
Model-based nonparametric variance estimation for

systematic sampling ∗

J.D. Opsomer

Colorado State University†

M. Francisco-Fernández

Universidad de A Coruña‡

X. Li

Pfizer, Inc.§

January 3, 2010

Abstract

Systematic sampling is frequently used in surveys, because of its ease of imple-

mentation and its design efficiency. An important drawback of systematic sampling,

however, is that no direct estimator of the design variance is available. We describe

a new estimator of the model-based expectation of the design variance, under a

nonparametric model for the population. The nonparametric model is sufficiently

flexible that it can be expected to hold at least approximately for many practical

situations. We prove the model consistency of the estimator for both the antici-

pated variance and the design variance. We compare the nonparametric variance

estimators with several design-based estimators through a simulation study and on

data from a forestry survey.
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1 Introduction

Systematic sampling and its variants such as fractional systematic sampling are commonly

used sampling designs in finite population surveys. These designs are easy to implement

and result in estimators that are highly efficient for any survey variables that are correlated

with the variable(s) used to sort the population prior to sampling. A well-known and

long-standing issue in surveys that follow a systematic sampling design is the lack of a

theoretically justified, generally applicable design-based variance estimator. Because of

this, there have been attempts to adjust the sampling design itself to allow for variance

estimation, including for example the drawing of multiple systematic samples (Törnqvist,

1963) and the drawing of a partial systematic sample supplemented with a simple random

sample (Zinger, 1980). This type of solutions are only rarely used, however, and the

majority of applications continue to apply “pure” systematic sampling combined with a

not fully satisfactory variance estimator.

A whole chapter of the recently reissued classic monograph by Wolter (2007) is devoted

to this issue, and a number of possible estimation approaches are evaluated there. In

particular, it considers a set of eight “model-free” estimators, some of which we will

discuss further below, and outlines a model-based estimation approach. For the set of

eight estimators, their statistical properties are evaluated for several model scenarios

and through simulation experiments. None of these estimators is best overall, and there

is a clear interaction between the behavior of the estimators and the underlying data

model. Despite this implicit model dependence, the two estimators based on averages of

pairwise differences (see next section) are found to be the best compromise between good

performance and general applicability among this set of eight estimators. They are also

widely used in practice.

In the model-based estimation approach described in Wolter (2007), the model de-

pendence is explicitly recognized and a Rao-Blackwell type estimator is proposed, which

minimizes the model mean squared error in estimating the sampling variance. The models

considered in Wolter (2007) are parametric, and the Rao-Blackwell estimator therefore
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depends on unknown parameters that must be estimated from the sample data. An ex-

ample of this approach is Montanari and Bartolucci (1998), who proposed an unbiased

model-based variance estimator when the population follows a linear regression model.

In practice, despite its potential efficiency, wide applicability of the model-based

method is viewed as being hampered by lack of robustness. Wolter (2007, p.305) noted

that:

“Since [the model] is never known exactly, the practicing statistician must

make a professional judgment about the form of the model and then derive

[the variance estimator] based on the chosen form. The ‘practical’ variance

estimator [with estimated parameters] is then subject not only to errors of

estimation [...] but also to errors of model misspecification.”

However, this lack of robustness can be at least partly offset by the use of a nonparametric

model specification. Compared to parametric models, this class of models makes much

less restrictive assumptions on the shape of the relationship between variables, typically

only requiring that the relationship be continuous and smooth, i.e. possessing a pre-

specified number of derivatives. Hence, the risk of model misspecification is significantly

reduced. This is particularly important in the survey context, because the same variance

estimation method often needs to be applied to many survey variables collected in the

same survey, and a single parametric model is much less likely to be correct for all these

variables. Bartolucci and Montanari (2006) discussed the use of nonparametric estimation

as a way to “robustify” the model-based approach. They evaluate the bias properties of

the resulting estimator under the linear population model, and then consider the behavior

under nonlinear population models through simulation. The latter results suggest that

the nonparametric approach remains effective in estimating the variance under a range of

population model specifications.

In the current article, we will consider a broadly applicable model for the data, in

which both the mean and the variance are left unspecified subject only to smoothness

assumptions. We propose a model-based nonparametric variance estimator, in which
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both the mean and the variance functions of the data are estimated nonparametrically.

The smoothing method we will use is local polynomial regression (see Wand and Jones

(1995) for an overview). We will show that the proposed estimator is model consistent

for the design variance of the survey estimator, subject only to the population smooth-

ness assumptions. The article will focus on the case of estimating the finite population

mean using the sample mean for a systematic sample, but there is no inherent difficulty

in extending the method to estimate the (approximate) variance of more complicated

estimators such as model-assisted estimators.

The rest of the article is organized as follows. In Section 2, we describe the systematic

sampling estimation context and the main variance estimators in use today. In Section 3,

we introduce the nonparametric variance estimator and describe its statistical properties.

Section 4 evaluates the practical properties of the estimator in a simulation study. Section

5 illustrates the applicability of the methodology on a real forestry dataset.

2 Systematic sampling and design-based variance es-

timation

We will be sampling from a finite population U of size N . For now, we consider a single

study variable Yj ∈ R, j = 1, 2, · · · , N with population mean

ȲN =
1

N

N∑
j=1

Yj.

Let n denote the sample size and k = N/n denote the sampling interval. For simplicity,

we assume throughout this article that N is an integral multiple of n, i.e. k is an integer.

The variable Y will only be observed on the sampled elements only.

Let xj ∈ Rp (j = 1, 2, · · · , N) be vectors of auxiliary variables available for all the

elements in the population. To draw a systematic sample, the population is first sorted

by some appropriate criterion. For example, we can sort by one or several of the auxiliary

variables in xj. If the study variable Y and auxiliary variables x are related to each other,

4



sorting by x and then drawing a systematic sample has been long known to reduce the

variance of the sample mean. Conversely, if the population is sorted by a criterion that

is not related to Y , for instance, by a variable in x which is independent of Y , then we

will have a random permutation of the population. In this case, systematic sampling is

equivalent to simple random sampling without replacement. After sorting the population,

drawing a systematic sample is done by randomly choosing an element among the first k

with equal probability, say the bth one, after which the systematic sample, denoted by Sb,

consists of the observations with labels {b, b+ k, ... , b+ (n− 1)k}. The random sample

S can therefore only take on k values on the set of possible samples {S1, . . . , Sk}.

The sample mean,

ȲS =
1

n

∑
j∈S

Yj,

is the Horvitz-Thompson estimator for the finite population mean. Its design-based vari-

ance was first derived by Madow and Madow (1944) and is equal to

Varp(ȲS) =
1

k

k∑
b=1

(ȲSb
− ȲN)2. (1)

It should be clear that, if only a single systematic sample is drawn and hence only one

of the ȲSb
is observed, no unbiased design-based estimator of Varp(ȲS) exists for general

variable Y . A more formal way to state this is that the systematic sampling design is not

measurable (Särndal et al. 1992, p.33).

We describe the three main methods used in practice to estimate Varp(ȲS), all of which

are part of the eight estimators evaluated by Wolter (2007) and mentioned in Section 1.

The simplest estimator is to treat the systematic sample as if it had been obtained by

simple random sampling. This estimator is defined as

V̂SRS =
1− f
n

1

n− 1

∑
j∈S

(Yj − ȲS)2, (2)

where f = n/N . The two remaining estimators are based on pairwise differences and are

recommended in Wolter (2007) as being the best general-purpose estimators of Varp(ȲS)).
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They are defined as

V̂OL =
1− f
n

1

2(n− 1)

n∑
j=2

(Yj − Yj−1)2, (3)

which uses all successive pairwise differences (and hence uses overlapping differences, OL),

and

V̂NO =
1− f
n

1

n

n/2∑
j=1

(Y2j − Y2j−1)2. (4)

which takes successive non-overlapping differences (NO). Additional estimators based on

higher-order differences are described in Wolter (2007) but will not be further considered

here.

All three estimators just described are design biased for Varp(ȲS) in general. The

estimator V̂SRS is viewed as suitable when the ordering of the population is thought to have

no effect on ȲS, or is considered as a conservative estimator when the ordering is related

to the variable Y . However, as discussed in Opsomer et al. (2007), the unbiasedness of

V̂SRS for uninformative ordering only holds if one averages over samples and over orderings

of the population (see Cochran, 1977, Thm 8.5), so this is not, strictly speaking, design

unbiasedness. The design bias of V̂SRS for a fixed ordering of the population can be large

and either positive or negative, so that relying on its conservativeness can be potentially

misleading. This was clearly seen in the synthetic estimator approach used in Opsomer

et al. (2007), for instance. The remaining two estimators tended to have smaller bias in the

simulation experiments reported in Wolter (2007), but their formal statistical properties

as estimators of Varp(ȲS) are not generally available.

3 Variance estimation under a nonparametric model

In the model-based context, the finite population is regarded as a random realization

from a superpopulation model. A simple approach consists of assuming a parametric

model for this superpopulation model. Under the assumption of linearity for the model,

Bartolucci and Montanari (2006) proposed a model unbiased estimator for the anticipated
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variance E[Varp(ȲS)], using a least squares estimator for the regression parameters and

a model unbiased estimator for the variance of the errors. In this section, we propose a

model consistent variance estimator under a nonparametric model, using local polynomial

regression as the estimation method. For simplicity, we will describe the nonparametric

method and obtain its statistical properties for a univariate auxiliary variable x. The

extension of the approach to higher dimensions is straightforward, except for the fact

that the curse of dimensionality will make local polynomial regression less suitable for

dimensions above two or three, and hence should be replaced by a more appropriate

method such as additive modeling. We do not explore this further here.

The nonparametric superpopulation model considered here is

Yj = m(xj) + v(xj)
1/2 ej 1 ≤ j ≤ N, (5)

where m(·) and v(·) are continuous and bounded functions. The errors ej, 1 ≤ j ≤

N , are independent random variables with model mean 0 and variance 1. Define Y =

(Y1, Y2, . . . , YN)T , m = (m(x1), . . . ,m(xN))T and Σ = diag{v(x1), v(x2), · · · , v(xN)}.

The design variance of ȲS can be written as

Varp(ȲS) =
1

k

k∑
b=1

(ȲSb
− ȲN)2 =

1

kn2
YTDY, (6)

where D = MTHM, with M = 1T
n ⊗ Ik and H = Ik− 1

k
1k1

T
k , with ⊗ denoting Kronecker

product and 1r a vector of 1’s of length r. Stated more explicitly, H is a k × k matrix

with diagonal elements being 1− 1
k

and off-diagonal element being − 1
k
, and D is a N ×N

matrix composed of n× n Hs. Then, the model anticipated variance of ȲS under model

(5) is

E[Varp(ȲS)] =
1

kn2
mTDm +

1

kn2
tr(DΣ). (7)

To estimate E[Varp(ȲS)], we propose the following estimator

V̂NP =
1

kn2
(m̂TDm̂) +

1

kn2
tr(DΣ̂), (8)

where m̂ = (m̂(x1), · · · , m̂(xN))T , with m̂(xj) the local polynomial regression (LPR) esti-

mator of m(xj) computed on the observations in the sample S and Σ̂ =
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diag{v̂(x1), v̂(x2), · · · , v̂(xN)}, with v̂(xj) the LPR estimator of v(xj). We briefly de-

scribe the two LPR estimators, and for simplicity we will assume that the degree of the

two local polynomials is equal to p. Note that there is no restriction that the xj should

or should not be related to the sorting variable used to draw the systematic sample.

For the estimator of the mean function,

m̂(xj) = eT
1 (XT

SjWSjXSj)
−1XT

SjWSjYS,

with e1 a vector of length (p+ 1) having 1 in the first entry and all other entries 0, YS a

vector containing the Yj ∈ S, XSj a matrix with ith row equal to (1, (xi − xj), . . . , (xi −

xj)
p), i ∈ S, and

WSj = diag

{
K

(
xi − xj
hm

)
, i ∈ S

}
,

where hm is the bandwidth and K is a kernel function. For the estimator of the variance

function, the expression is completely analogous, except that YS is replaced by the vector

of squared residuals r̂S with elements r̂j = (Yj−m̂(xj))
2, j ∈ S, and a different bandwidth

hv is used instead of hm in the weight matrix WSj. This variance estimator was previously

used in Fan and Yao (1998) in a different context and does not include a “degrees of

freedom” correction term as in Ruppert et al. (1997). While the latter estimator can

certainly be used here, we found little difference between both in this setting, so that we

chose the simpler estimator.

Under suitable regularity conditions on the population and the nonparametric estima-

tor, which are stated in the Appendix, we obtain the following results on the asymptotic

properties of V̂NP . An outline of the proof is given in the Appendix. The theorem shows

that V̂NP is a model consistent estimator for E[Varp(ȲS)] and a model consistent predictor

for Varp(ȲS).

Theorem 3.1 Assume that the degree p of the local polynomials is odd. Using superpop-

ulation model (5) and under assumptions A.1–A.6 in the Appendix, the design variance

is model consistent for the anticipated variance, in the sense that

Varp(ȲS)− E[Varp(ȲS)] = Op

(
1√
N

)
, (9)
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and the nonparametric variance estimator is model consistent for the anticipated variance

and for the design variance, in the sense that

V̂NP − E[Varp(ȲS)] = Op(h
p+1
m ) +Op

(
1√
nhm

)
(10)

and

V̂NP − Varp(ȲS) = Op(h
p+1
m ) +Op

(
1√
nhm

)
. (11)

The best bandwidth hm should satisfy the condition hp+1
m = O

(
1√
nhm

)
, which leads to

hm = cn−1/(2p+3), the usual optimal rate for local polynomial regression (see e.g. Fan and

Gijbels, 1996, p.67). Hence, it is expected that the usual bandwidth selection methods

such as (generalized) cross-validation or a plug-in method could be applied in this context

as well. We do not further explore bandwidth selection in this article.

In these results, the effect of estimating the variance function is asymptotically negli-

gible, because of assumption A.4 on the relationship between hm and hv. Without that

assumption, model consistency of V̂NP would continue to hold but a more complicated

expression for the convergence rates would apply. Similarly, the restriction that p be odd

simplifies the expressions for the rates but does not affect the overall consistency.

In Li (2006), a simpler nonparametric estimator is defined as

V̂ ho
NP =

1

kn2
(m̂T

SDm̂S) +
1

kn2
tr(D)σ̂2

S (12)

with

σ̂2
S =

1

n

∑
j∈S

(Yj − m̂(xj))
2, (13)

and its properties were studied under the special case of superpopulation model (5) with

homoscedastic errors, i.e. when v(xj) ≡ σ2, j = 1 . . . , N . Under this model, Li (2006)

obtained the same results for V̂ ho
NP as in Theorem 3.1. Because this estimator does not

require the additional smoothing step on the residuals, it is easier to compute.
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4 Simulation Study

The practical behavior of the proposed nonparametric estimator is evaluated in a simu-

lation study in this section, and in an example on real data in the next. The covariate

xj is uniformly distributed in the interval [0,1], and the errors ej are generated as an

independent and identically distributed (iid) sample from a standard normal distribu-

tion. Superpopulations of size N = 2, 000 are generated according to model (5) with two

different mean functions

“linear”: m(xj) = 5 + 2xj

“quadratic”: m(xj) = 5 + 2xj − 2x2j

and three different shapes for the variance functions

“constant”: v(xj) = β

“linear”: v(xj) = βxj

“quadratic”: v(xj) = β(1− 4 (xj − 0.5)2).

The values of β for the three variance functions are selected to achieve two levels for the

population coefficient of determination (R2), equal to R2 = 0.75 (the “precise model”)

and R2 = 0.25 (the “diffuse model”).

Several of the estimators are sensitive to the relationship between the modeling co-

variate and the sorting variable used in generating the systematic samples. We therefore

investigate three sorting scenarios, based on the strength of the association between the

sorting variable zj and the xj. We construct the zj as zj = xj + σzηj with the ηj iid

standard normal, and we select the value of σz to achieve R2 = 1 (i.e. sorting by x),

R2 = 0.75 (“z strongly associated with x”) and R2 = 0.25 (“z weakly associated with

x”). We consider samples of sizes n = 500 and n = 100.

For simplicity, we begin by comparing the performance of the estimators V̂ ho
NP , V̂OL,

V̂NO and V̂SRS described in Sections 2 and 3 for the homoscedastic error scenarios. This

will allow us to evaluate the performance of the nonparametric approach relative to the
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commonly used design-based estimators. For the nonparametric estimator, we used local

linear (p = 1) regression and the Epanechnikov kernel equal toK(t) = (1−t2) if |t| ≤ 1 and

0 otherwise. We consider three different values for the bandwidth, hm = 0.10, 0.25, 0.50.

The stratification-based estimators V̂OL, V̂NO construct pairs of observations based on the

sorting variable zj.

In each simulation run, we keep the population xj and the zj fixed but generate new

population errors ej, and draw a systematic sample according to the sorted z values (cor-

responding to the model-based setting we are considering in this article). Each simulation

setting is repeated B = 10000 times and the results are obtained by averaging over the B

replicates. We consider E(Varp(ȲS)) as target for the estimators, with Varp(ȲS) computed

exactly for each replicate. Letting V̂ denote one of the estimators above, we calculate the

relative bias (RB) and mean squared error (MSE), where

RB =
E∗(V̂ )− E∗[Varp(ȲS)]

E∗[Varp(ȲS)]
,

MSE = E∗(V̂ − E∗[Varp(ȲS)])2,

with E∗ indicating which expectations are obtained by averaging across the replicates. We

also performed simulations in which Varp(ȲS) is targeted and the prediction mean squared

error MSPE = E∗(V̂ − Varp(ȲS))2 is computed, but these results are not reported here.

Complete simulation results for the homoscedastic case are available in Opsomer et al.

(2009). Here, we show the main results for some of the scenarios and briefly summarize

the findings of the overall simulation study.

Tables 1 and 2 report the relative bias (in percent) and MSE of V̂ ho
NP , V̂OL, V̂NO

and V̂SRS, for the sample size n = 500 and the diffuse (R2 = 0.25) regression model

with homoscedastic errors. The MSE results in Table 2 for the different estimators are

normalized by dividing by the MSE of V̂ ho
NP with bandwidth hm = 0.10, to facilitate

comparison. The results show that the nonparametric estimator performs well overall,

with most biases below 2% in magnitude and most (relative) MSEs smaller than those

of the other approaches. It appears that some care is needed in selecting the bandwidth,

because in this experiment, larger bandwidth values resulted in significant bias in some of
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Mean function Linear Quadratic

Sorting variable R2 1 0.75 0.25 1 0.75 0.25

V̂ ho
NP : hm = 0.10 -1.98 -0.99 -0.32 -1.96 -1.03 -0.97

hm = 0.25 -0.92 -0.70 -0.16 -0.33 -1.00 -6.98

hm = 0.50 -0.56 -0.54 -0.27 4.93 1.52 -22.5

V̂OL 0.05 2.42 16.1 0.13 11.3 -33.8

V̂NO 0.01 2.50 15.9 0.09 11.4 -32.7

V̂SRS 33.1 26.4 23.9 30.0 22.4 -32.7

Table 1: Relative bias (in percent) for V̂ ho
NP (with bandwidth hm = 0.10, 0.25, 0.50), V̂OL,

V̂NO and V̂SRS with n = 500, regression model R2 = 0.25 and homoscedastic errors.

Mean function Linear Quadratic

Sorting variable R2 1 0.75 0.25 1 0.75 0.25

V̂ ho
NP : hm = 0.25 0.94 0.91 0.88 0.92 0.80 1.16

hm = 0.50 0.93 0.89 0.74 1.51 0.84 5.48

V̂OL 1.40 1.70 5.83 1.40 4.37 11.9

V̂NO 1.88 2.22 6.19 1.88 4.95 11.3

V̂SRS 27.0 18.6 10.9 22.4 12.0 11.1

Table 2: MSE of V̂ ho
NP (with bandwidth hm = 0.25, 0.50), V̂OL, V̂NO and V̂SRS divided by

MSE of V̂ ho
NP with bandwidth hm = 0.10, with n = 500, regression model R2 = 0.25 and

homoscedastic errors.
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the cases, as well as larger MSE. Even in those cases, however, the results were generally

better than those of the competing methods.

The estimator based on simple random sampling is very inaccurate, resulting in both

large biases and MSE values. As noted earlier, the bias of this estimator can be both

negative and positive unless the sorting is itself randomized over repeated systematic

sampling draws. The two stratification-based estimators perform similarly and are essen-

tially unbiased and efficient when the sorting variable is the same as the model covariate.

Performance decreases substantially when the relationship between the sorting variable

and the model covariate becomes weaker, resulting in substantial bias and large MSE val-

ues. The interpretation of this result is that the stratification-based variance estimators

work well only when the “implicit model” under which it is constructed is correct. This

implicit model assumes that the relationship between zj and yj is well approximated by

a piecewise constant function. This is true when R2 = 1, but not in the remaining cases.

In contrast, the nonparametric estimator is able to use the correct modeling variable xj

in all cases and is able to capture any unknown but smooth trend.

In the remaining homoscedastic simulations settings that are not displayed here (vary-

ing the sample size and R2 level for the regression model), the results of these estimators

are similar to those displayed here, with the relative performance of the different esti-

mators remaining unchanged. Similarly, when MSPE is computed instead of MSE (and

hence Varp(ȲS) is targeted instead of the anticipated variance), the conclusions just stated

continue to hold. The main difference is that because of the randomness of Varp(ȲS), the

mean squared differences between the estimators and the target are larger than the dif-

ferences between the estimators and E(Varp(ȲS)), and hence the normalized MSPEs are

all closer to 1. Full results are in Opsomer et al. (2009).

The anticipated variance in (7) contains two components, with the first related to

the difference in the sample means and the second to the model variance. While the

first component can in principle be decreased by choosing an appropriate sorting variable

(this is a major theme in the systematic sampling literature), the second component is

independent of the sorting. Because the proposed model-based variance estimator targets
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Mean function Linear Quadratic

Variance function Constant Linear Quadratic Constant Linear Quadratic

V̂ ho
NP : hm = 0.10 -0.99 -1.19 -0.93 -1.03 -1.23 -0.97

hm = 0.25 -0.70 -0.82 -0.59 -1.00 -1.12 -0.89

hm = 0.50 -0.54 -0.59 -0.41 1.52 1.48 1.64

V̂NP : hm = 0.10, hv = 0.10 -1.12 -1.32 -1.93 -1.16 -1.36 -1.97

hm = 0.10, hv = 0.25 -1.11 -1.31 -5.95 -1.15 -1.35 -5.96

hm = 0.10, hv = 0.50 -1.14 -1.34 -13.2 -1.18 -1.39 -13.1

V̂NP : hm = 0.25, hv = 0.10 -0.77 -0.89 -1.58 -1.05 -1.18 -1.85

hm = 0.25, hv = 0.25 -0.80 -0.91 -5.65 -1.14 -1.25 -5.95

hm = 0.25, hv = 0.50 -0.84 -0.96 -13.0 -1.21 -1.34 -13.3

V̂NP : hm = 0.50, hv = 0.10 -0.57 -0.63 -1.39 1.57 1.53 0.75

hm = 0.50, hv = 0.25 -0.60 -0.65 -5.47 1.37 1.34 -3.47

hm = 0.50, hv = 0.50 -0.65 -0.71 -12.8 0.24 0.181 -11.8

V̂NO 2.50 2.49 2.48 11.4 11.5 11.4

Table 3: Relative bias (in percent) for V̂ ho
NP (with bandwidths hm = 0.10, 0.25, 0.50),

V̂NP (with bandwidths hm, hv = 0.10, 0.25, 0.50) and V̂NO when the sorting variable is

strongly associated with the model covariate (R2 = 0.75), with n = 500, regression model

R2 = 0.25.

the anticipated variance, it would therefore appear critical to capture the model variance

correctly in order to obtain a good variance estimator. This was the main reason for the

nonparametric specification of the function v(·).

In order to investigate the effect of the model variance specification and the ability

of the nonparametric estimator to account for heteroscedasticity, Tables 3 and 4 display

the relative bias and normalized MSE of the nonparametric estimators for different model

variance function specifications, for a range of bandwidths for the mean and variance

smoothing steps, for sample size n = 500, sorting variable strongly associated with x
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Mean function Linear Quadratic

Variance function Constant Linear Quadratic Constant Linear Quadratic

V̂ ho
NP : hm = 0.25 0.91 0.91 0.96 0.80 0.86 0.82

hm = 0.50 0.89 0.89 0.96 0.84 0.89 0.85

V̂NP : hm = 0.10, hv = 0.10 1.03 1.03 1.05 1.02 1.02 1.04

hm = 0.10, hv = 0.25 1.04 1.08 1.66 1.03 1.07 1.55

hm = 0.10, hv = 0.50 1.09 1.19 4.53 1.08 1.18 3.93

V̂NP : hm = 0.25, hv = 0.10 0.94 0.94 1.0 0.82 0.88 0.85

hm = 0.25, hv = 0.25 0.95 0.99 1.55 0.84 0.93 1.36

hm = 0.25, hv = 0.50 1.00 1.11 4.38 0.89 1.04 3.81

V̂NP : hm = 0.50, hv = 0.10 0.91 0.92 0.98 0.87 0.91 0.80

hm = 0.50, hv = 0.25 0.93 0.97 1.51 0.86 0.95 0.94

hm = 0.50, hv = 0.50 0.98 1.09 4.29 0.86 1.02 3.15

V̂NO 2.22 2.04 2.26 4.95 4.40 4.37

Table 4: MSE of V̂ ho
NP (with bandwidths hm = 0.25, 0.50), V̂NP (with bandwidths hm, hv =

0.10, 0.25, 0.50) and V̂NO divided by MSE of V̂ ho
NP with bandwdith hm = 0.10, when the

sorting variable is strongly associated with the model covariate (R2 = 0.75), with n = 500,

regression model R2 = 0.25.

(R2 = 0.75) and diffuse regression model (R2 = 0.25). For comparison, we include V̂NO,

which was the best among the alternative variance estimation methods. The results show

that the variance function specification generally has only a modest effect on both the

bias and the MSE of the estimators. The only exception to this is when the variance

function is modeled nonparametrically and too large a bandwidth is used (hv = 0.50).

An interesting result is that the estimator V̂ ho
NP , which uses the mean squared residuals,

appears to perform better than many of the more complicated V̂NP even when the errors

were heteroscedastic (this was also true in the other scenarios not displayed here). We

conjecture that this is due to the fact that under heteroscedasticity, the variance com-
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ponent of the anticipated variance is of the form c
∑N

j=1 v(xj)/N , and the mean of the

squared residuals is a very good estimator for the mean of the variance over the population

for approximately balanced samples, such as those obtained by systematic sampling.

5 Application

The applicability of the method to real surveys is illustrated on a forestry data, which was

previously analyzed in Opsomer et al. (2007). The data were collected during the 1990’s

by the U.S. Forest Service within a 2.5 million ha ecological province in northern Utah,

USA. The field sample plots located on a regular spatial grid and are supplemented by

remotely sensed data available on a much finer spatial grid. Figure 1 displays the study

region and sample locations for the survey data and additional remote sensing data. The

latter can be used as auxiliary information to improve the precision of survey estimators,

as previously done by Opsomer et al. (2007) who explored nonparametric model-assisted

estimation methods. In the current article, we will use the auxiliary information to

construct an estimator for the variance of survey estimators.

Data are available for 24,980 remote sensing points and 968 field-visited points. The

remote sensing data are available at essentially any desirable resolution, so this grid

of points is somewhat arbitrary and can be used as an approximation for the underly-

ing continuous population. We therefore treat these as the population of interest and

field-visited points as a sample drawn from that population, corresponding to a 1-in-25

systematic sample. At the “population” level, we have auxiliary information such as loca-

tion (LOC, bivariate scaled longitude and latitude) and elevation (ELEV). At the sample

level, information is available for the field-collected forestry variables in addition to the

population-level variables.

The sampling design is spatial systematic sampling, as seen from Figure 1. While

the discussion in the previous sections only addressed the univariate case, the methods

readily carry over for higher dimensions, as will be illustrated here. We consider here the

following forestry variables:
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Figure 1: Map of the study region in northern Utah. Each triangle represents a field-

visited sample point. Each dot in the magnified section represents a remote sensing point.

• BIOMASS - total wood biomass per acre in tons

• CRCOV - percent crown cover

• BA - tree basal area per acre

• NVOLTOT - total volume in cubic feet per acre

• FOREST - forest/nonforest indicator.

We are interested in estimating the population mean for these variables using the system-

atic sample mean ȲS, and estimating its design-based variance Varp(ȲS). We will consider

two traditional design-based variance estimators, V̂SRS as in (2) and V̂ST (see below), and

the model-based nonparametric variance estimator V̂ ho
NP . The stratified sampling variance

estimator V̂ST is similar to the nonoverlapping differences estimator V̂NO in (4), general-

ized to a spatial setting by considering an approximate 4-per-stratum design obtained by
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overlaying a grid of equal-sized “cells” over the study region. This estimator is defined as

V̂ST =
1− f
n

1

n

H∑
h=1

nh

nh − 1

∑
j∈Sh

(Yj − ȲSh
)2,

where Sh denotes the sample in cell h and nh the corresponding cell sample size. For points

near the edge of the map, there may be more or less than four points per cell, because we

collapsed all cells that contained less than two points with their closest neighbor.

For the purpose of constructing the model-based nonparametric variance estimator

V̂NP , we consider the following model with location (LOC) as bivariate auxiliary variables:

Yj = m(LOCj) + εj. (14)

We considered both homoscedastic and heteroscedastic versions of this model. Because

the homoscedastic version of the nonparametric estimator appeared to behave at least as

well as the more complicated estimator that captures heteroscedasticity, we will assume

here that the errors are independent with homogeneous variance. Full results for other

model specifications are shown in Opsomer et al. (2009).

Under model (14), we implemented the nonparametric variance estimator V̂ ho
NP given in

(12) and (13) with xj replaced by LOCj. Here m(·) is estimated by bivariate local linear

regression, and the estimator m̂(·) is obtained using loess() in R. In loess(), the bandwidth

parameter h is replaced by the span, the fraction of the sample observations that have non-

zero weight in the computation of m̂(LOCj). Since the samples points are approximately

equally spaced (5 × 5 km grid), using loess() will produce similar results to those obtained

using a fixed bandwidth in the interior of the estimation region. At the boundaries of the

region, it will tend to select larger bandwidths and hence reduce some of the increased

variability often experienced close to boundaries in fixed-bandwidth smoothing. This

results in improved overall stability of the fits. In order to evaluate the sensitivity of the

results to the choice of the smoothing parameters, we choose three spans: 0.1, 0.2 and

0.5. After obtaining m̂(·), we can calculate the nonparametric variance estimator V̂ ho
NP for

each response variable. Table 5 presents the sample means and the estimated variances

using V̂SRS, V̂ST and V̂ ho
NP .
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ȲS V̂SRS V̂ST V̂ ho
NP0.5 V̂ ho

NP0.2 V̂ ho
NP0.1

BIOMASS 14.5 0.46 0.36 0.40 0.38 0.37

CRCOV 22.5 0.71 0.62 0.64 0.62 0.59

BA 48.5 3.87 3.19 3.40 3.30 3.12

NVOLTOT 906.9 1886 1538 1645 1584 1511

FOREST (%) 54.8 2.46 1.89 2.16 2.05 1.91

Table 5: Mean and variance estimates for the five response variables for forestry data,

using estimators V̂SRS, V̂ST and V̂ ho
NP under model (15) with span = 0.5, 0.2 and 0.1.

While we do not know the true variance, the estimator V̂ST is likely to be a reasonable

approximation as long as the Yj can be modeled as a spatial trend plus random errors.

The naive estimator V̂SRS produces the largest values among the five variance estimators

for all response variables and so is likely to be biased upwards for this survey. In contrast,

the nonparametric variance estimator V̂ ho
NP results in estimates that are close to those of

V̂ST , with smaller spans leading to slightly smaller estimates.

As already discussed in Section 4, an important advantage of the model-based non-

parametric method is that one is not restricted to using only the sorting variable (LOC

in this case) in the construction of the estimator, if other variables are thought to be

good predictors of the survey variables. We illustrate this here by considering a more

sophisticated model that also includes elevation (ELEV) in additive to LOC:

Yj = m1(LOCj) +m2(ELEVj) + εj. (15)

We fit model (15) in R using the Generalized Additive Models (gam) package. For sim-

plicity, we use the same span for both LOC and ELEV. Table 6 shows that, relative to the

simpler model without elevation, the estimated variances all decreased, by 8-14%. This

decrease is due primarily to a reduction in the σ̂2
S component in (12), which accounts for

the fact that the extended mean model in (15) captures more of the observed behavior

of these forestry variables. This allows for a more precise estimator of the design-based

variance of systematic sampling estimators for these data. For the variables CRCOV, BA
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V̂ ho
NP0.5 V̂ ho

NP0.2 V̂ ho
NP0.1

BIOMASS 0.36 0.34 0.33

CRCOV 0.59 0.55 0.53

BA 3.11 2.96 2.78

NVOLTOT 1487 1417 1342

FOREST (%) 1.92 1.77 1.65

Table 6: Variance estimates for five response variables for forestry data, using nonpara-

metric estimator for additive model 15 with span = 0.5, 0.2 and 0.1. Same span used for

both variables.

and NVOLTOT, the estimated variances based on model (15) are smaller than V̂SRS and

V̂ST for all considered bandwidth choices, while those for BIOMASS and FOREST are

similar. Hence, this application illustrates the potential for obtaining variance estimates

that are both sharper and more theoretically justified than using traditional design-based

approaches. We refer to Opsomer et al. (2009) for a more complete discussion of the

results using the extended model.
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A Assumptions

A.1 The xj’s are treated as fixed with respect to superpopulation model (5). The xj’s are

independent and identically distributed with F (x) =
∫ x

−∞ f(t)dt, where f(·) is a density

function with compact support [ax, bx] and f(x) > 0 for all x ∈ [ax, bx]. The first derivative

of f exists for all x ∈ [ax, bx].

A.2 The third and fourth moments of ej exist and are bounded.

A.3 The sample size n and sampling interval k are positive integers with nk=N. We

assume that n,N →∞ and allow k = O(1) or k →∞.

A.4 As n→∞, we assume h∗ → 0 and nh∗ →∞, where h∗ is hm or hv. Additionally,{
h
2(p+1)
m + (nhm)−1

}
= o (hp+1

v ), hp+1
v = o(nhp+1

m ) and 1

n2h
1/2
v

= o
(

1

n1/2h
1/2
m

)
.

A.5 The kernel function K (·) is a compactly supported, bounded, symmetric kernel with∫
uq+1K(u)du = µq+1(K). Assume that µp+1(K) 6= 0.

A.6 The (p + 1)th derivatives of the mean function m(·) and the variance function v(·)

exist and are bounded on [ax, bx].

B Outline of Proof of Theorem 3.1

Statement (9) is obtained by showing that Var[Varp(ȲS)] = O(1/N). This is done by

computing the variance of the quadratic form in (6) under model (5), and then bounding

each of the terms using assumptions A.1-A.3 and A.6. See Theorem 1.1 in Li (2006) for

details.
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In order to prove (10), we write

V̂NP − E[Varp(ȲS)] =
1

Nn
(m̂TDm̂−mTDm) +

(
1− n

N

) 1

Nn

∑
j∈U

(v̂(xj)− v(xj))

= A+B. (16)

The term A in (16) can be broken down into several components that are functions of

1
n

∑
j∈Sb

(m̂(xj)−m(xj))
l for b = 1, . . . , k and 1

N

∑
j∈U(m̂(xj)−m(xj))

l with l = 1, 2. Using

the same approach as in the proof of Theorem 4.1 in Ruppert and Wand (1994) except

that we are treating the xj as fixed, and applying assumptions A.1-A.6, we approximate

the required moments of these quantities. Bounding arguments for the expectation and

variance of each of the components of A show that A = Op(h
p+1
m + (nhm)−1/2). Theorem

1.2 in Li (2006) provides a complete description.

For the term B in (16), the squared residuals are decomposed into r̂j = v(xj)e
2
j +

(m̂(xj)−m(xj))
2−2

√
v(xj)ej(m̂(xj)−m(xj)) = rj +b1j +b2j, with corresponding sample

vectors r̂S = rS + b1S + b2S. Hence, rS contains the true model errors for the sample

observations and does not depend on the first nonparametric regression. Letting ṽ de-

note the local polynomial regression fit using rS instead of r̂S, straightforward moment

approximations and bounding arguments show that(
1− n

N

) 1

Nn

∑
j∈U

(ṽ(xj)− v(xj)) = Op

(
hp+1
v

n
+

1

n2h
1/2
v

)
= op

(
hp+1
m +

1√
nhm

)

by assumption A.4. Using the fact that E(b1j) = O(h2p+2
m + (nhm)−1) and A.4 again, we

can show that the local polynomial regression for b1S is op(h
p+1
v ). Similarly, the local

polynomial regression for b2S leads to terms that are of the same or smaller order. Hence,

we conclude that B = op

(
hp+1
m + 1√

nhm

)
.

Finally, statement (11) follows directly from (9) and (10).
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