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Abstract

Controlling emissions of air pollutants and establishing air quality objectives

to improve and protect ambient air quality are very important tasks of Gov-

ernments. Ozone (O3), one of those pollutants of concern, is not emitted

directly into the atmosphere, but is a secondary pollutant produced by reac-

tion between nitrogen dioxide (NO2), hydrocarbons and sunlight. High levels

of ozone can produce harmful effects on human health and the environment

in general. Therefore, the study of extreme values of ozone represents an im-

portant topic of research in environmental problems. Classical extreme value

theory has been usually used in air-pollution studies. It consists in fitting a

parametric generalized extreme value (GEV) distribution to a data set of ex-

treme values and using the estimated distribution to compute quantities like

the probability of exceedance, the quantiles, the return levels or the mean

return periods. In this paper, we propose nonparametric methods to esti-

mate those quantities. Additionally, nonparametric estimators of the trends

of very high values of ozone are proposed. The nonparametric estimators
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are applied to real samples of maximum ozone values obtained from several

monitoring stations belonging to the Automatic Urban and Rural Network

(AURN) from the UK. Results show that nonparametric estimators work

satisfactorily, generally outperforming the behaviour of classical parametric

estimators.
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1. Introduction

In the last years, numerous studies on air-pollution problems using sta-

tistical methods have been published. Generally, in these studies, statisti-

cal techniques such as time series analysis, regression methods, multivariate

statistical analysis or spatial statistics are used to deal with problems like

forecasting high levels of a certain pollutant, identifying trends in high levels

of this pollutant, or mapping the spatial distribution of this element in a

region. One of these pollutants of concern is ozone (O3). Ozone is a natural

component of the troposphere, produced by the photochemical reactions of

nitrogen (NOx−−NO+NO2) and volatile organic compounds (VOCs). Among

other things, these reactions depend on meteorological conditions, like sun-

light, temperature, wind speed or wind direction, producing complex seasonal

patterns and trends in ozone levels. High ozone levels are taken as indicative

of high pollution, representing a risk factor to human life, vegetation or ma-

terials. Therefore, due to these risks, controlling those levels as well as other
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harmful sources which can cause global warming and serious environmental

problems is an important task of Governments.

Standards for air pollution are concentrations over a given time period

that are considered to be acceptable in the light of what is scientifically known

about the effects of each pollutant on health and on the environment. Re-

garding ozone, the World Health Organization, in the 2005 global update of

its quality guidelines (World Health Organization, 2006), reduced the guide-

line given in its second edition (World Health Organization, 2000) from 120

µg m – 3 (8-hour daily average) to 100 µg m – 3 for a daily maximum 8-hour

mean. It is considered that ozone levels higher than this value can produce

health problems. These problems depend on the sensitivity of each individ-

ual and the type of exposure, and go from slight disabilities to permanent

damages. However, some countries have developed their own regulations or

air quality objectives for protection of human health or protection of vegeta-

tion and ecosystems. Usually, these regulations are based on the number of

exceedances of a established value (threshold) in a period of time. Therefore,

it is obvious the importance of carrying out statistical analyses to estimate

the probability of obtaining an ozone level higher than a threshold, or to

estimate the mean number of times that a threshold could be exceeded in a

certain period of time. In the present paper, we focus on those and other

related estimation problems, using nonparametric methods. Furthermore,

we use nonparametric regression techniques to analyse the trends of very

high values of ozone. These methodologies can help environmental agencies

to give out public health warnings or to evaluate the effectiveness of their

regulation programs, for example. While in some papers statistical analysis
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of environmental ozone data are tackled using time series analysis (Prybutok

et al., 2000; Slini et al., 2002; Dueñas et al., 2005; Liu, 2009; Kumar and

Jain, 2010), in the present work a combination of nonparametric methods

and extreme value theory is used.

The statistics of extremes (Gumbel, 1958; Leadbetter et al., 1983) plays

a very important role to deal with some of the problems described at the end

of the previous paragraph. This methodology has been usually used in many

fields of environmental studies such as climatology (Elsner et al., 2006; Per-

rin et al., 2006; Rajabi and Modarres, 2008), hydrology (Katz et al., 2002),

agricultural management (Gomes et al., 2003) and many others. There are

also interesting papers in the analysis of ground-level ozone using extreme

value theory (see, e.g. Küchenhoff and Thamerus, 1996; Huerta and Sansó,

2007; Reyes et al., 2009; Smith, 1989). In those papers, classical paramet-

ric methods to model extreme values are used. Extreme value theory relies

on asymptotic arguments for a sample of an observed data set of extreme

values. The basis behind parametric methods in the previous papers is that

presented in Leadbetter et al. (1983), where it is shown that, under gen-

eral conditions, the distribution of extreme values in stationary processes

corresponds to the type of the named generalized extreme value (GEV) dis-

tribution. Basically, the GEV distribution is characterized by three values,

shape, scale and location. Once these parameters are estimated, some other

important quantities, such as the probability of exceedance, the quantiles or

return levels, or the mean return period, can be estimated. Alternatively,

a different kind of ideas based on nonparametric tools can be used in the

analysis of these last quantities.
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Beginning with Parzen (1962), extensive statistical literature exists inside

what has been called nonparametric curve estimation. This methodology is

a flexible and potent tool used to describe the behaviour of univariate and

multivariate data sets, because it does not need the specification of a concrete

model to work with (such as the normal distribution, or a linear relation).

The nonparametric statistical techniques are, in some cases, a supplement

for parametric models, because parametric models are usually well suited

only to a sequence of events that have similar causes. Moreover, parametric

models can be insensitive to anomalous events, since these models tend to

be formulated through experience of relatively conventional activity. The

reader can find a wide discussion about the use of smoothing ideas in many

statistical problems through the following books: Silverman (1986); Simonoff

(1996); Wand and Jones (1995). Nonparametric methods have been also used

in applied extreme problems more recently, for example in hydrologic studies

(Sharma et al., 1997, 1998), modelling the earthquake risk (Quintela, 2010),

or in econometric risk analysis (Cai and Wang, 2008). In those papers, the

distribution of annual maxima (AM), partial duration or annual minimum

are estimated via nonparametric estimators.

In the present work, nonparametric estimation methods are considered in

the study of maximum ozone concentrations. On one hand, nonparametric

estimators of the probability of exceedance, the return levels and the mean

return period are proposed. On the other hand, nonparametric regression

estimators of the trend of the return levels are used to investigate the be-

haviour of these quantities through time. Similar analyses to estimate these

trends were carried out in Reyes et al. (2009), although they used polynomial
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regression methods. As nonparametric methods do not assume a prespeci-

fied functional form (as linear, quadratic or logistic) for the trend and let

the data speak by themselves, more reliable estimates are obtained with our

proposal. In that part of the study, we focus on the 95% quantiles. Note

that, although nonparametric kernel methods could be notoriously unstable

for extreme quantiles, the 95% quantiles are in the range where kernel tech-

niques should provide realiable results. We apply these estimators to ozone

real data from the UK.

The content of the paper is as follows. In Section 2, quantities of interest

such as the probability of exceedance, the return levels, or the mean return

period are defined. Moreover, we briefly describe the classical parametric

estimators and our nonparametric proposals to estimate those values. In

Section 3, we apply and compare both kinds of techniques (parametric GEV

and nonparametric) to ozone data from the UK. Finally, Section 4 collects

the main conclusions.

2. Statistical methods

Suppose X1, ..., Xn a sequence of extreme values with common distribu-

tion function F . In the setting addressed in this paper, these variables can

represent the maximum ozone concentrations measured in a specific period

of time (24-hours, a month, a year,...). An important function in this context

is the function that, for a ozone level c, gives the probability of obtaining a

maximum ozone concentration larger than c (per unit of time); that is, the

function returning the probabilities of exceedance. It is defined as

R(c) = P (X > c). (1)
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Related with (1), the following quantities can be defined (Coles, 2001).

For 0 < p < 1, the quantile of order 1− p of F is defined as the value zp such

that

1 − p = P (X ≤ zp) = F (zp) ⇔ zp = F−1(1 − p). (2)

Thus, the T−return level is defined as the value of the observed concentra-

tions that can be expected to be once exceeded during a T−period of time.

It is given by

RL(T ) = F−1

(

1 −
1

T

)

= z1/T . (3)

The mean return period or recurrence interval of a concrete level c is an

estimator of the interval of time between events of level c. It can be defined

as the inverse of the probability that a level c will be exceeded in one period

of time:

RT (c) =
1

P (X > c)
=

1

1 − F (c)
. (4)

As it was pointed out in the Introduction, it is very important to ob-

tain reliable estimators of these values when ozone is the pollutant under

consideration. Next Subsections describe two ways to face these estimation

problems, the classical parametric approach based on the GEV distribution

and the nonparametric approach.

2.1. Parametric estimators. The GEV distribution

Classical extreme value theory uses the idea that, under certain regularity

conditions (Fisher and Tippett, 1928), the limit of the distribution function F

of the maximum is the GEV distribution function. This function is considered

to correspond to one of the following three families,
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Fθ(x) =



















exp
{

−[1 + γ(x − µ)/σ]−1/γ
}

,

1 + γ(x − µ)/σ > 0, γ 6= 0,

exp{− exp[−(x − µ)/σ]}, γ = 0.

(5)

with θ = (µ, σ, γ). Here, µ is the location parameter, σ > 0 is the scale

parameter and γ is the shape parameter. The case of γ = 0 is named the

Gumbel distribution.

Based on a random sample X1, ..., Xn of extreme values, an estimator θ̂

for θ can be obtained. This can be done using, for example, the probability

weighted moments method (Hosking et al., 1985) or by maximum likelihood

related techniques (Coles, 2001). As soon as we get θ̂, an estimator Fθ̂ for F

is derived. Using Fθ̂, parametric estimators for (1), (3) and (4), given by

Rθ̂(c) = 1 − Fθ̂(c), (6)

RLθ̂(T ) = F−1

θ̂

(

1 −
1

T

)

(7)

and

RTθ̂(c) =
1

1 − Fθ̂(c)
, (8)

are immediately calculated. When a particular sample of extreme ozone val-

ues, x1, ..., xn, is observed, numeric estimates of those functions are computed

by substituting the sample values in the expressions of the corresponding es-

timators.

2.2. Nonparametric estimators

As it was indicated in the Introduction Section, nonparametric curve es-

timation methods do not assume a prespecified functional form for the curve
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to be estimated. This enables the estimator to fit a wide range of possible

curves. Different nonparametric estimators, depending on the curve to be

estimated, have been developed in the last decades. Next, nonparametric

kernel estimators of the density function, the distribution function and the

regression function are briefly described. These estimators allow us to obtain

nonparametric estimators of (1), (3) and (4), and of the trends of high ozone

levels.

Let X be a continuous random variable, with density function f and dis-

tribution function F. Given a random sample X1, ..., Xn, each Xi having the

same distribution as X, the Parzen-Rosenblatt nonparametric kernel estima-

tor (Parzen, 1962) of f (·) is defined by

fh(x) =
1

nh

n
∑

i=1

K

(

x − Xi

h

)

. (9)

In this expression, K is a kernel function and h = h(n) ∈ R+ is the smoothing

parameter, or bandwidth. While the election of the function K has not play

an important role in the fitting of the estimation (normally, K is a density

function with some regularity conditions), the election of the bandwidth is

more crucial, because the shape of the resulting estimator varies greatly

according to its value. If the value of h is small, an undersmooth estimator,

with high variability, will be obtained. On the contrary, if the value of h is

big, the resulting estimator will be very smooth and farther from the function

that we seek to estimate (see, e.g. Silverman, 1986).

From the relation between a density function and a distribution func-

tion, it is also possible to construct a nonparametric kernel estimator of the
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distribution function, given by the expression

Fh(x) =

∫ x

−∞

fh(t)dt =
1

n

n
∑

i=1

H

(

x − Xi

h

)

, (10)

where H(u) =
∫ x

−∞
K(t)dt.

From (10), nonparametric estimators of the probabilities of exceedance,

the return levels and the mean return period, defined in (1), (2) and (4),

respectively, can be immediately obtained. Their expressions are,

Rh(c) = 1 − Fh(c), (11)

RLh(T ) = F−1
h

(

1 −
1

T

)

(12)

and

RTh(c) =
1

1 − Fh(c)
. (13)

Theoretical motivations for this kind of approaches can be found in Youndjé

and Vieu (2006).

As it was explained previously, an important step to compute (11), (12)

and (13) is to select a bandwidth for the nonparametric estimator of the

distribution function. A popular technique to select that bandwidth is the

least-squares cross-validation method (Sarda, 1993).

A different approximation is related to considering some type of quadratic

error, such as the Mean Integrated Squared Error (MISE),

MISEF (h) =

∫

(Fh(x) − F (x))2dx, (14)

and then to select the bandwidth minimizing an asymptotic approximation

of this error. This bandwidth is given by:

hAMISE(Fh) = Cn−1/3 =

(

0.5
∫

V 2
F (x)w(x)f(x)dx

∫

B2
F (x)w(x)f(x)dx

)1/5

· n−1/3, (15)
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where BF =
1

2

(

f
′′

(x)
)2 (∫

x2K(x)dx
)

and V 2
F (x) = 2f(x)

∫

xK(x)H(x)dx

(see, e.g. Quintela, 2007). Constant C in (15) depends on the kernel function

and the theoretical (unknown in practice) distribution function of the data

(Reiss, 1981). A plug-in approximation of (15) considers the bandwidth

ĥ = Ĉ n−1/3, (16)

where Ĉ is a preliminary nonparametric approximation of the unknown val-

ues (Altman and Leger, 1995; Polanski and Baker, 2000).

The simulation study in Bowman et al. (1998) compares the cross-vali-

dation technique with the plug-in method proposed in Altman and Leger

(1995), showing that better results can be obtained with the cross-validation

criterion. A disadvantage of the cross-validation method when it is compared

with plug-in methods is its worse performance, in terms of computing time.

Certainly, cross-validation involves an integration term, that is needed to be

computed numerically. Besides, a sum of n terms, including in each term a

new estimator like (10), but computed with a subsample of size (n− 1), has

to be calculated. In the present work, we use the iterative method presented

in Polanski and Baker (2000) to obtain the bandwidth for the nonparamet-

ric distribution function estimators. There are mainly two reasons for this

election: the fast computation (here, we are working with large sample sizes)

and the best results obtained with this method in our own simulation studies.

See Section 3 of Polanski and Baker (2000) for a description of the way to

obtain Ĉ in (16).

An interesting problem in air-pollution studies is to investigate the be-

haviour of very high values (represented by the quantiles (2)) of a pollutant of

interest through time. Tracing seasonal trends in the level of ozone is essential
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for predicting high-level periods, observing long-term trends, and discovering

potential changes in pollution. Traditional methods for modelling seasonal

effects are based on the conditional mean of ozone concentration; however,

the upper conditional quantiles are more critical from a public health per-

spective. For 0 < p < 1, let us denote by ẑk
p the estimated quantiles of order

1− p at consecutive times (years, for example) tk, with k = 1, 2, . . . , n. A re-

gression problem can be formulated to estimate the trend of those quantiles.

Following these lines, considering the sample
{(

tk, ẑ
k
p

)}n

k=1
, the regression

model

ẑk
p = m(tk) + εk, 1 ≤ k ≤ n, (17)

where εk are random errors, can be used to estimate the trend m(·) of the

high values of ozone.

This kind of analysis was used in Reyes et al. (2009) to study the trends of

very high values of tropospheric ozone in some monitoring stations in Mexico

City during the period from 1986 to 2005. They used a parametric polynomial

regression model to estimate the trend functions. Taking into account the

advantages of nonparametric function estimators, in the present paper, we

propose to estimate the trends by using nonparametric estimators of the

regression function. Specifically, the nonparametric kernel estimator, called

the local polynomial regression (LPR) estimator, is used in our analyses. This

estimator consists in locally fitting a q-degree polynomial to the observed

sample,
{(

tk, ẑ
k
p

)}n

k=1
, and it can be written as:

m̂h(t) = e′1 (X′

tWtXt)
−1

X′

tWtY (18)
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where e1 = (1, 0, . . . , 0)′, Y = (ẑ1
p , . . . , ẑ

n
p )′,

Xt =











1 t1 − t . . . (t1 − t)q

...
...

...

1 tn − t . . . (tn − t)q











,

and Wt = diag{K((t1−t)/h), . . . , K((tn−t)/h)}, with K(·) a kernel function,

q the degree of the local polynomial and h the bandwidth. Similarly to

the estimators given in (9) and (10), the bandwidth h is a very important

parameter to be selected by the user in order to obtain reliable estimators.

Once again, cross-validation and plug-in methods are the most used here.

Significant references on the LPR estimator, including some guidelines on

how to select the bandwidth, are Fan and Gijbels (1996) or Wand and Jones

(1995), for example.

A different approach to tackle this problem would be to use quantile

regression (Koenker, 2005; Baur et al., 2004; Sousa et al., 2009). Specifically,

a nonparametric quantile curve could be directly fitted to the original data

set (Koenker, 2005, chap. 7). This would be a more direct way to deal with

this problem. However, model (17) would be in line with a regression model

with repeated measurements, the original high ozone level concentrations in

each year. Once the quantiles per year are estimated using the nonparametric

estimator, a nonparametric regression estimator would represent a good way

to obtain the trend of these quantiles through the years. Given the good

theoretical and practical properties of these nonparametric estimators, this

approach seems to be reasonable.
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3. Application to real data

In this Section the nonparametric estimators presented in the previous

Section are applied to ozone real data in the UK. Moreover, the results are

compared with those obtained by using the classical parametric estimators

described in Subsection 2.1.

3.1. The data

Ozone concentration measurements are obtained from the UK Air Quality

Archive, available at http://www.airquality.co.uk. This web page provides

measurements of several pollutants monitored in different networks across

the UK. There are two major types - automatic and non-automatic net-

works. There are currently 4 automatic networks and 11 non-automatic

networks, funded by The Department for Environment, Food and Rural Af-

fairs (Defra) and the Devolved Administrations, across the UK. The largest

automatic monitoring network in the UK is the Automatic Urban and Rural

Network (AURN). Currently, AURN includes automatic air quality moni-

toring stations measuring oxides of nitrogen (NOx), sulphur dioxide (SO2),

ozone (O3), carbon monoxide (CO) and particles (PM10). In 2007, there

were 133 operating sites in this network covering urban and rural areas.

Rural and urban monitoring sites are organized by site type. Addition-

ally, AURN stations are also grouped according to their locations in differ-

ent regions. Regarding ozone, the pollutant of concern in this paper, there

were 91 automatic urban and rural sites monitoring O3 using UV absorp-

tion analysers all around the UK in 2007. For more details about AURN or

other monitoring networks in the UK, we refer the readers to the UK Air
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Quality Archive web site (http://www.airquality.co.uk) or the Defra web site

(http://www.defra.gov.uk/).

It is important to note that whereas nitrogen dioxide (NO2) acts as a

source of ozone, nitrogen oxide (NO) destroys ozone acting as a local sink.

For this reason, ozone levels are not as high in urban areas (where high levels

of NO are emitted from vehicles) as in rural areas. Furthermore, there are

several meteorological and geographical variables, like number of sunlight

hours, temperature, wind, altitude, etc. which influence ozone production

(see Coyle et al., 2002). Taking this into account and in order to carry out a

very general study of the nonparametric estimators presented in Section 2.2,

we select 6 rural monitoring sites and 6 urban sites, belonging to the AURN

network. These stations are selected trying to cover different regions and

different type of sites. Table 1 shows the monitoring sites considered in the

present study and Figure 1 their locations. All these stations are currently

active and they started collecting ozone measurements more than 10 years

ago (regarding ozone, the oldest of these 12 stations began working in 1986).

To obtain the results presented in the following Subsection, measurements

of hourly ozone concentrations in each monitoring site listed in Table 1 are

considered. The data collected in each station go from the specific starting

date of that station until the end of 2009.

[Table 1 about here.]

[Figure 1 about here.]
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3.2. Results

Next, we present the main results of our study summarized in several

tables and figures that are representative of the comprehensive research per-

formed. The behaviour of the nonparametric estimators introduced in Sec-

tion 2.2 is studied and they are compared with the classical parametric esti-

mators presented in Section 2.1. To carry out this comparison, ozone data

until 2008 are used to calculate (6), (7), (8), (11), (12) and (13), defined in

Section 2. From them, parametric and nonparametric predictions of some

important values in the year 2009 can be obtained and checked with the real

values in that year. An important issue in order to apply classical paramet-

ric extreme value methods (Section 2.1) is that of independence of extreme

data. To get this assumption, the maxima of daily concentration measure-

ments are considered in our analysis. Smith (1989) worked with a similar

assumption. In that paper, cluster intervals ranging from 24 hours to 72

hours were selected and no strong sensitivity was found to the election of

this value. Similar approaches were followed in Küchenhoff and Thamerus

(1996) and Huerta and Sansó (2007). Anyway, it should be noted that in-

dependence is not necessary for correct estimation of the parameters of (5).

It is sufficient that dependence decreases suitable fast with increasing time

separation (Perrin et al., 2006). However, nonparametric estimators can be

correctly applied in this field and have good theoretical properties, although

the assumption of independence is not strictly fulfilled (Youndjé and Vieu,

2006).

In Figure 2, box-plots of the daily maxima of hourly measurements in

each location are shown. This descriptive plot gives useful information about
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the different levels of high values of ozone in each one of the considered

monitoring stations, as well as the global difference between rural and urban

sites.

[Figure 2 about here.]

Given a monitoring station and once a sample of daily maxima of hourly

measurements is calculated in the period of time under consideration, the

first step in our study is to estimate the distribution function of that sample

of extreme values. Following the lines indicated in Section 2, this can be

done by means of parametric or nonparametric methods. In the first case,

location (µ), scale (σ) and shape (γ) parameters must be estimated from the

observed sample, while to compute the nonparametric kernel estimator of the

distribution function, a kernel function and a bandwidth parameter must be

selected. The Gaussian kernel, K(u) = (2π)−1/2 exp (−u2/2), −∞ < u < ∞

is used here. Table 2 shows the parameters calculated for each one of the

locations considered, using the maximum likelihood method to estimate GEV

parameters (in brackets, bootstrap standard deviations of these parameters)

and the plug-in bandwidth method proposed in Polanski and Baker (2000)

to select h. The free statistical software R (R Development Core Team,

2008) was used to implement the estimators computed in the present paper.

For the parametric versions of these estimators, we use the evir package (S

original (EVIS) by Alexander McNeil and R port by Alec Stephenson, 2008).

[Table 2 about here.]

Once the distribution function F is estimated, estimates for the probabil-

ity of exceedance (1) above different daily maxima of ozone levels are readily
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obtained. As an example, in Figure 3, the nonparametric and the parametric

estimations of this function for four stations, -Aston Hill, Strach Vaich, Lon-

don N. Kensington and Thurrock- (2 rural and 2 urban) are shown. These

estimates are computed with the parameters presented in Table 2. Similar

graphs are obtained for all the monitoring sites.

[Figure 3 about here.]

Figure 4 shows the estimated mean return periods for different ozone

levels (50, 75, 100, 120, 150 and 180). The nonparametric and the parametric

estimates showed in this plot are computed in the same stations as those

selected in Figure 3. Similarly, plots showing the T–return levels for different

values of time could be obtained (not shown here for reasons of space).

[Figure 4 about here.]

In Figure 4, we also plot the real values obtained in the year 2009 by

black point symbols. As the parametric and the nonparametric estimations

are calculated using the data until the end of the year 2008, including these

real values of the year 2009 can serve as a mean of comparison between the

parametric and the nonparametric approaches.

A way to measure the uncertainty of the estimates presented in Fig-

ures 3 and 4 is computing confidence bands. We have designed a specific

procedure combining bootstrap techniques with nonparametric methods to

obtain simultaneous confidence bands (not only pointwise intervals) for the

functions estimated in Figures 3 and 4. These bands are designed to con-

tain the whole function with a prescribed high probability, typically 0.95.
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Generally speaking, the method consists in, first, computing pointwise inter-

vals with the pre-specified confidence level (95%, for instance) and with the

confidence level calculated using a Bonferroni correction (Bonferroni, 1935).

Then, applying an iterative algorithm, using the generated bootstrap curves,

the proper confidence level for the simultaneous intervals is obtained. Fi-

nally, pointwise confidence intervals with this correct level of confidence are

computed. A detailed description of this procedure is in Appendix A. As

an example, Figure 5 shows the nonparametric estimator of the mean return

period function in Aston Hill (shown in Figure 4) and the corresponding

band computed using this new approach. For simplicity, to plot Figure 5, we

selected the pilot bandwidth g with the same value as the bandwidth h used

to obtain the estimator RTh(·), given in (13) and also plotted in this figure

(see Appendix A).

[Figure 5 about here.]

In addition to this, a good way to compare the parametric estimators

with our nonparametric proposals is to estimate, using both approaches, the

expected number of days with the daily maximum of ozone level larger than

a threshold c in the year 2009. Then, these numbers can be compared with

the real values of this variable. Formally, denoting by ND(c) the number

of days in 2009 with the daily maximum of hourly ozone levels exceeding a

threshold c, the expected number of this variable is given by

E(ND(c)) = 365 × R(c), (19)

where R(c) is given in (1). A natural estimator of (19) is

̂E(ND(c)) = 365 × R̂(c), (20)
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where R̂(c) could be (11) or (6), respectively, depending on whether a non-

parametric or a parametric approach is used. Figure 6 shows the parametric

and nonparametric estimations and the real values of this variable for the

monitoring sites previously used in Figures 3 and 4, and the thresholds pre-

viously used in Figure 4. Moreover, this information (ND, the parametric

estimations, Ê(ND)θ, and the nonparametric estimations, Ê(ND)h), is re-

ported in Table 3 for the 6 rural monitoring sites and in Table 4 for the 6

urban monitoring sites for the different thresholds. For the sake of compari-

son, the estimations presented in Tables 3 and 4 are rounded to the nearest

integer. Additionally, we include in these tables the mean squared error

(MSE), given by

MSE =
1

n

n
∑

k=1

(

ND(ck) − ̂E(ND(ck))
∗
)2

,

where ̂E(ND(ck))
∗

can be ̂E(ND(ck))θ or ̂E(ND(ck))h computed at the val-

ues ck = 50, 75, 100, 120, 150 and 180.

[Figure 6 about here.]

[Table 3 about here.]

[Table 4 about here.]

We can observe in Tables 3 and 4 that nonparametric estimators give,

in general, very good results, improving those obtained with the classical

parametric estimators. This improvement is general in all stations, no matter

the kind of station under consideration, location, etc.
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The next part of our study is to analyse the trends of very high values

of ozone in the stations under consideration. These high values are given

by the quantiles (2) of order 1 − p for small values of p. As explained in

Section 2.2, for each monitoring site, this problem can be formulated as a

regression problem, where the response variables are the estimated quantiles

in each one of the years of consideration, and the explicative variables are

the corresponding years. Considering the benefits, previously showed, of ap-

plying nonparametric methods in this field, we use nonparametric estimators

of the quantiles and of the regression function. For each station and for each

year (including the year 2009) quantiles of order 0.95 are estimated using

(12) with T = 20. For each year, those estimations represent approximately

the values such that only a 5% of the daily maxima of ozone concentrations

are larger than them in that year. The nonparametric LPR estimator of the

regression function, given in (18), with q = 1 (local linear estimator) is used

in our research. The Gaussian kernel is also used here, while the bandwidths

needed to compute the estimators are selected using the plug-in method pro-

posed in Ruppert et al. (1995). In Figure 7, the estimations of the trends

throughout the years, jointly with the confidence intervals computed with

the row-wise method of Hannig and Marron (2006), in the rural monitor-

ing sites are presented. Figure 8 shows the same information for the urban

monitoring stations.

[Figure 7 about here.]

[Figure 8 about here.]

Figures 7 and 8 show different patterns in the trends of the different
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monitoring sites, revealing the different performance of maximum ozone levels

throughout the years. In general, the estimated trends are not monotonic

functions. That does not allow us to obtain clear conclusions of its behaviour.

However, we can conclude that, unlike what it happened in the Mexico sites

studied by Reyes et al. (2009), a parabolic regression fit would not model

correctly the behaviour of the data (in several cases).

4. Concluding remarks

In this paper, we focus on the problem of analysing ozone extreme val-

ues by using nonparametric estimators. Based on the nonparametric kernel

estimator of the distribution function, we develop a new methodology to ob-

tain estimators of the probability of exceedance, the quantiles, the return

levels and the mean return periods. These functions play an important role

in environmental problems because they can be used to estimate or predict

high ozone levels. Nonparametric estimation is also useful in showing the

trend of the maximum ozone levels of each studied monitoring site over the

years, allowing for more accurate and flexible models than those obtained by

typical polynomial regression fits.

Although parametric and nonparametric techniques have been compared

before, up to our knowledge, this is the first time in which a comparison is

made in the context of ozone extreme values. We have been able to observe

that nonparametric techniques yield highly accurate estimates of both the

interest functions and parameters, and also to capture more complex patterns

in the data that those allowed by the classical GEV fits. Perhaps the only

disadvantage of the nonparametric methods can be the higher demanding in
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computational terms (requiring to obtain bandwidth parameters), but that,

really, does not suppose a clear disadvantage nowadays.

We would like to stress the fact that the methodology developed here

could be applied to other extreme value problems, for example, in hurri-

canes, rainfall or related problems in hydrology (Loaiciga and Leipnik, 1999;

Koutsoyiannis and Baloutsos, 2000), insurance (Embrechts et al., 1997), re-

liability (Melchers, 1999) and many others.
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Appendix A. Bootstrap simultaneous confidence bands

In this Appendix, the procedure to obtain the simultaneous confidence

bands for the probability of exceedance function R(·), given in (1) is de-

scribed in detail. A similar approach can be followed to obtain simultaneous

confidence bands for the functions defined in (3) or (4).

First, given an initial confidence level, 1 − α, for a small α (α = 0.01

or 0.05, typically), we start by constructing individual (1 − α)-confidence

intervals, (ℓj, uj), for R̂(cj), in a selected grid of ozone levels, cj, j = 1, . . . , k.

For every cj, j = 1, . . . , k, using the nonparametric estimator Rh(cj) given

in (11), the sampling distribution of

Dn (cj) = Rh(cj) − R(cj) (A.1)

is approximated. This is done using its bootstrap distribution, from which it

is easy to obtain pointwise (1 − α)-confidence intervals. The process is the

following:

1. Obtain a bootstrap sample X∗

1 , . . . , X
∗

n from the original sample of

ozone high levels, X1, . . . , Xn.
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2. With this bootstrap sample, compute an approximated bootstrap ver-

sion of (A.1), using

D∗

n (cj) = R∗

h(cj) − Rg(cj), (A.2)

where Rg(cj) is the nonparametric estimator of R(cj) with a pilot band-

width g.

3. Repeat steps 1 and 2 a large number of times B (B = 1000 or 5000,

for example). After steps 1-3, we have B values of the bootstrap dis-

tribution D∗

n (cj).

4. Compute the α
2

and 1 − α
2

quantiles of the bootstrap distribution:

D
∗(⌈α

2
B⌉)

n (cj) and D
∗(⌈(1−α

2 )B⌉)
n (cj), where ⌈x⌉ denotes the integer part

of x. They are the values that are in positions
⌈

α
2
B

⌉

and
⌈(

1 − α
2

)

B
⌉

,

when sorting the bootstrap resample in an increasing order.

5. Compute the confidence interval as D
∗(⌈α

2
B⌉)

n (cj) ≤ Rh(cj) − R(cj) ≤

D
∗(⌈(1−α

2 )B⌉)
n (cj).

6. The final bootstrap confidence interval for R(cj) is
[

Rh(cj) − D
∗(⌈(1−α

2 )B⌉)
n (cj) , Rh(y) − D

∗(⌈α

2
B⌉)

n (cj)

]

or, considering the expression (A.2), equivalently,
[

Rh(cj) + Rg(cj) − R
∗(⌈(1−α

2 )B⌉)
h (cj), Rh(cj) + Rg(cj) − R

∗(⌈α

2
B⌉)

h (cj)

]

,

where R
∗(⌈α

2
B⌉)

h (cj) and R
∗(⌈(1−α

2 )B⌉)
h (cj) are the corresponding α

2
and

1 − α
2

quantiles of the bootstrap distribution R∗

h(cj).

The previous algorithm is repeated for every grid point cj, with j =

1, . . . , k and, therefore, k pointwise intervals (ℓj, uj), for each value R̂(cj), j =
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1, . . . , k are calculated. Individual confidence intervals have approximately

the nominal coverage probability (1−α) when they are considered separately

(for a particular grid point). However, the probability that the whole growth

curve is included in the band depicted by the whole set of intervals is much

smaller. This is known as the multiple range testing problem or the false

discovery rate in high dimensional statistical problems (Miller, 1991).

A classical way to correct for multiple testing is the popular Bonferroni

approach (Bonferroni, 1935). In a hypothesis testing context, the idea behind

this approach is to consider a new significance level, αBonf = α
J
, and compute

individual tests using this new level. The resulting multiple test has a mul-

tiple level which is much closer to the desired α. However, it is well known

that the Bonferroni approach is a conservative procedure. In our context,

this means that the joint coverage probability of the confidence band would

be larger than the desired 1 − α.

Starting from the conservative Bonferroni approach and the anticonser-

vative individual testing approach, the following algorithm finds an approx-

imate (1 − α)-confidence interval, with a given approximation error δ (typi-

cally δ is small in comparison with the nominal α, for instance δ = α
10

):

1. Fix α
(0)
low = αBonf = α

J
and α

(0)
high = α. Fix the iteration number, k = 0.

2. Compute α
(k)
mean =

α
(k)
low+α

(k)
high

2
.

3. Use the bootstrap resamples to compute individual confidence intervals

with 1 − α
(k)
low, 1 − α

(k)
mean and 1 − α

(k)
high confidence levels.

4. Compute with the same bootstrap resamples, the proportion of boot-

strap curves that are included in each of these confidence bands. These

proportions satisfy p
(k)
low ≥ p

(k)
mean ≥ p

(k)
high, p

(k)
low ≥ 1 − α ≥ p

(k)
high and
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p
(k)
low > p

(k)
high.

5. If p
(k)
mean ≥ 1−α, then define α

(k+1)
low = α

(k)
mean and α

(k+1)
high = α

(k)
high. Other-

wise define α
(k+1)
low = α

(k)
low and α

(k+1)
high = α

(k)
mean.

6. Stop at step k if
∣

∣

∣
p

(k)
mean − (1 − α)

∣

∣

∣
< δ. Otherwise increase k in one

unit and repeat Steps 2-5.

The final approximate (1 − α) simultaneous confidence intervals are those

obtained for level 1 − α
(k)
mean in the last iteration.
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Figure legends

Figure 1: O3 monitoring sites (AH–Aston Hill, Es–Eskdalemuir, LN–Lough

Navar, LH–Lullington Heath, SV–Strach Vaich, WF–Wicken Fen, LC–Leeds

Centre, LK–London Kensington, MS–Manchester South, Md–Middlesbrough,

NC–Nottingham Centre, Th–Thurrock).

Figure 2: Box-plots of the daily maxima of hourly measurements in each

monitoring station.

Figure 3: Estimations of the probability of exceedance in Aston Hill, Strach

Vaich, London Kensington and Thurrock. Parametric estimations in solid

lines and nonparametric estimators in dashed lines.

Figure 4: Estimated mean return periods for different daily maxima of ozone

levels in Aston Hill, Strach Vaich, London Kensington and Thurrock. Para-

metric estimations in solid lines, nonparametric estimations in dashed lines

and real values in year 2009 in black point markers.

Figure 5: Estimated mean return periods for different daily maxima of ozone

levels in Aston Hill and bootstrap simultaneous confidence band with α =

0.05.

Figure 6: Estimated expected number of days in 2009 with the daily maxi-

mum of hourly ozone level exceeding different thresholds in Aston Hill, Strach

Vaich, London Kensington and Thurrock. Parametric estimations in solid

lines, nonparametric estimations in dashed lines and real values in year 2009
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in black point markers.

Figure 7: Estimations of high-level ozone trends and confidence bands in

rural monitoring sites.

Figure 8: Estimations of high-level ozone trends and confidence bands in

urban monitoring sites.
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Table 1: Monitoring sites with their geographical area and type.

Rural

Monitoring Sites Monitoring Zone Site Type

Aston Hill (AH) West Midlands Rural
Eskdalemuir (Es) Scottish Borders Rural
Lough Navar (LN) Nothern Ireland Rural-Remote
Lullington Heath (LH) South East Rural
Strach Vaich (SV) Highlands Rural-Remote
Wicken Fen (WF) Eastern Rural

Urban

Monitoring Sites Monitoring Zone Site Type

Leeds Centre (LC) Yorkshire/Humberside Urban Centre
London Kensington (LK) London Urban Area Urban background
Manchester South (MS) N. W. and Mereyside Suburban
Middlesbrough (Md) North East Industrial Urban
Nottingham Centre (NC) East Midlands Urban Centre
Thurrock (Th) Eastern Urban Background
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Table 2: Estimated location (µ), scale (σ) and shape (γ) parameters with bootstrap stan-
dard deviations in brackets, and bandwidths (h) needed to estimate F using parametric
and nonparametric methods, respectively.

Monitoring Parametric Nonpar.
Sites µ σ γ h

Aston Hill (AH) -0.09 (0.006) 21.33 (0.258) 68.43 (0.237) 1.07
Eskdalemuir (Es) -0.10 (0.007) 18.88 (0.224) 61.24 (0.225) 1.08
Lough Navar (LN) -0.11 (0.011) 18.82 (0.235) 59.22 (0.242) 1.15
Lullington Heath (LH) -0.07 (0.007) 26.23 (0.295) 67.60 (0.322) 1.45
Strach Vaich (SV) -0.11 (0.006) 15.62 (0.179) 74.29 (0.180) 1.24
Wicken Fen (WF) -0.11 (0.013) 26.18 (0.392) 64.07 (0.464) 1.69
Leeds Centre (LC) -0.15 (0.008) 22.99 (0.225) 47.36 (0.323) 1.64
London N. Kensington (LK) -0.12 (0.008) 27.08 (0.276) 50.85 (0.414) 1.70
Manchester South (MS) -0.12 (0.007) 19.16 (0.241) 44.04 (0.301) 1.31
Middlesbrough (Md) -0.09 (0.015) 23.07 (0.322) 58.99 (0.379) 1.27
Nottingham Centre (NC) -0.13 (0.008) 22.55 (0.228) 44.41 (0.360) 1.53
Thurrock (Th) -0.12 (0.007) 26.29 (0.300) 54.21 (0.378) 1.69
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Table 3: Number of days in the year 2009 above thresholds and estimations using para-
metric and nonparametric methods in rural monitoring sites.

Monitoring c MSE

Sites 50 75 100 120 150 180

ND 341 176 32 12 0 0

AH Ê(ND)θ 172 129 92 69 42 25 6653.32

Ê(ND)h 335 187 41 17.11 6 2 51.35
ND 328 160 28 3 0 0

Es Ê(ND)θ 161 114 77 54 31 16 6030.43

Ê(ND)h 318 121 21 8 2 0 291.03
ND 305 61 2 0 0 0

LN Ê(ND)θ 151 105 69 479 259 13 5536.29

Ê(ND)h 293 102 14 5 1 0 336.5
ND 324 185 32 3 1 0

LH Ê(ND)θ 175 132 95 72 45 28 6076.05

Ê(ND)h 309 191 59 28 11 4 298.53
ND 334 194 21 1 0 0

SV Ê(ND)θ 158 120 87 66 42 25 7929.07

Ê(ND)h 333 218 37 9 1 0 149.62
ND 310 154 43 12 1 0

WF Ê(ND)θ 173 127 88 64 38 21 4325.06

Ê(ND)h 301 169 51 22 7 2 84.88
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Table 4: Number of days in the year 2009 above thresholds and estimations using para-
metric and nonparametric methods in urban monitoring sites.

Monitoring c MSE

Sites 50 75 100 120 150 180

ND 232 50 1 0 0 0

LC Ê(ND)θ 146 89 49 28 11 3 2031.74

Ê(ND)h 223 64 13 5 1 0 73.47
ND 257 101 18 1 0 0

LK Ê(ND)θ 166 109 66 42 19 8 2127.63

Ê(ND)h 250 105 29 13 4 1 57.04
ND 148 25 3 0 0 0

MS Ê(ND)θ 136 79 42 23 9 3 875.49

Ê(ND)h 1909 399 9 30 0 0 338.62
ND 254 90 6 0 0 0

Md Ê(ND)θ 144 101 68 47 26 14 3196.97

Ê(ND)h 260 112 19 6 2 1 129.21
ND 215 77 11 1 0 0

NC Ê(ND)θ 147 87 46 26 10 3 1125.4

Ê(ND)h 208 58 12 5 1 0 74.55
ND 341 176 32 12 0 0

Th Ê(ND)θ 172 129 92 69 42 25 6653.10

Ê(ND)h 335 187 41 17 6 2 51.57
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Figure 1: O
3

monitoring sites (AH–Aston Hill, Es–Eskdalemuir, LN–Lough Navar, LH–
Lullington Heath, SV–Strach Vaich, WF–Wicken Fen, LC–Leeds Centre, LK–London
Kensington, MS–Manchester South, Md–Middlesbrough, NC–Nottingham Centre, Th–
Thurrock).

39



Figure 2: Box-plots of the daily maxima of hourly measurements in each monitoring
station.
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Figure 3: Estimations of the probability of exceedance in Aston Hill, Strach Vaich, Lon-
don Kensington and Thurrock. Parametric estimations in solid lines and nonparametric
estimators in dashed lines.
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Figure 4: Estimated mean return periods for different daily maxima of ozone levels in
Aston Hill, Strach Vaich, London Kensington and Thurrock. Parametric estimations in
solid lines, nonparametric estimations in dashed lines and real values in year 2009 in black
point markers.
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Figure 5: Estimated mean return periods for different daily maxima of ozone levels in
Aston Hill and bootstrap simultaneous confidence band with α = 0.05.
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Figure 6: Estimated expected number of days in 2009 with the daily maximum of hourly
ozone level exceeding different thresholds in Aston Hill, Strach Vaich, London Kensington
and Thurrock. Parametric estimations in solid lines, nonparametric estimations in dashed
lines and real values in year 2009 in black point markers.
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Figure 7: Estimations of high-level ozone trends and confidence bands in rural monitoring
sites.
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Figure 8: Estimations of high-level ozone trends and confidence bands in urban monitoring
sites.
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