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Abstract. One of the main issues when estimating nonparametrically a den-

sity function is how to select the smoothing parameter based on the data. In

the context of a two-sample problem we propose several data-driven selectors for

choosing the bandwidth of two kernel-type relative density estimators. These

selectors are based on the bootstrap technique and try to estimate the value

minimizing their corresponding mean integrated squared error (MISE). The dif-

ferences are in the way that the bootstrap MISE function is approximated at a

grid of values, either by Monte Carlo, using a resampling scheme, or straightfor-

wardly, based on a closed expression of the bootstrap MISE. The performance

of these bootstrap selectors is checked through a simulation study. Unlike what

happens in the one-sample case, this simulation study revealed the intensive

computing time required to numerically approximate the closed expression of

the bootstrap MISE.
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1. Introduction

It is well known that one of the main concerns in nonparametric curve estimation is

the selection of the smoothing parameter. In the literature, different data-driven selectors

have been proposed. Some of these proposals deal with the problem trying to estimate the

value that minimizes a global error criterion such as the mean integrated squared error
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(MISE). In this article we propose several data-driven selectors to help in the choice of the

bandwidth for two kernel-type estimators of the relative density function. The proposed

selectors are all based on the bootstrap technique. For each proposal we start designing a

resampling scheme that imitates the random procedure from which the original samples

were drawn. The resampling plan is used to compute a bootstrap estimate of the MISE

function (either by Monte Carlo or via a closed formula) and to find its minimizer, that

will be the corresponding bootstrap bandwidth selector.

There exist several articles in the literature that deal with the problem of nonpara-

metric estimation of relative characteristics such as the relative distribution, the relative

density and the relative hazard rate functions. For example, in the setting of a two-sample

problem with completely observed data, Handcock and Janssen (1996) and Handcock and

Morris (1999) face the problem of estimating the relative distribution function while Ćwik

and Mielniczuk (1993), Handcock and Janssen (2002) and Molanes and Cao (2007) deal

with the problem of estimating the relative density function. On the other hand, other

settings that are typical in survival analysis were also considered in the literature. For

example, Cao et al (2000, 2001) deal with the problem of estimating the relative density

function when the data are right censored while Cao et al. (2005) consider the problem

of estimating the relative hazard rate using left truncated and right censored data. In the

same setup of left-truncated and right-censored data, Molanes and Cao (2006) proposed

and studied kernel relative density estimators. It is worth mentioning here that, in all

these papers, an important question is how to select the smoothing parameter in practical

applications through a data-driven mechanism.

In the following section two kernel-type relative density estimators are introduced

and a closed expression for the MISE function of the first one is obtained. In Section

3 the bootstrap resampling schemes are presented in detail for each selector. Section

4 includes a simulation study, where the performance of these and other selectors are

compared. The proof of the theorem given in Section 2 is included in Section 5.
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2. Closed expressions for the MISE

Consider two independent random samples {X01, . . . , X0n0
} and {X11, . . . , X1n1

} from

two distributions with density functions f0 and f1 and distribution functions F0 and

F1. We denote by R the relative distribution of the X1j’s with respect to (wrt) the

X0i’s: R(t) = P (F0(X1j) ≤ t) = F1(F
−1
0 (t)) and r its corresponding relative density

r(t) = R(1)(t).

Throughout the paper we will consider two kernel-type estimators of r: r̂h (see Ćwik

and Mielniczuk, 1993) and a slight version of it, r̂h,h0
, in which the empirical cdf of F0 is

replaced by a smoothed estimate (see Molanes and Cao, 2007):

r̂h(t) =
1

h

∫

K

(

t − F0n0
(z)

h

)

dF1n1
(z) =

1

n1h

n1
∑

j=1

K

(

t − F0n0
(X1j)

h

)

(2.1)

and

r̂h,h0
(t) =

1

h

∫

K

(

t − F̃0h0
(z)

h

)

dF1n1
(z) =

1

n1h

n1
∑

j=1

K

(

t − F̃0h0
(X1j)

h

)

, (2.2)

where K is a kernel function, h is the bandwidth, F0n0
and F1n1

are the empirical dis-

tribution functions of F0 and F1 based on, respectively, X0i’s and X1j’s, and F̃0h0
is a

kernel-type estimate of F0 based on X0i’s with bandwidth h0.

Let us consider the following assumptions:

(R) F0(X1) is absolutely continuous.

(K) K is a bounded density function in (−∞,∞).

The following result presents a closed expression for the MISE of the estimator r̂h.

Theorem 2.1. Assume conditions (R) and (K). Then, the MISE of the kernel

relative density estimator in (2.1) can be written as follows:

MISE (r̂h) =

∫

r2 (t) dt − 2

n0
∑

i=0

Ci
n0

an0,r(·) (i)

∫

Kh

(

t −
i

n0

)

r (t) dt +
(Kh ∗ Kh) (0)

n1

+2
n1 − 1

n1

n0
∑

i=0

n0
∑

j=i

P i,j−i,n0−j
n0

bn0,r(·) (i, j) (Kh ∗ Kh)

(

j − i

n0

)

,
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where

an0,r(·) (i) =

∫ 1

0

si (1 − s)n0−i r (s) ds,

bn0,r(·) (i, j) =

∫ 1

0

(1 − s2)
n0−j r (s2) sj+1

2

∫ 1

0

si
3 (1 − s3)

j−i r (s2s3) ds3ds2, for j ≥ i,

(Kh ∗ Kh) (t) =

∫

Kh (t − s) Kh (s) ds,

Ci
n0

=
(

n0

i

)

and P i,j−i,n0−j
n0

= n0!
i!(j−i)!(n0−j)!

denote, respectively, the binomial and the

multinomial coefficients.

The proof of this result can be found in Section 5.

3. Bootstrap Selectors

When using the bootstrap technique to estimate the MISE of, either r̂h or r̂h,h0
, one

possibility could be to approximate the distribution function of the ISE process and then

compute its expectation. To this aim we first need to define a resampling scheme that

imitates the procedure from which the two original samples were drawn. As pointed out

in Cao (1993) for the setting of ordinary density estimation, this can be achieved replacing

the role of the true target density, in this case r, by some estimator of it. Since we are

in a two-sample setting we need to draw a pair of resamples of n0 and n1 observations

respectively, the first one coming from a population, say X∗
0 , and the second one coming

from another one, say X∗
1 . On the other hand, the relative density of X∗

1 wrt X∗
0 should

coincide with the kernel relative density estimator of X1 wrt X0. Therefore, the ideas

presented in Cao (1993) require some modifications to be adapted to this new setting.

There exist at least two ways to proceed. Either replacing the roles of the densities, f0

and f1, by some appropriate estimators or considering a uniform distribution in [0, 1] for

X∗
0 and a distribution with density equal to the relative density estimator of X1 wrt X0

for X∗
1 . The second possibility is justified by noting that the sampling distribution of

r̂h only depends on the two populations through their relative density, r (see also the

expression for MISE (r̂h) in Theorem 2.1).

We now present a bootstrap procedure to approximate MISE(r̂h):
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(a) Select a pilot bandwidth, g, and construct the relative density estimator r̂g (see

(2.1)).

(b) Draw bootstrap resamples
{

X∗
01, . . . , X

∗
0n0

}

, from a uniform distribution in [0, 1], and
{

X∗
11, . . . , X

∗
1n1

}

, with density function r̂g.

(c) Consider, for each h > 0, the bootstrap version of the kernel estimator (2.1):

r̂∗h(x) = n−1
1

n1
∑

j=1

Kh(x − F ∗
0n0

(X∗
1j)),

where F ∗
0n0

denotes the empirical distribution function of
{

X∗
01, . . . , X

∗
0n0

}

.

(d) Define the bootstrap mean integrated squared error as a function of h:

MISE∗(r̂∗h) = E∗

[∫

(r̂∗h(x) − r̂g(x))2 dx

]

(3.1)

(e) Find the minimizer of (3.1). This value, denoted by h∗
MISE(r̂h), is a bootstrap analogue

of the MISE bandwidth for r̂h.

By definition, the bootstrap MISE function in (3.1) does not depend on the resam-

ples. Therefore, in case that a closed expression could be found for it, Monte Carlo

approximations could be avoided. In other words, there would be no need of drawing

resamples (steps (b) and (c) in the bootstrap procedure sketched above) which always

means an important computational load. In the one-sample problem this approach was

plausible (see Cao et al., 1994) and yielded a considerable saving of computing time.

A bootstrap version for Theorem 2.1 can be proved using parallel arguments. For

this reason, its proof is not included in the paper.

Theorem 3.1. Assume condition (K). Then,

MISE∗ (r̂h) =

∫

r̂2
g (t) dt − 2

n0
∑

i=0

Ci
n0

an0,r̂g(·) (i)

∫

Kh

(

t −
i

n0

)

r̂g (t) dt +
(Kh ∗ Kh) (0)

n1

+2
n1 − 1

n1

n0
∑

i=0

n0
∑

j=i

P i,j−i,n0−j
n0

bn0,r̂g(·) (i, j) (Kh ∗ Kh)

(

j − i

n0

)

, (3.2)

where

an0,r̂g(·) (i) =

∫

si (1 − s)n0−i r̂g (s) ds
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and

bn0,r̂g(·) (i, j) =

∫ 1

0

(1 − s2)
n0−j r̂g (s2) sj+1

2

∫ 1

0

si
3 (1 − s3)

j−i r̂g (s2s3) ds3ds2.

Based on the bootstrap scheme shown previously and the closed expression obtained

for MISE∗ (r̂h), we propose two bootstrap bandwidth selectors. Both consist in ap-

proximating MISE∗ (r̂h) and finding its minimizer (which yields an approximation of

h∗
MISE(r̂h)). While the first one, say h∗

CE, approximates (3.1) using the closed expres-

sion (3.2), the second proposal, say h∗
MC , estimates (3.1) by Monte Carlo taking a large

number of resamples as described in steps (b) and (c).

When dealing with the estimator r̂h,h0
in (2.2), there is no hope to find a closed

expression for its MISE, similar to that one in (3.2). Below we present two bootstrap

procedures to approximate MISE(r̂h,h0
). The first proposal is as follows:

Smooth Uniform Monte Carlo Bootstrap resampling plan (SUMC)

(a) Select two pilot bandwidths, g and g0, and construct the estimator r̂g,g0
(see (2.2))

of the relative density r. Let H be the cdf of a uniform random variable in [0,1] and

consider

H̃b(x) = n−1
0

n0
∑

i=1

M

(

x − Ui

b

)

, (3.3)

a kernel-type estimate of H based on the uniform kernel M in [−1, 1] (with dis-

tribution function M), the bandwidth parameter b and the sample {U1, . . . , Un0
}

coming from H. Approximate the MISE function of H̃b by Monte Carlo and find its

minimizer b0.

(b) Draw bootstrap samples
{

X∗
01, . . . , X

∗
0n0

}

and
{

X∗
11, . . . , X

∗
1n1

}

from, respectively, a

uniform distribution in [0, 1] and the density function r̂g,g0
.

(c) Consider, for each h > 0, the bootstrap version of the kernel estimator (2.2):

r̂∗h,b0
(x) = n−1

1

n1
∑

j=1

Kh(x − F̃ ∗
0b0

(X∗
1j)),

where F̃ ∗
0b0

denotes a kernel-type cdf estimate based on the bootstrap resample
{

X∗
01, . . . , X

∗
0n0

}

, the uniform kernel in [−1, 1] and the bandwidth parameter b0 com-

puted previously in (a).
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(d) Define the bootstrap mean integrated squared error as a function of h:

MISE∗(r̂∗h,b0
) = E∗

[∫

(

r̂∗h,b0
(x) − r̂g,g0

(x)
)2

dx

]

(3.4)

(e) Find a numerical approximation of the minimizer of (3.4). This value, denoted by

h∗
SUMC , is a bootstrap version of the MISE bandwidth for r̂h,h0

.

Since we do not have a closed expression for MISE∗(r̂∗h,b0
), this function is approxi-

mated by Monte Carlo.

The second proposal is sketched below.

Smooth Monte Carlo Bootstrap resampling plan (SMC)

(a) Select three pilot bandwidths, g, g0 and g1, and construct the estimators r̂g,g0
and

f̃0,g1
of, respectively, the relative density r and the density f0. Here, f̃0,g1

denotes

the Parzen-Rosenblatt estimator of the ordinary density f0 with bandwidth g1 (see

Rosenblatt, 1956, and Parzen, 1962, for more details).

(b) Draw bootstrap resamples
{

X∗
01, . . . , X

∗
0n0

}

from f̃0,g1
and

{

Z∗
1 , . . . , Z

∗
n1

}

from r̂g,g0
.

Define X∗
1j = F̃−1

0g1
(Z∗

j ), j = 1, . . . , n1.

(c) Consider, for each h > 0, the bootstrap version of the kernel estimator (2.2):

r̂∗h,h0
(x) = n−1

1

n1
∑

j=1

Kh(x − F̃ ∗
0h0

(X∗
1j)),

with F̃ ∗
0h0

a smooth estimate of F0 based on the bootstrap resample
{

X∗
01, . . . , X

∗
0n0

}

.

(d) Define the bootstrap mean integrated squared error as a function of h:

MISE∗(r̂∗h,h0
) = E∗

[∫

(

r̂∗h,h0
(x) − r̂g,g0

(x)
)2

dx

]

(3.5)

(e) Find the minimizer of (3.5), h∗
SMC , which is a bootstrap analogue of the MISE

bandwidth for r̂h,h0
.

Once more, a Monte Carlo approach has to be used to approximate the function in

(3.5).
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4. Simulations

4.1 Practical implementation

Although in the previous section several bootstrap selectors have been proposed,

some aspects of them remained unspecified such as for example how the required pilot

bandwidths, g, g0 or g1, are chosen. In the following we will use for K the standard

Gaussian kernel.

Let us start with the proposals h∗
CE and h∗

MC . The pilot bandwidth g is selected

based on the AMSE-optimal bandwidth, gAMSE,4(r), to estimate the value of Ψ4(r) where

Ψ`(r) =
∫ 1

0
r(`)(x)r(x)dx (see Molanes and Cao, 2007, for details). Note that, under

regularity assumptions on r, Ψ4(r) is equal to C
(

r(2)
)

, the curvature of r. Here we

denote C(g) =
∫

g(x)2dx. Based on the rule of thumb (Silverman, 1986), the unknown

quantities depending on r that appear in gAMSE,4(r), are replaced by parametric estimates

based on an appropriate fit for r. This procedure leads us to define g as follows

g =

(

−2K(4)(0)(1 + κ2Ψ̂P
0 (r))

dKΨ̂P
6 (r)

) 1

7

n
− 1

7

1 ,

where Ψ̂P
0 (r) and Ψ̂P

6 (r) are parametric estimates of, respectively, Ψ0(r) and Ψ6(r), based

on the parametric fit, b̂(x; N,R), considered for r(x), that is introduced below.

Let β(x, a, b) be the beta density

β(x, a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1, x ∈ [0, 1],

and let B(x; N,G) be the Bernstein polynomial associated to any continuous function G

on the closed interval [0, 1]

B(x; N,G) = (N + 1)−1

N+1
∑

j=1

G

(

j − 1

N

)

β(x, j,N − j + 2).

Applying Weierstrass’s theorem it is known that B(x; N,G) converges to G(x) uniformly

in x ∈ [0, 1] as N → ∞. For a distribution function, G, on [0, 1], it follows that B(x; N,G)

is a proper distribution function with density function b(x; N,G) = B(1)(x; N,G), i.e.

b(x; N,G) =
N
∑

j=1

(

G

(

j

N

)

− G

(

j − 1

N

))

β(x, j,N − j + 1). (4.1)
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Based on this idea, we propose for r(x) the following parametric fit, b̂(x; N,R), where the

unknown relative distribution function R in (4.1) (when G = R) is replaced by a smooth

estimate, R̃g
R̃
, as follows:

b̂(x; N,R) =
N
∑

j=1

(

R̃g
R̃

(

j

N

)

− R̃g
R̃

(

j − 1

N

))

β(x, j,N − j + 1) (4.2)

where

R̃g
R̃
(x) = n−1

1

n1
∑

j=1

M

(

x − F0n0
(X1j)

gR̃

)

, (4.3)

gR̃ =

(

2
∫∞

−∞
xM (x) M (x) dx

n1d2
M ĈP (r(1))

) 1

3

.

In practice we have used a number of N = 2n1 beta distributions in the mixture (4.2).

We refer to the interested reader to Kakizawa (2004) for more details with respect to this

choice. Note that bandwidth gR̃ is based on the AMISE-optimal bandwidth, gAMISE(R),

for a kernel type estimator of the distribution function in a one-sample problem (see

Polansky and Baker, 2000, for more details). As before, by means of the rule of thumb,

a Gaussian fit using the method of moments is considered for r based on the relative

sample {F0n0
(X1j)}

n1

j=1, and then the unknown quantity, C(r(1)), appearing in gAMISE(R)

is approximated parametrically by ĈP
(

r(1)
)

.

For implementing h∗
SUMC and h∗

SMC , g is obtained using a similar procedure as ex-

plained above for selectors h∗
CE and h∗

MC . The differences now are that the Gaussian fit

considered for r to estimate the unknown quantity, C(r(1)), appearing in gAMISE(R), is

based on the smoothed relative sample
{

F̃0g0
(X1j)

}n1

j=1
, and F0n0

in (4.3), is replaced by

the smooth estimate

F̃0g0
(x) = n−1

0

n0
∑

i=1

M

(

x − X0i

g0

)

g0 =





2
∫∞

−∞
xM (x) M (x) dx

n0d2
M C̃P

(

f
(1)
0

)





1

3

,

where C̃P
(

f
(1)
0

)

denotes a parametric estimate of C
(

f
(1)
0

)

based on a gamma fit for

f0, using the method of moments and the original sample {X01, . . . , X0n0
}. Note that
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the definiton of g0 follows the same strategy as the definition of gR̃ given above. The

only difference now is that the target distribution is F0 rather than R and therefore a

parametric scale needs to be assumed for f0 (not for r).

The selector h∗
SMC entails a third pilot bandwidth, g1. In this case, we consider the

AMSE-optimal bandwidth, gAMSE,4(f0), to estimate Ψ4(f0) in a one-sample problem (see

Wand and Jones, 1995). Note that, under regularity conditions on f0, Ψ4(f0) is equal to

C
(

f
(2)
0

)

, the curvature of f0. Using again the rule of thumb, the bandwidth g1 is defined

as follows

g1 =

(

−2K(4)(0)

dKΨ̂P
6 (f0)

) 1

7

n
− 1

7

1 ,

where Ψ̂P
6 (f0) is a parametric estimate of Ψ6(f0), based on a gamma fit for f0. As before,

the parameters of this gamma distribution are estimated by the method of moments,

using the original sample {X01, . . . , X0n0
}.

Note that the computation of the selector h∗
SMC requires the selection of another

bandwidth, denoted by h0 in (3.5), for every bootstrap resample of size n0 drawn as in

step (b) of the SMC resampling plan. The expression of h0 is the same as the one given

previously for g0. The only difference now is that the gamma fit used to approximate the

unknown functional C
(

f
(1)
0

)

is obtained using the bootstrap resample rather than the

original sample.

It is worth mentioning here that all the kernel type estimates required in the compu-

tation of the pilot bandwidths are corrected by the boundary effect using the well-known

reflection method (see Schuster, 1985). Likewise, all the kernel estimates required in steps

(a) and (c) of the resampling plans SUMC and SMC, are boundary corrected. However,

for selectors h∗
CE and h∗

MC only r̂g (in step (a)) is boundary corrected.

In order to compare with other data driven selectors proposed in the literature, we

have considered one of the proposals given by Molanes and Cao (2007), say hSJ2
, and the

slightly modified version of the selector introduced by Ćwik and Mielniczuk (1993), b3c

(see Molanes and Cao, 2007, for more details).
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4.2 Models and results

The simulations were carried out for different sample sizes and the performance of

the different data-driven selectors was examined for seven populational models for r (see

(a)-(g) below).

Put Figure 1 about here.

Let U0 denote a uniform distribution in the interval [0, 1] and let W be the Weibull

cumulative distribution function with parameters (2, 3). The first sample was drawn

from the random variate X0 = W−1 (U0) and the second sample from the random variate

X1 = W−1 (S), where S is a random variate from one of the following populations (see

Figures 1 and 2):

(a) V = 1
4
(U1 + U2 + U3 + U4), where U1, U2, U3, U4 are iid U [0, 1].

(b) A mixture consisting of V1 with probability 1
2

and V2 with probability 1
2
, where

V1 = V
2
, V2 = V +1

2
and V as for model (a).

(c) A beta distribution with parameters 4 and 5 (β (4, 5)).

(d) A mixture consisting of V1 with probability 1
2

and V2 with probability 1
2
, where

V1
d
= β (15, 4) and V2

d
= β (5, 11).

(e) A beta distribution with parameters 14 and 17 (β (14, 17)).

(f) A mixture consisting of V1 with probability 4
5

and V2 with probability 1
5
, where

V1
d
= β (14, 37) and V2

d
= β (14, 20).

(g) A mixture consisting of V1 with probability 1
3

and V2 with probability 2
3
, where

V1
d
= β (34, 15) and V2

d
= β (15, 30).

Put Figure 2 about here.

For each one of the relative populations listed above, a large number (250 or 500)

of pairs of samples were taken. For each pair of samples, the six bandwidth selectors

(h∗
CE, h∗

MC , h∗
SUMC , h∗

SMC , hSJ2
and b3c), let say ĥ, were computed and, based on each

11



one, the kernel-type relative density estimate, (2.1) or (2.2), was computed. While for

b3c and hSJ2
500 estimations of r were computed, for each bootstrap bandwidth selector

only 250 estimations of r were obtained, due to the important computational load that

their implemetation requires. Based on them, the following global error measure was

approximated by Monte Carlo:

EM = E

[∫

(r̂(t) − r(t))2 dt

]

,

where r̂ denotes r̂ĥ, for selectors h∗
CE, h∗

MC and b3c, and the boundary corrected version

of r̂ĥ,h0
for selectors h∗

SUMC , h∗
SMC and hSJ2

.

Put Table 1 about here.

When implementing h∗
CE, numerical estimates of an0,r̂g(·) (i) and bn0,r̂g(·) (i, j), are

required. Using the binomial formula, these integrals can be rewritten as follows:

an0,r̂g(·) (i) =

n0−i
∑

k=0

(−1)k

(

n0 − i

k

)∫

si+kr̂g(s)ds (4.4)

and

bn0,r̂g(·) (i, j) =

j−i
∑

q=0

n0−j
∑

p=0

(−1)q

(

j − i

q

)

(−1)p

(

n0 − j

p

)∫ ∫

s1

si+q
1 sj−i−q+p

2 r̂g(s2)r̂g(s1)ds2ds1.

(4.5)

Therefore a possible strategy to estimate an0,r̂g(·) (i) and bn0,r̂g(·) (i, j), could be based

on numerical estimates of the terms in the right hand side of (4.4) and (4.5). However,

from a practical point of view, this procedure presents the disadvantage of having to

take into account approximation errors for plenty of terms, which finally leads to worse

approximations of an0,r̂g(·) (i) and bn0,r̂g(·) (i, j). Therefore, in the simulation study, we

estimate these quantities in a direct way.

Put Table 2 about here.

While the practical implementation of h∗
CE is very time consuming, there exists a

way to make the simulation study faster for a pair of fixed sample sizes (n0, n1). The

fact is that there are some computations that do not need to be carried out every time

that a pair of samples are drawn because they only depend on the sample sizes but not

12



on the observations themselves. Therefore, carrying out these computations previously

and using them with any pair of samples of the same sample sizes, (n0, n1), can lead to

a considerable decrease in computing time. In the simulation study carried out here, we

take advantage of this fact and proceed in a direct way. Table 3 collects the median CPU

time in seconds required per trial for implementing the proposed bootstrap bandwidth

selectors, h∗
CE, h∗

MC , h∗
SUMC and h∗

SMC , and the plug-in selectors, b3c and hSJ2
. These

values reveal that the bootstrap selector h∗
CE requires at about one hour and 20 or 25

minutes per trial when the sample sizes are n0 = n1 = 50. The fastest implementation is

achieved by the plug-in bandwidth selector proposed by Ćwik and Mielniczuk (1993), b3c,

which is followed by the plug-in selector, hSJ2
, and the bootstrap selectors, h∗

MC , h∗
SUMC

and h∗
SMC .

Put Table 3 about here.

From the simulation study carried out here (see results in Tables 1 and 2), we con-

clude that all the proposed bootstrap selectors improve the one proposed by Ćwik and

Mielniczuk (1993). However, only two of them, h∗
SUMC and h∗

SMC , show a similar behav-

iour to the plug-in selector, hSJ2
, with very good performance, studied in Molanes and

Cao (2007). Sometimes, it is even observed a slight improvement over hSJ2
. However,

this is not always the case. These facts and the intensive computing time required for any

of the bootstrap selectors compared to the time required for any of the plug-in selectors

make hSJ2
a good choice in this setting.

5. Proof of Theorem 2.1

Standard bias-variance decomposition of MSE gives:

MISE (r̂h) =

∫

[E [r̂h (t)] − r (t)]2 dt +

∫

V ar [r̂h (t)] dt. (5.1)

For the first term, it is easy to check that

E [r̂h (t)] = E [Kh (t − F0n0
(X1))] = E [E [Kh (t − F0n0

(X1)) /X01, . . . , X0n0
]]

13



= E

[∫

Kh (t − F0n0
(y)) f1 (y) dy

]

=

∫

E [Kh (t − F0n0
(y)) f1 (y)] dy

=

n0
∑

i=0

Kh

(

t −
i

n0

)(

n0

i

)∫

F0 (y)i (1 − F0 (y))n0−i f1 (y) dy

=

n0
∑

i=0

Kh

(

t −
i

n0

)(

n0

i

)∫

si (1 − s)n0−i r (s) ds. (5.2)

On the other hand, it is straightforward to prove that

V ar [r̂h (t)] =
1

n1

V ar [Kh (t − F0n0
(X1))]

+
n1 − 1

n1

Cov [Kh (t − F0n0
(X11)) , Kh (t − F0n0

(X12))]

=
1

n1

E
[

K2
h (t − F0n0

(X1))
]

−
1

n1

E2 [Kh (t − F0n0
(X1))]

+
n1 − 1

n1

V ar

[∫

Kh (t − F0n0
(y)) f1 (y) dy

]

=
1

n1

E
[

K2
h (t − F0n0

(X1))
]

− E2 [Kh (t − F0n0
(X1))]

+
n1 − 1

n1

E

[

(∫

Kh (t − F0n0
(y)) f1 (y) dy

)2
]

(5.3)

In order to get a more explicit expression for the variance, we study the expectations

in the right hand-side of the expression above.

The first expectation is

E
[

K2
h (t − F0n0

(X1))
]

= E
[

E
[

K2
h (t − F0n0

(X1)) /X01, . . . , X0n0

]]

=

∫

E
[

K2
h (t − F0n0

(y))
]

f1 (y) dy

=

n0
∑

i=0

K2
h

(

t −
i

n0

)(

n0

i

)∫

F0 (y)i (1 − F0 (y))n0−i f1 (y) dy

=

n0
∑

i=0

K2
h

(

t −
i

n0

)(

n0

i

)∫

si (1 − s)n0−i r (s) ds (5.4)

The last expectation can be written as

E

[

(∫

Kh (t − F0n0
(y)) f1 (y) dy

)2
]

= E

[∫ ∫

Kh (t − F0n0
(y1)) Kh (t − F0n0

(y2)) f1 (y1) f1 (y2) dy1dy2

]

= 2A,
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based on the symmetry of the integrand, where

A =

∫ ∫

y2>y1

E [Kh (t − F0n0
(y1)) Kh (t − F0n0

(y2))] f1 (y2) f1 (y1) dy2dy1

=

n0
∑

i=0

n0
∑

j=0
i≤ j

Kh

(

t −
i

n0

)

Kh

(

t −
j

n0

)

n0!

i! (j − i)! (n0 − j)!

∫ ∫

y2>y1

F0 (y1)
i (F0 (y2) − F0 (y1))

j−i (1 − F0 (y2))
n0−j f1 (y2) f1 (y1) dy2dy1

=

n0
∑

i=0

n0
∑

j=0
i≤ j

Kh

(

t −
i

n0

)

Kh

(

t −
j

n0

)

n0!

i! (j − i)! (n0 − j)!

∫ ∫

s2>s1

si
1 (s2 − s1)

j−i (1 − s2)
n0−j r (s2) r (s1) ds2ds1.

Therefore,

E

[

(∫

Kh (t − F0n0
(y)) f1 (y) dy

)2
]

= 2

n0
∑

i=0

n0
∑

j=0
i≤ j

Kh

(

t −
i

n0

)

Kh

(

t −
j

n0

)

n0!

i! (j − i)! (n0 − j)!

∫ ∫

s2>s1

si
1 (s2 − s1)

j−i (1 − s2)
n0−j r (s2) r (s1) ds2ds1. (5.5)

Using (5.4), (5.2) and (5.5) in (5.3) and (5.2) and (5.3) in (5.1) gives

MISE (r̂h) =

∫

(

n0
∑

i=0

Kh

(

t −
i

n0

)(

n0

i

)

an0,r(·) (i) − r (t)

)2

dt

+
1

n1

n0
∑

i=0

(

n0

i

)

an0,r(·) (i)

∫

K2
h

(

t −
i

n0

)

dt

−

∫

(

n0
∑

i=0

Kh

(

t −
i

n0

)(

n0

i

)

an0,r(·) (i)

)2

dt

+2
n1 − 1

n1

n0
∑

i=0

n0
∑

j=i

n0!

i! (j − i)! (n0 − j)!
bn0,r(·) (i, j)

∫

Kh

(

t −
i

n0

)

Kh

(

t −
j

n0

)

dt
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and consequently we get that

MISE (r̂h) =

∫

(

n0
∑

i=0

Kh

(

t −
i

n0

)

Ci
n0

an0,r(·) (i) − r (t)

)2

dt

+
1

n1

n0
∑

i=0

Ci
n0

an0,r(·) (i) (Kh ∗ Kh) (0)

−

∫

(

n0
∑

i=0

Kh

(

t −
i

n0

)

Ci
n0

an0,r(·) (i)

)2

dt

+2
n1 − 1

n1

n0
∑

i=0

n0
∑

j=i

P i,j−i,n0−j
n0

bn0,r(·) (i, j) (Kh ∗ Kh)

(

j − i

n0

)

.

Some simple algebra concludes the proof.

16



Table 1. Values of EM for b3c, hSJ2
, h∗

CE , h∗
MC , h∗

SUMC and h∗
SMC for models (a)-(g).

EM Model

(n0, n1) Selector (a) (b) (c) (d) (e) (f) (g)

(50, 50) b3c 0.3493 0.5446 0.3110 0.3110 1.2082 1.5144 0.7718

(50, 50) hSJ2
0.1746 0.4322 0.1471 0.2439 0.5523 0.7702 0.5742

(50, 50) h∗
CE 0.2791 0.5141 0.2095 0.2630 0.7905 1.0784 0.7675

(50, 50) h∗
MC 0.2404 0.4839 0.1951 0.2911 0.8103 0.9545 0.7195

(50, 50) h∗
SUMC 0.1719 0.3990 0.1473 0.2517 0.6392 0.7246 0.5917

(50, 50) h∗
SMC 0.1734 0.3996 0.1486 0.2372 0.5984 0.7093 0.5918

Table 2. Values of EM for hSJ2
, h∗

SUMC and h∗
SMC for models (a)-(g).

EM Model

(n0, n1) Selector (a) (b) (c) (d) (e) (f) (g)

(50, 100) hSJ2
0.1660 0.3959 0.1256 0.2075 0.5329 0.7356 0.5288

(50, 100) h∗
SUMC 0.1565 0.3733 0.1276 0.2076 0.5386 0.7199 0.5576

(50, 100) h∗
SMC 0.1580 0.3716 0.1376 0.2015 0.5655 0.7296 0.5509

(100, 50) hSJ2
0.1241 0.3319 0.1139 0.1897 0.3804 0.4833 0.3864

(100, 50) h∗
SUMC 0.1291 0.3056 0.1020 0.1914 0.4403 0.5129 0.4310

(100, 50) h∗
SMC 0.1297 0.3060 0.1021 0.1845 0.4324 0.5048 0.4393

(100, 100) hSJ2
0.1208 0.2831 0.1031 0.1474 0.3717 0.4542 0.3509

(100, 100) h∗
SUMC 0.1095 0.2718 0.0905 0.1467 0.3789 0.4894 0.3741

(100, 100) h∗
SMC 0.1105 0.2712 0.0871 0.1499 0.3686 0.4727 0.3639

(100, 150) hSJ2
0.1045 0.2528 0.0841 0.1318 0.3305 0.4648 0.3345

(100, 150) h∗
SUMC 0.1136 0.2552 0.0951 0.1344 0.3719 0.4887 0.3528

(100, 150) h∗
SMC 0.1147 0.2543 0.0863 0.1439 0.3814 0.4894 0.3477
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Table 3. Median time (in seconds) required to compute a realization of b3c, hSJ2
, h∗

CE ,

h∗
MC , h∗

SUMC and h∗
SMC for models (a)-(d) for sample sizes n0 = n1 = 50.

EM Model

Selector (a) (b) (c) (d)

b3c 0.0470 0.1560 0.0620 0.0300

hSJ2
4.7500 4.8440 4.8045 3.3795

h∗
CE 5063.5 5091.2 4740.0 5056.1

h∗
MC 180.3 177.4 177.3 181.6

h∗
SUMC 255.4 252.9 259.2 242.9

h∗
SMC 421.1 421.9 639.3 628.4
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Fig. 1. Plots of the relative densities (a)-(d).
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Fig. 2. Plots of the relative densities (e)-(g).
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