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Abstract

In this paper we propose a new method for estimating parameters in a single-index model

under censoring based on the Beran estimator for conditional distribution function. This,

likelihood based, method is also used for the bandwidth selection. Hence the proposed method

is a useful and simple tool for selecting the bandwidth also for the Beran estimator with one

dimentional covariate. Additionally, we recall an another method which base on Kaplan-Meier

integrals and compare the two approaches in a simulation study. We apply both methods to

primary biliary cirrhosis data set and propose the bootstrap test for the parameters.

1 Introduction

The single-index model is a useful tool to incorporate a vector of covariates X ∈ Rd into a regres-

sion model avoiding the so called “curse of dimensionality”. By assuming that there exists a vector

of parameters θ0 so that the response variable depends only on the projection θ′0X, we avoid a

multivariate regression. This assumption is a reasonable compromise between a fully parametric

and a fully nonparametric model. Additionally, in medical or economic studies, the large number

of explanatory variables is not the only problem. Very often the response variable is only partly

observed and so censored from the right. Hence, our goal is to estimate the vector θ0 using ap-

propriate methods for censored data under the single-index model assumption. In this paper we

estimate θ0 using two different methods for estimating the conditional distribution function (d.f.)

and the density under censoring. The first one is based on Kaplan-Meier integrals in the presence

of the covariates. See Bouaziz and Lopez (2010), Strzalkowska-Kominiak and Cao (2012) and Stute

(1996), for details. The second one is based on the Beran estimator for the conditional d.f. defined

in Beran (1981) and studied by González-Manteiga and Cadarso-Suárez (1993). In both cases, the

estimation of θ0 and the choice of bandwidth base on maximum likelihood method.
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To describe our model, let Z be a random variable dependent on a vector of covariates X =

(X1, ..., Xd)
′ and f(z|x) the density function of Z given X = x. Moreover, let

θ0 = (θ1, ..., θd)
′

be a vector of parameters with the property:

fθ0(z|θ′0x) = f(z|x), (1)

where fθ0(z|θ′0x) is the conditional density of Z given θ′0X = θ′0x. Furthermore, let F (z|X = x)

and Fθ0(z|θ′0X = θ′0x) be the conditional distribution functions of Z, givenX and θ′0X, respectively.

As a consequence of (1) we have

Fθ0(z|θ′0X = θ′0x) = F (z|X = x).

Moreover, the random variable Z may be censored from the right by C ∼ G. Hence, we observe

Y = min(Z,C) ∼ H

together with

δ = 1{Z≤C}.

The paper is organized as follow. In Section 2 we recall the estimator of θ0 presented in

Strzalkowska-Kominiak and Cao (2012) and propose a new method for estimating θ0 using Be-

ran’s estimator. Both methods are compared in Section 3 via simulation study. Finally, the two

approaches are illustrated in Section 4 by applying them to a primary biliary cirrhosis data set.

2 Proposed methods

Let us consider the observed censored sample {(X1, Y1, δ1), ..., (Xn, Yn, δn)}. In the next two sub-

sections we will present the two alternative methods to be compared.
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2.1 The Kaplan-Meier based approach

In this section we recall the method presented by Strzalkowska-Kominiak and Cao (2012). Let us

define,

F̂θ(y|θ′x) =
1

nh1

∑n
i=1 1{Yi≤an}

δi
1−Gn(Yi−)K

(
θ′x−θ′Xi

h1

)
K
(

y−Yi

h2

)
1

nh1

∑n
i=1 1{Yi≤an}

δi
1−Gn(Yi−)K

(
θ′x−θ′Xi

h1

)
and

f̂θ(y|θ′x) =
1

nh1h2

∑n
i=1 1{Yi≤an}

δi
1−Gn(Yi−)K

(
θ′x−θ′Xi

h1

)
K

(
y−Yi

h2

)
1

nh1

∑n
i=1 1{Yi≤an}

δi
1−Gn(Yi−)K

(
θ′x−θ′Xi

h1

) ,

where K is a Kernel function (typically K(u) ≥ 0 ∀u and
∫
K(u) = 1), K(y) =

∫ y

−∞ K(z)dz and

an → τH when n → ∞. The Gn(t) denotes here the Kaplan-Meier estimator for G(t) = P(C ≤ t),

while τH = inf{t : H(t) = 1}.

Moreover, let

l̂n(θ, h1, h2) =
1

n

n∑
i=1

(
δi log f̂

−i
θ (Yi|θ′Xi) + (1− δi) log(1− F̂−i

θ (Yi|θ′Xi))

)
1{Yi≤an,Xi∈Acn},

be the log-likelihood function under censoring, where Acn is defined so that P(Xi ∈ Acn) → 1

for every i = 1, ..., n when n → ∞. See Strzalkowska-Kominiak and Cao (2012) for the possible

choices of an and Acn . Finally, set

(θ̂n, ĥ1, ĥ2) = arg max
θ,h1,h2

l̂n(θ, h1, h2). (2)

Additionally, we propose the conditional distribution function estimator.

F̂ ∗
θ̂n
(y|θ̂′nx) =

1
nh1

∑n
i=1

δi
1−Gn(Yi−)K

(
θ̂′
nx−θ̂′

nXi

h1

)
1{Yi≤y}

1
nh1

∑n
i=1

δi
1−Gn(Yi−)K

(
θ̂′
nx−θ̂′

nXi

h1

) . (3)

Although we may also use the smoothed version given by
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F̂θ̂n
(y|θ̂′nx) =

1
nh1

∑n
i=1 1{Yi≤an}

δi
1−Gn(Yi−)K

(
θ̂′
nx−θ̂′

nXi

h1

)
K
(

y−Yi

h2

)
1

nh1

∑n
i=1 1{Yi≤an}

δi
1−Gn(Yi−)K

(
θ̂′
nx−θ̂′

nXi

h1

) .

Remark 1 A similar, Kaplan-Meier based, approach was already proposed by Bouaziz and Lopez

(2010). Nevertheless, they estimated the quantity E(log fτ
θ (Z|θ′X)J(X)1{Z∈Aτ}), where fτ

θ is

the density of Z given θ′X and Z ∈ Aτ while J(X)1{Z∈Aτ} is a trimming function. This kind of

likelihood, in case J(X)1{Z∈Aτ} ≡ 1, is mostly used in the complete data setup. On the other hand,

our likelihood function takes the censoring mechanism into account and outperform the method

presented by Bouaziz and Lopez (2010). Both methods differ additionally in the bandwidth selection.

See Strzalkowska-Kominiak and Cao (2012), for details.

Remark 2 The trimming functions, 1{Yi≤an} and 1{Xi∈Acn}, are needed for proving the
√
n-

consistency of the estimator θ̂n. Nevertheless, we showed in Strzalkowska-Kominiak and Cao

(2012) that both trimmings can be asymptotically negligible. This means, we may work with se-

quences an and cn so that P(Yi ≤ an, Xi ∈ Acn) → 1, when n → ∞. Hence, in the simulation

study as well as in the real data example, we set 1{Yi≤an} ≡ 1 and 1{Xi∈Acn} ≡ 1.

2.2 The Beran-based approach

In this section we use the Beran conditional d.f. estimator defined in Beran (1981)

F̃nθ(y|θ′x) = 1−
n∏

i=1

[
1−

Bin(θ
′x)1{Yi≤y}δi∑n

j=1 1{Yj≥Yi}Bjn(θ′x)

]
,

where

Bin(θ
′x) =

K
(

θ′x−θ′Xi

h1

)
∑n

j=1 K
(

θ′x−θ′Xj

h1

) .
Moreover, let us define the conditional density and the smoothed d.f. as follows

f̃θ(y|θ′x) =
1

h2

n∑
j=1

Wjn(θ
′x)K

(
y − Yj

h2

)
(4)
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and

F̃S
θ (y|θ′x) =

n∑
j=1

Wjn(θ
′x)K

(
y − Yj

h2

)
, (5)

where

Wjn(θ
′x) = F̃nθ(Yj |θ′x)− F̃nθ(Yj − |θ′x).

Similarly to the previous subsection, let us define the log-likelihood function

l̃n(θ, h1, h2) =
1

n

n∑
i=1

(
δi log f̃

−i
θ (Yi|θ′Xi) + (1− δi) log(1− F̃S,−i

θ (Yi|θ′Xi))

)
,

where f̃−i
θ (Yi|θ′Xi) and F̃S,−i

θ (Yi|θ′Xi) are leave-one-out estimators from (4) and (5).

Then, as before, we set

(θ̃n, h̃1, h̃2) = arg max
θ,h1,h2

l̃n(θ, h1, h2). (6)

Finally, we estimate the conditional distribution function with the well-known Beran estimator

F̃nθ̃n
(y|θ̃′nx) = 1−

n∏
i=1

[
1−

Bin(θ̃
′
nx)1{Yi≤y}δi∑n

j=1 1{Yj≥Yi}Bjn(θ̃′nx)

]
(7)

or with its smoothed version

F̃S
θ̃n
(y|θ̃′nx) =

n∑
j=1

Wjn(θ̃
′
nx)K

(
y − Yj

h2

)
.

Remark 3 A simulation study showed that smoothing the Beran estimator is crucial. If we would

define the likelihood function, in terms of the unsmoothed Beran estimator F̃nθ:
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l̃∗n(θ, h1) =
1

n

n∑
i=1

(
δi log(F̃nθ(Yi|θ′Xi)− F̃nθ(Yi − |θ′Xi)) + (1− δi) log(1− F̃−i

nθ (Yi|θ′Xi))

)
, (8)

the selected bandwidth, ĥ1, would tend to be very small and the estimator of θ0 would give a

huge mean squared error.

Since lim
x→±∞

K(x) = 0, we have

lim
h1→0+

K

(
θ′Xi − θ′Xj

h1

)
=

{
0, if i ̸= j

K(0). if i = j

Hence

lim
h1→0+

F̃nθ(Yi|θ′Xi) = δi and lim
h1→0+

F̃nθ(Yi − |θ′Xi) = 0.

Finally,

lim
h1→0+

l̃∗n(θ, h1) =
1

n

n∑
i=1

(δi log(δi) + (1− δi) log(1− δi)) = 0.

This fact together with l̃∗n(θ, h1) ≤ 0 ∀θ, ∀h1 > 0 implies that l̃∗n attains its maximum for

h1 → 0+. If, additionally, K has a compact support, we can find a small h∗
1 that l̃n(θ, h1) = 0 for

all h1 ≤ h∗
1.

Remark 4 The proposed likelihood function l̃∗n is a useful tool to select the bandwidth for a Beran

estimator also without the single-index model assumption. For this we set d = 1 and θ = 1 and

maximize l̃∗n as a function of h1 and h2. Remark, that only the first bandwidth h1 will be used to

compute the conditional Beran estimator F̃n(y|x) with one dimensional covariate.

Remark 5 In the simulation study, using three different models, the Beran based approach gives

better results than Kaplan-Meier method presented in the previous subsection. Nevertheless, on the

contrary to Kaplan-Meier approach, proving the asymptotic properties of the parameter vector θ̃n

in the Beran case is still an open problem. The difficulty in the proofs is caused by a complicated

structure of the weights Wjn(θ
′x) in the definition of the conditional density, given by (4), which

depend on the parameter θ.
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3 Simulation study

In this section we compare the methods based on Kaplan-Meier and Beran estimator through the

simulation study. We consider three different scenarios. In the first and the second one, similarly to

Bouaziz and Lopez (2010), the variable of interest Z follows a linear regression, while the censoring

variable is generated from the exponential distribution with constant parameter (Model 1) and a

parameter dependent on the covariates (Model 2). In the third scenario, we generate Z from Cox

proportional hazard model with weibull baseline hazard (Model 3).

Moreover, we select the bandwidths h1 and h2 by maximizing l̂n or l̃n, respectively. For

this we consider two possible strategies: (a) Optimizing the likelihood function over two different

bandwidths h1 and h2, (b) optimizing the likelihood function over h by setting h1 = hσ̂(θ′X) and

h2 = hσ̂(Z), where σ̂ is the estimated standard deviation. More precisely, the algorithm follows

the steps:

1. Choose some preliminary bandwidths, e.g. h1 = n−1/7, h2 = n−1/3 in case (a) and h = n−1/5

in case (b).

2. Maximize l̂n or l̃n with respect to θ.

3. Use the estimated θ to compute σ̂(θ′X) in case (b) and maximize the likelihood l̂n or l̃n with

respect to (h1, h2) in case (a) and h in case (b).

4. Repeat 1-3 until convergence.

In the following subsection we compare the Kaplan-Meier and Beran based methods for es-

timating θ0 in Models 1-3 and summarize the results. In the subsection 3.2 we present results

regarding conditional distribution function estimation using both approaches.

3.1 Comparison of the estimators for θ0

3.1.1 Model 1

Let us consider the model used by Bouaziz and Lopez (2010). Let

Z = θ′0X + ε,

where θ0 = (1, 0.5, 1.4, 0.2)′, X = (X1, X2, X3, X4)
′,
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Xi ∼

{
N (0, 1), with probability 0.2

N (0.25, 2), with probability 0.8

is a normal mixture for i = 1, 2, 3, 4 and ε ∼ N (0, |θ′0X|). Moreover, let C ∼ exp(λ), so that

we observe only Y = min(Z,C).

The goal is to estimate θ0 with θ̂n = (1, θ̂n1, θ̂n2, θ̂n3)
′ using the Kaplan-Meier method and

θ̃n = (1, θ̃n1, θ̃n2, θ̃n3)
′ using the Beran method. Setting θ1 = 1 guarantees the identifiability of the

model.

In this subsection we consider constant λ, so that C is independent of Z.

The following results show the estimated bias, variance and mean squared error (MSE) for

different sample sizes and censoring rates. More precisely, we take n = 100 and n = 200 together

with λ = 0.3 (25% of censoring) and λ = 0.85 (40 % of censoring). The results are based on 500

trials.

Table 1: Estimated bias, variance and MSE for the Kaplan-Meier method for λ = 0.3, n = 100/200

and 500 trials.
n = 100 n = 200

θ̂n1 θ̂n2 θ̂n3 θ̂n1 θ̂n2 θ̂n3

Different bandwidths h1 and h2

Bias 0.0071 0.0152 -0.0032 0.0041 0.0068 0.0045

Variance 0.0295 0.0738 0.0249 0.0097 0.0278 0.0086

MSE 0.1285036 0.0462986

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias 0.0049 0.0229 0.0035 0.0053 0.0124 0.0060

Variance 0.0201 0.0551 0.0175 0.00798 0.0219 0.0066

MSE 0.0932777 0.0367803
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Table 2: Estimated bias, variance and MSE for the Beran method for λ = 0.3, n = 100/200 and

500 trials.
n = 100 n = 200

θ̃n1 θ̃n2 θ̃n3 θ̃n1 θ̃n2 θ̃n3

Different bandwidths h1 and h2

Bias 0.0079 0.0169 0.0068 0.0033 0.0012 0.0039

Variance 0.0204 0.0502 0.0182 0.0075 0.0192 0.0066

MSE 0.0891526 0.0333587

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias 0.0086 0.0240 0.0080 0.0043 0.0044 0.0045

Variance 0.0213 0.0523 0.0183 0.0077 0.0197 0.0066

MSE 0.0927401 0.0340391

Table 3: Estimated bias, variance and MSE for the Kaplan-Meier method for λ = 0.85, n = 100/200

and 500 trials.
n = 100 n = 200

θ̂n1 θ̂n2 θ̂n3 θ̂n1 θ̂n2 θ̂n3

Different bandwidths h1 and h2

Bias -0.0134 0.0138 -0.0163 0.0034 -0.00003 0.0131

Variance 0.0431 0.1135 0.0407 0.0198 0.0471 0.0172

MSE 0.1980503 0.0842094

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias -0.0042 0.0104 -0.0136 0.0081 0.0152 0.0145

Variance 0.0262 0.0701 0.0246 0.0167 0.0371 0.0136

MSE 0.1211611 0.0679582

3.1.2 Model 2

In this subsection we consider the same model as before, but with λ = λ(X). Hence there is some

dependence between C and Z. More precisely, we take

λ(X) = λ1|θ′0X|,
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Table 4: Estimated bias, variance and MSE for the Beran method for λ = 0.85, n = 100/200 and

500 trials.
n = 100 n = 200

θ̃n1 θ̃n2 θ̃n3 θ̃n1 θ̃n2 θ̃n3

Different bandwidths h1 and h2

Bias 0.0041 0.0152 -0.0041 -0.0008 0.00002 0.00398

Variance 0.0227 0.0579 0.0198 0.0076 0.0214 0.0082

MSE 0.1007357 0.0372533

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias 0.0071 0.0163 -0.0058 -0.0004 0.0027 0.0037

Variance 0.0205 0.051 0.0175 0.0075 0.0209 0.0078

MSE 0.0893034 0.0362851

with λ1 = 0.15 and λ1 = 0.65, which gives, as above, 25% and 40% of censoring.

Table 5: Estimated bias, variance and MSE for the Kaplan-Meier method for λ1 = 0.15, n =

100/200 and 500 trials.

n = 100 n = 200

θ̂n1 θ̂n2 θ̂n3 θ̂n1 θ̂n2 θ̂n3

Different bandwidths h1 and h2

Bias -0.0081 0.0075 0.0006 0.0013 0.0037 -0.0068

Variance 0.0504 0.2399 0.0437 0.0141 0.0379 0.0132

MSE 0.3341622 0.0652351

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias 0.0134 0.0393 0.0075 0.0036 0.0102 -0.0046

Variance 0.0271 0.0799 0.0218 0.0109 0.0314 0.0103

MSE 0.1305688 0.0527837
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Table 6: Estimated bias, variance and MSE for the Beran method for λ1 = 0.15, n = 100/200 and

500 trials.
n = 100 n = 200

θ̃n1 θ̃n2 θ̃n3 θ̃n1 θ̃n2 θ̃n3

Different bandwidths h1 and h2

Bias 0.0047 0.0241 0.0053 -0.0025 0.0005 -0.0027

Variance 0.0188 0.0498 0.0151 0.0067 0.0168 0.0054

MSE 0.0843058 0.0290116

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias 0.0080 0.0292 0.0058 -0.0018 0.0009 -0.0033

Variance 0.0191 0.0527 0.0142 0.0067 0.0168 0.0055

MSE 0.0868858 0.0289839

Table 7: Estimated bias, variance and MSE for the Kaplan-Meier method for λ1 = 0.65, n =

100/200 and 500 trials.

n = 100 n = 200

θ̂n1 θ̂n2 θ̂n3 θ̂n1 θ̂n2 θ̂n3

Different bandwidths h1 and h2

Bias -0.0113 -0.0169 0.0179 0.0134 0.0300 -0.0021

Variance 0.0996 0.3588 0.0753 0.0503 0.1324 0.0400

MSE 0.5344124 0.2239124

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias 0.0378 0.0969 0.0435 0.02568 0.0620 0.0063

Variance 0.0595 0.2863 0.0588 0.0441 0.1010 0.0373

MSE 0.4173347 0.1869656

3.1.3 Model 3

In this section we consider the proportional hazard model given by

h(t|x) = h0(t)e
θ′X ,

where the baseline hazard h0(t) = 2t and hence corresponds to weibull distribution with scale

parameter equals 1 and shape parameter equals 2. Moreover, the vector of covariates equals

X = (X1, X2, X3), where X1 ∼ U [0, 10], X2 ∼ N (0, 2), X3 ∼ exp(1). Additionally, we have a
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Table 8: Estimated bias, variance and MSE for the Beran method for λ1 = 0.65, n = 100/200 and

500 trials.
n = 100 n = 200

θ̃n1 θ̃n2 θ̃n3 θ̃n1 θ̃n2 θ̃n3

Different bandwidths h1 and h2

Bias 0.0005 0.0106 0.0152 -0.0014 0.0180 0.0003

Variance 0.0206 0.0523 0.0175 0.0086 0.0219 0.0065

MSE 0.0907719 0.0373466

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias 0.0046 0.0180 0.0139 0.0010 0.0198 0.0002

Variance 0.016 0.0477 0.0162 0.0083 0.0196 0.0060

MSE 0.0804382 0.0343129

censoring variable C ∼ exp(λ), where λ = 1 gives us approximately 25% of censoring and λ = 2.5

corresponds to 36% of censoring. As in the previous sections, our goal is to estimate θ0 with

θ̂n = (1, θ̂n1, θ̂n2)
′ using the Kaplan-Meier method and θ̃n = (1, θ̃n1, θ̃n2)

′ using the Beran method.

Table 9: Estimated bias, variance and MSE for the Kaplan-Meier method for λ = 1, n = 100/200

and 500 trials.
n = 100 n = 200

θ̂n1 θ̂n2 θ̂n1 θ̂n2

Different bandwidths h1 and h2

Bias -0.0205 0.0167 0.1286 -0.0286

Variance 0.2405 0.2847 0.6463 0.2041

MSE 0.5258934 0.8678262

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias -0.0286 0.0341 -0.0044 -0.0008

Variance 0.0753 0.1207 0.0392 0.0851

MSE 0.1979335 0.1243878
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Table 10: Estimated bias, variance and MSE for the Beran method for λ = 1, n = 100/200 and

500 trials.
n = 100 n = 200

θ̃n1 θ̃n2 θ̃n1 θ̃n2

Different bandwidths h1 and h2

Bias -0.0319 0.0139 0.0033 -0.0045

Variance 0.0665 0.0613 0.0322 0.0313

MSE 0.1289889 0.0635717

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias -0.0323 0.0335 -0.0155 -0.0062

Variance 0.0647 0.1080 0.0297 0.0577

MSE 0.1749557 0.0876373

Table 11: Estimated bias, variance and MSE for the Kaplan-Meier method for λ = 2.5, n = 100/200

and 500 trials.
n = 100 n = 200

θ̂n1 θ̂n2 θ̂n1 θ̂n2

Different bandwidths h1 and h2

Bias -0.0830 0.0229 -0.0200 0.0177

Variance 0.6268 0.3516 0.6294 0.2146

MSE 0.9858353 0.8447778

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias -0.0251 0.0393 -0.0244 0.0431

Variance 0.1002 0.1553 0.0567 0.0934

MSE 0.2576651 0.1525090
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Table 12: Estimated bias, variance and MSE for the Beran method for λ = 2.5, n = 100/200 and

500 trials.
n = 100 n = 200

θ̃n1 θ̃n2 θ̃n1 θ̃n2

Different bandwidths h1 and h2

Bias -0.0080 0.0257 -0.0166 -0.0065

Variance 0.0577 0.0746 0.2223 0.0340

MSE 0.1330798 0.2566678

Bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z)

Bias 0.0003 0.0209 -0.0037 0.0049

Variance 0.0574 0.1089 0.0283 0.0531

MSE 0.1667591 0.0814847

3.1.4 Summary of Models 1-3

Summarizing the results given in Tables 1-12, when Z and C are independent (Model 1 and 3) and

the censoring equals 25%, the Beran and the Kaplan-Meier estimators are giving similar results if

h1 = hσ̂(θ′X) and h2 = hσ̂(Z). In both models the Beran estimator is better when the censoring is

heavy. Moreover, recall that Model 1 was previously considered by Bouaziz and Lopez (2010). Our

both methods are mostly better than the one presented there. Finally, if Z and C are independent

given X but dependent in general (Model 2), the Beran estimator is always much better than the

one based on Kaplan-Meier integrals. The difference becomes larger when the censoring is heavier.

3.2 Comparison of the conditional distribution function estimators.

We compare the Kaplan-Meier and Beran-based estimators for the conditional d.f. through a

simulation study using the Kolmogorov-Smirnov (KS) distance. For this, let

KSKM
j (x) = sup

y∈R
|F̂ ∗(j)

θ̂n
(y|θ̂′nx)− Fθ0(y|θ′0x)|

and

KSBer
j (x) = sup

y∈R
|F̃ (j)

nθ̃n
(y|θ̃′nx)− Fθ0(y|θ′0x)|
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be a Kolmogorov-Smirnov distance between the estimated conditional d.f. obtained using the

jth trial and the true one for a fixed x in the Kaplan-Meier and the Beran case, respectively. Set

KSKM (x) =
1

m

m∑
j=1

KSKM
j (x)

KSBeran(x) =
1

m

m∑
j=1

KSBer
j (x)

be the estimated mean KS distance based on m trials.

In the following tables we present the KS distance for Models 1-3 (used in the previous sub-

section) for the Kaplan-Meier and the Beran estimators. We set x = (EX1, EX2, EX3, EX4)
′ =

(0.2, 0.2, 0.2, 0.2)′ in Models 1 and 2. In Model 3 we take x = (EX1, EX2, EX3)
′ = (5, 0, 1)′. For

a sake of brevity we use only the bandwidths h1 = hσ̂(θ′X) and h2 = hσ̂(Z).

Table 13: Estimated KS distance for Model 1 with λ = 0.3/0.85, n = 100/200 and 500 trials.

λ = 0.3 λ = 0.85

n = 100 n = 200 n = 100 n = 200

KSKM (x) 0.20615 0.16331 0.25795 0.20675

KSBeran(x) 0.19653 0.15883 0.22030 0.18031

Table 14: Estimated KS distance for Model 2 with λ = 0.15/0.65, n = 100/200 and 500 trials.

λ = 0.15 λ = 0.65

n = 100 n = 200 n = 100 n = 200

KSKM (x) 0.19605 0.15921 0.22237 0.18198

KSBeran(x) 0.19242 0.15653 0.19941 0.16253

Table 15: Estimated KS distance for Model 3 with λ = 1/2.5, n = 100/200 and 500 trials.

λ = 1 λ = 2.5

n = 100 n = 200 n = 100 n = 200

KSKM (x) 0.2375 0.1926 0.2578 0.2072

KSBeran(x) 0.2122 0.1643 0.2229 0.1773
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The performance of the Beran-based estimator is always better than that of the Kaplan-Meier

one. The difference is more remable when the censoring is heavy. Nevertheless, the computation

of the Beran based estimator is much more time consuming.

4 Real data example

To compare our models we analyze a data set on patients with a chronic liver disease, called pri-

mary biliary cirrhosis (PBC) from Mayo Clinic. The data can be found in the book by Fleming

and Harrington (1991) who analyzed it using Cox regression model.

For our study we use the data set called pdcRandomSurvivalForest from the open-source

software R. This set includes 424 patients from which 312 were randomized to the treatment with

D-penicillamine (DPCA) and placebo. The response variable Z, which is the time to death, may

be censored from the right and depends on several explanatory variables. Here we consider the

same transformed covariates as in Fleming and Harrington (1991):

X1 = log(bilirubin)

X2 = log(algumin)

X3 = age/365 (in years)

X4 = edema

X5 = log(prothrombin time)

X6 = treatment (1=DPCA, 2=placebo)

In the following we estimate θ0 in the single-index model based on 312 data of patients random-

ized to placebo and DPCA. Since Fleming and Harrington (1991) have shown that the treatment

has a negligible effect on the prognosis, we analyze the data first with the treatment variable and

then without it. More precisely, we estimate the vector θ0 using all covariates X1, ..., X6 (Model

I), and then removing the treatment variable, X6, and repeating the analysis based on X1, ..., X5

(Model II).

LetX = (X1, X2, X3, X4, X5, X6)
′ be the vector of covariates. We define θ0 = (1, θ2, θ3, θ4, θ5, θ6)

′

in Model I and θ0 = (1, θ2, θ3, θ4, θ5)
′ in Model II.
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The following table presents the result of the Kaplan-Meier and Beran-based estimators for θ0

defined in (2) and (6), respectively.

Table 16: Estimated parameters in Model I

Kaplan-Meier

θ̂n1 θ̂n2 θ̂n3 θ̂n4 θ̂n5 θ̂n6

1 -5.1456 0.0432 1.8707 3.0280 0.3934

Beran

θ̃n1 θ̃n2 θ̃n3 θ̃n4 θ̃n5 θ̃n6

1 -3.3569 0.0422 1.0854 4.2438 0.2706

Table 17: Estimated parameters in Model II

Kaplan-Meier

θ̂n1 θ̂n2 θ̂n3 θ̂n4 θ̂n5

1 -5.7731 0.0408 1.9961 3.1193

Beran

θ̃n1 θ̃n2 θ̃n3 θ̃n4 θ̃n5

1 -3.2684 0.0398 0.9928 4.2105

Within Tables 16 and 17 the results of the Kaplan-Meier and the Beran estimator for θ0 are

similar. Moreover, by comparing Tables 16 and 17, the estimated θ0 is not changing much when

we remove the treatment variable X6. This would agree with the result in Fleming and Harrington

(1991), that the patient’s lifetime does not depend on the treatment. In the following, we propose

a bootstrap based procedure to confirm this result. We apply the bootstrap method proposed by

Iglesias-Pérez and González-Manteiga (2003) for censored data. In order to check the hypothesis

H0 : θ6 = 0 we propose, for Beran based method, the following bootstrap test:

1. We choose B and for k = 1, ..., B we repeat the steps:

a) Basing on θ̃n = (θ̃n1, ..., θ̃n5) from Table 17 and X̃i = (X1i, ..., X5i)
′ we generate, for

i = 1, ..., n, T ∗
i from F̃nθ̃n

(y|θ̃′nX̃i).

b) We generate C∗
i from Gn(y) for i = 1, ..., n.

c) Set Y ∗
i = min(T ∗

i , C
∗
i ) and δ∗i = 1{T∗

i ≤C∗
i } for i = 1, ..., n.

d) Basing on the bootstrap sample (Y ∗
i , δ

∗
i ) and X̃∗

i = (X1i, ..., X5i, X6i)
′, we compute

θ̃∗n = (θ̃∗n1, ..., θ̃
∗
n5, θ̃

∗
n6).

17



e) We set θ̃∗n6(k) = θ̃∗n6.

2. For a given level α we estimate from the sample θ̃∗n6(1), ..., θ̃
∗
n6(B), the

α
2 100% and (1− α

2 )100%

quantiles (q̃∗α
2
and q̃∗1−α

2
) of the asymptotic distribution of the θ̃n6 under H0.

3. If θ̃n6, from Table 16, belongs to the confidence interval [q̃∗α
2
, q̃∗1−α

2
] the null hypothesis (H0 :

θ6 = 0) will not be rejected.

Similarly, we test H0 using Kaplan-Meier estimator F̂nθ(y|θ′x) with θ̂n. The confidence inter-

val, using the Kaplan-Meier based estimator, will be denoted by [q̂∗α
2
, q̂∗1−α

2
]. In this case, the null

hypothesis (H0 : θ6 = 0) wont be rejected, if θ̂n6 ∈ [q̂∗α
2
, q̂∗1−α

2
], where θ̂n6 is given in Table 16.

The results for the bootstrap confidence intervals, for α = 0.1 and B = 1000, are as follow

CIKM = [q̂∗α
2
, q̂∗1−α

2
] = [−0.49, 0.53] and CIBeran = [q̃∗α

2
, q̃∗1−α

2
] = [−0.40, 0.44].

Since, θ̂n6 = 0.3934 ∈ CIKM and θ̃n6 = 0.2706 ∈ CIBeran, the null hypothesis, H0 : θ6 = 0, is

not rejected. Additionally, we may estimate p-values with p̂KM and p̂Beran given by

p̂KM =
1

B

B∑
k=1

1{|θ̂∗
n6(k)

|≥0.3934} = 0.186 and p̂Beran =
1

B

B∑
k=1

1{|θ̃∗
n6(k)

|≥0.2706} = 0.295.

This confirms the result of Fleming and Harrington (1991), that the patient’s lifetime T does

not depend on the treatment.

Finally, we give some examples of estimated conditional distribution function. For clarity, let

FKM (t|θ̂′nx) denote the Kaplan-Meier estimator defined in (3) and FB(t|θ̃′nx) denote the Beran

estimator defined in (7).

The following figure presents the estimated conditional distribution functions for the Model I,

where the treatment variable is present. Let

x1 = (0.58, 1.25, age, 0, 2.37, 2)′ where age ∈ {40, 50, 60}.

Here the differences between the FKM (t|θ̂′nx1) and FB(t|θ̃′nx1) are caused by the heavy cen-

soring of 60%. By definition, the Kaplan-Meier based estimator FKM is jumping to one, at the

last order statistic, while Beran’s estimator, FB , is not. Nevertheless, both curves are showing the

same tendencies. This means, the probability to fail before time t is increasing with age (Figure

1).
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Figure 1: Estimators FKM (t|θ̂′nx1) (left) and FB(t|θ̃′nx1) (right), for age = 40 (solid line), age = 50

(dashed line) and age = 60 (dotted line)
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