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Abstract

In this article, we study a novel Nelson-Aalen type estimator of the conditional cu-

mulative hazard function, suitable for the competing risk setup where the population

membership (mark) information can be possibly missing for some individuals due to

random right-censoring. The standard Nelson-Aalen estimator is not appropriate for

this setting. We propose to use imputed population marks for the censored individuals

through fractional risk sets that estimate the underlying risk set for the process. Some

asymptotic properties such as a strong iid representation and uniform strong consis-

tency of the estimator are established. We study the practical performance of this

estimator through simulation and apply it to a real data set for illustration.
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1 Introduction

Consider a multistate model where a healthy (state 0) subject may end up in one of the J

states corresponding to different types of failure. Occurrence of any one of the failure pre-

cludes the occurrence of the other ones. This setup is commonly referred to as a ‘competing

risk’. This model is relevant in several disciplines, such as medicine, demography, actuarial

science (as multiple decrement models), economics and manufacturing. Crowder (2001) and

Lindqvist (2006) gives us a nice overview of the theory and methods of competing risks.

More details on the application of the competing risk model to biostatistics appear in the

monographs by Andersen et al. (1993) and Pintilie (2006). However, the data available for

the analysis of competing risks are frequently right censored. This may be due to the termi-

nation of the study before all the individuals fail, some subjects may die from a cause not

related to the study or are lost of follow-up. In this situation, the failure times, along with

the population membership (the cause of failure an individual is assigned to), are unknown

for the right censored individuals.

An important question, under a competing risk framework, might be to study the sub-

populations corresponding to different failure types. For example, in cancer studies, common

competing risks are relapse and death in remission (or treatment related mortality). Inte-

rest often lies in estimating the rate of occurrence of the competing risks, comparing these

rates between treatment groups and modeling the effect of covariates on the rate of occur-

rence of the competing risks. A nonparametric maximum likelihood estimator (NPMLE) for

the competing risk problem, along with martingale interpretations, was proposed by Aalen

(1976) under the name ‘multiple decrement models’. These models can be thought of as a

special case of the Aalen-Johansen theory of estimation of time-nonhomogeneous Markov

processes (Aalen and Johansen, 1978). But we need to confront a potential problem, i.e.

the membership/mark information can only be found after the individual actually fails (i.e.,

through autopsy, etc). Unfortunately, when some individuals are censored, we cannot classify

their failure types. As a result, during an observational study these important subpopula-

tion marks will be unavailable for individuals who were right censored and we are unable to

assign them to their appropriate ‘at-risk’ sets.

For a better explanation of this problem, consider the following real-life example. In a

2



study popularly known as the Stanford Heart Transplantation Program (Crowley and Hu,

1977), patients were admitted to the Stanford program for heart replacement. The trans-

plant recipients were subjected to mainly two sub-populations of failure, (here death), viz.,

transplant rejection, or other causes. However, this data set contains right-censored obser-

vations for whom the (eventual) cause of failure was not available. One might be interested

in comparing the survival behavior of those patients who died of ‘transplant rejection’ to

those who died of ‘other causes’ since the heart transplant. More details in this context

and the associated problem of testing the equality of two (or more) survival curves can be

found in Bandyopadhyay and Datta (2007) and Bandyopadhyay (2006). Another related

study involves a randomized clinical trial of estrogen diethylstilbestrol (DES) (Cheng et al.,

1998; Escarela and Carrière, 2003) where patients with Stage 3 and 4 prostrate cancer were

assigned to four treatment groups. Patients died either due to (a) prostate cancer or (b)

other causes, along with right-censored individuals whose membership mark was unknown.

One would be interested in studying the overall survival performance of the patients who

died due to (a) prostate cancer and (b) other causes, which are the two competing risks in

action. We revisit this data set in Section 6.

In competing risks, one of the primary quantities of interest is the cause specific hazard

function (for the jth cause) defined as the instantaneous rate of death at time t from cause j

among individuals who are still alive at time t in the presence of all causes of failure. Under

random right censoring, the classical estimator of the associated cumulative cause specific

hazard function is the so-called Nelson-Aalen (NA) estimator (Andersen et al., 1993). Aalen

(1978a,b) derived some theoretical asymptotic properties of this estimator, including its

consistency and asymptotic normality. However, they may not be appropriate if one desires

to understand the summary probability of the different causes of failure given that failures

have already occurred due to the competing risks. Despite being intuitively attractive, the

cause specific hazard function can only be expressed in terms of observable functions of

failure times (viz. marginal hazards) under the assumption of independent competing risks,

which may not always be reasonable (Escarela and Carrière, 2003). For our study, we focus

on the estimation of the jth conditional cumulative hazard function, defined in (2) as the

net or marginal hazard function of the lifetimes of those individuals failing due to the jth

risk (i.e. the cumulative hazard of the conditional distribution function F ∗
j defined in the
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next section). This function is appropriate when the target is the complete distribution and

not the sub-distribution function of the lifetimes associated with each risk separately.

The rest of the paper is organized as follows. In Section 2, we introduce the Nelson-Aalen

type estimator of the conditional cumulative hazard function based on fractional risk sets,

and in Section 3 we give some asymptotic properties, including a strong representation and

consistency. Section 4 addresses the case when the failure time and the cause of failure are

independent. In Section 5, a small simulation study is carried out to assess the finite sample

performance of the novel estimator, and it is applied to a real data in Section 6. The paper

ends with a discussion section (Section 7) followed by an Appendix which contains the proofs

of the main results.

2 Estimation based on fractional risk sets

We consider the competing risk network as a multistate continuous time stochastic process

{Z(t), t ∈ T } with a finite state space S = {1, . . . , J, 0} having a tree topology and right-

continuous sample paths: Z(t+) = Z(t) where we assume that the states 1, . . . , J are absorb-

ing whereas state 0 is transient (the root node). Here T = [0, τ ] where τ is a large possibly

observed time point (≤ ∞). Typically, for applications, τ will be taken to be the largest

time where some event (failure) took place. Let T ∗
i be the time the ith individual leaves

stage 0 for a failure (stage j, say), with distribution function F , and let X∗
i denote the stage

occupied by the ith individual at time T ∗
i (i.e., its failure type). A key analytical difficulty

that often occurs with time-to-event data is the presence of right censored observations. So,

besides the failure time T ∗ and the failure type X∗, we introduce also the censoring time

C, with distribution function G. Hence, while the variables of interest are T ∗ and X∗, one

cannot observe (T ∗
i , X∗

i ), but (Ti, δi, Xi), with Ti = T ∗
i ∧ Ci the right censored failure time

with distribution function H, δi = 1(T ∗
i ≤ Ci) the failure/censoring indicator, and

Xi = X∗
i δi =







j if T ∗
i ≤ Ci and X∗

i = j,

0 if T ∗
i > Ci.

Note that δi and Xi are observable quantities for every individual, but X∗
i is observed only

for the uncensored data. When X∗
i is observed, then it is equal to Xi. It is further assumed
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that the censoring variable C is independent of (T ∗, X∗) and all the random variables are

independent and identically distributed (i.i.d) across the n individuals.

The joint distribution of the pair (T ∗, X∗) is completely specified by the cumulative inci-

dence function due to risk j:

Fj (t) = P (T ∗ ≤ t,X∗ = j) ,

i.e. the sub-distribution function of the individuals failing due to cause j, and the cause

specific cumulative hazard function:

Λj (t) =

∫ t

0

dFj (v)

1 − F (v)
, (1)

where F (t) =
∑J

j=1 Fj(t) is the distribution function of T ∗. The nonparametric maximum

likelihood estimator (NPMLE) of Λj is given by the well-known Nelson-Aalen estimator (see

Andersen et al., 1993):

Λ̂NA
j (t) =

∑

Ti≤t

1(Xi = j)

Y (Ti)
where Y (Ti) =

n
∑

k=1

1{Tk ≥ Ti}.

Since the main interest in competing risks is often the distribution of lifetime for cause j,

we consider, apart from Fj and Λj, the following conditional cumulative hazard function

Λ∗
j (t) =

∫ t

0

dF ∗
j (v)

1 − F ∗
j (v−)

(2)

corresponding to the conditional distribution function

F ∗
j (t) = P (T ∗ ≤ t|X∗ = j), 1 ≤ j ≤ J,

that is, to the failure time distribution due to cause j. These functions are very useful to

describe the distribution of the lifetimes due to the jth cause of failure.

The novelty of this paper lies in the fact that there is not any data-driven estimator of

Λ∗
j proposed in literature. One may be tempted to estimate Λ∗

j using a Nelson-Aalen type

estimator based on the failure times due to cause j. Let Nj (t) be the counting process
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counting the number of observed failures of type j (i.e., number of transitions into stage j)

in the time interval [0, t]:

Nj(t) =
n
∑

i=1

1(T ∗
i ≤ t, δi > 0, X∗

i = j) =
n
∑

i=1

1(Ti ≤ t,Xi = j),

and let Yj(t) denote the number of individuals at risk of failing due to cause j or of getting

censored:

Yj(t) =
n
∑

i=1

1(Ti ≥ t,X∗
i = j). (3)

As a stochastic process, Yj is predictable, i.e. Yj(t) is Ft− measurable, where

Ft = σ({Nj(s),
∑

1(T ∗
i ≤ s, δi = 0, X∗

i = j) : 0 ≤ s ≤ t, j ≥ 1}). Thus, the Nelson-

Aalen estimator (Andersen et al., 1993) of cumulative hazards of failure amongst individuals

of subpopulation (or failure type) j is the following:

Λ̂∗
j(t) =

∫ t

0

1(Yj(v) > 0)

Yj(v)
dNj(v) =

∑

Ti≤t

1(Xi = j)

Yj(Ti)
with Yj(Ti) =

n
∑

k=1

1{Tk ≥ Ti, X
∗
k = j} (4)

and, using the one-to-one relationship (product integral mapping) between the cumulative

hazard function and the survival function, the estimator of F ∗
j is given by

F̂ ∗
j (t) = 1 −

∏

v≤t

(

1 −
dNj(v)

Yj(v)

)

= 1 −
∏

Ti≤t

(

1 −
1(Xi = j)

Yj(Ti)

)

. (5)

It is not difficult to see that Nj is computable from the observed data (Ti, Xi) i = 1, . . . , n.

However, the size of the subpopulation at-risk set Yj, on the other hand, is not computable,

since we cannot classify the failure types of the censored individuals due to the unavailability

of all the subpopulation marks X∗
i . In the absence of such an identifier, we may still assign

a probability of each individual being in one of the J subpopulations (something like an

imputed subpopulation identifier). Once these probabilities are known, we proceed with the

supposition that the data be divided into J subpopulations, the risk set of each subpopulation

now contains fractional observations with the fractional mass specified by an estimate of the

probability that the observation belongs to a particular subpopulation. Thus, we estimate Yj

by Y f
j , the ‘fractional risk set’ corresponding to the jth cause of failure (Satten and Datta,
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1999; Datta et al., 2000) defined as follows

Y f
j (t) =

n
∑

i=1

φ̂ij1(Ti ≥ t). (6)

Here, φ̂ij is the estimated probability that the ith individual belongs to the jth subpopulation

according to its failure type. A reasonable choice for φ̂ij is the following:

φ̂ij =



















1, if Xi = j

0, if Xi > 0, Xi 6= j,

P̂j(Ti,∞), if Xi = 0

where P̂j(Ti,∞) is the nonparametric maximum likelihood estimator (NPMLE) of the tran-

sition probability

Pj(s, t) = P{T ∗ ≤ t,X∗ = j|T ∗ > s) = P (fail type j by time t| alive at time s) (7)

evaluated at s = Ti, t = ∞. Then, Y f
j (t) gives the estimated fractional mass in the jth

failure type group remaining at risk of failure at time t, counting (φ̂ij = 1) the observations

that are uncensored and failed due to cause j, discarding (φ̂ij = 0) the observations that are

uncensored and failed due to a cause other than j and, for the censored observations, estimat-

ing the probability of that observation being in the jth failure type group (φ̂ij = P̂j(Ti,∞)).

The ‘fractional risk set’ concept has been recently used in the literature involving multistate

models, for example Satten and Datta (1999), Datta and Satten (2000), Bandyopadhyay

(2006) and Bandyopadhyay and Datta (2007).

Note that P̂j(Ti,∞) is the Aalen-Johansen estimator of the probability of eventually failing

due to cause j given being alive at time Ti. This estimator is obtained specializing Andersen

et al. (1993) results for a Markov chain to a competing risk setup,

P̂j(s, t) =

∫

(s,t]







∏

(s,u)

(

1 −
dN(v)

Y (v)

)







dNj(u)

Y (u)
. (8)

In the expression (8), Y (t) =
n
∑

i=1

1(Ti ≥ t) is the size of the ‘at-risk’ set irrespective of failure
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types, N(t) =
∑J

j=1 Nj(t) is the total number of observed failures of all types (total number

of stages entered) by time t. Since Nj and N are discrete with jumps only at the failure times

Ti’s, the above integral can be replaced by sums leading to the following simpler expression:

P̂j(s, t) =
∑

s<Ti≤t

{

1 − FKM
n (Ti−)

1 − FKM
n (s)

}{

∆Nj(Ti)

Y (Ti)

}

, (9)

where FKM
n is the Kaplan-Meier (KM) estimator of the distribution function of the failure

time due to all causes T ∗ (see Kaplan and Meier, 1958), and ∆Nj(Ti) is the number of

failures of type j at time Ti. For a typical individual who had not failed up to and including

time s, the first term (1 − FKM
n (Ti−))/(1 − FKM

n (s)) in (9) computes the probability that

such an individual had not failed until time Ti, and the second term ∆Nj(Ti)/Yj(Ti) is the

probability of its failing at time Ti and the failure is of type j given survival until that time.

Considering expressions (4) and (5), and replacing Yj with (6), the estimators of Λ∗
j and

F ∗
j based on fractional risk sets can be easily derived as:

Λ̂∗f
j (t) =

∫ t

0

1(Yj(v) > 0)

Y f
j (v)

dNj(v) and F̂ ∗f
j (t) = 1 −

∏

v≤t

(

1 −
dNj(v)

Y f
j (v)

)

.

Hence, the failure times among those failing from cause j can be analyzed using a Nelson-

Aalen and Kaplan-Meier type estimators, just considering data as partitioned into J groups

with fractional masses specified by an estimate of the probability that the observation belongs

to a particular group. In fact, the proportion of the sample which fails due to cause j can

be estimated as follows:

P̂j (0,∞) =
1

n

n
∑

i=1

φ̂ij, j = 1, ..., J.

Finally, note that F̂ ∗f
j coincides with the nonparametric maximum likelihood estimator

(NPMLE) of F ∗
j (see Satten and Datta, 1999):

F̂ ∗
j (t) =

P̂j(0, t)

P̂j(0,∞)
,

with Pj(s, t) given in (7) and estimated by (9).
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3 Asymptotic properties

We introduce now some functions before we state the main results for the proposed estimator

of Λ∗
j . Define

Hnc(t) = P (T ≤ t, δ > 0) and Hnc
j (t) = P (T ∗ ≤ t, δ > 0, X∗ = j) = P (T ≤ t,X = j) (10)

the (observable) sub-distribution functions of the failure times that are not censored, inde-

pendently of the cause (Hnc) and due to the jth cause (Hnc
j ),

Hc(t) = P (T ≤ t, δ = 0)

the sub-distribution function of the censored lifetimes, and consider

Hj (t) = P (T ≤ t,X∗ = j) and Hj (t) = P (X∗ = j) − Hj (t−) = P (T ≥ t,X∗ = j) (11)

the (not observable) sub-distribution functions of the failure times for cause j.

The importance of these functions is clear, since the empirical estimator P̂ (X∗ = j) =

nj/n, where nj =
∑n

i=1 1 (X∗
i = j) is the (not observable) total number of failures due to

cause j, together with the empirical estimators

Hnc
nj (t) =

1

n

n
∑

i=1

1 (Ti ≤ t,Xi = j) =
1

n
Nj (t) , (12)

Hnj (t−) =
1

n

n
∑

i=1

1 (Ti < t,X∗
i = j) =

1

n
(nj − Yj (t)) ,

lead to the estimator of the cumulative hazard function in (4):

Λ̂∗
j(t) =

∫ t

0

dHnc
nj (v)

nj

n
− Hnj (v−)

.

This expression of the estimator Λ̂∗
j will be very useful in the derivation of the strong
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representation of the ‘fractional risk set’ estimator Λ̂∗f
j , since

Λ̂∗f
j (t) = Λ̂∗

j(t) +

∫ t

0

(

1

Y f
j (v)

−
1

Yj (v)

)

dNj(v). (13)

Fix bH < sup {t : H (t) < 1}. As a first step, we shall now study some asymptotic pro-

perties of the estimator of the transition probabilities P̂j (s, t) given in (8). We will give

first an iid representation and then a consistency result. They are analogue to Theorem 1

in Aalen (1978b) for partial transition probabilities, and Theorem 5.1 in Fleming (1978) for

nonhomogeneous Markov processes.

Theorem 3.1 If the distribution functions F and G are continuous, then

P̂j (s, t) − Pj (s, t) =
1

n

n
∑

i=1

ζj (Ti, X
∗
i , δi, s, t) + rn (s, t)

with

ζj (T,X∗, δ, s, t) =
1

1 − F (s)
×

{

1 − F (T )

1 − H (T )
1 (s ≤ T ≤ t, δ > 0, X∗ = j)

−

∫ t

s

1 − F (v)

(1 − H (v))21 (T ≥ v,X∗ = j) dHnc (v)

−
1

1 − H (T )

∫ t

s

(1 − F (v))1 (s ≤ T ≤ v, δ > 0) dΛj (v)

+

∫ t

s

(1 − F (v))

[
∫ v

0

1 (T ≥ u)

(1 − H (u))2dHnc (u)

]

dΛj (v)

}

− Pj (s, t)

∫ s

0

1 (T ≥ v)

(1 − H (v))2dHnc (v) (14)

and sup0≤s≤t≤bH
|rn (s, t)| = O (n−1 ln n) with probability one.

Remark 1 This result generalizes the iid representation for the Aalen-Johansen estimator

evaluated at (t,∞), which is a key in the study of many statistical properties in competing

risks:

P̂j (t,∞) − Pj (t,∞) =
1

n

n
∑

i=1

1

1 − F (t)

∫ ∞

t

1 − F (v)

1 − H(v)
[dMji(v) − Pj(v,∞)dM.,i(v)] + rn(t)
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where

Mji(t) = 1(Ti ≤ t, δi > 0, X∗
i = j) −

∫ t

0

1(Ti ≥ s,X∗
i = j)dΛ(s), M.,i(t) =

J
∑

j=1

Mji(t)

and sup0≤t≤bH
|rn (t)| = O (n−1 ln n) with probability one.

Corollary 3.1 The estimator of the transition probabilities satisfies

sup
0≤s≤t≤bH

n1/2 (ln n)−1/2
∣

∣

∣
P̂j (s, t) − Pj (s, t)

∣

∣

∣
→ 0.

Theorem 3.2 If the distribution functions F and G are continuous, then

1

n

[

Yj(t) − Y f
j (t)

]

=
1

n

n
∑

i=1

ρj (Ti, X
∗
i , δi, t) + sn (t)

with

ρj (T,X∗, δ, t) = 1(T ≥ t, δ = 0)[1(X∗ = j) − Pj (T,∞)] −

∫ ∞

t

ζj (T,X∗, δ, v,∞) dH
c
(v)

(15)

where ζj given in (15) and sup0≤t≤bH
|sn (t)| = O (n−1 ln n) with probability one.

Corollary 3.2 The fractional risk set estimator satisfies

sup
0≤t≤bH

n−1/2 (ln n)−1/2
∣

∣

∣
Yj(t) − Y f

j (t)
∣

∣

∣
→ 0.

The following theorem gives a representation of the ‘fractional risk set’ estimator Λ̂∗f
j as a

sum of iid variables plus a remainder term. It is based on the strong representation for the

transition probabilities in Theorem 3.1.

Theorem 3.3 If the distribution functions F and G are continuous, then

Λ̂∗f
j (t) − Λ∗

j (t) =
1

n

n
∑

i=1

ξj (Ti, X
∗
i , δi, t) + Rn (t)
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where

ξj (T,X∗, δ, t) =
1 (T ≤ t,X∗ = j)

Hj (T )
−

∫ t

0

1 (T ≤ v,X∗ = j)

H
2

j (v)
dHnc

j (v)+

∫ t

0

ρj (T,X∗, δ, v)

H
2

j (v)
dHnc

j (v)

with ρj given in (15) and sup0≤t≤bH
|Rj (t)| = O

(

n−1 (ln n)3).

Corollary 3.3 The ‘fractional risk set’ estimator of Λ∗
j satisfies

sup
0≤t≤bH

(

n

(ln n)3

)1/2 ∣
∣

∣
Λ̂∗f

j (t) − Λ∗
j (t)

∣

∣

∣
→ 0 with probability 1.

Remark 2 The analogous results for the conditional distribution function estimator F̂ ∗f
j can

be easily derived considering the one-to-one mapping relation between the survival function

and the cumulative hazard function:

1 − F (t) = exp(−Λc(t))
∏

u≤t

(1 −4Λ(u)),

where Λc is the continuous part of Λ, and 4Λ(u) = Λ(u)−Λ(u−). The iid representation in

Theorem 3.3 can also be applied to kernel-type density and hazard function estimation. The

derivation is similar to that of Gijbels and Wang (1993) for LTRC data, although a sharper

bound for the remainder term will be needed.

4 Independence of the variables T ∗ and X∗

The nature of the dependence between T ∗ and X∗ is very useful. Under independence, the

lifetimes T ∗ and the causes of failure X∗ can be studied separately, which simplifies the

analysis of competing risks to a great extent. As for the cause specific cumulative hazard

function Λj in (1) and the conditional cumulative hazard function Λ∗
j in (2) studied in this

paper, note that

Λ∗
j(t) =

1

P (X∗ = j)
Λj(t).

Besides, the conditional Λ∗
j reduces to the cumulative hazard function Λ of the lifetimes

T ∗ regardless of the cause of failure, since F ∗
j (t) = F (T ∗ ≤ t). In this case, the classical
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Nelson-Aalen estimator of Λ:

Λ̂NA
n (t) =

∑

Ti≤t

1(δi > 0)

Y (Ti)
with Y (Ti) =

n
∑

k=1

1(Tk ≥ Ti), (16)

is the most efficient estimator of Λ (and hence of Λ∗
j for any j = 1, ..., J). This efficiency

can be easily be seen taking into account that the process n1/2
[

Λ̂NA
n (t) − Λ (t)

]

converges

weakly to a mean zero Gaussian process with covariance structure (see Lo et al., 1989)

∫ t1∧t2

0

dHnc(v)

(1 − H(v))2
.

The analogue result for the ‘fractional risks set’ estimator Λ̂∗f
j when the variables T ∗ and X∗

are independent is given in the following proposition.

Proposition 4.1 If the variables T ∗ and X∗ are independent, then the process

n1/2
[

Λ̂∗f
j (t) − Λ∗

j (t)
]

converges weakly to a mean zero Gaussian process with covariance

structure

1

P (X∗ = j)

∫ t1∧t2

0

dHnc(v)

(1 − H(v))2
+

(

1

P (X∗ = j)
− 1

)
∫ t1

0

∫ t2

0

g(x1, x2)dHnc(x1)dHnc(x2)

(1 − H(x1))2(1 − H(x2))2

where

g(x1, x2) =

∫ ∞

x1

∫ ∞

x2

m (v1 ∨ v2) dHc (v1) dHc (v2)

(1 − F (v1)) (1 − F (v2))
and m (v) =

∫ ∞

v

(

1 − F (u)

1 − H (u)

)2

dHnc (u) .

Dewan et al. (2004) proposed several tests for testing independence between time to failure

T ∗ and the cause of failure X∗ based on conditional probabilities involving T ∗ and X∗, when

there is no censoring. According to Dewan et al. (2004), the variables T ∗ and X∗ are

independent if and only if the conditional probability

φj(t) = P (X∗ = j|T ∗ > t) = Pj(t,∞) is a constant, that is, φj(t) = P (X∗ = j).

Dykstra et al. (1998) and Kochar and Proschan (1991) provided some restricted tests for

censored observations in a competing risks framework. In the competing risks setup with

censored observations, the conditional cumulative hazard functions Λ∗
j can be used to test

13



independence without any restriction since, under independence, the difference between Λ∗
j

and Λ∗
k will be close to zero for every j, k = 1, . . . , J . This suggests a hypothesis testing

setup motivated by obtaining the FRS estimates of Λ∗
j for any j = 1, . . . , J , and analyzing

if the estimates are close each other. The same is expected for the difference between the

distribution functions F ∗
j and F . One could think of a Kolmogorov-Smirnov (KS) type test:

TKS = sup
t∈R

max
j=1,...,J

|F̂ ∗f
j (t) − FKM

n (t)|, (17)

or a Cramer Von-Mises (CM) test:

TCM = max
j=1,...,J

∫

(

F̂ ∗f
j (t) − FKM

n (t)
)2

ω(t)dt.

The limit distribution of these tests follows consequently from the limit distribution of the

estimator F̂ ∗
j , in Proposition 4.1, and that of FKM

n (see Breslow and Crowley, 1974). The

study of these tests, though interesting themselves, is out of the scope of this paper and will

be considered in the future.

5 Simulation study

We have carried out a small simulation study, in order to assess the practical performance of

the ‘fractional risk set’ estimator Λ̂∗f
j of the conditional cumulative hazard function Λ∗

j . For

the sake of comparison, we have computed the Nelson-Aalen estimator Λ̂NA
n in (16). Note

that Λ̂NA
n is an estimator of Λ∗

j with nice theoretical properties when the variables T ∗ and X∗

are independent, since in such a case Λ∗
j = Λ. However, in many situations, this assumption

is not always appropriate, and Λ̂∗f
j will be the only available estimator of Λ∗

j .

We have considered two models with J = 2 competing risks. For Model 1 (El-Nouty and

Lancar, 2004), we assume the independence between T ∗ and X∗, whereas in Model 2 the

variables T ∗ and X∗ are dependent.

14



Model 1 The variables T ∗ and X∗ are independent.

F (t) = 1 − (1 − t/τ)3/4 exp(−t2/2τ 2) and G(t) = 1 − (1 − t/τ)1/4 exp(t2/2τ 2)

F1(t) = F2(t) = 0.5F (t)

Λ∗
j(t) = t2/2τ 2 − 3/4 ln(1 − t/τ) for j = 1, 2.

Model 2 The variables T ∗ and X∗ are dependent.

F (t) = t/τ and G(t) = 1 − (1 − t/τ)2

F1(t) = t/2τ(1 − (1 − t/τ)2) and F2(t) = t/2τ(1 + (1 − t/τ)2)

Λ∗
1(t) = − ln[1 − t/τ(1 − (1 − t/τ)2)] and Λ∗

2(t) = − ln[1 − t/τ(1 + (1 − t/τ)2)]

Note that, for Model 1, φj(t) = P (X∗ = j) = 1
2

for j = 1, 2 and therefore, the variables T ∗

and X∗ are independent. However, for Model 2, we have

φ1(t) =
1

2

(

1 +
t

τ
−

t2

τ 2

)

and φ2(t) =
1

2

(

1 −
t

τ
+

t2

τ 2

)

,

and hence, T ∗ and X∗ are dependent.

We have chosen τ = 1461 (4 years), λ = 1/730 and α = 1. In this case, the percentage of

censoring is about 8.33% in Model 1 and 33% in Model 2.

We have obtained the conditional distribution functions F ∗
j and F for both models, and

computed the KS test in (17) using 1000 Monte Carlo samples assuming a sample size

n = 100. Figure 1 shows the histogram plots of the values of the KS tests for both Models

1 and 2.

PUT FIGURE 1 ABOUT HERE

As expected, the KS test takes much lower values in Model 1 where T ∗ and X∗ are inde-

pendent, than in Model 2. This shows that the KS and CM tests are promising to test the

independence between T ∗ and X∗.
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6 Example: Prostate Cancer Data

We now illustrate the fractional risk set based estimator of the crude cumulative hazard

function using the prostate cancer data described in the introduction.

We consider the same data set studied by Byar and Green (1980) and published in Andrews

and Herzberg (1985). In those papers, the randomized trial was aimed to compare the differ-

ent levels of diethylstilbestrol (DES), a drug to treat prostate cancer with respect to patient

survival. A total of 506 Stage 3 and 4 prostate cancer patients were assigned to four treat-

ment groups, viz. placebo, 0.2 mg DES/day, 1 mg DES/day and 5 mg DES/day. Because of

the potentially fatal cardiovascular adverse effect from DES (Escarela and Carrière, 2003),

the assessment of risk-benefit analysis of DES (Cheng et al., 1998) must take into account

not only the death time from (a) prostate cancer, but also (b) other competing causes of

death, which includes death due to cardiovascular related causes (treatment related mortal-

ity). Although we do not consider the set of covariates viz. age, weight index, performance

rating, cardiovascular disease history, etc, in this data, a set of 23 patients having incomplete

covariate information were removed from our analysis. Out of the 483 patients with complete

covariate information, there were 125 (about 26%) deaths from prostate cancer, 219 (about

45%) deaths from ‘other causes’, along with 139 (about 29%) right censored observations

whose subpopulation membership is unknown.

We are interested in the distribution of time to death T ∗ from (a) prostate cancer (X∗ = 1)

and (b) other different causes including cardiovascular related causes (X∗ = 2), and also to

verify the dependence/independence between the variables T ∗ and X∗. The log-rank test

defined in Bandyopadhyay and Datta (2007) tests for the null hypothesis

H0 : F ∗
1 (t) = · · · = F ∗

J (t)(≡ F ∗(t) say) ∀1 ≤ j ≤ J.

Note that H0 is equivalent to the independence between T ∗ and X∗. The log-rank test

statistic for this data set is 5.989, with a bootstrap estimated standard error of 14.275

leading to a χ2 statistic of 0.176, which is not significant at 5% level. This implies that

we cannot reject the independence between T ∗ and X∗. To verify the conclusion based on

log-rank tests, we have computed the classical Nelson-Aalen estimator of Λj and the FRS

estimator of Λ∗
j with j = 1, 2. Table 1 illustrates the estimated cumulative hazards at the
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quartiles for the two competing risks using both the fractional risk set and the usual NA

estimator. It can be seen that the estimated cumulative hazards for the two competing

risks using the FRS estimator are much closer in contrary to the traditional Nelson-Aalen

estimates. This is also supported by the overlapping plots (Figure 2) of the estimated FRS

based cumulative hazards for the two competing risks. This implies that conditionally on

the cause of failure X∗, the lifetimes of the prostate cancer patients seem to have the same

distribution which agrees to the fact that the failure time and failure cause are independent.

So, we can conclude that the application of the drug DES doesn’t provide any differential

effect on the overall survival behavior of the patients who died due to prostate cancer from

those who died due to other causes.

PUT TABLE 1 ABOUT HERE

PUT FIGURE 2 ABOUT HERE

7 Discussion

A Nelson-Aalen type estimator of the jth conditional cumulative hazard function Λ∗
j appro-

priate under a competing risk framework has been proposed when the population marks of

the right censored individuals in the study are unknown. Such incomplete data are common

in practice and are tackled by the concept of fractional or imputed risk membership. The

key is to split the total risk set at every time point t into J possible sub at-risk sets (corre-

sponding to J sub-populations) also called fractional risk-set (FRS). This NA type estimator

is unique and the authors are not aware of any other estimator being proposed earlier in

literature that deals with this problem of estimating the jth conditional cumulative haz-

ard. In a related testing of hypothesis scenario, Bandyopadhyay and Datta (2007) showed

that throwing away the censored observations (equivalent to contributing zero mass to each

‘at-risk’ set ) results in loss of power though maintaining proper size. Thus, the ‘fractional

risk set’ provides a way to include the censored observations in the appropriate ‘at-risk’ set

with nice probability interpretations. We have studied the theoretical properties of the FRS

based estimator of Λ∗
j although they lead to complicated asymptotics. We have illustrated

with a simulation study that, apart from the interest of studying the conditional survival

distributions of the subjects subjected to different competing risks on the overall, the FRS

17



based estimators of F ∗
j and Λ∗

j can also be used to test the independence between T ∗ and

X∗.

Besides, although we have restricted our attention to the estimation of the conditional

cumulative hazards under a competing risk framework, this can be extended much further

to more complicated multistate networks like the three-stage irreversible illness-death model

(Anderson et al., 1993). The concept of ‘fractional-risk-set’ allow us to compare the con-

ditional cumulative hazards among different states in the model. This is also a subject of

future research.
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Appendix

Proof of Theorem 3.1. The transition probabilities in (7) can also be written as follows:

Pj (s, t) =
1

1 − F (s)

∫ t

s

(1 − F (v)) dΛj (v) ,

with F the distribution function of T ∗, and Λj the cause specific cumulative hazard function

given in (1). For the Aalen-Johansen estimator of Pj (s, t) in (8), we have

P̂j (s, t) =
1

1 − FKM
n (s)

∫ t

s

(

1 − FKM
n (v)

)

dΛ̂NA
j (v)
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where FKM
n is the product-limit Kaplan-Meier (KM) estimator, and Λ̂NA

j the Nelson-Aalen

(NA) estimator of Λj. Then, the iid representation of P̂j (s, t) − Pj (s, t) comes from the iid

representation of the KM estimator FKM
n (see Lo et al., 1989) and that of the NA cumulative

hazard function estimator Λ̂NA
j (see Lo et al., 1989).

Proof of Corollary 3.1. Applying the strong uniform consistency results for the KM and

NA estimators (see Lo et al., 1989), the result is straightforward.

Proof of Theorem 3.2. Recall the definition of the fractional risk set Y f
j in (6) and the

risk set Yj in (3). Therefore,

1

n

[

Yj(t) − Y f
j (t)

]

=
1

n

n
∑

i=1

[1 (X∗
i = j) − Pj (Ti,∞)]1(Ti ≥ t, δi = 0)

+
1

n

n
∑

i=1

[

Pj (Ti,∞) − P̂j (Ti,∞)
]

1(Ti ≥ t, δi = 0). (18)

The first term is a normalized sum of zero mean summands (see Lemma 3.1 in Satten and

Datta, 2000). The second term in (18) can be written as follows:

−

∫ ∞

t

[

P̂j (v,∞) − Pj (v,∞)
]

dH
c

n (v) = −
1

n

n
∑

i=1

∫ ∞

t

ζj (Ti, Xi, δi, v,∞) dH
c
(v) + sn (t)

with sup0≤t≤bH
|sn (t)| = O (n−1 ln n). This concludes the proof.

Proof of Corollary 3.2. Recall the decomposition (18). The triangular inequality allows

to bound the first term by the sum:

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1(Ti ≥ t, δi = 0)1 (X∗
i = j) − P (T ≥ t, δ = 0, X∗ = j)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1(Ti ≥ t, δi = 0)Pj (Ti,∞) − P (T ≥ t, δ = 0, X∗ = j)

∣

∣

∣

∣

∣

.

These summands are the absolute error of estimation of certain empirical distribution func-

tions. An immediate consequence of the Dvoretzky-Kiefer-Woldfowitz (DKW) bound for

empirical measures yields that the supremo of the first term in (18) is O
(

n−1/2 (ln n)1/2
)
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almost surely. The second term in (18) can be written as follows:

−

∫ ∞

0

[

P̂j (v,∞) − Pj (v,∞)
]

1(v ≥ t)dHc
n (v) .

Then, applying Corollary 3.1, the supremo of the second term in (18) is o
(

n−1/2 ln n
)

almost

surely. This concludes the proof.

The outline of the proof of Theorem 3.3 is similar to that of Theorem 1 of Major and Rejto

(1988). We start with a few preliminary results which will be useful for some methods in

the main body of the proof of Theorem 3.3 and Corollary 3.3. Consider the function Hj in

(11) and its empirical estimator

Hnj (t) =
1

n

n
∑

i=1

1 (Ti ≥ t,X∗
i = j) . (19)

The following lemmas give some consistency results for Hnj.

Lema 1 sup0≤t≤∞

∣

∣Hj (t) − Hnj (t)
∣

∣ = O
(

n−1/2 (ln n)1/2
)

a.s.

Proof It is an immediate consequence of the DKW bound for empirical measures.

Lema 2 supk:Tk≤bH
Hj (Tk) /Hnj (Tk) = O (ln n) with probability one.

Proof The proof follows the same steps as in the proof of Lemma 1.1 in Stute (1993).

Proof of Theorem 3.3. Recall the definition of Λ∗
j from (2) and the representation (13) of

the estimator based on fractional risk set. Therefore,

Λ̂∗f
j (t) − Λ∗

j(t) =

∫ t

0

d
[

Hnc
nj (v) − Hnc

j (v)
]

Hj (v)
−

∫ t

0

Hnj (v) − Hj (v)

H
2

j (v)
dHnc

j (v)

+Rj1 (t) + Rj2 (t) + Rj3 (t) , (20)
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where

Rj1 (t) =

∫ t

0

Hj (v) − Hnj (v)

H
2

j (v)
d
[

Hnc
nj (v) − Hnc

j (v)
]

,

Rj2 (t) =

∫ t

0

(

Hj (v) − Hnj (v)
)2

Hnj (v) H
2

j (v)
dHnc

nj (v) ,

Rj3 (t) =

∫ t

0

1(Yj(v) > 0)

(

1

Y f
j (v)

−
1

Yj (v)

)

dNj(v)

with Hnc
j , Hnc

nj , Hj and Hnj given in (10), (12), (11) and (19) respectively.

The term Rj1 can be decomposed into four terms:

Rj1 (t) =

∫ t

0

dHnc
nj (v)

Hj (v)
−

∫ t

0

Hnj (v)

H
2

j (v)
dHnc

nj (v) −

∫ t

0

dHnc
j (v)

Hj (v)
+

∫ t

0

Hnj (v)

H
2

j (v)
dHnc

j (v) . (21)

The second integral in (21) is a V -statistic of order two. We work with it as follows:

∫ t

0

Hnj (v)

H
2

j (v)
dHnc

nj (v) =
n − 1

n

∫ t

0

dHnc
nj (v)

Hj (v)
+

n − 1

n

∫ t

0

Hnj (v)

H
2

j (v)
dHnc

j (v)

−
n − 1

n

∫ t

0

dHnc
j (v)

Hj (v)
+ Qn (t) (22)

where we split up the integral into two terms, its diagonal and off-diagonal part and obtain

the Hájek projection of the U-statistic. Note that Qn (t) is a degenerate U-statistic of order

two and then (see Section 5.3.3 in Serfling, 1980), for each δ > 3/2

sup
0≤t≤bH

|Qn (t)| = o
(

n−1 ln n
)

with probability 1.

Application of the SLLN to each of the remaining processes in (22) allows us to replace

(n − 1)/n by 1, so that, from (21) we have

sup
0≤t≤bH

|Rj1 (t)| = o
(

n−1 ln n
)

with probability 1. (23)
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The term Rj2 can be bounded as follows:

Rj2 (t) ≤ sup
0≤v≤∞

∣

∣Hj (v) − Hnj (v)
∣

∣

2
sup

0≤Tk≤bH

Hj (Tk)

Hnj (Tk)

∫ t

0

dHnc
nj (v)

H
3

j (v)
.

Immediate consequence of Lemmas 1 and 2 and the SLLN is

sup
0≤t≤bH

|Rj2 (t)| = O
(

n−1 (ln n)2) with probability 1. (24)

For Rj3, consider the decomposition

Rj3 (t) = n−1

∫ t

0

Yj(v) − Y f
j (v)

H
2

j (v)
dHnc

j (v)

+n−1

∫ t

0

[

Yj(v) − Y f
j (v)

]

(

1

n−2Y f
j (v)Yj(v)

−
1

H
2

j (v)

)

dHnc
j (v)

+n

∫ t

0

Yj(v) − Y f
j (v)

Y f
j (v)Yj(v)

d
[

Hnc
nj − Hnc

j

]

(v). (25)

The last term in (25) is, in absolute value, lower than

sup
0≤t≤bH

∣

∣

∣

∣

1

n

(

Yj(t) − Y f
j (t)

)

∣

∣

∣

∣

(

sup
0≤t≤bH

∣

∣

∣

∣

Hj (t)

Hnj(t)

∣

∣

∣

∣

)2
1

H
2

j (bH)
sup

0≤t≤bH

∣

∣Hnc
nj (t) − Hnc

j (t)
∣

∣

and, by Corollary 3.2, Lemma 2 and the DKW bound for empirical measures, the rate is

O
(

n−1 (ln n)3) with probability one.

With respect to the second integral in (25), we proceed as follows:

1

n−2Y f
j (v)Yj(v)

−
1

H
2

j (v)

=
1

n−1Yj (v)

(

Hj (v) − n−1Y f
j (v)

n−1Y f
j (v)Hj (v)

)

+
1

Hj (v)

(

Hj (v) − n−1Yj (v)

n−1Yj (v) Hj (v)

)

.

Now, applying Corollary 3.2, Lemma 1 and the DKW bound, we have

sup
0≤t≤bH

∣

∣

∣

∣

∣

n−1

∫ t

0

[

Yj(v) − Y f
j (v)

]

(

1

n−2Y f
j (v)Yj(v)

−
1

H
2

j (v)

)

dHnc
j (v)

∣

∣

∣

∣

∣

= O
(

n−1 ln n
)
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with probability one.

For the first integral in (25), the dominant term comes from the result in Theorem 3.2:

1

n

n
∑

i=1

∫ t

0

ρj (Ti, X
∗
i , δi, v)

H
2

j (v)
dHnc

j (v) +

∫ t

0

sn(v)

H
2

j (v)
dHnc

j (v)

with sup0≤t≤bH
|sn (t)| = O (n−1 ln n) with probability 1. Therefore,

Rj3(t) =
1

n

n
∑

i=1

∫ t

0

ρj (Ti, X
∗
i , δi, v)

H
2

j (v)
dHnc

j (v) + Rj4 (t) (26)

with sup0≤t≤bH
|Rj4 (t)| = O (n−1 ln n) with probability 1.

The proof is finished using the decomposition (20) and the rates (23), (24) and (26).

Proof of Corollary 3.3. Consider the decomposition

Λ̂∗f
j (t) − Λ∗

j(t) =

∫ t

0

(

1

Hnj (v)
−

1

Hj (v)

)

dHnc
nj (v) +

∫ t

0

d
[

Hnc
nj (v) − Hnc

j (v)
]

Hj (v)

+

∫ t

0

(

1

Y f
j (v)

−
1

Yj (v)

)

dNj(v). (27)

It follows from Lemmas 1 and 2 and the SLLN, that the absolute value of the first term

in (27) is O
(

n−1/2 (ln n)3/2
)

with probability 1.

For the second term in (27) we apply integration by parts and the DKW bound for empirical

measures. Then, it is O
(

n−1/2 (ln n)1/2
)

with probability one.

To prove that the third term in (27) is negligible, note that it can be written as follows:

n

∫ t

0

Yj(v) − Y f
j (v)

n−2Y 2
j (v)

dHnc
nj (v) − n

∫ t

0

Yj(v) − Y f
j (v)

n−2Y f
j (v)Yj(v)

(

Y f
j (v)

Yj(v)
− 1

)

dHnc
nj (v). (28)

The second term in (28) is negligible with respect to the first one, which can be bounded by

sup
0≤t≤bH

∣

∣

∣

∣

1

n

(

Yj(t) − Y f
j (t)

)

∣

∣

∣

∣

(

sup
k:Tk≤bH

∣

∣

∣

∣

Hj (Tk)

Hnj(Tk)

∣

∣

∣

∣

)2
1

H
2

j (bH)

∫ bH

0

dHnc
nj (v).

Therefore, from Corollary 3.2, Lemma 2 and the SLLN, the second term in (28) is O
(

n−1/2 ln n
)

with probability one. This concludes the proof.
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Proof of Proposition 4.1. Recall the iid representation of the FRS estimator in Theo-

rem 3.3. Long, although straightforward calculations give E[ξj(T,X∗, δ, t)] = 0 and the

covariance estructure

∫ t1∧t2

0

dHnc
j (v)

H
2

j(v)
+

∫ t1

0

∫ t2

0

E [ρj (T,X∗, δ, x1) ρj (T,X∗, δ, x2)]

H
2

j (x1) H
2

j (x2)
dHnc

j (x1)dHnc
j (x2),

where
E [ρj (T,X∗, δ, x1) ρj (T,X∗, δ, x2)]

=

∫ ∞

x1

∫ ∞

x2

E [ζj (T,X∗, δ, v1,∞) ζj (T,X∗, δ, v2,∞)] dHc (v1) dHc (v2) .

This covariance reduces to the one in Proposition 4.1 taking into account that, if the variables

T ∗ and X∗ are independent, then

dΛj(t) = Pj(t,∞)dΛ(t).

This completes the proof.
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Estimated cumulative hazards functions
Time Prostate (FRS) Prostate (NA) Other causes (FRS) Other causes (NA)

1st Quartile 0.4185 0.1159 0.4732 0.2143
Median 1.0705 0.2632 1.1582 0.4739

3rd Quartile 1.7237 0.3752 1.9843 0.6845

Table 1: Estimated cumulative hazard functions for the Prostate Cancer data computed
using FRS (fractional risk set) and NA (Nelson-Aalen) estimators for the two competing
risks, viz. (a) Prostate cancer and (b) Other causes.
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Figure 1: Values of the Kolmogorov-Smirnov test TKS for Model 1 (under H0, T ∗ and X∗

are independent) and Model 2 (under H1).
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Figure 2: Estimated cumulative hazard functions for the Prostate Cancer data computed us-
ing FRS (fractional risk set) and NA (Usual Nelson-Aalen) estimators for the two competing
risks, viz. (a) Prostate cancer and (b) Other causes.
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