− hv and t

and

A(t) =
2

n1h2
(1−R (t)) (1−R (t))Q1 (t)

∫ 1

−1

∫ v

−1
K(1) (u) K(1) (v) dudv,

B(t) = − 2
n1h

(1−R (t)) (1−R (t))Q
(1)
1 (t)

∫ 1

−1

∫ v

−1
vK(1) (u) K(1) (v) dudv,

C(t) =
2

n1h
(1−R (t)) r (t) Q1 (t)

∫ 1

−1

∫ v

−1
K(1) (u) vK(1) (v) dudv,

D(t) =
2

n1h
(1−R (t)) r (t) Q1 (t)

∫ 1

−1

∫ v

−1
uK(1) (u) K(1) (v) dudv.
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Straightforward calculations show that A(t) = 0, B(t) = R(K)(1−R(t))2Q
(1)
1 (t)

n1h and C(t)+

D(t) = 0. These facts lead to:

V ar
(
A(2)

n1
(t)
)

=
R(K)Q(1)

1 (t)
n1h

{1−R (t)}2 + O

(
1
n1

)
.

It is easy to check that q1

(
F−1

0 (t)
)

=
∫ F−1

0 (t)
aW1

dF1(u)
(1−F1(u))B1(u) . Consequently, it follows that

Q
(1)
1 (t) = r(t)

(1−R(t))B1(F−1
0 (t)) .

The expression shown above, for V ar
(
A

(2)
n1 (t)

)
, was obtained after simple algebra by

taking into account that:∫ 1

−1

∫ v

−1
K(1) (u) K(1) (v) dudv =

∫ 1

−1
K (v) K(1) (v) dv = 0,

since K is symmetric. On the other hand,∫ 1

−1

∫ v

−1
vK(1) (v) K(1) (u) dudv =

∫ 1

−1
vK(1) (v) K (v) dv

= −
∫ 1

−1
vK (v) K(1) (v) dv −

∫ 1

−1
K2 (v) dv

= −
∫ 1

−1
vK (v) K(1) (v) dv −R(K)

⇒ 2
∫ 1

−1
vK(1)(v)K(v)dv = −R(K),

which finally gives ∫ 1

−1

∫ v

−1
K(1)(v)K(u)dudv = −R(K)

2
,

which proves the expression obtained for the term B(t). To handle C(t) + D(t),we have:∫ 1

−1

∫ v

−1
K(1)(u)vK(1)(v)dudv +

∫ 1

−1

∫ v

−1
uK(1)(u)K(1)(v)dudv

=
∫ 1

−1

∫ v

−1
K(1)(u)vK(1)(v)dudv +

∫ 1

−1

∫ 1

v
vK(1)(v)K(1)(u)dudv

=
∫ 1

−1

∫ 1

−1
K(1)(u)vK(1)(v)dudv = 0,

since K is symmetric. Besides, it holds that∫ 1

−1
v2K(1) (v)

∫ v

−1
K(1) (u) dudv =

∫ 1

−1
v2K(1) (v) K (v) dv ≤

∥∥∥K(1)
∥∥∥
∞

and∣∣∣∣∫ 1

−1
K(1) (v)

∫ v

−1
u2K(1) (u) dudv

∣∣∣∣ ≤
∫ 1

−1

∣∣∣K(1) (v)
∣∣∣ ∫ v

−1

∣∣∣K(1) (u)
∣∣∣ dudv ≤ 2

∥∥∥K(1)
∥∥∥2

∞
.
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Based on the previous integrals it is easy to see that A(t) = 0, C(t) + D(t) = 0 and

B(t) = −2h (1−R (t))2 Q
(1)
1 (t)

(
−R(K)

2

)
= R(K) (1−R (t))2 Q

(1)
1 (t) h.

Below we study V ar
(
B

(11)
n0,n1 (t)

)
.

V ar
(
B(11)

n0,n1
(t)
)

= V ar

(
− 1

n0h

n0∑
i=1

∫
ξ̃0i (Y0i, T0i, δ0i, t− hu) K(1) (u) r (t− hu) du

)

=
1

n0h2

∫ 1

−1

∫ 1

−1
K(1) (u) K(1) (v) r (t− hu) r (t− hv)

E
[
ξ̃0i (Y0i, T0i, δ0i, t− hu) ξ̃0i (Y0i, T0i, δ0i, t− hv)

]
dudv

=
2

n0h2

∫ 1

−1

∫ v

−1
K(1) (u) K(1) (v) r (t− hu) r (t− hv)

E
[
ξ̂0i

(
Y0i, T0i, δ0i, F

−1
0 (t− hu)

)
ξ̂0i

(
Y0i, T0i, δ0i, F

−1
0 (t− hv)

)]
dudv.

Consider u < v, then

E
[
ξ̂0i

(
Y0i, T0i, δ0i, F

−1
0 (t− hu)

)
ξ̂0i

(
Y0i, T0i, δ0i, F

−1
0 (t− hv)

)]
= (1− (t− hu)) (1− (t− hv))Q0 (t− hv) ,

where Q0 (t− hv) =
∫ F−1

0 (t−hv)
aW0

dW01(y)
B2

0(y)
.

Consequently,

V ar
(
B(11)

n0,n1
(t)
)

=
2

n0h2

∫ 1

−1

∫ v

−1
(1− (t− hu)) (1− (t− hv))

Q0 (t− hv) K(1) (u) K(1) (v) r (t− hu) r (t− hv) dudv

=
2

n0h2
(1− t)2 r2 (t) Q0 (t)

∫ 1

−1

∫ v

−1
K(1) (u) K(1) (v) dudv

− 2
n0h

(1− t)2 r2 (t) Q
(1)
0 (t)

∫ 1

−1

∫ v

−1
K(1) (u) vK(1) (v) dudv

+
2

n0h
(1− t) r2 (t) Q0 (t)

∫ 1

−1

∫ v

−1
K(1) (u) vK(1) (v) dudv

+
2

n0h
(1− t) r2 (t) Q0 (t)

∫ 1

−1

∫ v

−1
uK(1) (u) K(1) (v) dudv

− 2
n0h

(1− t)2r(t)r(1)(t)Q0(t)
∫ 1

−1

∫ v

−1
K(1)(u)(u + v)K(1)(v)dudv

+O

(
1
n0

)
=

R(K)
n0h

Q
(1)
0 (t) r2 (t) (1− t)2 + O

(
1
n0

)
,

where Q
(1)
0 (t) = 1

(1−t)B0(F−1
0 (t)) .

Collecting all the previous results, we get V ar [řh (t)] = R(K)σ2(t)
n1h + o

(
(n1h)−1

)
.
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Remark 3.1.1. As a straightforward consequence of Corollary 3.1.5, an asymptotic formula

for the mean squared error of the estimator is obtained

MSE (řh (t)) = AMSE (řh (t)) + o
(
h4
)

+ o
(
(n1h)−1

)
,

where

AMSE (řh (t)) =
1
4
r(2) (t)2 d2

Kh4 +
R(K)σ2(t)

n1h
.

Consequently, the smoothing parameter that minimizes this criterion is

hAMSE =

(
R(K)σ2(t)
r(2) (t)2 d2

K

) 1
5

n
− 1

5
1 .

Corollary 3.1.6. Assume conditions (S2), (B5), (E1), (I1), (K11), (Q2), (Q3), (R3),

(R4) and let t < min
{

b̃0, b̃1

}
.

If n1h
5 → 0, then

(n1h)
1
2 {řh(t)− r(t)} d→ N

(
0, R(K)σ2(t)

)
.

If n1h
5 → c, for some c > 0, then

(n1h)
1
2 {řh(t)− r(t)} d→ N

(
1
2
r(2)(t)dKc

1
2 , R(K)σ2(t)

)
.

Proof of Corollary 3.1.6. It is a straightforward consequence of Theorem 3.1.4, Corollary

3.1.5 and the Lyapunov theorem for triangular arrays (see Theorem 4.9 in Petrov (1995)).

Below, the main steps of the proof are given.

Let define Z0i =
∫

ξ̃0i(Y0i, T0i, δ0i, t − hu)K(1)(u)r(t − hu)du for i = 1, . . . , n0 and

Z1j =
∫

ξ̃1j(Y1j , T1j , δ1j , t − hu)K(1)(u)du for j = 1, . . . , n1. From Corollary 3.1.5, it

follows that

E [Z0i] = E [Z1j ] = 0,

V ar[Z0i] = hR(K)Q(1)
0 (t)r2(t) {1− t}2 + O

(
h2
)

and

V ar[Z1j ] = hR(K)Q(1)
1 (t) {1−R(t)}2 + O

(
h2
)
.

Using Lyapunov condition for the sequences {Z0i} and {Z1j}, we only need to prove

that there exist some positive real numbers, c1 and c2, such as(
n0∑
i=1

V ar(Z0i)

)−1− c1
2 n0∑

i=1

E |Z0i|2+c1 → 0 and (3.8)

 n1∑
j=1

V ar(Z1j)

−1− c2
2 n1∑

j=1

E |Z1j |2+c2 → 0. (3.9)
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Conditions (3.8) and (3.9) imply that

1

(n0h)
1
2

n0∑
i=1

Z0i
d→ N

(
0, R(K)Q(1)

0 (t)r2(t) {1− t}2
)

and

1

(n1h)
1
2

n1∑
i=1

Z1j
d→ N

(
0, R(K)Q(1)

1 (t) {1−R(t)}2
)

.

The proof of the corollary is finished using Theorem 3.1.4, Corollary 3.1.5 and conditions

(B5) and (S2).

Let us prove Lyapunov condition. Using condition (K11) and the inequality (a +

b)2+c2 ≤ 21+c2(a2+c2 + b2+c2), for any pair of positive real numbers a and b, it is easy to

show that

E
[
|Z1j |2+c2

]
≤

∥∥∥K(1)
∥∥∥2+c2

∞
E

{ δ1j

B̃1(F0(Y1j))
+
∫ b̃1

aW̃1

dW̃11(s)
B̃2

1

}2+c2


≤
∥∥∥K(1)

∥∥∥2+c2

∞
21+c2


(∫ b̃1

aW̃1

dW̃11(s)
B̃2

1

)2+c2

+ E

( δ1j

B̃1(F0(Y1j))

)2+c2
 .

Since

E

( δ1j

B̃1(F0(Y1j))

)2+c2
 ≤ ∫ b̃1

aW̃1

dW̃11(s)
B̃2+c2

1

,

the proof of E
[
|Z1j |2+c2

]
< ∞ follows from condition (I1).

Now, considering c2 = 1, it is easy to check that n1∑
j=1

V ar(Z1j)

−1− c2
2 n1∑

j=1

E |Z1j |2+c2 = O

(
1

(n1h3)1/2

)
.

Consequently (3.9) holds for c2 = 1, using condition (B5). Proceeding in a similar way it

is easy to check that (3.8) is satisfied for c1 = 1, which concludes the proof.

Remark 3.1.2. Defining MISEw(řh) =
∫

(řh(t) − r(t))2w(t)dt, it can be proved from

Corollary 3.1.5 that

MISEw(řh) = AMISEw(h) + o

(
1

n1h
+ h4

)
+ o

(
1

n0h

)
, (3.10)

where

AMISEw(h) =
R(K)
n1h

∫
r(t)(1−R(t))
B1(F−1

0 (t))
w(t)dt +

R(K)
n0h

∫
(1− t)r2(t)
B0(F−1

0 (t))
w(t)dt

+
1
4
h4d2

K

∫
(r(2)(t))2w(t)dt
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and w(t) denotes a weight function that is advisable to introduce in the MISE, specially

when boundary effects may appear.

Therefore, the dominant part of the bandwidth that minimizes the mean integrated

squared error in (3.10) is given by

hAMISEw,r =

(
R(K)

∫
σ2(t)w(t)dt

d2
K

∫ (
r(2)(t)

)2
w(t)dt

)1/5

n
−1/5
1 . (3.11)

3.1.2 Plug-in selectors

Three plug-in global bandwidth selectors for řh(t) were designed in this setting of left

truncated and right censored data. Generalizing the results given by Sánchez Sellero et al

(1999) to the case of a two-sample problem with LTRC data, it can be proved that, if g

goes to zero as the sample sizes increase, then

E

[(∫ (
ř(2)
g (x)

)2
w(x)dx−

∫ (
r(2)(x)

)2
w(x)dx

)2
]

(3.12)

=
1

n2
1g

10
R2
(
K(2)

)(∫
σ2(t)w(t)dt

)2

+ g4dK

(∫
r(2)(t)r(4)(t)w(t)dt

)2

+
2dK

n1g3
R2
(
K(2)

)∫
σ2(t)w(t)dt

∫
r(2)(t)r(4)(t)w(t)dt

+O
(
n−1

1 g−1
)

+ O
(
n−2

1 g−9
)

+ O
(
g6
)

+ O
(
n
−3/2
1 g−9/2

)
.

Furthermore, if n1g
3 goes to infinity, the dominant part of the bandwidth that mini-

mizes the mean squared error in (3.12), is given by

gAMSE,R(r(2)w1/2) =

[
R
(
K(2)

) ∫
σ2(t)w(t)dt

−dK

(∫
r(2)(t)r(4)(t)w(t)dt

)]1/7

n
−1/7
1

if
∫

r(2)(t)r(4)(t)w(t)dt is negative, and by

gAMSE,R(r(2)w1/2) =

[
5R
(
K(2)

) ∫
σ2(t)w(t)dt

2dK

(∫
r(2)(t)r(4)(t)w(t)dt

)]1/7

n
−1/7
1

if
∫

r(2)(t)r(4)(t)w(t)dt is positive.

Note that hAMISEw,r in (3.11) and gAMSE,R(r(2)w1/2) satisfy the relationship below

gAMSE,R(r(2)w1/2) =

(
R(K(2))dK

∫ (
r(2)(t)

)2
w(t)dt

−R(K)
(∫

r(2)(t)r(4)(t)w(t)dt
))1/7

h
5/7
AMISEw,r

if
∫

r(2)(t)r(4)(t)w(t)dt is negative, and

gAMSE,R(r(2)w1/2) =

(
5R(K(2))dK

∫ (
r(2)(t)

)2
w(t)dt

2R(K)
(∫

r(2)(t)r(4)(t)w(t)dt
) )1/7

h
5/7
AMISEw,r
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if
∫

r(2)(t)r(4)(t)w(t)dt is positive.

The simplest way to propose a plug-in bandwidth selector for řh(t) would be to consider

a parametric model for r and to replace the unknown quantities appearing in (3.11) by

these parametric estimates. As it was previously mentioned in Chapter 2, these simple

plug-in bandwidth selectors are known as rules of thumb. Therefore, from here on we will

denote our first proposal, which is based on this idea, by hRT and we will consider, as

in Chapter 2, a mixture of betas (see (2.33)). The only difference now is that R̃gR̃
(·) in

b̃(x;N,R) is replaced by

R̃n1(x) = 1−
∏

F̂0n0 (Y1j)≤x

[
1−

(
n1B̃1n1(F̂0n0(Y1j))

)−1
]δ1j

,

where F̂0n0(t) denotes the PL estimator associated to the sample {(T0i, Y0i, δ0i)}n0
i=1 (see

(1.5)) and B̃1n1(t) is the empirical estimate of B̃1(t) introduced previously at the beginning

of Chapter 3. To make clear the difference, we denote from here on, this new mixture of

betas by b̂(x;N,R), which explicit expression is given by

b̂(x;N,R) =
N∑

j=1

(
R̃n1

(
j

N

)
− R̃n1

(
j − 1
N

))
β(x, j,N − j + 1),

where, as in Chapter 2, N denotes the number of betas in the mixture. In practice we will

set N = 14.

Our second bandwidth selector, hPI , differs from hRT in how the estimation of the

functional R
(
r(2)w1/2

)
is carried out. Rather than using a parametric estimate of this

unknown quantity, based on a parametric model assumed for r(t), we now consider a

kernel type estimate of r(2)(t) with optimal bandwidth g given by the expression

g =

 R
(
K(2)

) ∫
σ̂2(t)w(t)dt

−dK

(∫
b̂(2)(t;N,R)b̂(4)(t;N,R)w(t)dt

)
1/7

n
−1/7
1

if
∫

b̂(2)(t;N,R)b̂(4)(t;N,R)w(t)dt is negative, and by

g =

 5R
(
K(2)

) ∫
σ̂2(t)w(t)dt

2dK

(∫
b̂(2)(t;N,R)b̂(4)(t;N,R)w(t)dt

)
1/7

n
−1/7
1

if
∫

b̂(2)(t;N,R)b̂(4)(t;N,R)w(t)dt is positive. Note that the expression of g is based

on the asymptotically optimal bandwidth, gAMSE,R(r(2)w1/2), to estimate the functional

R
(
r(2)w1/2

)
. The difference is that now the unknown quantity in the denominator of



3.1.3 A simulation study 125

gAMSE,R(r(2)w1/2) is replaced by a parametric estimate using the mixture of betas pre-

sented above, b̂(x;N,R), and the unknown function in the numerator, σ2(t), is estimated

by

σ̂2(t) =
b̂(t;N,R)(1− R̃n1(t))

B̃1n1(t)
+

n1

n0

(1− t)b̂2(t;N,R)
B̃0n0(t)

.

Finally, our last proposal is a more sophisticated plug-in bandwidth selector that re-

quires to solve the following equation in h

h =

R(K)
∫

σ̂2(t)w(t)dt

dKR
(
ř
(2)
γ(h)w

1/2
)
1/5

n
−1/5
1 ,

with

γ(h) =

 R(K(2))dKR
(
b̂(2)w1/2

)
−R(K)

∫
b̂(2)(t;N,R)b̂(4)(t;N,R)w(t)dt

1/7

h5/7

if
∫

b̂(2)(t;N,R)b̂(4)(t;N,R)w(t)dt is negative, and with

γ(h) =

 5R(K(2))dKR
(
b̂(2)w1/2

)
2R(K)

∫
b̂(2)(t;N,R)b̂(4)(t;N,R)w(t)dt

1/7

h5/7

if
∫

b̂(2)(t;N,R)b̂(4)(t;N,R)w(t)dt is positive. We denote this third proposal by hSTE .

3.1.3 A simulation study

A simulation study is carried out to check the practical behaviour of the plug-in bandwidth

selectors proposed in the previous subsection.

Since we need to specify the model assumed for the relative density and the probabil-

ity of censoring and truncation for both populations, we propose the following sampling

scheme.

It is assumed that the random variable X0 follows a Weibull distribution with para-

meters a and b, i.e.

F0(x) =
(
1− exp

{
−(ax)b

})
1{x>0}.

The cdf of the censoring variable in the comparison population is chosen in such a way

that satisfies the relationship

1− L0(x) = (1− F0(x))µ0 ,

where µ0 > 0 and L0 denotes the cdf of the censoring variable C0. Simple algebra yields

that

L0(x) =
(
1− exp

{
−(aµ

1/b
0 x)b

})
1{x>0},
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or equivalently, that C0 follows a Weibull distribution with parameters aµ
1/b
0 and b. Con-

sequently, it follows that the probability of censoring is β0 = P (C0 < X0) = µ0

µ0+1 . The

truncation variable T0 is selected in such a way that its cdf, G0, satisfies

1−G0(x) = (1−W0(x))ν0

= (1− F0(x))ν0(1− L0(x))ν0 ,

where ν0 > 0, and therefore, T0 is a Weibull distributed random variable with parameters

a(ν0(1+µ0))1/b and b and it is known that the probability of truncation is 1−α0 = P (Y0 <

T0) = 1
ν0+1 .

Since R(t) = F1(F−1
0 (t)) it follows that F1(x) = R(F0(x)) and therefore we will con-

sider that X1 = F−1
0 (Z) where Z denotes the random variable associated to the relative

density, r(t). The censoring variable in the second sample will be selected in such a way

that its cdf, L1, satisfies the relationship 1 − L1(x) = (1 − F1(x))µ1 , where µ1 > 0, or

equivalently, 1 − L1(x) = (1 − R(F0(x)))µ1 . In this case, it is easy to prove that the

probability of censoring in the second population is β1 = P (C1 < X1) = µ1

µ1+1 . Finally,

the truncation variable in the second population, T1, is selected in such a way that its cdf,

G1, satisfies the relationship

1−G1(x) = (1−W1(x))ν1

= (1−R(F0(x)))ν1(1− L1(x))ν1 ,

where ν1 > 0, from where it can be easily proved that the probability of truncation in the

second population is given by 1− α1 = P (Y1 < T1) = 1
ν1+1 .

The models assumed for r will be the seven models introduced previously in Chapter 2.

For each one of these models, and each fixed pair of sample sizes, a large number of trials

will be considered. For each trial, two samples subject to left truncation and right censoring

are drawn. More specifically, a sample of n0 iid random variables, {X01, . . . , X0n0}, and

a sample of n1 iid random variables, {X11, . . . , X1n1}, subject to left truncation and right

censoring, are independently drawn from, respectively X0
d= W (a, b) and the random

variable X1 = F−1
0 (Z). Let {T01, . . . , T0n0} be a sample of n0 iid truncation variables with

distribution function G0, and let {C01, . . . , C0n0} be a sample of iid censoring variables

with distribution function L0. Denoting by Y0i = min {X0i, C0i}, only those values that

satisfy the condition T0i ≤ Y0i are considered. We use the index i = 1, . . . , n0 for the first

n0 values satisfying this condition. In a similar way, let {T11, . . . , T1n1} be a sample of n1

iid truncation variables with distribution function G1, and let {C11, . . . , C1n1} be a sample

of iid censoring variables with distribution function L1. Denoting by Y1j = min {X1j , C1j},
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Table 3.1: Values of EMw for hRT , hPI and hSTE for models (a) and (b).

EMw Model (a) Model (b)

(n0, n1) (β0, β1) (1− α0, 1− α1) hRT hPI hSTE hRT hPI hSTE

(50, 50) (0.10, 0.10) (0.10, 0.10) 0.3355 0.3829 0.3831 0.5873 0.6182 0.6186
(100, 100) (0.10, 0.10) (0.10, 0.10) 0.2138 0.2363 0.2365 0.4278 0.4527 0.4522
(200, 200) (0.10, 0.10) (0.10, 0.10) 0.1115 0.1207 0.1207 0.2627 0.2611 0.2611

(50, 50) (0.20, 0.20) (0.10, 0.10) 0.3358 0.3856 0.3856 0.6141 0.6471 0.6494
(100, 100) (0.20, 0.20) (0.10, 0.10) 0.2068 0.2300 0.2300 0.4321 0.4554 0.4551
(200, 200) (0.20, 0.20) (0.10, 0.10) 0.1178 0.1285 0.1285 0.2857 0.2906 0.2905

(50, 50) (0.10, 0.10) (0.20, 0.20) 0.3582 0.4011 0.4015 0.6233 0.6567 0.6616
(100, 100) (0.10, 0.10) (0.20, 0.20) 0.2338 0.2603 0.2597 0.4847 0.5203 0.5201
(200, 200) (0.10, 0.10) (0.20, 0.20) 0.1413 0.1528 0.1528 0.3178 0.3275 0.3275

only those values that satisfy the condition T1j ≤ Y1j are considered. We use the index

j = 1, . . . , n1 for the first n1 values satisfying this condition.

In the simulation study carried out here, we consider a = 3, b = 0.3, K as the Gaussian

kernel and the stepwise functions B̃0n0(t) and B̃1n1(t) in σ̂2(t) are replaced by the following

smoothed versions to avoid possible divisions by zero,

B̃0g0(t) =
1
n0

n0∑
i=1

L

(
t− F̂0n0(T0i)

g0

)
L

(
F̂0n0(Y0i)− t

g0

)

and

B̃1g1(t) =
1
n1

n1∑
j=1

L

(
t− F̂0n0(T1j)

g1

)
L

(
F̂0n0(Y1j)− t

g1

)
,

where L is the cdf of the biweight kernel, i.e.

L(x) =


0, if x < −1,
1
2 + 15

16x− 5
8x3 + 3

16x5, if x ∈ [−1, 1],

1, if x > 1,

and g0 = g1 = 0.10.

The weight function used is defined as

w(t) = L
(

t− q0.05

0.025

)
L
(

q0.95 − t

0.025

)
,

where q0.05 and q0.95 denote respectively the 0.05 and 0.95 quantile of r(t).

It is interesting to remember here the problem already mentioned in Chapter 1, re-

garding the PL estimator of a cdf with LTRC data and its bad performance from a failure

time t0 and beyond when the number of individuals at risk in t0 is the same as the number

of failures occurring in t0. In order to avoid this problem we consider a modified version of
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Table 3.2: Values of EMw for hRT , hPI and hSTE for models (c) and (d).

EMw Model (c) Model (d)

(n0, n1) (β0, β1) (1− α0, 1− α1) hRT hPI hSTE hRT hPI hSTE

(50, 50) (0.10, 0.10) (0.10, 0.10) 0.2646 0.2950 0.2966 0.2938 0.3141 0.3140
(100, 100) (0.10, 0.10) (0.10, 0.10) 0.1625 0.1796 0.1796 0.2015 0.2169 0.2168
(200, 200) (0.10, 0.10) (0.10, 0.10) 0.1044 0.1135 0.1135 0.1373 0.1463 0.1463

(50, 50) (0.20, 0.20) (0.10, 0.10) 0.2604 0.2922 0.2925 0.3091 0.3363 0.3370
(100, 100) (0.20, 0.20) (0.10, 0.10) 0.1499 0.1644 0.1644 0.2130 0.2270 0.2269
(200, 200) (0.20, 0.20) (0.10, 0.10) 0.1014 0.1148 0.1148 0.1320 0.1347 0.1347

(50, 50) (0.10, 0.10) (0.20, 0.20) 0.2990 0.3330 0.3385 0.3390 0.3692 0.3682
(100, 100) (0.10, 0.10) (0.20, 0.20) 0.1953 0.2206 0.2202 0.2469 0.2701 0.2701
(200, 200) (0.10, 0.10) (0.20, 0.20) 0.1176 0.1277 0.1277 0.1675 0.1818 0.1818

Table 3.3: Values of EMw for hRT and hPI for models (e)-(g).

EMw Model (e) Model (f) Model (g)

(n0, n1) (β0, β1) (1− α0, 1− α1) hRT hPI hRT hPI hRT hPI

(50, 50) (0.10, 0.10) (0.10, 0.10) 0.9461 1.0485 1.1754 1.2521 0.7665 0.7714
(100, 100) (0.10, 0.10) (0.10, 0.10) 0.5815 0.6344 0.8346 0.8646 0.6102 0.5926
(200, 200) (0.10, 0.10) (0.10, 0.10) 0.3806 0.3964 0.5967 0.6065 0.4341 0.3860

(50, 50) (0.20, 0.20) (0.10, 0.10) 0.8293 0.9135 1.1123 1.1588 0.8166 0.8343
(100, 100) (0.20, 0.20) (0.10, 0.10) 0.5857 0.6384 0.8414 0.8650 0.6232 0.6051
(200, 200) (0.20, 0.20) (0.10, 0.10) 0.3783 0.3980 0.5366 0.5304 0.4388 0.3941

(50, 50) (0.10, 0.10) (0.20, 0.20) 0.9987 1.1050 1.3041 1.3919 0.9007 0.9411
(100, 100) (0.10, 0.10) (0.20, 0.20) 0.7075 0.7904 1.0579 1.1416 0.6911 0.6906
(200, 200) (0.10, 0.10) (0.20, 0.20) 0.4479 0.4871 0.7130 0.7523 0.4988 0.4800

the TJW product-limit estimator (see (1.5)) such as it discards those terms in the product

for which the number of individuals at risk is the same as the number of failures.

For each one of the seven relative populations listed in Subsection 2.3.3, a number of 500

pairs of samples {(T01, Y01, δ01), . . . , (T0n0 , Y0n0 , δ0n0)} and {(T11, Y11, δ11), . . . , (T1n1 , Y1n1 ,

δ1n1)} were taken as explained before. For each pair of samples, the three bandwidth

selectors proposed previously, hRT , hPI and hSTE , were computed and, based on each

one, the kernel-type relative density estimate (3.1), was obtained. For each bandwidth

selector, let say ĥ, we obtained 500 estimations of r. Based on them, the following global

error criterion was approximated via Monte Carlo:

EMw = E

[∫
(řĥ(t)− r(t))2w(t)dt

]
.

From Tables 3.1-3.3, it follows that the simple rule of thumb, hRT , outperforms the

plug-in selector, hPI , and the solve-the-equation rule, hSTE . Besides, the effect of an

increase in the percentages of truncation seems to produce a worse behaviour than the

same increase in the percentages of censoring.
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A brief version of the contents appearing in Section 3.1 is included in the paper Molanes

and Cao (2006b).

3.2 Kernel-type relative distribution estimator

In this section we extend the results presented previously for the relative density to the

relative distribution, R(t). However, the problem of estimating R(t) will be presented only

briefly.

A natural kernel type estimator for the relative distribution is as follows

Řh (t) =
∫

K

(
t− F̂0n0(y)

h

)
dF̂1n1 .

3.2.1 Asymptotic properties

Consider a fixed value of t. Using a Taylor expansion the following expression for Řh (t)

is obtained:

Řh (t) =
∫

K
(

t− F0(y)
h

)
dF̂1n1(y)

+
∫

F0(y)− F̂0n0(y)
h

K

(
t− F0(y)

h

)
dF̂1n1(y)

+
∫

(F0(y)− F̂0n0(y))2

2h2
K(1)(∆ty)dF̂1n1(y)

with ∆ty a value between t−F̂0n0 (y)

h and t−F0(y)
h . Based on this decomposition we can

further obtain that

Řh (t) = AR
n1

(t) + BR
n0,n1

(t) + RR
n0,n1

(t) (3.13)

with

AR
n1

(t) =
∫

K
(

t− v

h

)
dR̃n1(t),

BR
n0,n1

(t) =
1
h

∫ (
v − Ũ0n0(v)

)
K

(
t− v

h

)
dR̃n1(t),

RR
n0,n1

(t) =
1

2h2

∫ (
F0(y)− F̂0(y)

)2
K(1) (∆ty) dF̂1n1(y),

where Ũ0n0 and R̃n1 were introduced previously in (3.3) and (3.2).

It is interesting to note here that a very similar decomposition was obtained in the

previous section of this chapter when studying the asymptotic properties of řh(t). Besides,

the first term in (3.13) was previously studied by Chen and Wang (2006) for the case
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aG0 < aW0 . Therefore, under this assumption, and proceeding in a similar way as in

the previous section, it is straightforward to prove the following results regarding the

asymptotic behaviour of Řh (t). For that reason their proofs are omitted here.

Theorem 3.2.1. Assume conditions (S2), (B5), (E1), (I1), (K12), (Q2), (R3) and let

t < min
{

b̃0, b̃1

}
, then

Řh(t) = AR,(1)
n1

(t) + AR,(2)
n1

(t) + BR,(11)
n0,n1

(t) + CR
n0,n1

(t),

where

AR,(1)
n1

(t) = h

∫
K(u)r(t− hu)du,

AR,(2)
n1

(t) =
1
n1

n1∑
i=1

∫
ξ̃1i (Y1i, T1i, δ1i, t− hu) K(u)du,

BR,(11)
n0,n1

(t) = − 1
n0

n0∑
i=1

∫
ξ̃0i (Y0i, T0i, δ0i, t− hu) K(u)r(t− hu)du,

CR
n0,n1

(t) = o

((
h

n1

)1/2
)

a.s.

and E
[∣∣CR

n0,n1
(t)
∣∣d] = o

((
h
n1

)d/2
)

, for d = 1, 2.

Corollary 3.2.2. Assume conditions (S2), (B5), (E1), (I1), (K12), (Q2), (Q3), (R3),

(R5) and let t < min
{

b̃0, b̃1

}
, then

E
[
Řh(t)

]
= R(t) +

1
2
r(1)(t)dKh2 + o

(
h2
)

+ o

((
h

n1

)1/2
)

,

V ar
(
Řh(t)

)
=

1
n1

σ2
R(t) +

DKh

n1
ς2(t) + o

(
h

n1

)
,

where

σ2
R(t) = Q1(t)(1−R(t))2 + κ2Q0(t)(1− t)2r2(t),

ς2(t) = Q
(1)
1 (t)(1−R(t))2 + κ2Q

(1)
0 (t)(1− t)2r2(t)

=
(1−R(t))r(t)
B1(F−1

0 (t))
+ κ2 (1− t)r2(t)

B0(F−1
0 (t))

and

DK = 2
∫ ∫

u≥v
K(u)vK(v)dudv.
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Remark 3.2.1. As a straightforward consequence of Corollary 3.2.2, an asymptotic formula

for the mean squared error of the estimator is obtained

MSE
(
Řh (t)

)
= AMSE

(
Řh (t)

)
+ o

(
h4
)

+ o

(
h

n1

)
,

where

AMSE
(
Řh (t)

)
=

1
4
r(1) (t)2 d2

Kh4 +
1
n1

σ2
R(t) +

DKh

n1
ς2(t).

Consequently, the smoothing parameter that minimizes this criterion is

hAMSE,R(t) =

(
−DKς2(t)
r(1) (t)2 d2

K

) 1
3

n
− 1

3
1 .

Unfortunately, under the conditions of Theorem 3.2.1, the optimal bandwidth is excluded.

Note that condition (B5) is not satisfied for h = hAMSE,R(t). However, we believe that this

condition could be replaced by a less restrictive one that holds as well for the interesting

case h = hAMSE,R(t).

Corollary 3.2.3. Assume conditions (S2), (B5), (E1), (I1), (K12), (Q2), (Q3), (R3),

(R5) and let t < min
{

b̃0, b̃1

}
.

If n1h
4 → 0, then

(n1)
1
2
{
Řh(t)−R(t)

} d→ N
(
0, σ2

R(t)
)
.

If n1h
4 → c, for some c > 0, then

(n1)
1
2
{
Řh(t)−R(t)

} d→ N

(
1
2
r(1)(t)dKc

1
2 , σ2

R(t)
)

.





Chapter 4

Empirical likelihood approach

— La vida siempre espera situaciones cŕıticas

para mostrar su lado brillante.

Paulo Coelho

4.1 Empirical likelihood

Likelihood methods can deal with incomplete data and correct for this problem. They can

pool information from different sources or include information coming from the outside in

the form of constraints that restrict the domain of the likelihood function or in the form

of a prior distribution to be multiplied by the likelihood function. On the other hand,

nonparametric inferences avoid the misspecification that parametric inferences can cause

when the data of interest are wrongly assumed to follow one of the known and well studied

parametric families.

Empirical likelihood methods can be defined as a combination of likelihood and non-

parametric methods that allow the statisticians to use likelihood methods without having

to assume that the data come from a known parametric family of distributions. It was

first proposed by Thomas and Grunkemeier (1975) to set better confidence intervals for

the Kaplan-Meier estimator. Later on, Owen (1988, 1990, 2001) and other authors showed

the potential of this methodology. It is known, for example, that empirical likelihood is a

desirable and natural inference procedure for deriving nonparametric and semiparametric

confidence regions for mostly finite-dimensional parameters. Empirical likelihood confi-

dence regions respect the range of the parameter space, are invariant under transforma-

tions, their shapes are determined by the data, in some cases there is no need to estimate

the variance due to the internally studentizing and they are often Bartlett correctable.

When the interest is to determine if two samples come from the same population, it
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would be interesting to obtain confidence intervals and regions for an estimate of, for ex-

ample, the relative density, r(t), or the relative distribution, R(t). Note that two identical

populations have R(t) = t and r(t) = 1, for t ∈ (0, 1). Therefore, a simple visualization

of the confidence region would allow to conclude if the two samples come from the same

population or not. For example, when the testing is based on the relative distribution,

one would reject the null hypothesis of equal populations if the identity function is outside

the confidence region.

Claeskens et al (2003) developed an empirical likelihood procedure to set confidence

intervals and regions for R(t) in the case of a two-sample problem with complete data. Due

to the nice properties shown by the empirical likelihood methods, we study in the following

pages, the case of a two-sample problem with LTRC data via the relative distribution

and the empirical likelihood methodology. We obtain in this setting a nonparametric

generalization of Wilks theorem and confidence intervals for the value of R(t), when t is a

fixed point in the unit interval.

4.2 Two-sample test via empirical likelihood for LTRC data

Consider the two sample problem introduced in Chapter 3. We wish to construct a point

and interval estimator for the relative distribution value R(t) = θ where t is a fixed point in

[0, 1]. Note that this implies that there exists a value η such that F0(η) = t and F1(η) = θ.

Consider K a compactly supported kernel of order r and define K(x) =
∫ x
−∞ K(u)du.

For i = 1, . . . , n0 we define

U0i(η) =
K
(

η−Y0i

h0

)
δ0i

α−1
0 G0(Y0i)(1− L0(Y0i))

and analogously for j = 1, . . . , n1, we consider

U1j(η) =
K
(

η−Y1j

h1

)
δ1j

α−1
1 G1(Y1j)(1− L1(Y1j))

.

When the LTRC model was introduced in Subsection 1.1.1, it was proved that:

dW01(t) = α−1
0 G0(t)(1− L0(t))dF0(t)

and

dW11(t) = α−1
1 G1(t)(1− L1(t))dF1(t).

Based on these equations and under conditions (E2) and (E3) introduced later on, it is

easy to check that

E (U0i(η)) =
∫ K

(
η−u
h0

)
dW01(u)

α−1
0 G0(u)(1− L0(u))

=
∫

K
(

η − u

h0

)
dF0(u)
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and

E (U1j(η)) =
∫ K

(
η−u
h1

)
dW11(u)

α−1
1 G1(u)(1− L1(u))

=
∫

K
(

η − u

h1

)
dF1(u),

which, under smooth conditions, approximates F0(η) and F1(η), respectively. Therefore,

using Owen’s (1988) idea, we can define the smoothed likelihood ratio function of θ by

L̃(θ) = sup
(p̃,q̃,η)

(
n0∏
i=1

n0p̃i

) n1∏
j=1

n1q̃j

 ,

where p̃ = (p̃1, p̃2, . . . , p̃n0) and q̃ = (q̃1, q̃2, . . . , q̃n1) are two probability vectors consisting

of nonnegative values and the supremum is taken over (p̃, q̃, η) and subject to the following

constraints:

t =
n0∑
i=1

p̃iU0i(η) and θ =
n1∑

j=1

q̃jU1j(η),

1 =
n0∑
i=1

p̃i and 1 =
n1∑

j=1

q̃j .

However, since the definition of U0i(η) and U1j(η) involves some unknown quantities,

we must replace them by some appropriate estimators. Noting that U0i(η) and U1j(η) can

be rewritten in terms of other unknown quantities that can be easily estimated from the

data:

U0i(η) =
K
(

η−Y0i

h0

)
δ0i

B0(Y0i)(1− F0(Y −
0i ))−1

, (4.1)

U1j(η) =
K
(

η−Y1j

h1

)
δ1j

B1(Y1j)(1− F1(Y −
1j ))−1

, (4.2)

we propose to define

V0i(η) =
K
(

η−Y0i

h0

)
δ0i

B0n0(Y0i)(1− F̂0n0(Y
−
0i ))−1

, (4.3)

V1j(η) =
K
(

η−Y1j

h1

)
δ1j

B1n1(Y1j)(1− F̂1n1(Y
−
1j ))−1

, (4.4)

where we replace in (4.1) and (4.2), B0 and B1 by their corresponding empirical estimates

and F0 and F1 by their corresponding PL-estimates (see equation (1.5)). Before we go

on in the discussion, it is worth noting here that the smoothed estimators of F0 and F1
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introduced in Subsection 1.3.4 can be rewritten in terms of the V0i’s and the V1j ’s (see

(4.3) and (4.4) above). In fact, simple algebra allows to rewrite F̂0h0(η) and F̂1h1(η) as

F̂0h0(η) =
∫

K
(

η − x

h0

)
dF̂0n0(x)

=
1
n0

n0∑
i=1

K
(

η − Y0i

h0

)
δ0i(

1− F̂0n0(Y
−
0i )
)−1

B0n0(Y0i)

=
1
n0

n0∑
i=1

V0i(η)

and

F̂1h1(η) =
∫

K
(

η − x

h1

)
dF̂1n1(x)

=
1
n1

n1∑
j=1

K
(

η − Y1j

h1

)
δ1j(

1− F̂1n1(Y
−
1j )
)−1

B1n1(Y1j)

=
1
n1

n1∑
j=1

V1j(η).

We now define the estimated smoothed likelihood ratio function of θ by

L(θ) = sup
(p,q,η)

(
n0∏
i=1

n0pi

) n1∏
j=1

n1qj

 ,

where p = (p1, p2, . . . , pn0) and q = (q1, q2, . . . , qn1) are two probability vectors consisting

of nonnegative values and the supremum is taken over (p, q, η) and subject to the following

constraints:

t =
n0∑
i=1

piV0i(η) and θ =
n1∑

j=1

qjV1j(η), (4.5)

1 =
n0∑
i=1

pi and 1 =
n1∑

j=1

qj . (4.6)

Based on L(θ), the estimated smoothed log-likelihood function (multiplied by minus two)

is given by:

`(θ) = −2


n0∑
i=1

ln (n0pi) +
n1∑

j=1

ln (n1qj)

 ,

where using the Lagrange multiplier method, it is straightforward to show that:

pi =
1
n0

1
λ0 (V0i(η)− t) + 1

, (4.7)

qj =
1
n1

1
λ1 (V1j(η)− θ) + 1

, (4.8)
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where (λ0, λ1, η) = (λ0(θ), λ1(θ), η(θ)) are solutions to the following score equations:

∂

∂λ0
`(θ) =

n0∑
i=1

V0i(η)− t

1 + λ0(V0i(η)− t)
= 0, (4.9)

∂

∂λ1
`(θ) =

n1∑
j=1

V1j(η)− θ

1 + λ1(V1j(η)− θ)
= 0, (4.10)

∂

∂η
`(θ) = 2λ0

n0∑
i=1

V
(1)
0i (η)

1 + λ0(V0i(η)− t)
+ 2λ1

n1∑
j=1

V
(1)
1j (η)

1 + λ1(V1j(η)− θ)
= 0 (4.11)

with

V
(1)
0i (η) =

1
h0

K

(
η − Y0i

h0

)
δ0i

B0n0(Y0i)(1− F̂0n0(Y
−
0i ))−1

,

V
(1)
1j (η) =

1
h1

K

(
η − Y1j

h1

)
δ1j

B1n1(Y1j)(1− F̂1n1(Y
−
1j ))−1

.

Next, we show in detail the computations required above to obtain (4.7)-(4.11) by

the Lagrange multiplier method. Note that the objective is to find the minimizer of `(θ)

subject to the constraints (4.5) and (4.6). By the Lagrange multiplier method, this is

equivalent to minimize E(θ) below:

E(θ) = `(θ)− µ0

(
t−

n0∑
i=1

piV0i(η)

)
− µ1

θ −
n1∑

j=1

qjV1j(η)


−ν0

(
1−

n0∑
i=1

pi

)
− ν1

1−
n1∑

j=1

qj

 ,

where (µ0, µ1, ν0, ν1) is the Lagrange multiplier.

Therefore, we need to solve the following equations:

0 =
∂E(θ)
∂µ0

=
n0∑
i=1

piV0i(η)− t, (4.12)

0 =
∂E(θ)
∂ν0

=
n0∑
i=1

pi − 1, (4.13)

0 =
∂E(θ)
∂pi

=
−2
pi

+ µ0V0i(η) + ν0 with i = 1, . . . , n0, (4.14)
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0 =
∂E(θ)
∂µ1

=
n1∑

j=1

qjV1j(η)− θ, (4.15)

0 =
∂E(θ)
∂ν1

=
n1∑

j=1

qj − 1, (4.16)

0 =
∂E(θ)
∂qj

=
−2
qj

+ µ1V1j(η) + ν1 with j = 1, . . . , n1, (4.17)

0 =
∂E(θ)

∂η
= µ0

n0∑
i=1

piV
(1)
0i (η) + µ1

n1∑
j=1

qjV
(1)
1j (η). (4.18)

From equation (4.14), we have

(µ0V0i(η) + ν0) pi = 2 for i = 1, . . . , n0. (4.19)

Summing over i and using equations (4.12) and (4.13), we obtain that

ν0 = 2n0 − µ0t. (4.20)

Similarly, from equation (4.17), it follows that

(µ1V1j(η) + ν1) qj = 2 for j = 1, . . . , n1. (4.21)

If we now sum over j, equations (4.15) and (4.16) allow to conclude that

ν1 = 2n1 − µ1θ. (4.22)

From equations (4.12), (4.13), (4.19) and (4.20), it follows that

n0∑
i=1

2 (V0i(η)− t)
µ0V0i(η) + 2n0 − µ0t

= 0. (4.23)

In a similar way, from equations (4.15), (4.16), (4.21) and (4.22), it is easily obtained that

n1∑
j=1

2 (V1j(η)− θ)
µ1V1j(η) + 2n1 − µ1θ

= 0. (4.24)

Defining λ0 = µ0

2n0
and λ1 = µ1

2n1
, formulas (4.23) and (4.24) can now be rewritten as given

above in (4.9) and (4.10). From equations (4.20) and (4.19), we now obtain

pi =
1
n0

1
λ0V0i(η) + ν0

2n0

=
1
n0

1
λ0 (V0i(η)− t) + 1

,

i.e., equation (4.7). Similarly, equation (4.8) follows from equations (4.22) and (4.21) and

finally, equation (4.11) is obtained by rewriting equation (4.18) in terms of λ0 and λ1.
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Hence, the estimated smoothed loglikelihood function can now be rewritten as

`(θ) = 2
n0∑
i=1

ln (λ0(V0i(η)− t) + 1) + 2
n1∑

j=1

ln (λ1(V1j(η)− θ) + 1). (4.25)

The value of θ minimizing `(θ) will give a point estimate, θ̂, of R(t) = θ0 based on empirical

likelihood.

For practical matters, the score equations (4.9), (4.10) and (4.11) can be solved in

two stages. In the first stage, we fix η and obtain λ0 = λ0(η) and λ1 = λ1(η) from the

equations (4.9) and (4.10). In the second stage, η̃ is obtained as a solution to equation

(4.11).

When the objective is the construction of a confidence interval for R(t), all those values

of θ for which the null hypothesis H0 : R(t) = θ can not be rejected will be included in the

confidence interval for R(t). Since large values of `(θ) favors the (two-sided) alternative

hypothesis, a formal definition of an asymptotic confidence interval for R(t) based on

empirical likelihood is given by:

I1−α = {θ : `(θ) ≤ c} ,

where c is a value such that PH0 (I1−α) → 1− α.

Next, we introduce some conditions that will be needed later on:

(D13) There exists an integer r such that the densities fk, k = 0, 1 satisfy that f
(r−1)
k exists

in a neighbourhood of η0 and it is continuous at η0. Additionally, f0(η0)f1(η0) > 0.

Here η0 denotes that value for which F0(η0) = t and F1(η0) = θ0.

(K13) K denotes a twice differentiable kernel of order r (r ≥ 2) with support on [−1, 1],

i.e.

∫
xkK(x)dx =


1, k = 0,

0, 1 ≤ k ≤ r − 1,

c 6= 0, k = r.

(B6) The bandwidth sequences h0 = h0n0 and h1 = h1n1 tend to zero as n0 and n1 tend

to infinity. Besides, as the sample sizes increase, n0h
4r
0 → 0, n1h

4r
1 → 0, n0h2r

0
ln(n0) →∞

and n1h2r
1

ln(n1) →∞.

(E2) For k = 0, 1, the value of α−1
k Gk(aGk

)(1− Lk(bLk
)) is positive.

(E3) For k = 0, 1, it is assumed that aGk
< aWk

and that the integral condition∫ b

aWk

dWk1(t)
B3

k(t)
< ∞

is satisfied for aWk
< b < bWk

.
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Before presenting the main results, we next introduce some previous lemmas. For the

sake of simplicity we will denote from here on h = max {h0, h1}, δ = O (hr), n = n0 + n1

and γ0n0 = n0
n0+n1

→ γ0 and γ1n1 = n1
n0+n1

→ γ1, where γ0 = κ2

κ2+1
and γ1 = 1

κ2+1
.

Lemma 4.2.1. Assume that conditions (D13), (S2), (K13), (B6), (E2) and (E3) hold.

(i) For each fixed η, we have

E[U01(η)− t] = F0(η)− F0(η0) + O (hr
0) ,

V ar[U01(η)− t] =
∫

K2

(
η − x

h0

)
M0(x)dF0(x)− F 2

0 (η) + O (hr
0)

=
∫ η

−∞

dF0(u)
α−1

0 G0(u)(1− L0(u))
− F 2

0 (η) + O (h0) , (4.26)

E[U11(η)− θ0] = F1(η)− F1(η0) + o (hr
1) ,

V ar[U11(η)− θ0] =
∫

K2

(
η − x

h1

)
M1(x)dF1(x)− F 2

1 (η) + O (hr
1)

=
∫ η

−∞

dF1(u)
α−1

1 G1(u)(1− L1(u))
− F 2

1 (η) + O (h1) ,

where M0(x) = 1−F0(x)
B0(x) and M1(x) = 1−F1(x)

B1(x) .

(ii) Uniformly for η : |η − η0| < δ we have

n−1
0

n0∑
i=1

(U0i(η)− t) = O (hr
0) + OP

(
δ + n

−1/2
0

)
, (4.27)

n−1
0

n0∑
i=1

(U0i(η)− t)2 =
∫

K2

(
η − x

h0

)
M0(x)dF0(x)− F 2

0 (η0)

+OP

(
δ + hr

0 + n
−1/2
0

)
(4.28)

=
∫ η0

−∞

dF0(u)
α−1

0 G0(u)(1− L0(u))
− F 2

0 (η0)

+OP

(
δ + h0 + n

−1/2
0

)
, (4.29)

n−1
1

n1∑
j=1

(U1j(η)− θ0) = O (hr
1) + OP

(
δ + n

−1/2
1

)
, (4.30)

n−1
1

n1∑
j=1

(U1j(η)− θ0)
2 =

∫
K2

(
η − x

h1

)
M1(x)dF1(x)− F 2

1 (η0)

+OP

(
δ + hr

1 + n
−1/2
1

)
(4.31)

=
∫ η0

−∞

dF1(u)
α−1

1 G1(u)(1− L1(u))
− F 2

1 (η0)

+OP

(
δ + h1 + n

−1/2
1

)
. (4.32)
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(iii)

n−1
0

n0∑
i=1

(V0i(η0 + δ)− t) = O (hr
0) + O

(
δ + n

−1/2
0 (lnn0)1/2

)
a.s., (4.33)

n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)2 =
∫

K2

(
η0 − x

h0

)
M0(x)dF0(x)− F 2

0 (η0)

+O
(
δ + hr

0 + n
−1/2
0 (lnn0)1/2

)
a.s. (4.34)

=
∫ η0

−∞

dF0(u)
α−1

0 G0(u)(1− L0(u))
− F 2

0 (η0)

+O
(
δ + h0 + n

−1/2
0 (lnn0)1/2

)
a.s., (4.35)

n−1
1

n1∑
j=1

(V1j(η0 + δ)− θ0) = O (hr
1) + O

(
δ + n

−1/2
1 (lnn1)1/2

)
a.s., (4.36)

n−1
1

n1∑
j=1

(V1j(η0 + δ)− θ0)
2 =

∫
K2

(
η0 − x

h1

)
M1(x)dF1(x)− F 2

1 (η0)

+O
(
δ + hr

1 + n
−1/2
1 (lnn1)1/2

)
a.s. (4.37)

=
∫ η0

−∞

dF1(u)
α−1

1 G1(u)(1− L1(u))
− F 2

1 (η0)

+O
(
δ + h1 + n

−1/2
1 (lnn1)1/2

)
a.s. (4.38)

(iv) Uniformly for η : |η − η0| < δ, we have

λ0(η) = O (hr
0) + OP

(
δ + n

−1/2
0 (lnn0)1/2

)
, (4.39)

λ1(η) = O (hr
1) + OP

(
δ + n

−1/2
1 (lnn1)1/2

)
. (4.40)

Furthermore, on the boundary points, it follows that

λ0(η0 ± δ) = O (hr
0) + O

(
δ + n

−1/2
0 (lnn0)1/2

)
a.s., (4.41)

λ1(η0 ± δ) = O (hr
1) + O

(
δ + n

−1/2
1 (lnn1)1/2

)
a.s. (4.42)

Proof of Lemma 4.2.1. We start with proving (i). It is easy to see that

E [U01(η)] = E

 K
(

η−Y01

h0

)
δ01

α−1
0 G0(Y01)(1− L0(Y01))

 =
∫ K

(
η−x
h0

)
dW01(x)

α−1
0 G0(x)(1− L0(x))

=
∫

K
(

η − x

h0

)
dF0(x).
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Using integration by parts, a change of variables and a Taylor expansion, it follows

that ∫
K
(

η − x

h0

)
dF0(x) =

∫
F0(η − h0u)K(u)du =∫ {

F0(η) + f0(η)(−h0u) +
1
2
f

(1)
0 (η)(−h0u)2 + · · ·+ 1

r!
f

(r−1)
0 (η)(−h0u)r + o (hr

0)
}

×K(u)du = F0(η) + O (hr
0) .

On the other hand,

E
[
U2

01(η)
]

= E


 K

(
η−Y01

h0

)
δ01

α−1
0 G0(Y01)(1− L0(Y01))

2
 =

∫ K2
(

η−x
h0

)
dW01(x)

α−2
0 G2

0(x)(1− L0(x))2

=
∫ K2

(
η−x
h0

)
dF0(x)

α−1
0 G0(x)(1− L0(x))

=
∫ K2

(
η−x
h0

)
(1− F0(x))dF0(x)

B0(x)

=
∫

K2

(
η − x

h0

)
M0(x)dF0(x),

where we define M0(x) =
∫ x
−∞ M0(y)dF0(y). Using integration by parts and a Taylor

expansion, it follows that∫
K2

(
η − x

h0

)
M0(x)dF0(x) =

2
h0

∫ η+h0

η−h0

K
(

η − x

h0

)
K

(
η − x

h0

)
M0(x)dx

=
2
h0

∫ η+h0

η−h0

K
(

η − x

h0

)
K

(
η − x

h0

)
×
{
M0(η) + M0(x′)f0(x′)(x− η)

}
dx,

where x′ is a value between x and η.

Therefore,∫
K2

(
η − x

h0

)
M0(x)dF0(x) = −M0(η)

∫ η+h0

η−h0

dK2

(
η − x

h0

)
+ O(h0)

= M0(η)
{
K2 (1)−K2 (−1)

}
+ O(h0)

=
∫ η

−∞

dF0(y)
α−1

0 G0(y)(1− L0(y))
+ O(h0).

In a similar way, it can be proved that

E [U11(η)] = F1(η) + O (hr
1) ,

E
[
U2

11(η)
]

=
∫

K2

(
η − x

h0

)
M1(x)dF1(x) =

∫ η

−∞

dF1(y)
α−1

1 G1(y)(1− L1(y))
+ O(h1)

and the proof of (i) is finished.
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We now prove (ii). Using a Taylor expansion, n−1
0

∑n0
i=1 (U0i(η)− t) can be rewritten

as follows:

n−1
0

n0∑
i=1

(U0i(η)− t) = n−1
0

n0∑
i=1

(U0i(η0)− t) + n−1
0

n0∑
i=1

U
(1)
0i (η0)(η − η0)

+
1
2
n−1

0

n0∑
i=1

U
(2)
0i (η′)(η − η0)2, (4.43)

where η′ is a value between η0 and η. From the Central Limit Theorem and (i), it is easy

to prove that

n−1
0

n0∑
i=1

(U0i(η0)− t) = E [U01(η0)− t)] + OP

(
n
−1/2
0

)
= O (hr

0) + OP

(
n
−1/2
0

)
. (4.44)

By the SLLN (Strong Law of Large Numbers), it follows that

n−1
0

n0∑
i=1

U
(1)
0i (η0) = f0(η0) + O (hr

0) . (4.45)

Besides, from conditions (K13), (B6) and (E2), it is easy to prove the existence of a

constant c such that ∣∣∣∣∣∣
K(1)

(
η′−Y0i

h0

)
B0(Y0i)

(
1− F0

(
Y −

0i

))−1

∣∣∣∣∣∣ ≤ c.

This result and the fact that h−2
0 δ = O (1), imply that∣∣∣∣∣n−1

0

n0∑
i=1

U
(2)
0i (η′)(η − η0)2

∣∣∣∣∣ ≤ δ2

h2
0n0

n0∑
i=1

∣∣∣∣K(1)

(
η′ − Y0i

h0

)
1− F0(Y −

0i )
B0(Y0i)

∣∣∣∣ = O (δ) . (4.46)

Now, (4.43), (4.44), (4.45) and (4.46) prove (4.27).

Similarly, it can be proved that equations (4.28)-(4.32) hold.

In order to prove (iii), we first note that

n−1
0

n0∑
i=1

(V0i(η)− t)2 = I1 + I2 + I3,

where

I1 = n−1
0

n0∑
i=1

(U0i(η)− t)2 ,

I2 = n−1
0

n0∑
i=1

K
(

η − Y0i

h0

)
δ0i

[
1− F̂0n0(Y

−
0i )

B0n0(Y0i)
−

1− F0(Y −
0i )

B0(Y0i)

]2
 ,

I3 =
2
n0

n0∑
i=1

(U0i(η)− t)

{
K
(

η − Y0i

h0

)
δ0i

[
1− F̂0n0(Y

−
0i )

B0n0(Y
−
0i )

− 1− F0(Y0i)
B0(Y0i)

]}
.
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Using conditions (E2) and (E3) and the fact that

sup
i=1,...,n0

∣∣∣F̂0n0(Y
−
0i )− F0(Y −

0i )
∣∣∣ = O

((
n−1

0 lnn0

)1/2
)

a.s.,

sup
i=1,...,n0

|B0(Y0i)−B0n0(Y0i)| = OP

(
n
−1/2
0

)
,

sup
i=1,...,n0

|B0(Y0i)−B0n0(Y0i)| = O
((

n−1
0 lnn0

)1/2
)

a.s.,

it is easy to show that

sup
i=1,...,n0

∣∣B−1
0n0

(Y0i)
∣∣ = OP (1),

sup
i=1,...,n0

∣∣∣∣ 1
B0n0(Y0i)

− 1
B0(Y0i)

∣∣∣∣ = O
((

n−1
0 lnn0

)1/2
)

a.s.

Therefore, since

1− F̂0n0(Y
−
0i )

B0n0(Y0i)
−

1− F0(Y −
0i )

B0(Y0i)
=

F0(Y −
0i )− F̂0n0(Y

−
0i )

B0n0(Y0i)
+ (1− F0(Y −

0i ))
{

1
B0n0(Y0i)

− 1
B0(Y0i)

}
,

from conditions (K13) and (E2), it follows that I2 + I3 = O
((

n−1
0 lnn0

)1/2
)

a.s.

Consequently,

n−1
0

n0∑
i=1

(V0i(η)− t)2 = n−1
0

n0∑
i=1

(U0i(η)− t)2 + O
((

n−1
0 lnn0

)1/2
)

a.s. (4.47)

Now, using Bernstein’s inequality and the Borel-Cantelli lemma, it can be proved that∣∣∣∣∣n−1
0

n0∑
i=1

(U0i(η0 + δ)− t)2 − E

[
n−1

0

n0∑
i=1

(U0i(η0 + δ)− t)2
]∣∣∣∣∣

= O
((

n−1
0 ln(n0)

)1/2
)

a.s. (4.48)

Next, we show in more detail how (4.48) can be obtained. From conditions (K13) and

(E2), there exists a positive constant, m, such that

P
(∣∣∣(U0i(η0 + δ)− t)2 − E

[
(U0i(η0 + δ)− t)2

]∣∣∣ ≤ m
)

= 1.

Let define the event

An0 =

{∣∣∣∣∣n−1
0

n0∑
i=1

(U0i(η0 + δ)− t)2 − E

[
n−1

0

n0∑
i=1

(U0i(η0 + δ)− t)2
]∣∣∣∣∣ > α1/2n

− 1
2

0 (lnn0)
1
2

}
,

where α is a positive constant.
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Since (U0i(η0 + δ)− t)2, for i = 1, . . . , n0, are independent and identically distributed,

using Bernstein inequality, it follows that

P (An0) ≤ exp

− α ln(n0)

2σ2 + 2
3mα

1
2 n

− 1
2

0 (lnn0)
1
2

 = 2n
−Rn0
0 , (4.49)

where σ2 denotes the variance of (U01(η0 + δ)− t)2 and Rn0 = α

2σ2+ 2
3
mα

1
2 n

− 1
2

0 (ln n0)
1
2

.

Since n
− 1

2
0 (lnn0)

1
2 tends to zero as n0 tends to infinity and α can be chosen such that

α− 2σ2 > 0, we then can conclude that Rn0 > 1 + ε for n0 large enough and some ε > 0.

Hence, from (4.49) it follows that
∑∞

i=1 P (An0) < ∞. Now, using Borel-Cantelli lemma

one obtains that P (An0 infinitely often ) = 0, which implies (4.48) above.

Consequently, combining (4.48) with (4.47) and (4.26), we obtain (4.35), i.e.

n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)2 =
∫ η0

−∞

dF0(u)
α−1

0 G0(u)(1− L0(u))
− F 2

0 (η0)

+O
(
δ + h0 +

(
n−1

0 ln(n0)
)1/2

)
a.s.

In a similar way, (4.33), (4.34) and (4.36)-(4.38) can be proved.

Next, we prove (iv). To this end, we first note that

n0∑
i=1

V0i(η)− t

1 + λ0(η)(V0i(η)− t)
=

n0∑
i=1

(V0i(η)− t) (1 + λ0(V0i(η)− t)− λ0(η)(V0i(η)− t))
1 + λ0(η)(V0i(η)− t)

=
n0∑
i=1

(V0i(η)− t)− λ0(η)
n0∑
i=1

(V0i(η)− t)2

1 + λ0(η)(V0i(η)− t)
. (4.50)

From equations (4.9) and (4.50), it follows that

n−1
0

n0∑
i=1

(V0i(η)− t)− λ0(η)n−1
0

n0∑
i=1

(V0i(η)− t)2

1 + λ0(η)(V0i(η)− t)
= 0. (4.51)

Define Sn0 = max1≤i≤n0 |V0i(η)− t|. Using conditions (K13) and (E2), it is easy to prove

that max1≤i≤n0 |U0i(η)− t| ≤ c1 a.s., where c1 denotes a positive constant. Since

V0i(η)− t = U0i(η)− t + K
(

η − Y0i

h0

)
δ0i

[
1− F̂0n0(Y

−
0i )

B0n0(Y0i)
−

1− F0(Y −
0i )

B0(Y0i)

]

and

sup

∣∣∣∣∣1− F̂0n0(Y
−
0i )

B0n0(Y0i)
−

1− F0(Y −
0i )

B0(Y0i)

∣∣∣∣∣ = O

(
n
− 1

2
0 (lnn0)

1
2

)
a.s.,

it follows that Sn0 ≤ c a.s. for a positive constant c.
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Besides, it follows that

n−1
0

n0∑
i=1

(V0i(η)− t) = J1 + J2,

where

J1 = n−1
0

n0∑
i=1

(U0i(η)− t) ,

J2 = n−1
0

n0∑
i=1

K
(

η − Y0i

h0

)
δ0i

[
1− F̂0n0(Y

−
0i )

B0n0(Y0i)
−

1− F0(Y −
0i )

B0(Y0i)

]
= O

((
n−1

0 lnn0

)1/2
)

a.s.

Therefore, using this result and equations (4.27) and (4.51) it follows that

|λ0(η)|n−1
0

n0∑
i=1

(V0i(η)− t)2

1 + λ0(η)(V0i(η)− t)
= O (hr

0) + OP

(
δ + n

−1/2
0 +

(
n−1

0 lnn0

)1/2
)

.

Finally, using (4.47) and (4.29), we can conclude that

|λ0(η)|n−1
0

n0∑
i=1

(V0i(η)− t)2

1 + λ0(η)(V0i(η)− t)
≥ |λ0(η)|

1 + |λ0(η)|Sn0

n−1
0

n0∑
i=1

(V0i(η)− t)2 (4.52)

≥ |λ0(η)|
1 + c |λ0(η)|

{∫ η0

−∞

dF0(u)
α−1

0 G0(u)(1− L0(u))

−F 2
0 (η0) + oP (1)

}
and therefore λ0(η) = O

(
h2

0

)
+ OP

(
δ + n

−1/2
0 +

(
n−1

0 lnn0

)1/2
)
, which proves (4.39). In

a similar way (4.40) can be obtained.

Now, using (iii) in Lemma 4.2.1, we can proceed in a similar way as that used to obtain

(4.52) and conclude that (4.41) and (4.42) are satisfied.

Lemma 4.2.2. Assume that conditions (D13), (S2), (K13), (B6), (E2) and (E3) hold

and that δ−1 = O
( √

nh√
ln ln n

)
. Then, for sufficiently large sample sizes n0 and n1, there

exists, with probability one, a solution η̃ of equation (4.11), such that |η̃ − η0| < δ a.s.

Proof of Lemma 4.2.2. Before starting with the proof we introduce some notation. Define

∆δ = δ + hr
0 + n

−1/2
0 (lnn0)

1
2

and

H(θ0, η) = n0H0(θ0, η) + n1H1(θ0, η),
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where

H0(θ0, η) = n−1
0

n0∑
i=1

ln {1 + λ0(η) (V0i(η)− t)} ,

H1(θ0, η) = n−1
1

n1∑
j=1

ln {1 + λ1(η) (V1j(η)− θ0)} .

Using a Taylor expansion of ln(x) around 1, it follows that:

H0(θ0, η0 + δ) = n−1
0

n0∑
i=1

ln {1 + λ0(η0 + δ) (V0i(η0 + δ)− t)}

= n−1
0

n0∑
i=1

{ln(1) + λ0(η0 + δ) (V0i(η0 + δ)− t)

−1
2

[λ0(η0 + δ) (V0i(η0 + δ)− t)]2

+
1
3
(x′)−3 [λ0(η0 + δ) (V0i(η0 + δ)− t)]3

}
,

where x′ is a value between 1 and λ0(η0 + δ) (V0i(η0 + δ)− t). Now, using (4.41) it is

straightforward to show that

H0(θ0, η0 + δ) = λ0(η0 + δ)n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)

−1
2
λ2

0(η0 + δ)n−1
0

n0∑
i=1

((V0i(η0 + δ)− t))2 + O
(
∆3

δ

)
a.s. (4.53)

From (4.51), it follows that

0 = n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)− λ0(η0 + δ)n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)2

1 + λ0(η0 + δ)(V0i(η0 + δ)− t)

= n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)− λ0(η0 + δ)n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)2 [1 + λ0(η0 + δ)(V0i(η0 + δ)− t)− λ0(η0 + δ)(V0i(η0 + δ)− t)]
1 + λ0(η0 + δ)(V0i(η0 + δ)− t)

= n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)

−λ0(η0 + δ)n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)2

+λ2
0(η0 + δ)n−1

0

n0∑
i=1

(V0i(η0 + δ)− t)3

1 + λ0(η0 + δ)(V0i(η0 + δ)− t)
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From (4.35) and (4.41) we next obtain that

λ0(η0 + δ) = n−1
0

n0∑
i=1

(V0i(η0 + δ)− t)

{
n−1

0

n0∑
i=1

(V0i(η0 + δ)− t)2
}−1

+ O
(
∆2

δ

)
a.s.

Replacing λ0(η0 + δ) in (4.53) by the expression above, it follows that

H0 (θ0, η0 + δ) =
1
2

{
n−1

0

n0∑
i=1

(V0i(η0 + δ)− t)

}2{
n−1

0

n0∑
i=1

(V0i(η0 + δ)− t)2
}−1

(4.54)

+O
(
∆3

δ

)
a.s.

Now, a Taylor expansion yields

n−1
0

n0∑
i=1

(V0i(η0 + δ)− t) = n−1
0

n0∑
i=1

(V0i(η0)− t) + δ

{
n−1

0

n0∑
i=1

V
(1)
0i (η′)

}

= n−1
0

n0∑
i=1

(V0i(η0)− t) + δ

{
n−1

0

n0∑
i=1

V
(1)
0i (η0)

}
(4.55)

+δ

{
n−1

0

n0∑
i=1

V
(1)
0i (η′)− n−1

0

n0∑
i=1

V
(1)
0i (η0)

}
,

where η′ is between η0 and η0 + δ.

By a Taylor expansion, there exists an η∗ between η0 and η′ for which it is satisfied

that ∣∣∣∣∣n−1
0

n0∑
i=1

V
(1)
0i (η′)− n−1

0

n0∑
i=1

V
(1)
0i (η0)

∣∣∣∣∣ =

∣∣∣∣∣n−1
0

n0∑
i=1

V
(2)
0i (η∗)(η′ − η0)

∣∣∣∣∣ .
Since

n−1
0

n0∑
i=1

V
(2)
0i (η∗) = n−1

0

n0∑
i=1

U
(2)
0i (η∗)

+n−1
0

1
h2

0

n0∑
i=1

K(1)

(
η∗ − Y0i

h0

)
δ0i

{
1− F̂0n0(Y

−
0i )

B0n0(Y0i)
−

1− F0(Y −
0i )

B0(Y0i)

}

= n−1
0

n0∑
i=1

U
(2)
0i (η∗)

+O

(
h−2

0 n
− 1

2
0 (lnn0)

1
2

)
a.s.

and by the SLLN n−1
0

∑n0
i=1 U

(2)
0i (η∗) = f

(1)
0 (η∗) + O (hr

0) a.s., condition (B6) gives∣∣∣∣∣n−1
0

n0∑
i=1

V
(2)
0i (η∗)

∣∣∣∣∣ = ∣∣∣f (1)
0 (η∗)

∣∣∣+ o(1) a.s.
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Consequently, ∣∣∣∣∣n−1
0

n0∑
i=1

V
(1)
0i (η′)− n−1

0

n0∑
i=1

V
(1)
0i (η0)

∣∣∣∣∣ = O (δ) a.s.

On the other hand, the first term in the right hand side of (4.55) is:

n−1
0

n0∑
i=1

(V0i(η0)− t) = n−1
0

n0∑
i=1

(U0i(η0)− t) + O
(
n
−1/2
0 (lnn0)

1
2

)
a.s. (4.56)

and n−1
0

∑n0
i=1 V

(1)
0i (η0)− f0 (η0) = O

(√
ln ln n√

nh

)
a.s. (see Gijbels and Wang (1993) and (iii)

in Theorem 1.3.6). Since δ−1 = O
( √

nh√
ln ln n

)
, it follows that n−1

0

∑n0
i=1 V

(1)
0i (η0)− f0 (η0) =

O (δ) a.s. As a consequence, we have

n−1
0

n0∑
i=1

(V0i(η0 + δ)− t) = n−1
0

n0∑
i=1

(V0i(η0)− t) + δf0(η0) + O
(
δ2
)

a.s. (4.57)

Besides, from equation (4.34), we have

n−1
0

n0∑
i=1

(V0i(η)− t)2 =
∫

K2

(
η0 − x

h0

)
M0(x)dF0(x)−F 2

0 (η0)+O
(
δ + hr

0 + n
−1/2
0 (lnn0)1/2

)
a.s. for any η : |η − η0| < δ. Hence, using (4.54), (4.56) and (4.57), we can conclude that

H0 (θ0, η0 + δ) =
1

2
∫

K2
(

η0−x
h0

)
M0(x)dF0(x)− F 2

0 (η0) + O
(
δ + hr

0 + n
−1/2
0 (lnn0)1/2

)
[
n−1

0

n0∑
i=1

(U0i(η0)− t) + O
(
n
−1/2
0 (lnn0)

1
2

)
+ δf0(η0) + O

(
δ2
)]2

+O
(
∆3

δ

)
a.s.

If we now consider δ = 0, it follows that

H0 (θ0, η0) =
1

2
∫

K2
(

η0−x
h0

)
M0(x)dF0(x)− F 2

0 (η0) + O
(
hr

0 + n
−1/2
0 (lnn0)1/2

)
[
n−1

0

n0∑
i=1

(U0i(η0)− t) + O
(
n
−1/2
0 (lnn0)

1
2

)]2

+ O
(
∆3

0

)
a.s.

Besides, for δ = O (hr
0) satisfying δ−1 = o

(
n1/2(lnn)−1/2

)
and under condition (B6),

it follows that H0(θ0, η0 + δ) ≥ H0(θ0, η0) a.s. In a similar way, it can be proved that

H0(θ0, η0 − δ) ≥ H0(θ0, η0) a.s. and that H1(θ0, η0 ± δ) ≥ H1(θ0, η0) a.s. Consequently,

it follows that H(θ0, η0 ± δ) ≥ H(θ0, η0) a.s. and, with probability one, there exist a

value η̃ ∈ (η0 − δ, η0 + δ) such that H(θ0, η̃) ≤ H(θ0, η), for all η ∈ [η0 − δ, η0 + δ],

i.e., with probability one, H(θ0, η) achieves its minimum at a point η̃ in the interior of

A = {η : |η − η0| ≤ δ}. The proof concludes noting that this result is equivalent to say

that η̃ is a root of the score equation (4.11), provided that (4.9) and (4.10) hold.
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Lemma 4.2.3. Assume that conditions (D13), (S2), (K13), (B6), (E2) and (E3) hold.

Then, for η̃ given in Lemma 4.2.2,

γ1n1f1n1(η0)λ1(η̃) = −γ0n0f0n0(η0)λ0(η̃) + OP

(
h2r
)

= −γ0n0f0n0(η0)λ0(η̃) + oP

(
n−

1
2

)
,

√
n

γ
1/2
1n1

d2n

γ
1/2
0n0

d
1/2
1n f0n0(η0)

λ1 (η̃) d→ N (0, 1) ,

√
n

γ
1/2
0n0

d2n

γ
1/2
1n1

d
1/2
1n f1n1(η0)

λ0 (η̃) d→ N (0, 1) ,

where

f0n0(η0) = n−1
0

n0∑
i=1

V
(1)
0i (η0),

f1n1(η0) = n−1
1

n1∑
j=1

V
(1)
1j (η0),

d1n = γ1n1f
2
1n1

(η0)v0(η0) + γ0n0f
2
0n0

(η0)v1(η0),

d2n = γ1n1f
2
1n1

(η0)u0n0(η0) + γ0n0f
2
0n0

(η0)u1n1(η0)

and

v0(η0) = (1− F0(η0))2
∫ η0

−∞

dW01(u)
B2

0(u)
,

v1(η0) = (1− F1(η0))2
∫ η0

−∞

dW11(u)
B2

1(u)
,

u0n0(η0) =
∫ ∞

−∞
K2

(
η0 − x

h0

)
M0(x)dF0(x)− t2,

u1n1(η0) =
∫ ∞

−∞
K2

(
η0 − x

h1

)
M1(x)dF1(x)− θ2

0.

Proof of Lemma 4.2.3. Before starting the proof we introduce some notation

Q0(η, λ0, λ1) =
1
n

n0∑
i=1

V0i(η)− t

1 + λ0 (V0i(η)− t)
,

Q1(η, λ0, λ1) =
1
n

n1∑
j=1

V1j(η)− θ0

1 + λ1 (V1j(η)− θ0)
,

Q2(η, λ0, λ1) =
1
n

{
λ0

n0∑
i=1

V
(1)
0i (η)

1 + λ0 (V0i(η)− t)

+λ1

n1∑
j=1

V
(1)
1j (η)

1 + λ1 (V1j(η)− θ0)

 .
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From Lemma 4.2.2, Qk(η̃, λ0(η̃), λ1(η̃)) = 0, for k = 0, 1, 2. By a Taylor expansion and

equations (4.39) and (4.40), it follows that

0 = Qk(η̃, λ0(η̃), λ1(η̃)) = Qk(η0, 0, 0) +
∂Qk

∂η
(η0, 0, 0)(η̃ − η0) +

∂Qk

∂λ0
(η0, 0, 0)λ0(η̃)

+
∂Qk

∂λ1
(η0, 0, 0)λ1(η̃) + OP

(
h2r
)
.

Besides, from condition (B6), it follows that OP

(
h2r
)

= oP (n−
1
2 ).

On the other hand, using (4.34) and (4.37) in Lemma 4.2.1, it is easy to check that,

∂Q0

∂η
(η0, 0, 0) =

∂Q2

∂λ0
(η0, 0, 0) = γ0n0f0n0(η0)

∂Q1

∂η
(η0, 0, 0) =

∂Q2

∂λ1
(η0, 0, 0) = γ1n1f1n1(η0)

∂Q0

∂λ0
(η0, 0, 0) = −n0

n
n−1

0

n0∑
i=1

(V0i(η0)− t)2

= −γ0n0u0n0(η0) + O
(
δ + n−

1
2 (lnn)

1
2

)
a.s.

∂Q1

∂λ1
(η0, 0, 0) = −n1

n
n−1

1

n1∑
j=1

(V1j(η0)− θ0)
2

= −γ1n1u1n1(η0) + O
(
δ + n−

1
2 (lnn)

1
2

)
a.s.

∂Q0

∂λ1
(η0, 0, 0) =

∂Q1

∂λ0
(η0, 0, 0) =

∂Q2

∂η
(η0, 0, 0) = 0.

Therefore,

0 = Q0(η0, 0, 0) + γ0n0f0n0(η0)(η̃ − η0)− γ0n0u0n0(η0)λ0(η̃) + OP (h2r),

0 = Q1(η0, 0, 0) + γ1n1f1n1(η0)(η̃ − η0)− γ1n1u1n1(η0)λ1(η̃) + OP (h2r)

and

0 = Q2(η0, 0, 0) + γ0n0f0n0(η0)λ0(η̃) + γ1n1f1n1(η0)λ1(η̃) + OP (h2r),

which can be expressed in vector form as given below
λ0(η̃)

λ1(η̃)

η̃ − η0

 = −S−1
n


Q0(η0, 0, 0)

Q1(η0, 0, 0)

0

+


OP

(
h2r
)

OP

(
h2r
)

OP

(
h2r
)
 ,

where the Jacobian matrix Sn is as follows:

Sn =


−γ0n0u0n0(η0) 0 γ0n0f0n0(η0)

0 −γ1n1u1n1(η0) γ1n1f1n1(η0)

γ0n0f0n0(η0) γ1n1f1n1(η0) 0

 ,
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and its inverse is obtained as

S−1
n =

1
det(Sn)


−γ2

1n1
f2
1n1

(η0) γ0n0γ1n1f0n0(η0)f1n1(η0) γ0n0γ1n1f0n0(η0)u1n1(η0)

γ0n0γ1n1f0n0(η0)f1n1(η0) −γ2
0n0

f2
0n0

(η0) γ0n0γ1n1f1n1(η0)u0n0(η0)

γ0n0γ1n1f0n0(η0)u1n1(η0) γ0n0γ1n1f1n1(η0)u0n0(η0) γ0n0γ1n1u0n0(η0)u1n1(η0)

 ,

where

det(Sn) = γ0n0γ1n1

{
γ0n0f

2
0n0

(η0)u1n1(η0) + γ1n1f
2
1n1

(η0)u0n0(η0)
}

.

Therefore, λ0(η̃) and λ1(η̃) can now be rewritten as linear combinations of Qk(η0, 0, 0)

(k = 0, 1), plus negligible remainder terms as given below:

λ0(η̃) = −γ1n1f1n1(η0)
det(Sn)

{γ0n0f0n0(η0)Q1(η0, 0, 0)− γ1n1f1n1(η0)Q0(η0, 0, 0)}

+OP

(
h2r
)
, (4.58)

λ1(η̃) =
γ0n0f0n0(η0)

det(Sn)
{γ0n0f0n0(η0)Q1(η0, 0, 0)− γ1n1f1n1(η0)Q0(η0, 0, 0)}

+OP

(
h2r
)
, (4.59)

which proves the first part of the lemma. Now, the Central Limit Theorem gives

√
n

Q0(η0,0,0)√
γ0n0

Q1(η0,0,0)√
γ1n1

 d→ N

{(
0

0

)(
v0(η0) 0

0 v1(η0)

)}
.

The proof concludes after combining this result with equations (4.58) and (4.59).

Theorem 4.2.4. Under conditions (D13), (S2), (K13), (B6), (E2) and (E3), it follows

that d2
d1

`(θ) d→ χ2
1 under H0, where

d1 = γ1f
2
1 (η0)v0(η0) + γ0f

2
0 (η0)v1(η0),

d2 = γ1f
2
1 (η0)u0(η0) + γ0f

2
0 (η0)u1(η0),

u0(η0) =
∫ η0

−∞

dF0(u)
G0(u)(1− L0(u))α−1

0

− t2,

u1(η0) =
∫ η0

−∞

dF1(u)
G1(u)(1− L1(u))α−1

1

− θ2
0.

Proof of Theorem 4.2.4. Using Lemma 4.2.3 and a Taylor expansion of ln(x) around 1, it

follows that

`(θ0) = 2n0λ0(η̃)n−1
0

n0∑
i=1

(V0i(η̃)− t)− n0λ
2
0(η̃)n−1

0

n0∑
i=1

(V0i(η̃)− t)2

+2n1λ1(η̃)n−1
1

n1∑
j=1

(V1j(η̃)− θ0)− n1λ
2
1(η̃)n−1

1

n1∑
j=1

(V1j(η̃)− θ0)
2 + oP (1).
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Besides, if we consider η = η̃ in (4.51), it follows that

n−1
0

n0∑
i=1

(V0i(η̃)− t)− λ0(η̃)n−1
0

n0∑
i=1

(V0i(η̃)− t)2

1 + λ0(η̃)(V0i(η̃)− t)
= 0.

From this expression, straightforwardly it follows that

n−1
0

n0∑
i=1

(V0i(η̃)− t) = λ0(η̃)n−1
0

n0∑
i=1

(V0i(η̃)− t)2 − λ2
0(η̃)n−1

0

n0∑
i=1

(V0i(η̃)− t)3

1 + λ0(η̃)(V0i(η̃)− t)
.

Now, using Lemma 4.2.3, we can conclude that

n−1
0

n0∑
i=1

(V0i(η̃)− t) = λ0(η̃)n−1
0

n0∑
i=1

(V0i(η̃)− t)2 + oP

(
n−1

)
.

In a similar way, we can prove that

n−1
1

n1∑
j=1

(V1j(η̃)− θ0) = λ1(η̃)n−1
1

n1∑
j=1

(V1j(η̃)− θ0)
2 + oP

(
n−1

)
.

Besides, from equations (4.35) and (4.38) it follows that

n−1
0

n0∑
i=1

(V0i(η̃)− t)2 = u0(η0) + oP (1),

n−1
1

n1∑
j=1

(V1j(η̃)− θ0)
2 = u1(η0) + oP (1).

Hence, using Lemmas 4.2.1 and 4.2.3, we can rewrite ` (θ0) as follows

` (θ0) = 2n0λ0(η̃)n−1
0

n0∑
i=1

(V0i − t)− n0λ
2
0(η̃)n−1

0

n0∑
i=1

(V0i − t)2

+2n1λ1(η̃)n−1
1

n1∑
j=1

(V1j − θ0)− n1λ
2
1(η̃)n−1

1

n1∑
j=1

(V1j − θ0)
2 + oP (1)

= n0λ
2
0(η̃)n−1

0

n0∑
i=1

(V0i − t)2 + n1λ
2
1(η̃)n−1

1

n1∑
j=1

(V1j − θ0)
2 + oP (1)

= n0λ
2
0(η̃)u0n0(η0) + n1λ

2
1(η̃)u1n1(η0) + oP (1)

= nγ0n0λ
2
0(η̃)u0n0(η0) + nγ1n1λ

2
1(η̃)u1n1(η0) + oP (1)

= nλ2
0(η̃)

{
γ0n0u0n0(η0) +

γ2
0n0

f2
0n0

(η0)
γ1n1f

2
1n1

(η0)
u1n1(η0)

}
+ oP (1)

=
d1n

d2n

{
√

nλ0(η̃)
√

γ0n0d2n
√

γ1n1f1n1(η0)
√

d1n

}2

+ oP (1) d→ d1

d2
χ2

1,

which concludes the proof.
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Theorem 4.2.4 is the nonparametric version of the Wilks theorem in the relative distri-

bution context with LTRC data. Unlike in the case of complete data, the limit distribution

of `(θ) under H0 is not asymptotically pivotal because it depends on two unknown quan-

tities, d1 and d2. Based on this theorem and using appropriate estimates of d1 and d2,

let say d̃1 and d̃2 respectively, a possible approach to construct a (1− α)-level confidence

interval for R(t) = θ0 is:

I1−α =

{
θ :

d̃2

d̃1

`(θ) ≤ c1−α(χ2
1)

}
,

where c1−α(χ2
1) is the (1− α) quantile of a χ2

1 distribution.



Chapter 5

Application to real data

— Es justamente la posibilidad de realizar un sueño

lo que hace que la vida sea interesante.

Paulo Coelho

5.1 Prostate cancer data

There exists an increasingly interest in the literature, in finding good diagnostic tests

that help in early detection of prostate cancer (PC) and avoid the need of undergoing a

prostate biopsy. There are several studies in which, through ROC curves, the performance

of different diagnostic tests was investigated (see for example Okihara et al (2002), Lein et

al (2003) and Partin et al (2003)). These tests are based on some analytic measurements

such as the total prostate specific antigen (tPSA), the free PSA (fPSA) or the complex

PSA (cPSA).

Table 5.1: Descriptive statistics of tPSA, fPSA and cPSA, overall and per group.

Desc. tPSA tPSA– tPSA+ fPSA fPSA– fPSA+ cPSA cPSA– cPSA+
stat.

n 1432 833 599 1432 833 599 1432 833 599
min 0.10 1.69 0.10 0.002 0.010 0.002 0.096 0.550 0.096
max 66 63 66 34.59 33.40 34.59 56.70 56.70 53.30
range 65.90 61.31 65.90 34.5880 33.3900 34.5880 56.6040 56.1500 53.2040
mean 8.3311 7.2686 9.8085 1.4692 1.4064 1.5565 6.8556 5.8507 8.2531

median 6.50 5.98 7.60 1.0645 1.0640 1.0700 5.35 4.85 6.45
std 6.4929 5.1082 7.7987 1.8350 1.6001 2.1171 5.4504 4.2252 6.5489
iqr 4.8700 3.7450 6.0250 1.0000 0.8703 1.1494 4.0434 3.0022 5.4975

iqr/1.349 3.6101 2.7761 4.4663 0.7413 0.6451 0.8520 2.9973 2.2255 4.0752

The data consist of 599 patients suffering from PC (+) and 835 patients PC-free (–).



156 Application to real data

Table 5.2: Quantiles of tPSA, fPSA and cPSA, overall and per group.

Quantiles tPSA tPSA– tPSA+ fPSA fPSA– fPSA+ cPSA cPSA– cPSA+

0.05 3.30 3.20 3.40 0.30 0.34 0.22 2.70 2.50 2.81
0.10 3.80 3.70 3.98 0.44 0.46 0.39 3.09 2.95 3.27
0.15 4.22 4.18 4.44 0.52 0.54 0.48 3.45 3.35 3.70
0.20 4.50 4.39 4.90 0.60 0.64 0.55 3.68 3.56 4.15
0.25 4.83 4.60 5.32 0.70 0.73 0.65 3.90 3.71 4.45
0.30 5.12 4.83 5.85 0.77 0.80 0.73 4.17 3.87 4.88
0.35 5.50 5.12 6.20 0.83 0.85 0.79 4.42 4.09 5.19
0.40 5.80 5.40 6.68 0.90 0.91 0.89 4.79 4.33 5.55
0.45 6.11 5.72 7.10 0.99 0.99 0.97 5.03 4.60 6.05
0.50 6.50 5.98 7.60 1.06 1.06 1.07 5.35 4.85 6.45
0.55 6.90 6.21 8.37 1.15 1.14 1.20 5.75 5.07 7.05
0.60 7.48 6.60 9.10 1.25 1.23 1.33 6.14 5.42 7.56
0.65 8.10 7.13 9.88 1.40 1.32 1.45 6.65 5.80 8.11
0.70 8.97 7.70 10.53 1.51 1.48 1.59 7.30 6.17 8.88
0.75 9.70 8.34 11.34 1.70 1.60 1.80 7.94 6.71 9.95
0.80 10.68 9.34 12.80 1.92 1.85 2.00 8.74 7.44 10.82
0.85 12.06 10.23 14.30 2.22 2.12 2.32 10.15 8.26 12.05
0.90 14.17 12.00 16.88 2.61 2.50 2.75 11.74 9.57 14.32
0.95 17.79 15.00 20.66 3.60 3.47 4.18 14.62 11.84 18.03
0.96 18.90 15.62 24.91 3.94 3.62 4.86 15.50 12.61 21.52
0.97 20.11 16.36 31.09 4.76 3.90 5.38 17.33 13.22 24.82
0.98 26.30 18.59 37.22 5.67 5.01 7.56 23.32 14.76 30.78
0.99 38.18 24.11 49.53 8.42 6.33 9.82 31.61 19.36 42.72

For each patient the illness status has been determined through a prostate biopsy carried

out for the first time in Hospital Juan Canalejo (Galicia, Spain) between January 2002

and September 2005. Values of tPSA, fPSA and cPSA were measured for each patient.

Two values of tPSA were extremely large compared to the rest of values that fell in the

interval [0.10, 66]. These two outliers, 120 and 4002, registered in the PC-free group, were

discarded from the analysis. After a more detailed look at the data, we observed that

only 4.7 and 1.4 percent of the individuals in the PC+ group and PC– group, respectively,

registered a value of tPSA larger than 22. In Table 5.1 we show some descriptive statistics

of the data and in Table 5.2 we collect some quantiles.

Figures 5.1, 5.3 and 5.5 show the empirical distribution functions of the three variables

of interest, overall and per group and Figures 5.2, 5.4 and 5.6 show the smooth estimates

of their corresponding densities. For the computation of these estimates we have used the

Parzen-Rosenblatt estimator introduced in (1.9) with Gaussian kernel K and bandwidths

h̃ selected by the rule of thumb which uses a Gaussian parametric reference for computing

the unknown quantities appearing in the expression of the AMISE optimal bandwidth in
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this setting, i.e.

h̃ =
(

R(K)
d2

KR(f (2))

) 1
5

n−
1
5 =

(
(2σ̂)5

4!

) 1
5

n−
1
5 ,

where σ̂ refers to the minimum between the standard deviation estimate and the interquar-

tile range estimate divided by 1.349, shown in Table 5.1.
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Figure 5.1: Empirical estimate of the distribution functions of tPSA for both groups, F , for PC–
group, F0, and for PC+ group, F1: Fn (solid line), F0n0 (dashed line) and F1n1 (dotted line),
respectively.
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Figure 5.2: Smooth estimates of f (density of tPSA), f0 (density of tPSA in the PC– group) and
f1 (density of tPSA in the PC+ group) by using, respectively, f̃h with h = 0.8940 (solid line), f̃0h0

with h0 = 0.7661 (dashed line) and f̃1h1 with h1 = 1.3166 (dotted line).

We compare, from a distributional point of view, the above mentioned measurements

(tPSA, fPSA and cPSA) between the two groups in the data set (PC+ and PC–). To this

end we compute and plot the empirical estimate of the relative distribution (see (1.31)) of

each one of these measurements in the PC+ group wrt to its values in the PC– group (see

Figure 5.7). We compute as well the appropriate bandwidths to estimate the corresponding

relative densities using four of the data-driven bandwidth selectors proposed in Chapter
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Figure 5.3: Empirical estimate of the distribution functions of fPSA for both groups, F , for PC–
group, F0 and for PC+ group F1: Fn (solid line), F0n0 (dashed line) and F1n1 (dotted line),
respectively.
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Figure 5.4: Smooth estimates of f (density of fPSA), f0 (density of fPSA in the PC– group) and
f1 (density of fPSA in the PC+ group) by using, respectively, f̃h with h = 0.1836 (solid line), f̃0h0

with h0 = 0.1780 (dashed line) and f̃1h1 with h1 = 0.2512 (dotted line).

2, hSJ1 , hSJ2 , h∗SUMC , h∗SMC , and the classical one, proposed by Ćwik and Mielniczuk

(1993) (see Table 5.3). While in the definition of h∗SUMC and h∗SMC a number of N = 2n1

beta distributions is used in the parametric fit considered there, b̂(x;N,R), we now use

a number of N = 14 betas. For each one of the measurements of interest, the value of

h given by the selector of best performance, hSJ2 , is used and the corresponding relative

density estimate is computed using (2.1). These estimates are shown in Figure 5.8.

It is clear from Figure 5.8 that the relative density estimate is above one in the upper

interval accounting for a probability of about 30% of the PC– distribution for the variables

tPSA and cPSA. In the case of fPSA the 25% left tail of the PC– group and an interval

in the upper tail that starts approximately at the quantile 0.7 of the PC– group, show as

well that the relative density estimate is slightly above one. However, this effect is less

remarkable that in the case of the variables tPSA and cPSA.
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Figure 5.5: Empirical estimate of the distribution functions of cPSA for both groups, F , for PC–
group, F0 and for PC+ group F1: Fn (solid line), F0n0 (dashed line) and F1n1 (dotted line),
respectively.
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Figure 5.6: Smooth estimates of f (density of cPSA), f0 (density of cPSA in the PC– group) and
f1 (density of cPSA in the PC+ group) by using, respectively, f̃h with h = 0.7422 (solid line), f̃0h0

with h0 = 0.6142 (dashed line) and f̃1h1 with h1 = 1.2013 (dotted line).

The two-sided Kolmogorov-Smirnov two-sample test, Dn0,n1 , introduced in Subsection

1.4.1, has been computed for each one of the three variables of interest for testing the

null hypothesis of equal distribution functions in the two groups (PC+ patients and PC–

patients). For the variables tPSA, fPSA and cPSA, we obtained respectively, Dn0,n1 =

0.2132 (p-value= 2.3135 · 10−14), Dn0,n1 = 0.0629 (p-value= 0.1219) and Dn0,n1 = 0.2398

(p-value= 4.5503 · 10−18). Based on the two-sided Kolmogorov-Smirnov two-sample tests,

the only variable for which the null hypothesis cannot be rejected is fPSA. In fact, this

was already expected from Figures 5.1, 5.3, 5.5, 5.7 and 5.8.

As it was mentioned in Chapter 3, Corollary 3.1.6 generalizes to LTRC data, the

asymptotic result given by Handcock and Janssen (2002) for complete data. Based on

this result, confidence intervals of r̂h(t) can be obtained. Let c be a real number such

that n1h
5 → c. Then, it is satisfied that

√
n1h (r̂h(t)− r(t)) converges asymptotically to
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Figure 5.7: Relative distribution estimate, Rn0,n1(t), of the PC+ group wrt the PC– group for the
variables tPSA (solid line), fPSA (dashed line) and cPSA (dotted line).

Table 5.3: Bandwidths b3c, hSJ1 , hSJ2 , h∗SUMC and h∗SMC selected for estimating the relative
density of tPSA+ wrt tPSA–, the relative density of fPSA+ wrt fPSA– and the relative density of
cPSA+ wrt cPSA–. The symbol (G) means Gaussian kernel and (E) Epanechnikov kernel.

Variables b3c hSJ1 hSJ2 h∗
SUMC h∗

SMC

tPSA+ wrt tPSA– 0.0923 (E) 0.0596 (E) 0.0645 (E) 0.0879 (G) 0.0837 (G)
fPSA+ wrt fPSA– 0.1259 (E) 0.0941 (E) 0.1067 (E) 0.1230 (G) 0.1203 (G)
cPSA+ wrt cPSA– 0.0822 (E) 0.0588 (E) 0.0625 (E) 0.0765 (G) 0.0739 (G)

a normal distribution with mean and variance given by, respectively,

µ(t) =
1
2
r(2)(t)dKc1/2,

σ2(t) = R(K)
{
r(t) + κ2r2(t)

}
.

Consequently, the following interval(
r̂h(t)− µ(t)√

n1h
− q0.975σ(t)√

n1h
, r̂h(t)− µ(t)√

n1h
− q0.025σ(t)√

n1h

)
has an asymptotic coverage probability of 0.95. Here q0.025 and q0.975 are the 0.025 and

0.975 quantiles of a standard normal density. However, this interval can not be used

directly because it depends on some unknown quantities. Therefore, we propose to use:(
r̂hSJ2

(t)− µ̂(t)√
n1hSJ2

− q0.975σ̂(t)√
n1hSJ2

, r̂hSJ2
(t)− µ̂(t)√

n1hSJ2

− q0.025σ̂(t)√
n1hSJ2

)
,

where

µ̂(t) =
1
2
r̂
(2)
h1

(t)dK(n1h
5
SJ2

)1/2,

σ̂(t) = R(K)
{

r̂hSJ2
(t) +

n1

n0
r̂2
hSJ2

(t)
}

,
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Figure 5.8: Relative density estimate of the PC+ group wrt the PC– group for the variables
tPSA (solid line, hSJ2 = 0.0645), cPSA (dotted line, hSJ2 = 0.0625) and fPSA (dashed line,
hSJ2 = 0.1067).
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Figure 5.9: Two-sided simultaneous α confidence intervals (with α = 0.05) for the relative density
estimate of the tPSA in PC+ group wrt PC– group.

K is the Epanechnikov kernel and

r̂
(2)
h1

(t) =
1

n1h3
1

n1∑
j=1

L(2)

(
t− F̃0h0(Y1j)

h1

)
,

where L denotes the Gaussian kernel, h0 is selected as explained in Section 2.3.2 and

h1 = 2 · h∗SUMC . This subjective choice for h1 is motivated by the fact that the optimal

bandwidth for estimating r(2) is asymptotically larger than that for estimating r.

To test, at an α-level of 0.05, if the relative density is the function constantly one,

we take ten equispaced points in [0, 1], from 0.5 to 0.95, and compute, using Bonferroni

correction, for each point a confidence interval with confidence level 1− α
10 . The relative

density estimates previously computed for the interest variables, tPSA, fPSA and cPSA,

and their corresponding confidence intervals are jointly plotted in Figures 5.9–5.11.
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Figure 5.10: Two-sided simultaneous α confidence intervals (with α = 0.05) for the relative density
estimate of the fPSA in PC+ group wrt PC– group.
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Figure 5.11: Two-sided simultaneous α confidence intervals (with α = 0.05) for the relative density
estimate of the cPSA in PC+ group wrt PC– group.

5.2 Gastric cancer data

A data set consisting of n = 1956 patients with gastric cancer has been collected in Hospital

Juan Canalejo and Hospital Xeral-Calde (Galicia, Spain) during the period 1975-1993. A

large number of variables have been registered for patients under study. Among them we

will focus on age and metastasis status (+ or –) at diagnosis, sex, elapsed time from first

symptoms to diagnosis (T ) and time from first symptoms to death or loss of follow up

(Y ). This possible loss of follow up may cause censoring of the interest lifetime, time from

first symptoms to death (X). On the other hand, truncation occurs when a patient is not

diagnosed before death. In Figure 5.12 we have plotted the lifetimes and the truncation

times registered for nine patients in the data set. It is interesting to note that three of

these patients presented censored lifetimes. Since this implies that their real lifetimes
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Figure 5.12: Truncation times (| ) and lifetimes of 9 individuals in the gastric data set. Uncensored
lifetimes are indicated by • while censored lifetimes are indicated by arrows.

would be larger than the observed ones, we use right arrows for the censored lifetimes.

Table 5.4: Descriptive statistics of survival overall, per sex, age and metastasis.

Desc. Y men women age< 70 age ≥ 70 met.– met.+
stat.

n 1956 1228 728 1076 880 1443 513
cens (%) 22.90 21.66 25.00 25.74 19.43 25.78 14.81

min 1 8 1 10 1 1 10
max 14639 14639 8688 14639 8688 14639 6348
range 14638 14631 8687 14629 8687 14638 6338
mean 885.3269 835.7176 787.2606 1055.6350 690.4801 1171.5466 227.7661

median 208 209 202 281 139 286 111
std 1864.3241 1787.3590 1626.5015 2077.3549 1502.5734 2150.3750 522.1906
iqr 540 525 563 717 371 939 183

iqr/1.349 400.2965 389.1772 417.3462 531.5048 275.0185 696.0712 135.6560

Some descriptive statistics of the data are collected in Table 5.4. The means, medians,

standard deviations and interquartile ranges, were computed using the TJW product-limit

estimates of the variable X, based on the three-dimensional vectors, (T, Y, δ), registered for

all the patients in the data set and for each one of the groups of interest, women versus men,

metastasis– group versus metastasis+ group and patients older than 70 versus patients

younger than 70. For example, consider the lifetime Y measured in all the patients and let

F̂n be the TJW estimate of its distribution function, F . Then, the mean, µ, the standard
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deviation, σ, the interquartile range, iqr, and the median, q0.5, are estimated by means of:

µ̂ =
n∑

k=1

Y (k)
[
F̂n(Y (k))− F̂n(Y −

k )
]
,

σ̂ =

√√√√ n∑
k=1

Y (k)2
[
F̂n(Y (k))− F̂n(Y −

k )
]
− µ̂2,

îqr = F̂−1
n (0.75)− F̂−1

n (0.25),

q̂0.5 = F̂−1
n (0.5).

The list of quantiles θ collected in Table 5.5 are computed in a similar way as q̂0.5, by

means of q̂θ = F̂−1
n (θ).

Table 5.5: Quantiles of survival overall, per sex, age and metastasis.

Quantiles survival men women age< 70 age≥ 70 metastasis– metastasis+

0.05 11 11 1 22 8 11 1
0.10 25 22 31 35 11 26 19
0.15 38 34 41 57 26 42 34
0.20 58 51 59 73 41 61 42
0.25 69 64 74 102 55 79 55
0.30 89 87 89 127 66 109 59
0.35 110 109 111 158 79 137 72
0.40 133 128 137 194 99 173 85
0.45 161 157 164 239 113 238 100
0.50 208 209 202 281 139 286 111
0.55 249 250 241 332 167 361 128
0.60 298 292 307 413 223 471 147
0.65 375 362 380 522 266 574 173
0.70 473 454 495 640 330 754 202
0.75 609 589 637 819 426 1018 238
0.80 848 810 920 1208 564 1851 279
0.85 1601 1430 2019 2810 960 3364 329
0.90 3957 3331 4585 5710 2059 6019 424
0.95 7379 6833 7487 9003 5233 9003 660
0.96 7487 7379 − 9003 6019 9003 766
0.97 9003 9003 − − 6256 9003 997
0.98 9003 9003 − − 6879 − 2137
0.99 − − − − 7379 − 5011

Figures 5.13, 5.15 and 5.17 show density estimates of the lifetime registered in all the

patients, per sex, age (< 70 vs ≥ 70) and presence of metastasis (yes (+) or no (–)). For

the computation of these estimates we have used the kernel type estimator introduced in

(1.25) with Gaussian kernel K and bandwidths h̃ selected by the rule of thumb

h̃ =
(

R(K)
∫

σ2(t)w(t)dt

d2
KR(fG(2)w1/2)

) 1
5

n−
1
5 ,
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where

σ2(t) =
fG(t)(1− F̂n(t))

B̃g(t)
,

B̃g(t) = n−1
n∑

k=1

L
(

t− Tk

g

)
L
(

Yk − t

g

)
,

w(t) = L
(

t− q0.05

0.025

)
L
(

q0.95 − t

0.025

)
,

g = 0.10, L is the cdf of the biweight kernel, F̂n(t) is the TJW estimate of F and fG

denotes a Gaussian density with mean and standard deviation given by the estimates

shown in Table 5.4.
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Figure 5.13: Smooth estimates of f (density of the lifetime), f0 (density of lifetime in men) and f1

(density of lifetime in women) by using, respectively, f̃h with h = 413.3244 (solid line), f̃0h0 with
h0 = 431.9383 (dashed line) and f̃1h1 with h1 = 437.8938 (dotted line).
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Figure 5.14: Product limit estimate of the distribution functions of survival overall, F , for men,
F0, and for women, F1: F̂n (solid line), F̂0n0 (dashed line) and F̂1n1 (dotted line), respectively.

In Figures 5.14, 5.16 and 5.18, the TJW estimates of the overall lifetime and the condi-

tional lifetime, given the covariates, are plotted. Figure 5.19 show estimates of the relative
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Figure 5.15: Smooth estimates of f (density of the lifetime), f0 (density of lifetime for people
aged< 70) and f1 (density of lifetime in people aged ≥ 70) by using, respectively, f̃h with h =
413.3244 (solid line), f̃0h0 with h0 = 533.1826 (dashed line) and f̃1h1 with h1 = 379.0568 (dotted
line).
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Figure 5.16: Product limit estimate of the distribution functions of survival for the whole sample,
F , for people aged< 70, F0, and for people aged≥ 70, F1: F̂n (solid line), F̂0n0 (dashed line) and
F̂1n1 (dotted line), respectively.

lifetime distribution for women wrt men, for patients older than 70 (80) wrt younger pa-

tients, and for patients with presence of metastasis wrt patients without metastasis. For

the computation of these estimates we have used a natural extension to LTRC data, Řn0,n1 ,

of the estimator introduced in (1.31) for complete data:

Řn0,n1(t) = F̂1n1

(
F̂−1

0n0
(t)
)

,

where now, the role of the empirical estimates of F0 and F1 are replaced by the TJW

estimates of F0 and F1, respectively.

The estimator presented in (3.1) has been applied to this problem. With the purpose

of correcting its boundary effect, the well-known reflection method has been applied here.

Kernel relative density estimations have been computed for the interest variable under
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Figure 5.17: Smooth estimates of f (density of the lifetime), f0 (density of lifetime in metastasis–
group) and f1 (density of lifetime in metastasis+ group) by using, respectively, f̃h with h =
413.3244 (solid line), f̃0h0 with h0 = 528.4267 (dashed line) and f̃1h1 with h1 = 159.4171 (dotted
line).
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Figure 5.18: Product limit estimate of the distribution functions of survival for the whole sample,
F , for metastasis– group, F0 and for metastasis+ group F1: F̂n (solid line), F̂0n0 (dashed line) and
F̂1n1 (dotted line), respectively.

the different choices for the two groups mentioned above: for women with respect to men,

for the metastasis+ group with respect to the metastasis– group and for patients older

than 80 (70) with respect to patients younger than 80 (70). Figure 5.20 collects the four

estimations using the smoothing parameters obtained using the bandwidth selector hRT

introduced in Chapter 3. Table 5.6 collects these bandwidths as well as bandwidths hPI

and hSTE . As it is clear from Figure 5.20, sex does not affect the lifetime distribution,

while the presence of metastasis and the age do. More specifically, those patients with

metastasis tend to present smaller lifetimes than those without metastasis. Similarly,

patients older than 80 have about double probability of presenting lifetimes around 10%

of the lifetime distribution of those under 80 years old. A similar tendency is exhibited

when using the cutoff age of 70. Now, the estimation is a little closer to a uniform density.
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Table 5.6: Bandwidths hRT , hPI and hSTE selected for estimating the relative density of X in
women wrt men, the relative density of X in patients older than 70 (80) wrt younger patients, the
relative density of X in the metastasis+ group wrt the metastasis– group. The symbol (G) means
Gaussian kernel.

Variables hRT hPI hSTE

women wrt men 0.0934 (G) 0.0953 (G) 0.0952 (G)
aged< 70 wrt aged≥ 70 0.0888 (G) 0.0860 (G) 0.0860 (G)
aged< 80 wrt aged≥ 80 0.0879 (G) 0.0965 (G) 0.0965 (G)

metastasis+ wrt metastasis– 0.0966 (G) 0.0892 (G) 0.0892 (G)
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Figure 5.19: Relative distribution estimate, Řn0,n1(t), of the the survival time for women wrt men
(dotted line), for the metastasis+ group wrt the metastasis– group (solid line), for the group of
patients aged≥ 80 wrt the group of patients aged< 80 (dashed-dotted line) and for the group of
patients aged≥ 70 wrt the group of patients aged< 70 (dashed line).

Confidence intervals of řh(t) can be obtained using Corollary 3.1.6. Let c be a real

number such that n1h
5 → c. Then, it is satisfied that

√
n1h (řh(t)− r(t)) converges

asymptotically to a normal distribution with mean and variance given by, respectively,

µ(t) =
1
2
r(2)(t)dKc1/2,

σ2(t) = R(K)

{
r(t)(1−R(t))
B1

(
F−1

0 (t)
) + κ2 (1− t)r2(t)

B0

(
F−1

0 (t)
)} .

Consequently, taking the 0.025 and 0.975 quantiles of a standard normal density, q0.025

and q0.975, the interval given below(
řh(t)− µ(t)√

n1h
− q0.975σ(t)√

n1h
, řh(t)− µ(t)√

n1h
− q0.025σ(t)√

n1h

)
has an asymptotic coverage probability of 0.95. However, this interval can not be used

directly because it depends on some unknown quantities. Therefore, we propose to use:(
řhRT

(t)− µ̌(t)√
n1hRT

− q0.975σ̌(t)√
n1hRT

, řhRT
(t)− µ̌(t)√

n1hRT
− q0.025σ̌(t)√

n1hRT

)
,



5.2 Gastric cancer data 169

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Figure 5.20: Relative density estimate of the survival time for women wrt men (dotted line, hRT =
0.0934), for the metastasis+ group wrt the metastasis– group (solid line, hRT = 0.0966), for the
group of patients aged≥ 80 wrt the group of patients aged< 80 (dashed-dotted line, hRT = 0.0879)
and for the group of patients aged≥ 70 wrt the group of patients aged< 70 (dashed line, hRT =
0.0888).
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Figure 5.21: Two-sided simultaneous α confidence intervals (with α = 0.05) for the relative density
estimate of the lifetime in women wrt to men.

where

µ̌(t) =
1
2
ř
(2)
h1

(t)dK(n1h
5
RT )1/2,

σ̌(t) = R(K)

{
řhRT

(t)(1− Řn0,n1(t))
B̃1g1(F̂

−1
0 (t))

+
n1

n0

(1− t)ř2
hRT

(t)

B̃0g0(F̂
−1
0 (t))

}
with the subjective choices g0 = 0.05 and g1 = 0.05, K is the Gaussian kernel and

ř
(2)
h1

(t) =
1
h3

1

n1∑
j=1

K(2)

(
t− F̂0n0(Y1j)

h1

){
F̂1n1(Y1j)− F̂1n1(Y

−
1j )
}

,

where h1 = 2hRT . This subjective choice for h1 is motivated by the fact that the optimal

bandwidth for estimating r(2) is asymptotically larger than that for estimating r.
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Figure 5.22: Two-sided simultaneous α confidence intervals (with α = 0.05) for the relative density
estimate of the lifetime in the patients aged≥ 70 wrt to the patients aged< 70.
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Figure 5.23: Two-sided simultaneous α confidence intervals (with α = 0.05) for the relative density
estimate of the lifetime in the patients aged≥ 80 wrt to the patients aged< 80.

To test, at an α-level of 0.05, if the relative density is the function constantly one,

we take ten equispaced points in [0, 1], from 0.5 to 0.95, and compute, using Bonferroni

correction, for each point a confidence interval with confidence level 1− α
10 . The relative

density estimates previously computed for the lifetime observed in the interest pair of

groups and their corresponding confidence intervals are jointly plotted in Figures 5.21–

5.24.

It is interesting to note here that we have assumed that truncation time, censoring

time and survival time are independent of each other. As Tsai (1990) remarks, while for

data subject to random censoring, it is well known that the assumption of independence

between censoring time and survival time cannot be tested nonparametrically, for data

subject to random truncation, however, it is possible to test independence for truncation

time and survival time. We have computed the statistic K∗ proposed by Tsai (1990) for
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Figure 5.24: Two-sided simultaneous α confidence intervals (with α = 0.05) for the relative density
estimate of the lifetime in the metastasis+ group wrt the metastasis– group.

testing this independence assumption and which its an extension of Kendall’s tau to LTRC

data. As Tsai (1990) proves, under the null hypothesis of independence and the following

assumption

P (Y ≤ y, C ≤ c�T = t) = P (Y ≤ y�T = t) P (C ≤ c�T = t) ,

it follows that

T ∗ =
K∗{

1
3

∑m
k=1(r

2
k − 1)

}1/2

tends to the standard Gaussian distribution, where

K∗ =
m∑

k=1

S(k), S(k) =
∑

j∈R(k)

sgn(Tj − T(k)),

R(k) =
{
j : Tj ≤ Y(k) ≤ Yj

}
,

rk = card(R(k)), card(R(k)) =
m∑

j=1

1
{
Tj ≤ Y(k) ≤ Yj

}
,

Y(1) < · · · < Y(m) denote the distinct observed survival times and T(i) is the concomitant

of Y(i) for i = 1, . . . ,m. Therefore, a test of the null hypothesis can be carried out by

comparing T ∗ with the standard Gaussian distribution.

We have computed the statistic T ∗ using all the survival times registered in the dataset

and as well only the survival times observed in each one of the two groups of interest.

Unfortunately, all the values obtained are indicative of non independence between the

truncation variable and the survival time Y . For example, T ∗ = −9.6031 when computed

for all the dataset, T ∗ = −5.3213 for women, T ∗ = −7.0425 for men, T ∗ = −2.2930 for
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the metastasis+ group, T ∗ = −6.7123 for the metastasis– group, T ∗ = −4.9478 for people

aged< 70, T ∗ = −7.6832 for people aged≥ 70, T ∗ = −8.4193 for people aged< 80 and

T ∗ = −3.9893 for people aged≥ 80. Therefore, the results obtained from the analysis

carried out here should be taken carefully. Certainly, a substantive analysis of these data

would require to consider the dependence existing between the truncation variable, T , and

the time of interest, Y .



Chapter 6

Further research

— Escoger un camino significa abandonar otros.

Si pretendes recorrer todos los caminos posibles

acabarás no recorriendo ninguno.

Paulo Coelho

This thesis has also raised new and interesting questions that we detail below.

6.1 Reduced-bias techniques in two-sample problems

There exist in the literature many proposals to reduce the bias of the Parzen-Rosenblatt

estimator, f̃0h(t), introduced in (1.9), and several proposals to improve the bias property

of the smoothed empirical distribution function, F̃0h(t), introduced in (1.22). However,

in the setting of a two-sample problem, we are not aware of any work that deals with

the problem of reducing the bias of r̂h(t) or R̂h(t) introduced at the end of Chapter 1 for

completely observed data (see (1.32) and (1.33) for more details).

Using the same ideas as Swanepoel and Van Graan (2005), we propose here the fol-

lowing version of R̂h(t):

R̂T
h,g(t) =

1
n1

n1∑
j=1

K

(
R̂g(t)− R̂g(F0n0(X1j))

h

)
,

that is based on a nonparametric transformation of the data.

Following the same ideas as Janssen et al (2004), we propose as well the following

variable bandwidth version of r̂h(t):

r̂V
h,g(t) =

1
n1h

n1∑
j=1

K

(
t− F0n0(X1j)

h
r̂1/2
g (F0n0(X1j))

)
r̂1/2
g (F0n0(X1j)).
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Similarly, when the data are subject to left truncation and right censoring, we define

a version of Řh(t) based on a nonparametric transformation of the data and a variable

bandwidth version of řh(t) as given below:

ŘT
h,g(t) =

1
n1

n1∑
j=1

K

(
Řg(t)− Řg(F̂0n0(X1j))

h

)

and

řV
h,g(t) =

1
n1h

n1∑
j=1

K

(
t− F̂0n0(X1j)

h
ř1/2
g (F̂0n0(X1j))

)
ř1/2
g (F̂0n0(X1j)).

Note that the kernel-type estimator r̂h(t) follows, in a natural way from the Parzen-

Rosenblatt estimator, r̃h(t), associated to the random variable Z = F0(X1) when it is

assumed that F0 is known, or in other words, when the two-sample problem of estimating

the relative density is reduced to the one-sample problem of estimating the ordinary density

function of Z. In fact, r̂h(t) is obtained from r̃h(t) by replacing F0(X1j) by the empirical

estimate F0n0(X1j). If we now start from the following modification of r̃h(t):

r̃V
h (t) =

1
n1

n1∑
j=1

K

(
t− F0(X1j)

h
φ(X1j)

)
φ(X1j),

where φ(x) is some function to be specified, it follows that:

E
[
r̃V
h (t)

]
=

1
h

∫
K

(
t− F0(y)

h
φ(y)

)
φ(y)f1(y)dy

=
∫

K(zφ(F−1
0 (t− hz)))φ(F−1

0 (t− hz))r(t− hz)dz

=
∫

K(zφ̃(t− hz))φ̃(t− hz)r(t− hz)dz

= r(t) +
h2

2
dK

φ̃4(t)

{
6r(t)φ̃(1)(t)

2 − 2r(t)φ̃(t)φ̃(2)(t) (6.1)

−4r(1)(t)φ̃(t)φ̃(1)(t) + r(2)(t)φ̃(t)
2
}

+ O
(
h4
)

with φ̃(t) = φ(F−1
0 (t)).

If we choose φ̃(t) = r1/2(t) or equivalently φ(t) = r1/2(F0(t)), it can be proved that

the second term in the right hand side of (6.1) vanishes. In fact, since

φ̃(1)(t) =
1
2
r−1/2(t)r(1)(t),

φ̃(2)(t) =
1
2

{
−1

2
r−3/2(t)r(1)(t)

2
+ r−1/2(t)r(2)(t)

}
= −1

4
r−3/2(t)r(1)(t)

2
+

1
2
r−1/2(t)r(2)(t),
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it follows that

6r(t)φ̃(1)(t)
2

= 6r(t)
1
4
r−1(t)r(1)(t)

2
=

3
2
r(1)(t)

2
,

−2r(t)φ̃(t)φ̃(2)(t) = −2r(t)r1/2(t)
{
−1

4
r−3/2(t)r(1)(t)

2
+

1
2
r−1/2(t)r(2)(t)

}
=

1
2
r(1)(t)

2 − r(t)r(2)(t),

−4r(1)(t)φ̃(t)φ̃(1)(t) = −4r(1)(t)r1/2(t)
(

1
2
r−1/2(t)r(1)(t)

)
= −2r(1)(t)

2

and therefore

6r(t)φ̃(1)(t)
2 − 2r(t)φ̃(t)φ̃(2)(t)− 4r(1)(t)φ̃(t)φ̃(1)(t) + r(2)(t)φ̃(t)

2

=
3
2
r(1)(t)

2
+

1
2
r(1)(t)

2 − r(t)r(2)(t)− 2r(1)(t)
2
+ r(2)(t)r(t) = 0.

Consequently, in the one-sample problem, it is expected that the estimator

r̃V
h,g(t) =

1
n1

n1∑
j=1

K

(
t− F0(X1j)

h
r̃1/2
g (F0(X1j))

)
r̃1/2
g (F0(X1j))

improves the bias properties of the Parzen-Rosenblatt estimator r̃h(t). More specifically,

that the bias is reduced from order O
(
h2
)

to O
(
h4
)

.

If we now come back to the original problem of estimating the relative density when F0

is unknown, and we replace F0(x) and r̃g(t) in r̃V
h,g(t) by respectively F0n0(x) and r̂g(t), it

is expected that this new estimator of r(t), which was previously denoted by r̂V
h,g(t), yields

as well in the two-sample problem an improvement over r̂h(t) in terms of bias reduction.

The motivation of the estimators R̂T
h,g(t) and ŘT

h,g(t) introduced previously follows

from the fact that the ‘ideal estimator’, Sn1(t) below, estimates R(t) without bias. Let

Sn1(t) =
1
n1

n1∑
j=1

K
(

R(t)−R(F0(X1j))
h

)

and consider that K is the cdf of a density kernel K which is symmetric around zero and

supported in [−1, 1].

Next, we detail the computations required to conclude that E [Sn1(t)] = R(t).
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Using changes of variable and integration by parts it is easy to see that:

E [Sn1(t)] = E

[
K
(

R(t)−R(F0(X1j))
h

)]
=

∫ F−1
1 (R(t)+h)

−∞
K
(

R(t)−R(F0(y))
h

)
dF1(y)

=
∫ F−1

1 (R(t)−h)

−∞
dF1(y) +

∫ F−1
1 (R(t)+h)

F−1
1 (R(t)−h)

K
(

R(t)−R(F0(y))
h

)
dF1(y)

= F1(F−1
1 (R(t)− h)) +

∫ R−1(R(t)+h)

R−1(R(t)−h)
K
(

R(t)−R(z)
h

)
dR(z)

= R(t)− h + h

∫ 1

−1
K(y)dy

= R(t)− h + h

{
lim
y→1

K(y)y − lim
y→−1

K(y)y −
∫

yK(y)dy

}
= R(t)− h + h(K(1) + K(−1)) = R(t).

It could be interesting to study in the future the asymptotic behaviour of these new

kernel type estimators of the relative distribution and relative density, either for complete

or LTRC data, and check if, in fact, they provide a bias reduction.

6.2 Testing the hypothesis of proportional hazard rates along

time

For a single binary covariate, Cox proportional hazard model (PH) reduces to

λ(t, x) = λ0(t) exp {xβ}. (6.2)

Since the variable x only takes two values, let say 0 and 1, then the hazard function for

group 0 is λ0(t) (i.e. the baseline hazard) and the hazard function for group 1 is λ1(t) =

λ0(t) exp (β). Consequently, under model (6.2) one assumes that the ratio of the two

hazards is constant along time. Since violations of the PH assumption can lead to incorrect

inferences, it is important to check for PH violations. The objective for another future work

is to design a goodness-of-fit test based on kernel relative hazard estimators for testing

the general null hypothesis HG
0 : λR(t) = exp (β) for some β ∈ R against the alternative

hypothesis H1 : λR(t) 6= exp (β) for any β ∈ R, where λR(t) = Λ(1)
R (t) = λ1(Λ−1

0 (t))

λ0(Λ−1
0 (t))

denotes

the relative hazard rate of X1 wrt X0 and ΛR(t) = − ln(1 − F1(Λ−1
0 (t))) = Λ1(Λ−1

0 (t)) is

the relative cumulative hazard function of X1 wrt X0. Here λ0(t) (λ1(t)) and Λ0(t) (Λ1(t))

refer to the hazard rate and the cumulative hazard function of X0 (X1).
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In fact, some preliminary work was already done on this problem when the samples are

subject to left truncation and right censoring. Starting with the simpler null hypothesis

HS
0 : λR (t) = θ0 where θ0 is now a fixed and known constant, we propose the following

test statistic

In0,n1 =
∫ (

λ̂R (t)− θ0

)2
dt,

where

λ̂R(t) =
1
h

∫
K

(
t− Λ̂0(y)

h

)
dΛ̂1(y)

is a kernel estimate of λR(t), the relative hazard rate of X1 wrt X0,

Λ̂0(t) =
n0∑
i=1

1{Y0i≤t,δ0i=1}

n0Bn0(Y0i)

is a kernel estimate of the cumulative hazard function of X0, Λ0(t) = − ln(1−F0(t)), and

Λ̂1(t) =
n1∑

j=1

1{Y1j≤t,δ1j=1}

n1Bn1(Y1j)

denotes a kernel-type estimate of the cumulative hazard function of X1, Λ1(t) = − ln(1−
F1(t)).

This statistic can be easily decomposed as follows:

In0,n1 = J (1)
n0,n1

+ 2J (2)
n0,n1

+ J (3)
n0,n1

,

where

J (1)
n0,n1

=
∫ (

λ̂R (t)− E
[
λ̂R (t)

])2
dt,

J (2)
n0,n1

=
∫ (

λ̂R (t)− E
[
λ̂R (t)

])(
E
[
λ̂R (t)

]
− θ0

)
dt,

J (3)
n0,n1

=
∫ (

E
[
λ̂R (t)

]
− θ0

)2
dt.

This is a typical decomposition where J
(3)
n0,n1 and the term

(
E
[
λ̂R (t)

]
− C

)
in J

(2)
n0,n1

are not random. While the first term, J
(1)
n0,n1 , can be handled using Central Limit Theorems

for U-statistics, the second term, J
(2)
n0,n1 , can be handled using classical forms of the Central

Limit Theorem such as for example Lyapunov Theorem.

Based on Theorem 1 in Cao et al (2005), an asymptotic representation of λ̂R (t) for

LTRC data is given as follows

λ̂R (t) = A(1)
n1

(t) + A(2)
n1

(t) + B(11)
n0,n1

(t) + Cn0,n1 (t)
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with

A(1)
n1

(t) =
∫

K(u)λR(t− hu)du,

A(2)
n1

(t) =
1

n1h

n1∑
j=1

∫
ξ̃H
1j(t− hu)K(1)(u)du,

B(11)
n0,n1

(t) = − 1
n0h2

n0∑
i=1

∫
ξ̃H
0i (v)K(1)

(
t− v

h

)
λR(v)dv

= − 1
n0h

n0∑
i=1

∫
ξ̃H
0i (t− uh)K(1)(u)λR(t− hu)du,

ξ̃H
0i (Y0i, T0i, δ0i, t) =

1{Y0i≤Λ−1
0 (t),δ0i=1}

B0(Y0i)
−
∫ Λ−1

0 (t)

aW0

1{T0i≤v≤Y0i}

B2
0(v)

dW01(v),

ξ̃H
1j(Y1j , T1j , δ1j , t) =

1{Y1j≤Λ−1
0 (t),δ1j=1}

B1(Y1j)
−
∫ Λ−1

0 (t)

aW1

1{T1j≤v≤Y1j}

B2
1(v)

dW11(v)

and Cn0,n1 (t) = o
(
(n1h)−

1
2

)
.

Using this asymptotic representation, λ̂R (t)− E
[
λ̂R (t)

]
can be rewritten as follows:

λ̂R (t)− E
[
λ̂R (t)

]
= A(2)

n1
(t) + B(11)

n0,n1
(t) + Cn0,n1 (t)− E [Cn0,n1 (t)] .

Consequently, it is satisfied that

J (1)
n0,n1

= J (11)
n0,n1

+ J (12)
n0,n1

+ J (13)
n0,n1

+ J (14)
n0,n1

+ J (15)
n0,n1

+ J (16)
n0,n1

,

where

J (11)
n0,n1

=
∫

A(2)
n1

(t)2 dt,

J (12)
n0,n1

=
∫

B(11)
n0,n1

(t)2 dt,

J (13)
n0,n1

=
∫

(Cn0,n1 (t)− E [Cn0,n1 (t)])2 dt,

J (14)
n0,n1

= 2
∫

A(2)
n1

(t) B(11)
n0,n1

(t) dt,

J (15)
n0,n1

= 2
∫

A(2)
n1

(t) (Cn0,n1 (t)− E [Cn0,n1 (t)]) dt,

J (16)
n0,n1

= 2
∫

B(11)
n0,n1

(t) (Cn0,n1 (t)− E [Cn0,n1 (t)]) dt.

We can expect that J
(1k)
n0,n1 = o

(
(n1h)−1

)
, for k = 3, 4, 5, 6 and that the contributing

terms in J
(1)
n0,n1 , will be J

(11)
n0,n1 and J

(12)
n0,n1 .
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Let consider for example J
(11)
n0,n1 . The other term, J

(12)
n0,n1 , could be handled in a similar

way. Rewriting A
(2)
n1 (t)2 in the integrand of J

(11)
n0,n1 as a double sum:

A(2)
n1

(t)2 =
1

(n1h)2

n1∑
i=1

n1∑
j=1

∫ ∫
ξ̃H
1i (t− hu) ξ̃H

1j (t− hv) K(1) (u) K(1) (v) dudv

and splitting it into two terms (sum over those terms with i = j and sum over those terms

with i 6= j), it follows that:

J (11)
n0,n1

= J (111)
n0,n1

+ J (112)
n0,n1

with

J (111)
n0,n1

=
1

(n1h)2

n1∑
i=1

∫ ∫ (∫
ξ̃H
1i (t− hu) ξ̃H

1i (t− hv) dt

)
K(1) (u) K(1) (v) dudv,

J (112)
n0,n1

=
1

(n1h)2

n1∑
i=1

n1∑
j=1
j 6=i

∫ ∫ (∫
ξ̃H
1i (t− hu) ξ̃H

1j (t− hv) dt

)
K(1) (u) K(1) (v) dudv.

It is expected that J
(111)
n0,n1 can be handled using classical forms of the Central Limit Theorem

such as Lyapunov Theorem. However, the asymptotic study of J
(112)
n0,n1 , may be more

problematic and Central Limit Theorems for U-statistics will be required here.

In fact, J
(112)
n0,n1 can be rewritten

J (112)
n0,n1

=
2

(n1h)2

n1∑
1≤i<j≤n1

Hn1 ((T1i, Y1i, δ1i) , (T1j , Y1j , δ1j)) ,

where Hn1 denotes the kernel of the U-statistic:

Hn1 ((T1i, Y1i, δ1i) , (T1j , Y1j , δ1j))=
∫∫(∫

ξ̃H
1i (t− hu) ξ̃H

1j (t− hv) dt

)
K(1) (u)K(1) (v) dudv

=
∫∫∫

A (t, u, (T1i, Y1i, δ1i))A (t, v, (T1j , Y1j , δ1j)) dtdudv

and

A (t, u, (T1i, Y1i, δ1i)) = K(1) (u) ξ̃H
1i (t− hu)

= K(1) (u)
1{Y1i≤Λ−1

0 (t−hu),δ1i=1}
B1 (z)

−K(1) (u)
∫ Λ−1

0 (t−hu)

aW1

1{T1i≤w≤Y1i}

B2
1 (w)

dW11 (w) .

Note that Hn1 is a symmetric and degenerate kernel that depends on the sample size.

Therefore, a complication is added here and we will not be able to use classical results for

U-statistics. However, it is expected that, if the conditions of Theorem 1 in Hall (1984)

are satisfied, the asymptotic limit distribution of J
(112)
n0,n1 could be established.

According to Theorem 1 in Hall (1984), we need to prove the following conditions:
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(H1) Hn1 is a symmetric kernel.

(H2) E [Hn1((T11, Y11, δ11), (T12, Y12, δ12))�(T11, Y11, δ11)] = 0 a.s.

(H3) E
[
H2

n1
((T11, Y11, δ11), (T12, Y12, δ12))

]
< ∞.

(H4) As the sample size n1 tends to infinity,

E [Gn1((T11, Y11, δ11), (T12, Y12, δ12))] + n−1
1 E

[
H4

n1
((T11, Y11, δ11), (T12, Y12, δ12))

]{
E
[
H2

n1
((T11, Y11, δ11), (T12, Y12, δ12))

]}2

tends to zero, where

Gn1((`1, y1, d1), (`2, y2, d2)) = E [Hn1((T1, Y1, δ1), (`1, z1, d1))

Hn1((T1, Y1, δ1), (`2, z2, d2))] .

Note that in the discussion above we have considered the simpler problem of testing

the null hypothesis HS
0 : λR (t) = C where C is a fixed and known constant. However, as it

was mentioned at the beginning of this section, the main interest in practical applications,

is to test the more general null hypothesis: HG
0 : λR(t) = exp (β) for some β ∈ R.

When the objective is to test the general null hypothesis HG
0 , a natural generalization

of the test statistic In0,n1 introduced previously for testing HS
0 , could be given by

IG
n0,n1

=
∫ (

λ̂R (t)− θ̂
)2

dt,

where θ = exp (β) and θ̂ is an estimate of θ. On the one hand, it is interesting to note

here that IG
n0,n1

can be decomposed in a sum of three terms where one of them is precisely

the test statistic In0,n1 introduced previously for the simpler null hypothesis HS
0 :

IG
n0,n1

=
∫ (

λ̂R (t)− θ0 + θ0 − θ̂
)2

dt = In0,n1 + Jn0,n1 + Kn0,n1 ,

where

Jn0,n1 =
∫ (

θ0 − θ̂
)2

dt,

Kn0,n1 =
∫ (

λ̂R (t)− θ0

)(
θ0 − θ̂

)
dt.

On the other hand, in this more general setting of testing HG
0 , we need to consider an

estimate of the parameter β (or equivalently an estimate of θ) when the data are subject

to left truncation and right censoring. Cox (1972) provides estimates for the regression

parameters of a Cox model by maximizing the likelihood that does not depend on the

baseline hazard function λ0(t). A more detailed justification was given later on by the
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same author (see Cox (1975)) under the term of partial likelihood. Even when there

exists the possibility to extend this approach to work with LTRC data (see Alioum and

Commenges (1996) for more details), the problem is that there does not exist a closed or

explicit expression for the estimates of the parameter β based on the Cox partial likelihood.

They are simply the solution of an equation which has to be solved numerically.

Even when the two-sample problem can be viewed as a special case of Cox proportional

hazard model, it is also a very simple case of that more general model. Therefore, as Li

(1995) suggests, there must be a more intuitive and simple approach to deal with the

two-sample problem parameterized in terms of the general null hypothesis HG
0 . Next we

give some detail on the approach given by Li (1995) regarding this problem and present

the explicit formula of the estimator obtained for θ under the two-sample problem with

LTRC data.

Under left truncation and right censoring, Li (1995) considers that one can only esti-

mate the survival beyond a time t when t is larger than aG0 for the first sample and larger

than aG1 for the second sample, i.e.:

1− F e
0 (t) =

1− F0(t)
1− F0(aG0)

, for t ≥ aG0 , (6.3)

1− F e
1 (t) =

1− F1(t)
1− F1(aG1)

, for t ≥ aG1 . (6.4)

Under the general hypothesis HG
0 it is assumed that:

λ0(t) = exp {β}λ1(t) = θλ1(t),

which implies that

1− F0(t) = (1− F1(t))θ. (6.5)

In the particular case θ is a positive integer, this means that F0 is distributed as the

smallest of θ X1 variables, which is also known as a Lehmann-type alternative although

slightly different from the one defined in Section 1.4.1.

Since we can only estimate F e
0 (t) and F e

1 (t), equations (6.3), (6.4) and (6.5) lead to

(1− F e
0 (t))(1− F0(aG0)) = {(1− F e

1 (t))(1− F1(aG1))}
θ

and consequently

1− F e
0 (t) =

(1− F1(aG1))
θ

1− F0(aG0)
(1− F e

1 (t))θ = γ(1− F e
1 (t))θ,

where γ = (1−F1(aG1
))θ

1−F0(aG0
) .
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Since Λe
0(t) = − ln (1− F e

0 (t)) and Λe
1(t) = − ln (1− F e

1 (t)), it follows that:

Λe
0(t) = − ln

(
γ (1− F e

1 (t))θ
)

= − ln (γ)− ln
(
(1− F e

1 (t))θ
)

= ρ + θΛe
1(t),

where ρ = − ln (γ).

In view of the relationship existing between Λe
0(t) and Λe

1(t), the problem we need to

solve turns up to be more general than the one assumed by the Cox proportional hazard

model when there is only a binary covariate that needs to be fit.

Li (1995) defines a consistent estimator of (θ, ρ) in this scenario as the pair (θ̂n0,n1 , ρ̂n0,n1)

which minimizes the function En0,n1(θ, ρ) below:

En0,n1(θ, ρ) =
∫ b

a
(Λ̂0(t)− ρ− θΛ̂1(t))2dF̂1n1(t)

and that is the sample analogous of

E(θ, ρ) =
∫ b

a
(Λe

0(t)− ρ− θΛe
1(t))

2dF1(t),

where the interval [a, b] is chosen such that Λe
0(t) and Λe

1(t) can be consistently estimated

for any t ∈ [a, b].

From this definition it follows that:

θ̂n0,n1 =

∫ b
a Λ̂0(t)Λ̂1(t)dF̂1n1(t)−

∫ b
a Λ̂0(t)dF̂1n1(t)

∫ b
a Λ̂1(t)dF̂1n1(t)∫ b

a Λ̂2
1(t)dF̂1n1(t)

∫ b
a dF̂1n1(t)−

(∫ b
a Λ̂1(t)dF̂1n1(t)

)2 ,

ρ̂n0,n1 =

∫ b
a

(
Λ̂1(t)− θ̂n0,n1Λ̂1(t)

)2
dF̂1n1(t)∫ b

a dF̂1n1(t)
.

In the special case ρ = 0, θ̂n0,n1 simplifies to θ̃n0,n1 as given below:

θ̃n0,n1 =

∫ b
a Λ̂0(t)Λ̂1(t)dF̂1n1(t)∫ b

a Λ̂2
1(t)dF̂1n1(t)

.

Under the typical assumptions of identifiability of F0 and F1, i.e. aG0 ≤ aW0 and aG1 ≤
aW1 , it follows that F e

0 (t) = F0(t) and F e
1 (t) = F1(t). Consequently, we propose to consider

θ̂ = θ̃n0,n1 in IG
n0,n1

introduced above since under the assumptions of identifiability of F0

and F1, ρ = 0.

Therefore, the future work we need to do involves, on the one hand, checking the

conditions (H1)-(H4), what from Theorem 1 in Hall (1984) will allow to get the asymptotic
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behaviour of In0,n1 . On the other hand, we need as well to study the asymptotic behaviour

of the other terms, Jn0,n1 and Kn0,n1 , appearing in the decomposition of the test statistic

IG
n0,n1

. Finally, a simulation study should be carried out to check the performance of this

statistic with small to moderate sample sizes and under different percentages of censoring

and truncation.

6.3 EL confidence bands for the relative distribution with

LTRC data

As a continuation of the work developed in Chapter 4, it could be interesting to extend

those results for testing the global hypothesis H0 : R(t) = t, ∀t ∈ [0, 1]. Note that in

Chapter 4 all the theoretical results were obtained for a fixed t and the objective was to

make inference about R(t) = θ. Cao and Van Keilegom (2006) designed a test statistic

of the global hypothesis H0 : f0(x) = f1(x), ∀x, in the setting of a two-sample problem

with complete data. Here, we could either extend their approach based on EL and kernel

density estimates to LTRC data or define a test statistic where the log likelihood function

introduced in (4.25) is now integrated along t.

On the other hand, it is of interest to check, through a simulation study, the behaviour

of the empirical likelihood confidence intervals briefly introduced at the end of Chapter 4

and to compare them with those obtained by means of the asymptotic normality of the

kernel type estimator, Řh (t), introduced at the end of Chapter 3 (see Theorem 3.2.3 for

more details about its asymptotic normality). For this future project, we need to define

estimators of the two unknown quantities, d1 and d2, appearing in the asymptotic limit

distribution of `(θ), as well as an estimator of the asymptotic variance of Řh (t). For this

last problem, one possibility could be to use a bootstrap estimate of the variance. More

specifically, we could generate a large number of pairs of bootstrap resamples, indepen-

dently from each sample, using the ‘simple’ bootstrap, that was first designed by Efron

(1981) for complete data and that, according to Gross and Lai (1996), seems to work as

well with LTRC data. Then, after computing the bootstrap analogous of Řh (t) for every

pair of bootstrap samples, we could use the Monte Carlo method to obtain a bootstrap

estimate of the variance of Řh (t). Different bootstrap resampling plans could be studied

as well.
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6.4 Extensions for dealing with multi-state problems

Multistate models have been increasingly used to model the natural history of a chronic

disease as well as to characterize the follow-up of patients under different clinical protocols.

Multistate models may be considered as a generalization of the survival process where

several events occur successively along time. Therefore, apart from registering the lifetime

of each patient, there are some others times along their lifetime that are of interest in

this setting, for example, the times at which the patients pass from one stage to another.

Note that in the survival process there is only two possible stages, alive or dead, and one

of them, dead, is a terminal event. However, this is not the case on multistate problems,

where there are more than two stages and the patient could move from one to another

before he reaches the terminal stage.

In this new setting, we could define two populations, for example, men versus women,

and it could be interesting to compare as well their history of disease from a distributional

point of view. The generalization of relative curves to this new setting is of interest,

especially, to analyze a dataset of patients with HER2-overexpressing metastatic breast

cancer treated with trastuzumab-based therapy at The University of Texas M.D. Anderson

Cancer Center (Guarneri et al (2006)). Since the risk of a cardiac event increases with long

term trastuzumab-based therapy, the patients may pass along their follow-up by periods

of discontinuation of the treatment with trastuzumab.
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Some useful material

Definition A.0.1. A stochastic process {Xt, t ∈ T} is Gaussian if for all k ∈ N and

all t1, t2, . . . , tk ∈ T , the random vector (Xt1 , Xt2 , . . . , Xtk) has a multivariate normal

distribution, that is, all finite dimensional distributions of the process are Gaussian.

Definition A.0.2. With Q denoting the rational numbers (which is a countable set), we

call a continuous-time stochastic process {Xt, t ∈ T} separable, if for all α, β ∈ R, α < β

and each open interval T0 ⊂ T ⊂ R,

P (α ≤ Xt ≤ β, ∀t ∈ T0) = P (α ≤ Xt ≤ β, ∀t ∈ T0 ∩Q) .

Definition A.0.3. W (x1, x2) is said a two-dimensional Wiener-process if it is a separable

Gaussian-process satisfying that

E[W (x1, x2)] = 0

and

E [W (x11, x12)W (x21, x22)] = min {x11, x21}min {x12, x22} .

Definition A.0.4. K(x1, x2, y) is said a two-dimensional Kiefer-process if K(x1, x2, y) =

W (x1, x2, y)− x1x2W (1, 1, y), where 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ y < ∞ and W (x1, x2) is

a two-dimensional Wiener process.

Definition A.0.5. A function f(x) is γ-Hölder continuous if it satisfies

|f(x)− f(y)| ≤ L |x− y|γ , for all x, y ∈ R,

where 0 < γ ≤ 1 and L is a positive constant.
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Definition A.0.6. A function f(x) is Lipschitz-continuous if there exists a positive con-

stant L, such that:

|f(x)− f(y)| ≤ L |x− y| .

The smallest such L is called the Lipschitz constant.

Definition A.0.7. Let a discrete distribution P have probability function pk, and let a

second discrete distribution Q have probability function qk. Then, the relative entropy of

P with respect to Q, also called the Kullback-Leibler distance, is defined by

DKL(P,Q) =
∑

k

pk ln
(

pk

qk

)
.

Although DKL(P,Q) 6= DKL(Q,P ), so relative entropy is therefore not a true metric, it

satisfies many important mathematical properties. For example, it is a convex function of

pk, it is always nonnegative, and it is equal to zero only if pk = qk.

When the two distributions P and Q are continuous, the summation is replaced by an

integral, so that

DKL(P,Q) =
∫ ∞

−∞
p(x) ln

p(x)
q(x)

dx,

where p and q, denote the densities pertaining to P and Q, respectively.

Definition A.0.8. The Stirling formula or Stirling approximation, which is named in

honor of James Stirling, is an approximation for large factorials. Formally, it is given by

lim
n→∞

n!√
2πn

(
n
e

)n = 1.

Definition A.0.9. The Stirling numbers of first class, s(n, m), are the integer coefficients

of the falling factorial polynomials, x(x− 1) · · · (x− n + 1), i.e.:

x(x− 1) · · · (x− n + 1) =
n∑

m=1

s(n, m)xm.

The number of permutations of n elements which contain exactly m permutation cycles

is counted by (−1)n−ms(n, m).

Since x(x− 1) · · · (x− n) = x {x(x− 1) · · · (x− n + 1)} − n {x(x− 1) · · · (x− n + 1)},
there exists a characterization of the Stirling numbers of first kind based on the following

recurrence formula:

s(n + 1,m) = s(n, m− 1)− ns(n, m), 1 ≤ m < n,

subject to the following initial constraints: s(n, 0) = 0 and s(1, 1) = 1.
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Definition A.0.10. The Stirling numbers of second class, S(n, m), represent the number

of ways a set of n elements can be partitioning in m nonempty sets.

There exist several generating functions of these numbers, for example:

xn =
n∑

m=0

S(n, m)x(x− 1) · · · (x−m + 1),

but they can also be computed from the following sum:

S(n, m) =
1
m!

m∑
i=0

(−1)i

(
m

i

)
(m− i)n.

Theorem A.0.1. (Fubini’s Theorem)

If f(x, y) is continuous on the rectangular region R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}, then∫
R

f(x, y)d(x, y) =
∫ b

a

∫ d

c
f(x, y)dydx =

∫ d

c

∫ b

a
f(x, y)dxdy.

Theorem A.0.2. (Hölder inequality)

Let S be a measure space, let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1, let f be in Lp(S) and g be

in Lq(S). Then, fg is in L1(S) and

‖fg‖1 ≤ ‖f‖p ‖g‖q .

The numbers p and q are known as the ‘Hölder conjugates’ of each other.

Theorem A.0.3. (Cauchy-Schwarz inequality)

This inequality states that if x and y are elements of inner product spaces then

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉 ,

where 〈·, ·〉 denotes the inner product.

Theorem A.0.4. (Weierstrass Approximation Theorem. Bernstein’s Polynomials)

Let f : [0, 1] → R be a continuous function and let ε be a positive number. There exists a

number N such that for n > N

|f(x)−Wn(x)| < ε, for x ∈ [0, 1],

where

Wn(x) =
n∑

k=0

f (k/n)
(

n

k

)
xk(1− x)n−k.

In other words, for every continuous function f : [0, 1] → R there exists a sequence

W1,W2, . . . of polynomials uniformly approaching f in [0, 1].
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Theorem A.0.5. (Lyapunov Theorem)

Let Xn be a sequence of independent random variables, at least one of which has a non-

degenerate distribution. Let E |Xn|2+δ < ∞ for some δ > 0 (n = 1, 2, . . .). If

B−1−δ/2
n

n∑
k=1

E |Xk −mk|2+δ → 0,

then

sup
x
|Fn(x)− Φ(x)| → 0,

where

mn = E [Xn] , σ2
n = V ar (Xn) , Bn =

n∑
k=1

σ2
k

and Φ denotes the standard Gaussian distribution.

Theorem A.0.6. (Bernstein inequality)

Let X1, X2, . . . , Xn be independent random variables satisfying that

P (|Xi − E [Xi]| ≤ m) = 1,

for each i, where m < ∞. Then, for t > 0,

P

(∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

E [Xi]

∣∣∣∣∣ ≥ nt

)
≤ 2 exp

(
− n2t2

2
∑n

i=1 V ar (Xi) + 2
3mnt

)
,

for all n = 1, 2, . . .

Theorem A.0.7. (Borel-Cantelli Lemma)

(i) For arbitrary events {Bn}, if
∑

n P (Bn) < ∞, then P (Bn infinitely often ) = 0.

(ii) For independent events {Bn}, if
∑

n P (Bn) = ∞, then P (Bn infinitely often ) = 1.

Theorem A.0.8. (Dvoretzky-Kiefer-Wolfowitz inequality)

Let F0n denote the empirical distribution function for a sample of n iid random variables

with distribution function F0. There exists a positive constant C such that:

P

(√
n sup

x
(F0n(x)− F0(x)) ≥ λ

)
≤ C exp

{
−2λ2

}
.

Provided that exp
{
−2λ2

}
≤ 1

2 , C can be chosen as 1 (see Massart (1990)). In particular,

the two-sided inequality

P

(√
n sup

x
|F0n(x)− F0(x)| ≥ λ

)
≤ C exp

{
−2λ2

}
holds without any restriction on λ.
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Theorem A.0.9. (Wilks Theorem)

Consider the m-dimensional parameter, θ ∈ Θ ⊂ Rm, and the null hypothesis H0 : θ ∈
Θ0 ⊂ Rk vs the alternative H1 : θ /∈ Θ0. Let {X01, . . . , X0n} be a sample of n iid random

variables distributed as F0 and let L(X, θ) denote the likelihood function associated to

{X01, . . . , X0n}. Then, the Wilks statistic,

W (X) = −2 ln
{

supθ∈Θ0
L(X, θ)

supθ∈Θ L(X, θ)

}
,

is, under H0, asymptotically χ2
m−k distributed.





Appendix B

Summary in Galician / Resumo en

galego

Esta tese trata o problema de dúas mostras dentro da análise de supervivencia. No caṕıtulo

1 preséntase unha breve introdución ao modelo de truncamento pola esquerda e censura

pola dereita. Os fenómenos de censura e truncamento aparecen en problemas de super-

vivencia cando a variable de interese é un tempo de vida. Debido ao fenómeno de censura

pola dereita só aqueles datos que levan asociado un valor de censura maior, son comple-

tamente observados. Con todo, cando o valor da censura se rexistra antes de que o dato

de interese poida ser observado, entón a única información que se ten é que o dato, de

poder observarse, seŕıa maior que o valor da censura. En presenza de truncamento pola

esquerda, soamente se observa o dato de interese cando este é maior que o valor da variable

de truncamento. De non ser aśı, un non ten evidencia algunha da existencia dese dato.

Baixo censura pola dereita e truncamento pola esquerda un observa, para cada indi-

viduo na mostra, o vector aleatorio (T0, Y0, δ0), onde Y0 denota o mı́nimo entre a variable

de interese, por exemplo, o tempo de vida X0, e a variable de censura, que denotamos por

C0, e a variable δ0 é a indicadora de non censura, é dicir, δ0 = 1 cando o dato Y0 non

está censurado (e por tanto X0 = Y0) e δ0 = 0 en caso contrario, cando Y0 = C0 < X0.

Ademais, os datos son observables só se T0, a variable de truncamento, é menor ou igual

que o valor de Y0. No que segue, usaremos a notación F0, L0, G0 e W0 para referirnos

respectivamente ás funcións de distribución das variables aleatorias X0, C0, T0 e Y0.

A presenza destes dous fenómenos, censura e truncamento, fai que os estimadores

existentes na literatura para datos completos, perdan algunhas das súas boas propiedades.

Por exemplo, o estimador emṕırico da distribución, que otorga o mesmo peso a cada un

dos datos presentes na mostra, deixa de ser consistente cando os datos se ven afectados
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polos fenómenos de censura e truncamento. Tsai et al (1987) propuxeron o estimador

ĺımite produto de F0, F̂0n, para unha mostra con datos independentes, identicamente

distribúıdos, truncados pola esquerda e censurados pola dereita

1− F̂0n(t) =
∏

Y0i≤t

[
1− (nB0n(Y0i))

−1
]δ0i

,

onde B0n(t) denota a estimación emṕırica da función B0(t), introducida na subsección

1.1.1:

B0n(t) = n−1
n∑

i=1

1 {T0i ≤ t ≤ Y0i} = n−1
n∑

i=1

1 {T0i ≤ t} 1 {t ≤ Y0i}

e nB0n(t) representa o número de individuos na mostra que no tempo t están a risco de

‘morrer’.

Na subsección 1.1.2 recomṕılanse resultados teóricos de interese sobre o comportamento

asintótico do estimador ĺımite produto F̂0n. Aśı, por exemplo, recóllense unha serie de

teoremas encontrados na literatura que tratan da descomposición asintótica do estimador

nunha suma de variables independentes e identicamente distribúıdas, da converxencia

débil do estimador, dunha cota exponencial, da lei funcional do logaritmo iterado e sobre

a lipschitzianidade do módulo de oscilación do proceso ĺımite produto, µ0n(x, y).

Na sección 1.2 introdúcese o método bootstrap que será utilizado nos caṕıtulos 1 e 2.

Na sección 1.3 trátase a estimación non paramétrica de curvas e, en concreto, recomṕılanse

diversas propiedades do estimador de Parzen-Rosenblatt, f̃0h (1.9), proposto por Parzen

(1962) e Rosenblatt (1956) para a estimación dunha función de densidade f0 a partir dunha

mostra de datos independentes e identicamente distribúıdos segundo f0. Como é sabido,

os métodos tipo núcleo, entre eles o estimador de Parzen-Rosenblatt, dependen dunha

función chamada núcleo ou kernel, K, e dun parámetro de suavizado, h, tamén coñecido

co nome de ventá. Mentres a elección do núcleo non é relevante, si o é a elección da ventá.

Diversos selectores de h foron propostos na literatura para resolver o problema da elección

deste parámetro de suavizado. Un breve repaso dos métodos de selección máis relevantes

baseados en validación cruzada, ideas ‘plug-in’ ou a técnica ‘bootstrap’, preséntase na

subsección 1.3.1. A continuación, na subsección 1.3.2 trátase o problema de estimar unha

función de distribución suave no caso dunha mostra con datos completos. Preséntase o

estimador emṕırico suavizado, F̃0h, e aśı mesmo recóllense algúns dos resultados teóricos

máis relevantes e un selector plug-in en varios estados proposto por Polansky and Baker

(2000). As seguintes subseccións 1.3.3 e 1.3.4, estenden as dúas subseccións previas ao caso

de datos censurados pola dereita e truncados pola esquerda e considéranse os análogos de

f̃0h e F̃0h neste contexto, f̂0h,n e F̂0h ((1.25) e (1.28)). Na subsección 1.3.3 exemplif́ıcase

mediante unha pequena simulación a importancia que ten na práctica o feito de ter en
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conta a presenza destes dous fenómenos de censura e truncamento na mostra e o corrixir

ou adaptar apropiadamente os métodos de estimación para este contexto.

Na sección 1.4 faise referencia ao problema de dúas mostras, e mais en concreto ao

problema de contrastar a hipótese nula de que as dúas mostras proveñan da mesma dis-

tribución. Na subsección 1.4.1 faise un repaso dos principais estat́ısticos non paramétricos

propostos no caso de observabilidade completa. Entre eles destacamos os estat́ısticos de

Wald-Wolfowitz, Kolmogorov-Smirnov e Mann-Whitney. Na subsección 1.4.2 introdúcese

o concepto de curva ROC, que é utilizada no campo da medicina para avaliar probas de

diagnóstico que permiten clasificar os individuos en dous grupos, por exemplo, sans e en-

fermos. Dous estimadores, un emṕırico, ROCn0,n1(p), e outro baseado no método núcleo

de estimación non-paramétrica, R̂OCh0,h1(p), preséntanse nesta subsección. Aśı mesmo,

detállanse diversos selectores do parámetro de suavizado propostos na literatura para ese

estimador tipo núcleo da curva ROC. Finalmente, na subsección 1.4.3 introdúcense os

conceptos de curvas relativas. Mais en concreto comezamos presentando as definicións

de distribución relativa e densidade relativa dunha poboación de comparación, X1, con

respecto a unha poboación de referencia, X0. Tamén faise unha breve mención sobre a

estreita relación existente entre o concepto de curva ROC e o concepto de distribución

relativa aśı como entre a densidade relativa e a razón de densidades utilizada por Silver-

man (1978). Logo, inclúese unha descomposición da densidade relativa en compoñentes de

localización, escala e forma residual e finalmente, este primeiro caṕıtulo de introducción

péchase coa presentación de dous estimadores tipo núcleo, un da densidade relativa, r̂h(t),

e outro da distribución relativa, R̂h(t). Aśı mesmo, inclúese un teorema que proba a

normalidade asintótica do estimador r̂h(t).

No caṕıtulo 2 tratamos en maior detalle a estimación non-paramétrica da densidade

relativa con datos completos, é dicir, datos que non se ven afectados polo fenómeno de

censura ou truncamento. Consideramos o problema de dúas mostras con datos completos

{X01, . . . , X0n0} e {X11, . . . , X1n1}, e definimos os seguintes estimadores tipo núcleo de

r(t) :

r̂h(t) =
∫ ∞

−∞
Kh (t− F0n0(v)) dF1n1(v) =

1
n1

n1∑
j=1

Kh (t− F0n0(X1j))

=
(
Kh ∗ F1n1F

−1
0n0

)
(t)

e

r̂h,h0(t) =
∫ ∞

−∞
Kh

(
t−F̃0h0(v)

)
dF1n1(v) =

1
n1

n1∑
j=1

Kh

(
t−F̃0h0 (X1j)

)
=
(
Kh∗F1n1F̃

−1
0h0

)
(t).
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Baixo certas condicións faise na sección 2.2 un estudo minucioso do erro cadrático medio

de r̂h(t) e r̂h,h0(t) que nos permite obter a expresión da ventá asintoticamente óptima,

hAMISE . Como xa sucede noutros contextos de estimación non paramétrica de curvas,

o valor de hAMISE non pode ser usado directamente porque depende de funcionais des-

coñecidos, en concreto, funcionais dependentes da curva que desexamos estimar, neste

caso r(t). Porén, a expresión da ventá asintoticamente óptima permı́tenos propor dous

selectores plug-in, hSJ1 e hSJ2 . A proposta de selectores plug-in de h para r̂(t) e r̂h,h0(t)

é estudado en detalle na sección 2.3. Mais en concreto, na subsección 2.3.1 estudamos a

estimación tipo núcleo dos funcionais descoñecidos que aparecen na expresión de hAMISE .

Despois de obter unha descomposición asintótica do erro cadrático medio dos estimadores

tipo núcleo propostos para tales funcionais, obtéñense expresións para as ventás asintotica-

mente óptimas. Baseándonos nos resultados obtidos na sección e na subsección previas, a

selección de h e en concreto os algoritmos de cálculo de hSJ1 e hSJ2 detállanse na subsección

2.3.2. O estudo de simulación da subsección 2.3.3 permite comparar e evaluar o comporta-

mento práctico destes dous selectores e unha variante dun selector previamente proposto

neste mesmo contexto por Ćwik and Mielniczuk (1993), b3c. Os resultados obtidos na

simulación permiten conclúır que o comportamento de hSJ1 mellora o comportamento de

b3c e que hSJ2 destácase como o mellor dos tres.

Aśı mesmo, baseándonos na expresión cerrada que se obtén para o erro cadrático medio

integrado do estimador de r(t), r̂h(t), propoñemos catro selectores da ventá baseados na

técnica bootstrap, h∗CE , h∗MC , h∗SUMC e h∗SMC . Un estudo de simulación revela que os

selectores h∗CE e h∗MC non presentan un bo comportamento práctico en mostras pequenas,

ademais de requerir moita carga computacional. Os outros dous selectores bootstrap,

h∗SUMC e h∗SMC , si que presentan un comportamento máis favorable, pero de novo, a súa

elevada carga computacional, e a escasa mellora que só presentan nalgúns casos, cando os

comparamos co selector plug-in hSJ2 , fan deste último selector, a mellor elección.

No caṕıtulo 3 tratamos a estimación non paramétrica da densidade e distribución

relativas con datos truncados pola esquerda e censurados pola dereita. Máis en concreto,

estudamos o erro cadrático medio e a normalidade asintótica dos estimadores de r(t) e

R(t) considerados neste contexto, řh (t) e Řh (t):

řh (t) =
1
h

∫
K

(
t− F̂0n0 (y)

h

)
dF̂1n1 (y) ,

Řh (t) =
∫

K

(
t− F̂0n0(y)

h

)
dF̂1n1 (y) ,
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onde F̂0n0 (y) e F̂n1 (y) denotan o estimador ĺımite produto proposto por Tsai et al (1987)

de F0 e F1, respectivamente.

É importante sinalar que o caso da estimación non paramétrica de r(t) é estudado

en máis detalle que a de R(t). Aśı, inclúense tres propostas, hRT , hPI e hSTE , para a

selección da ventá de řh (t), todas elas baseadas na técnica plug-in. Mediante un estudo

de simulación e baixo diferentes porcentaxes de censura e truncamento compróbase e

compárase o comportamento dos tres selectores propostos. Deste estudo, a conclusión

que se desprende, é que o selector hRT , baseado na técnica do polgar, é o que mellor se

comporta.

O caṕıtulo 4 ten como obxeto a construción de intervalos de confianza para a dis-

tribución relativa no caso de dúas mostras independentes de datos suxeitos a censura pola

dereita e truncamento pola esquerda. Utilizando a técnica de verosimilitude emṕırica,

conséguese estender o teorema de Wilks a este contexto e o traballo de Claeskens et al

(2003) que trata o mesmo problema pero con datos completamente observados.

O caṕıtulo 5 inclúe dúas aplicacións a datos reais. A primeira delas recolle 1434

pacientes que foron sometidos a unha biopsia no Hospital Juan Canlejo entre xaneiro de

2002 e setembro de 2005, a cal permitiu determinar se o paciente presentaba cancro de

próstata ou non. Para cada paciente, rexistráronse tamén os valores de tPSA, fPSA e

cPSA. Segundo estudos realizados neste mesmo campo, parece que estas variables ofrecen

boas propiedades diagnósticas. A segunda base de datos analizada recolle datos de 1956

pacientes diagnosticados con cancro de estómago. Entre outras variables medidas en

cada individuo, destacamos o sexo, a idade e a presenza de metástase no momento do

diagnóstico, o tempo de vida desde a data de primeiros śıntomas e a demora diagnóstica.

Mentres a primeira base de datos é un claro exemplo de datos completos, a segunda

base recolle datos truncados pola esquerda e censurados pola dereita. Despois dunha

análise distribucional de ambas bases de datos, as conclusións mais destacables son que as

variables tPSA e cPSA presentan mellores propiedades diagnósticas que a variable fPSA

e que o tempo de vida desde a data de primeiros śıntomas de cancro de estómago é menor

en grupos de idade maior e naqueles pacientes que mostran metástase no momento do

diagnóstico.

No caṕıtulo 6 faise unha exposición de varias futuras liñas de investigación que gardan

estreita relación co tema principal desta tese, técnicas de redución do nesgo en problemas

con dúas mostras, contraste da hipótese de riscos proporcionais ao longo do tempo de vida,

bandas de confianza obtidas mediante verosimilitude emṕırica e a distribución relativa no

caso de datos truncados pola dereita e censurados pola esquerda e, finalmente, a extensión

do concepto de curvas relativas ó caso de problemas multiestado. No que se refire aos
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dous primeiros destes futuros traballos, inclúense a súa motivación, a estratexia que se vai

seguir na demostración e algúns cálculos ao respecto, asi como a bibliograf́ıa consultada

ata o momento.

Finalmente, incluimos un apéndice onde se recompilan definicións, teoremas e desigual-

dades que foron utilizadas ao longo da tese. Tamén se inclúe ao final deste documento,

unha lista bibliográfica con todas as referencias consultadas durante a elaboración deste

traballo de investigación.
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