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Abstract In this paper, several characterizations of the Owen and Banzhaf–Owen
values are provided. All the characterizations make use of a property based on the
principle of balanced contributions. This property is called the intracoalitional
balanced contributions property and was defined by Calvo et al. [12].
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1 Introduction

One of the main objectives in the Cooperative Game Theory field is the study of
solutions (or values) for cooperative games with transferable utility (TU–games).
These solutions stablish the payoff of each player in the corresponding TU–game.
The Shapley value [28] and the Banzhaf value [11] are two of the best known
concepts in this context.

A coalition structure is a partition of the set of players. There are many situa-
tions where the coalition structures make sense. It could be the case, for instance,
of parliamentary coalitions formed by different political parties, alliances among
countries in a negotiation process or unions of workers trying to improve a collec-
tive bargaining agreement.

Cooperative games with coalition structure (TU–games with coalition struc-
ture) were introduced by Aumann and Drèze [10]. They incorporate the given
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coalition structure to the classical notion of TU–game. As in the class of TU–
games, it is interesting to find solutions (coalitional values) in order to obtain a
suitable assignment for each player.

The coalition structure can be interpreted by the coalitional values in different
ways. The coalitional value defined in Aumann and Drèze [10] assigns to each
player his Shapley value in the subgame played by the union he belongs to. A
different approach is taken into account by Owen [24] to define the so–called Owen
value. In this case, the unions play a TU–game among themselves, called the
quotient game, and after that the players in each union play an internal game. In
the Owen value, the payoffs for the unions in the quotient game and the payoffs
for the players inside the union are given by the Shapley value.

The Banzhaf–Owen value (also known as the modified Banzhaf value) was
defined by Owen [25] following a similar procedure. This coalitional value only
differs from the Owen value in the fact that the payoffs for the unions in the
quotient game and the payoffs for the players within each union are computed by
means of the Banzhaf value.

It is also possible to obtain other two coalitional values by alternating the Sha-
pley and the Banzhaf values in both stages of the procedure. Thus, if we consider
the Shapley value in the quotient game and the Banzhaf value applied to the TU–
game played within the unions, we get the coalitional value defined in Amer et
al. [9]. On the other hand, if the Banzhaf value is applied to the quotient game
and the Shapley value to the internal game, the symmetric coalitional Banzhaf
value [8] is obtained. Other coalitional values defined by means of this two–step
procedure can be found in Casas–Méndez et al. [14], where the τ–value [29] is
used in both stages; in Albizuri and Zarzuelo [3], where the coalitional semivalues
are introduced by employing semivalues [15] in the two stages of the procedure;
in Alonso–Meijide et al. [5], with the study of a subfamily of coalitional semiva-
lues called the symmetric coalitional semivalues; or in Vidal–Puga [31], where the
coalitional value is defined using the weighted Shapley value with weights given by
the size of the unions in the quotient game and the Shapley value in the internal
game.

This framework is focused on the study of two of these coalitional values: the
Owen and the Banzhaf–Owen values. The first characterization of the Owen value
can be found in [24], where it is also defined. However, there are many other
characterizations of this value in the literature (see, for example, the papers by
Hart and Kurz [19], Calvo et al. [12], Vázquez–Brage et al. [30], Hamiache [17]
and [18], Albizuri [2], Khmelnitskaya and Yanovskaya [22], Casajus [13], Gómez–
Rúa and Vidal–Puga [16], or Alonso–Meijide et al. [7]). As far as the Banzhaf–
Owen value is concerned, although the first characterization of this value was
given in Albizuri [1] for the class of simple games, this coalitional value was first
characterized in the whole class of cooperative games with coalition structure in
the paper by Amer et al. [9]. Later on, Alonso–Meijide et al. [4] and Alonso–Meijide
et al. [7] proposed alternative characterizations of this coalitional value.

In this paper, both coalitional values are compared by means of appealing pro-
perties. Moreover, new characterizations of these two values are provided. All the
characterizations make use of an interesting property, called intracoalitional balan-
ced contributions and introduced in Calvo et al. [12]. According to this property,
if we consider two players in the same coalition, the losses or gains for both agents
when the other leaves the game are equal. It is based on a principle of balanced
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contributions, which is useful not only in the case of coalitional values but also in
many other contexts.

The paper is organized as follows. In Section 2 we introduce notation and pre-
vious definitions required along the paper. The following two sections are devoted
to study the relation between the property of intracoalitional balanced contribu-
tions and the Owen and Banzhaf–Owen values. So, in Section 3 we propose an
expression in terms of the Shapley value for all the coalitional values satisfying
intracoalitional balanced contributions. Finally, in Section 4 we provide the cha-
racterizations of the paper, where both values are characterized, trying to identify
the similarities and differences of both coalitional values.

2 Notation and definitions

2.1 TU–games

A cooperative game with transferable utility (or TU–game) is a pair (N, v) defined by
a finite set of players N ⊂ N (usually, N = {1, 2, . . . , n}) and a function v : 2N → R,
that assigns to each coalition S ⊆ N a real number v(S), called the worth of S,
and such that v(∅) = 0. For any coalition S ⊆ N , we assume that s = |S|. In the
sequel, GN will denote the family of all TU–games on a given N and G will denote
the family of all TU–games. Given S ⊆ N , we denote the restriction of a TU–game
(N, v) ∈ GN to S as (S, v).

A simple game is a TU–game (N, v) such that v(S) ∈ {0, 1} for all S ⊆ N and
v(T ) ≤ v(S) for all T ⊆ S ⊆ N . Given a simple game (N, v), a winning coalition

is a coalition S ⊆ N such that v(S) = 1. A winning coalition S ⊆ N is a minimal

winning coalition if v(T ) = 0 for all T ( S.
A weighted majority game is a simple game (N,v) which depends on a quota

q > 0 and a weight wi ≥ 0 for any player i ∈ N , since the worth of any coalition
S ⊆ N is given by

v(S) =







1 if
∑

i∈S

wi ≥ q

0 otherwise.

Thus, it can be denoted by [q;w1, . . . , wn].
Let us fix a TU–game (N, v) and two players i, j ∈ N with i 6= j. Let the set

{i, j} be considered as a new player i∗ 6∈ N (it means that the players i and j are
amalgamated into one player i∗) and let us denote N{i,j} = (N \ {i, j})∪{i∗}. The

{i, j}–amalgamated game
(

N{i,j}, v{i,j}
)

∈ G is defined for all S ⊆ N{i,j} by

v
{i,j}(S) =

{

v ((S \ {i∗}) ∪ {i, j}) if i∗ ∈ S

v(S) otherwise.

A value is a map f that assigns to every TU–game (N, v) ∈ G a vector f(N, v) =
(fi(N, v))i∈N , where each component fi(N, v) represents the payoff of i when he
participates in the game.

The Shapley and the Banzhaf values are two widely–known tools in this con-
text. In both cases, the payoff for each player can be computed as the weighted
mean of the marginal contributions of the player. But, whereas in the Shapley value
the weights are obtained assuming that all the orders of the players are equally
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likely, in the case of the Banzhaf value the weights are calculated by taking into
account that the player is equally likely to join any coalition.

Definition 1 (Shapley [28]) The Shapley value is the value defined for all (N, v) ∈ G

and all i ∈ N by

Shi(N, v) =
∑

S⊆N\{i}

s! (n− s− 1)!

n!

[

v(S ∪ {i}) − v(S)
]

.

Definition 2 (Banzhaf [11]) The Banzhaf value is the value defined for all (N, v) ∈
G and all i ∈ N by

Bzi(N,v) =
∑

S⊆N\{i}

1

2n−1

[

v(S ∪ {i}) − v(S)
]

.

The Shapley value is one of the values that belongs to the family of weighted
Shapley values. The values in this family are defined by means of a vector of
weights ω ∈ RN

+ , where for each i ∈ N , ωi is the weight of player i. If the weights
of the players are equal, i.e., ωi = ωj for all i, j ∈ N , i 6= j, then we get the Shapley
value.

Definition 3 (Shapley [27] and Kalai and Samet [20]) The weighted Shapley value

is the value defined for all (N, v) ∈ G , all ω ∈ RN
+ and all i ∈ N by

Sh
ω
i (N, v) =

∑

S⊆N :i∈S

ωi
∑

j∈S

ωj

∑

T⊆S

(−1)s−t
v(T ).

2.2 TU–games with coalition structure

Let us consider a finite set of players N . A coalition structure over N is a partition
of N , i.e., C = {C1, . . . , Cm} is a coalition structure over N if it satisfies that
⋃

h∈M Ch = N , where M = {1, . . . , m}, and Ch ∩ Cr = ∅ when h 6= r. There are
two trivial coalition structures: Cn = {{i} : i ∈ N}, where each union is a singleton,
and CN = {N}, where the grand coalition forms.

Given i ∈ N , C(i) denotes the family of coalition structures over N where {i}
is a singleton union, that is, C ∈ C(i) if and only if {i} ∈ C.

Given T ⊆ Ch, C|T is the coalition structure where the union Ch is replaced
by the subset T , i.e., C|T = (C \ {Ch}) ∪ {T}.

A cooperative game with coalition structure (or TU–game with coalition structure)
is a triple (N,v, C) where (N, v) is a TU–game and C is a coalition structure over
N . The set of all TU–games with coalition structure will be denoted by CG , and
by CGN the subset where N is the player set.

Given S ⊆ N , such that S =
⋃

h∈M Sh, with ∅ 6= Sh ⊆ Ch for all h ∈ M , we
will denote the restriction of (N, v,C) ∈ CGN to S as the TU–game with coalition
structure (S, v, CS), where CS = {C1, . . . , Cm}.

If (N, v,C) ∈ C G and C = {C1, . . . , Cm}, the quotient game
(

M,vC
)

is the TU–

game defined as vC(R) = v
(
⋃

r∈R Cr

)

for all R ⊆ M . It means that the quotient
game is the game played by the unions, i.e., the TU–game induced by (N, v,C) by
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considering the elements of C as players. Notice that (M,vC) coincides with (N,v)
when C = Cn.

A coalitional value is a map g that assigns to every TU–game with coalition
structure (N, v,C) a vector g(N,v, C) = (gi(N, v,C))i∈N ∈ RN , where gi(N, v,C)
is the payoff for each player i ∈ N .

Given a value f on G , a coalitional value g on CG is a coalitional f–value for

singletons when g (N, v,Cn) = f(N, v). Thus, a coalitional value g is a coalitional

Shapley value for singletons when g (N, v,Cn) = Sh(N, v) and g is a coalitional

Banzhaf value for singletons when g (N, v,Cn) = Bz(N, v).
The Owen and Banzhaf–Owen values are two coalitional values which extend

the Shapley and Banzhaf values to the context of cooperative games with coalition
structure. Both coalitional values take into account that the players in the same
union act together and, in this way, only contributions of each player to coalitions
formed by full unions and agents in the union of the player are considered.

Definition 4 (Owen [24]) The Owen value is defined for all (N, v,C) ∈ CG and all
i ∈ N by Owi(N, v,C) =

∑

R⊆M\{h}

∑

T⊆Ch\{i}

r! (m− r − 1)!

m!

t! (ch − t− 1)!

ch!

[

v (Q ∪ T ∪ {i}) − v(Q ∪ T )
]

,

where Ch ∈ C is the union such that i ∈ Ch, m = |M |, ch = |Ch|, t = |T |, r = |R|

and Q =
⋃

r∈R

Cr.

Another way to obtain the Owen value consists of computing the Shapley value
twice, first applied to a quotient game and then applied to a TU–game inside the
unions. According to this procedure, for all (N, v,C) ∈ CG , all Ch ∈ C and all
i ∈ Ch,

Owi(N, v,C) = Shi

(

Ch, v̂
Sh,C

)

(1)

and
(

Ch, v̂
Sh,C

)

is the TU–game such that v̂Sh,C(T ) = Shh

(

M,vC|T

)

for all

T ⊆ Ch, T 6= ∅.

Since the Owen value satisfies that Ow (N, v,Cn) = Sh(N, v), the Owen value
is a coalitional Shapley value for singletons.

Definition 5 (Owen [25]) The Banzhaf–Owen value is defined for all (N, v,C) ∈ CG

and all i ∈ N by

BzOwi(N, v,C) =
∑

R⊆M\{h}

∑

T⊆Ch\{i}

1

2m−1

1

2ch−1

[

v (Q ∪ T ∪ {i})− v(Q ∪ T )
]

,

where Ch ∈ C is the union such that i ∈ Ch, m = |M |, ch = |Ch| and Q =
⋃

r∈R

Cr.

The Banzhaf–Owen value can be obtained according to a procedure in two
stages. It is similar to the one used to compute the Owen value, just replacing the
Shapley value with the Banzhaf value. Then, for all (N, v,C) ∈ CG , all Ch ∈ C

and all i ∈ Ch,

BzOwi(N, v,C) = Bzi

(

Ch, v̂
Bz,C

)

(2)
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and
(

Ch, v̂
Bz,C

)

is the TU–game such that v̂Bz,C(T ) = Bzh

(

M,vC|T

)

for all

T ⊆ Ch, T 6= ∅.

The Banzhaf–Owen value is a coalitional Banzhaf value for singletons since
BzOw (N, v,Cn) = Bz(N,v).

3 The intracoalitional balanced contributions property

The property of intracoalitional balanced contributions was introduced by Calvo
et al. [12] and states that, given two players in the same union, the amounts that
both players gain or lose when the other leaves the coalitional game should be
equal. This property is satisfied by the Owen and Banzhaf–Owen values, but also
by many other coalitional values.

Intracoalitional balanced contributions (IBC). For all (N,v,C) ∈ CG and all
i, j ∈ Ch ∈ C, i 6= j,

gi(N,v, C)− gi
(

N \ {j}, v, CN\{j}

)

= gj(N, v,C)− gj
(

N \ {i}, v, CN\{i}

)

.

In Calvo et al. [12], a characterization of the Owen value is provided by means
of efficiency, coalitional balanced contributions and intracoalitional balanced con-
tributions. The last two properties are based on the property of balanced contri-
butions for TU–games. A value f satisfies this property if, for all (N,v) ∈ G and
all i, j ∈ N , fi(N, v) − fi (N \ {j}) = fj(N, v) − fj (N \ {i}). This property says
that, given two players, the gains or losses obtained by both players when the
other leaves the game coincide. Myerson [23] used it, together with efficiency, to
characterize the Shapley value.

In Sánchez [26] it is proved that if a value on TU–games satisfies the balanced
contributions axiom then this value can be expressed as the Shapley value of a
particular TU–game. Following a similar reasoning, we can prove that the payoff
of each player, according to any coalitional value satisfying the intracoalitional
balanced contributions axiom, can be computed by means of the Shapley value
applied to a TU–game restricted to the union the player belongs to.

Definition 6 For all (N, v,C) ∈ CG and all Ch ∈ C, given a coalitional value g,

we define the TU–game
(

Ch, v
g,C

)

as

v
g,C(T ) =

∑

i∈T

gi
(

(N \ {Ch}) ∪ T, v, C|T

)

for all T ⊆ Ch, T 6= ∅.

According to this TU–game, the worth of each subset of players in the union is
given by the sum of their values in the coalitional game where the union is replaced
with the subset.

Proposition 1

a) A coalitional value g satisfies IBC if and only if, for all (N, v,C) ∈ C G and all

i ∈ Ch with Ch ∈ C,

gi(N,v, C) =

vg,C (Ch)− vg,C (Ch \ {i}) +
∑

j∈Ch\{i}

gi
(

N \ {j}, v, CN\{j}

)

|Ch|
(3)
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b) A coalitional value g satisfies IBC if and only if, for all (N,v, C) ∈ CG and all

i ∈ Ch with Ch ∈ C, gi(N, v,C) = Shi

(

Ch, v
g,C

)

.

In the first part of the proposition we propose a necessary and sufficient con-
dition to be fulfilled by any coalitional value satisfying the property of IBC. This
condition provides an interpretation of the coalitional value g for a player i ∈ Ch

as the average of |Ch| quantities: the amounts player i gets if another player in the
union leaves the game and the marginal contribution of i to his/her union in the
TU–game vg,C .

In the second part we express any coalitional value satisfying IBC as the Sha-
pley value of a particular game. This condition is related to the first part of the
proposition and it will we used in the characterizations of the next section.

Proof

Proof of part a)

First of all, it will be proved that if a coalitional value g satisfies IBC then (3)
is true. Given i ∈ Ch, by IBC we know that for all j ∈ Ch \ {i},

gi(N, v,C)− gi
(

N \ {j}, v, CN\{j}

)

= gj(N, v,C)− gj
(

N \ {i}, v, CN\{i}

)

.

If we add these equations over j ∈ Ch \ {i}, we obtain that

(|Ch| − 1) gi(N, v,C)−
∑

j∈Ch\{i}

gi
(

N \ {j}, v, CN\{j}

)

=
∑

j∈Ch\{i}

gj(N, v,C)−
∑

j∈Ch\{i}

gj
(

N \ {i}, v, CN\{i}

)

.

Taking into account the definition of the game
(

Ch, v
g,C

)

, the previous equation

can be replaced by

(|Ch| − 1) gi(N, v,C)−
∑

j∈Ch\{i}

gi
(

N \ {j}, v, CN\{j}

)

= v
g,C (Ch)− gi(N, v,C)− v

g,C (Ch \ {i}) .

Thus

gi(N, v,C) =

vg,C(Ch)− vg,C (Ch \ {i}) +
∑

j∈Ch\{i}

gi
(

N \ {j}, v, CN\{j}

)

|Ch|
.

Suppose now that g is a coalitional value that satisfies (3). We will prove that
g satisfies IBC. The proof will be done by induction on |Ch|. We assume that
|Ch| > 1 since this is the situation where IBC gives some information about the
coalitional value.
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Suppose that Ch = {i, j}. Then equation (3) can be written as

gi(N,v,C)

=
vg,C(Ch)− vg,C (Ch \ {i}) + gi

(

N \ {j}, v, CN\{j}

)

2

=
gi(N, v,C) + gj(N,v, C)− gj

(

N \ {i}, v, CN\{i}

)

+ gi
(

N \ {j}, v, CN\{j}

)

2
,

what implies that IBC is true.
Suppose now that |Ch| > 2. Let us choose i, j ∈ Ch. Then

|Ch|
[

gi
(

N \ {j}, v, CN\{j}

)

− gj
(

N \ {i}, v, CN\{i}

)]

= (|Ch| − 1)
[

gi
(

N \ {j}, v, CN\{j}

)

− gj
(

N \ {i}, v, CN\{i}

)]

+ gi
(

N \ {j}, v, CN\{j}

)

− gj
(

N \ {i}, v, CN\{i}

)

= v
g,CN\{j} (Ch \ {j}) − v

g,CN\{j} (Ch \ {i, j})

+
∑

k∈Ch\{i,j}

gi
(

N \ {j, k}, v, CN\{j,k}

)

− v
g,CN\{i} (Ch \ {i})

+ v
g,CN\{i} (Ch \ {i, j})−

∑

k∈Ch\{i,j}

gj
(

N \ {i, k}, v, CN\{i,k}

)

+ gi
(

N \ {j}, v, CN\{j}

)

− gj
(

N \ {i}, v, CN\{i}

)

= v
g,CN\{j}(Ch \ {j}) +

∑

k∈Ch\{i,j}

gi
(

N \ {j, k}, v, CN\{j,k}

)

+ gi
(

N \ {j}, v, CN\{j}

)

− v
g,CN\{i}(Ch \ {i})

−
∑

k∈Ch\{i,j}

gj
(

N \ {i, k}, v, CN\{i,k}

)

− gj
(

N \ {i}, v, CN\{i}

)

.

On the other hand, by the induction hypothesis we know that for all k ∈
Ch \ {i, j},

gi
(

N \ {j, k}, v, CN\{j,k}

)

− gj
(

N \ {i, k}, v, CN\{i,k}

)

= gi
(

N \ {k}, v, CN\{k}

)

− gj
(

N \ {k}, v, CN\{k}

)

.

Thus, by induction hypothesis and (3),

|Ch|
[

gi
(

N \ {j}, v, CN\{j}

)

− gj
(

N \ {i}, v, CN\{i}

)]

=
∑

k∈Ch\{i}

gi
(

N \ {k}, v, CN\{k}

)

− v
g,CN\{i} (Ch \ {i})

−





∑

k∈Ch\{j}

gj
(

N \ {k}, v, CN\{k}

)

− v
g,CN\{j} (Ch \ {j})





=
∑

k∈Ch\{i}

gi
(

N \ {k}, v, CN\{k}

)

+ v
g,C(Ch)− v

g,CN\{i} (Ch \ {i})

−





∑

k∈Ch\{j}

gj
(

N \ {k}, v, CN\{k}

)

+ v
g,C(Ch)− v

g,CN\{j} (Ch \ {j})





= |Ch| [gi(N, v,C)− gj(N, v,C)] . �
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Proof of part b)

It is straightforward to prove that every coalitional value g, which satisfies that

gi(N, v,C) = Shi

(

Ch, v
g,C

)

for all (N, v,C) ∈ CG and all i ∈ Ch with Ch ∈ C, also

satisfies the property IBC. In fact, since the Shapley value satisfies the property
of balanced contributions (for more information, see Myerson [23]), we have that
for all i, j ∈ Ch,

gi(N, v,C)− gi
(

N \ {j}, v, CN\{j}

)

= Shi

(

Ch, v
g,C

)

− Shi

(

Ch \ {j}, vg,CN\{j}

)

= Shi

(

Ch, v
g,C

)

− Shi

(

Ch \ {j}, vg,C
)

= Shj

(

Ch, v
g,C

)

− Shj

(

Ch \ {i}, vg,C
)

= Shj

(

Ch, v
g,C

)

− Shj

(

Ch \ {i}, vg,CN\{i}

)

= gj(N, v,C)− gj
(

N \ {i}, v, CN\{i}

)

.

Next, we will prove that a coalitional value g satisfying property IBC can be

expressed as gi(N,v,C) = Shi

(

Ch, v
g,C

)

for all (N,v, C) ∈ CG and all i ∈ Ch with

Ch ∈ C. The proof will be done by induction on |Ch|.

Suppose that Ch = {i}. Then, in this case, Shi

(

Ch, v
g,C

)

= Shi

(

{i}, vg,C
)

=

vg,C({i}) = gi(N, v,C).

Suppose now that |Ch| > 1. By part a), we know that g satisfies equation (3).
It means that, applying the induction hypothesis,

|Ch|gi(N,v, C)

= v
g,C(Ch)− v

g,C (Ch \ {i}) +
∑

j∈Ch\{i}

gi
(

N \ {j}, v, CN\{j}

)

= v
g,C(Ch)− v

g,C (Ch \ {i}) +
∑

j∈Ch\{i}

Shi

(

Ch \ {j}, vg,CN\{j}

)

= v
g,C(Ch)− v

g,C (Ch \ {i})

+
∑

j∈Ch\{i}

∑

T⊆Ch\{i,j}

t! (ch − t− 2)!

(ch − 1)!

[

v
g,CN\{j} (T ∪ {i}) − v

g,CN\{j}(T )
]

= v
g,C(Ch)− v

g,C (Ch \ {i})

+
∑

j∈Ch\{i}

∑

T⊆Ch\{i,j}

t! (ch − t− 2)!

(ch − 1)!

[

v
g,C(T ∪ {i}) − v

g,C(T )
]
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= v
g,C(Ch)− v

g,C (Ch \ {i})

+
∑

T(Ch\{i}

∑

j∈Ch\(T∪{i})

t! (ch − t− 2)!

(ch − 1)!

[

v
g,C (T ∪ {i}) − v

g,C(T )
]

= v
g,C(Ch)− v

g,C (Ch \ {i}) +
∑

T(Ch\{i}

t! (ch − t− 1)!

(ch − 1)!

[

v
g,C (T ∪ {i}) − v

g,C(T )
]

.

Therefore,

gi(N, v,C) =
∑

T⊆Ch\{i}

t! (ch − t− 1)!

ch!

[

v
g,C(T ∪ {i})− v

g,C(T )
]

= Shi

(

Ch, v
g,C

)

.�

Remark 1

• Since the Owen value Ow satisfies IBC, by Proposition 1 we obtain an alternative
expression for this coalitional value. Then, for all (N,v,C) ∈ CG and all i ∈ Ch

with Ch ∈ C,

Owi(N, v,C) = Shi

(

Ch, v
Ow,C

)

,

where vOw,C(T ) =
∑

i∈T

Owi

(

(N \ {Ch}) ∪ T, v, C|T

)

for all T ⊆ Ch.

Moreover, we know that for all T ⊆ Ch,

v
Ow,C(T ) =

∑

i∈T

Owi

(

(N \ {Ch}) ∪ T, v, C|T

)

= Shh

(

M,v
C|T

)

= v̂
Sh,C(T ).

It implies that Owi(N, v,C) = Shi

(

Ch, v̂
Sh,C

)

, which coincides with the ex-

pression given in (1).
• It is straightforward to prove that the Banzhaf–Owen value satisfies IBC. Then,
by Proposition 1, we can also obtain an alternative expression to compute the
Banzhaf–Owen value BzOw. Thus, for all (N, v,C) ∈ C G and all i ∈ Ch with
Ch ∈ C,

BzOwi(N, v,C) = Shi

(

Ch, v
BzOw,C

)

, (4)

where vBzOw,C(T ) =
∑

i∈T

BzOwi

(

(N \ {Ch}) ∪ T, v, C|T

)

for all T ⊆ Ch.

Example 1 In this example the Owen and Banzhaf–Owen values are computed
according to different expressions provided in this paper.

To this aim, let us consider the set of playersN = {1, 2, 3,4, 5} and the weighted
majority game [7; 5,2, 2,2, 1].

It is easy to prove that the set of minimal winning coalitions associated with
this weighted majority game is {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4,5}}.

Let us fix the coalition structure C = {C1, C2} with C1 = {2, 3, 4} and C2 =
{1, 5}. Thus, with this weighted majority game (N, v) and the coalition structure,
it is possible to define a TU–game with coalition structure (N, v,C).

Both coalitional values can be easily computed with the formulas given in
Definitions 4 and 5, obtaining that

Ow(N, v,C) =

(

1

4
,
1

6
,
1

6
,
1

6
,
1

4

)

and BzOw(N, v,C) =

(

1

4
,
1

8
,
1

8
,
1

8
,
1

4

)

.
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Table 1 TU–games v̂Sh,C , v̂Bz,C and vBzOw,C evaluated in the coalitions of union C1

T {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

v̂Sh,C(T ) 1
2

1
2

1
2

1
2

1
2

1
2

1
2

v̂Bz,C(T ) 1
2

1
2

1
2

1
2

1
2

1
2

1
2

vBzOw,C(T ) 1
2

1
2

1
2

1
2

1
2

1
2

3
8

Table 2 TU–games v̂Sh,C , v̂Bz,C and vBzOw,C evaluated in the coalitions of union C2

T {1} {5} {1, 5}

v̂Sh,C(T ) 1
2

1
2

1
2

v̂Bz,C(T ) 1
2

1
2

1
2

vBzOw,C(T ) 1
2

1
2

1
2

In the case of the Owen value, we could also apply the expression given in (1)
to obtain the payoffs for the players in each coalition. Then, we know that for each

i ∈ Ch, with h ∈ {1, 2}, Owi(N, v,C) = Shi

(

Ch, v̂
Sh,C

)

. According to this formula

and the TU–game v̂Sh,C computed in Tables 1 and 2, we know that

Owi(N, v,C) =
1

6
for i ∈ {2, 3, 4} and Owi(N, v,C) =

1

4
for i ∈ {1, 5}.

However, the Banzhaf–Owen value can be obtained in two different ways: either
using the TU–game v̂Bz,C(T ) or vBzOw,C(T ).

On one hand, we can consider the expression given in (2). So, the Banzhaf–
Owen value can be computed for each i ∈ Ch, with h ∈ {1, 2}, as BzOwi(N, v,C) =

Bzi

(

Ch, v̂
Bz,C

)

. Taking into account the TU–game v̂Bz,C computed in Tables 1

and 2, it is easy to deduce that

BzOwi(N, v,C) =
1

8
for i ∈ {2, 3, 4} and BzOwi(N, v,C) =

1

4
for i ∈ {1, 5}.

On the other hand, if we choose the formula from expression (4), we have

that BzOwi(N,v, C) = Shi

(

Ch, v
BzOw,C

)

for all i ∈ Ch, with h ∈ {1, 2}. Then, if

we compute the Shapley value of the TU–game vBzOw,C for each union, we also
obtain that

BzOwi(N, v,C) =
1

8
for i ∈ {2, 3, 4} and BzOwi(N, v,C) =

1

4
for i ∈ {1, 5}.

Note that
(

Ch, v̂
Sh,C

)

=
(

Ch, v
Ow,C

)

for all (N, v,C) ∈ CG and all Ch ∈ C.

However, this is not the case of the Banzhaf–Owen value. In fact, for the TU–game
with coalition structure considered in the example,

Bz1

(

M,v
C
)

= v̂
Bz,C (C1) =

1

2
6=

3

8
= v

BzOw,C (C1) =
∑

i∈C1

BzOwi(N, v,C).
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4 The characterizations

Below, we introduce the properties that, together with the property of intracoali-
tional balanced contributions, will be used to study the behavior of the Owen and
Banzhaf–Owen values.

Efficiency (E). For all (N, v,C) ∈ C G ,
∑

i∈N

gi(N, v,C) = v(N).

Efficiency says that the worth of the grand coalition should be distributed
among the players.

2–Efficiency within unions (2–EWU). For all (N, v,C) ∈ CG , any Ch ∈ C, and
i, j ∈ Ch, i 6= j,

gi(N, v,C) + gj(N, v,C) = gi∗
(

N
{i,j}

, v
{i,j}

, C
{i,j}

)

,

where
(

N{i,j}, v{i,j}
)

is the {i, j}–amalgamated game of (N, v) and C{i,j} =
{

C
{i,j}
1 , . . . , C

{i,j}
m

}

is the coalition structure over N{i,j} such that C
{i,j}
h

=

(Ch \ {{i, j}}) ∪ {i∗} and C
{i,j}
r = Cr for r 6= h.

According to this property, the sum of the payoffs of two players in the same
union coincides with the payoff of their representative i∗ in the amalgamated
game.

Coherence (C). For all (N, v) ∈ G , g
(

N, v,CN
)

= g (N, v,Cn) .

Coherence means that the situations where all the players belong to the same
union and when all of them act as singletons are indistinguishable.

Neutrality for the amalgamated game (NAG). If (N, v,C) ∈ CG and i, j ∈ Ch ∈ C,
with i 6= j, then

gk(N, v,C) = gk

(

N
{i,j}

, v
{i,j}

, C
{i,j}

)

for all k ∈ N\Ch.

Neutrality for the amalgamated game says that if two players in the same union
join their forces then the players outside the union are not affected.

1–Quotient game (1–QG). If (N,v, C) ∈ C G and C ∈ C(i) for some i ∈ N , then

gi(N, v,C) = gh

(

M,vC , Cm
)

, where Ch = {i}.

This property means that the amount an isolated player gets should not depend
on the structure of the other unions.

Quotient game (QG). For all (N, v,C) ∈ CG and all Ch ∈ C,
∑

i∈Ch

gi(N, v,C) =

gh

(

M,vC , Cm
)

.

In the case of the quotient game property, the sum of the payoffs of the players
in a union coincides with the payoff of this union in the quotient game.

Note that both 2–EWU and NAG are refered to the amalgamated game. How-
ever, whereas 2–EWU deals with the players in the same union who merge, NAG
is focused on the study of the payoffs of the players outside the union. On the
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other hand, property 1–QG is weaker than properties NAG and QG. In fact, 1–
QG is a particular case of property QG for the coalitions formed by one player.
An interesting comparison of 1–QG and QG can be found in Alonso–Meijide et
al. [4].

In the next proposition, different relations between the properties and the
corresponding payoff for each coalition are studied. These results, together with
Proposition 1, will be used later to give characterizations for the Owen and the
Banzhaf–Owen value.

Proposition 2

a) If g is a coalitional value that satisfies E and NAG then g satisfies QG.

b) A coalitional value g is a coalitional Shapley value for singletons and satisfies QG if

and only if
∑

i∈Ch

gi(N, v,C) = Shh

(

M,vC
)

for all Ch ∈ C.

c) If g is a coalitional Shapley value for singletons and satisfies E and NAG then
∑

i∈Ch

gi(N,v, C) = Shh

(

M,vC
)

for all Ch ∈ C.

d) If g is a coalitional Banzhaf value for singletons and satisfies 2–EWU and 1–QG then
∑

i∈Ch

gi(N,v, C) =
∑

i∈Ch

BzOwi(N, v,C) for all Ch ∈ C.

Proof

Proof of part a)

Let us consider a coalitional value g that satisfies properties E and NAG. We
will prove that g satisfies QG.

Then, let us fix a TU–game with coalition structure (N, v,C) ∈ C G and Ch ∈ C.
We distinguish two cases:

– First case: C = Cn. In this particular case, Ch = {i} and (N, v) =
(

M,vC
)

. It

implies that gi (N, v,Cn) = gh

(

M, vC , Cm
)

.

– Second case: |Cr| = 1 for all r 6= h and |Ch| > 1. In this case we apply a recursive
procedure, which consists of amalgamating two players in the union Ch and
then a third player in the same union is amalgamated to the new one, and so
on. The procedure is applied ch− 1 times to build the TU–game with coalition

structure
(

N(ch−1), v(ch−1), C(ch−1)
)

, where
∣

∣

∣
C

(ch−1)
h

∣

∣

∣
= 1, C(ch−1)

r = Cr for

all r 6= h and

v
(ch−1)(S) =

{

v

((

S \ C
(ch−1)
h

)

∪ Ch

)

if C
(ch−1)
h

⊆ S

v(S) otherwise.

Moreover, if we apply NAG at each step, at the end of the procedure we obtain
that for all i ∈ N \ Ch,

gi(N, v,C) = gi

(

N
(ch−1)

, v
(ch−1)

, C
(ch−1)

)

.
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Note that the game
(

N(ch−1), v(ch−1), C(ch−1)
)

is now in the conditions of the

first case. Then, for all Cr ∈ C, with r 6= h, and i ∈ Cr,

gi(N, v,C) = gi

(

N
(ch−1)

, v
(ch−1)

, C
(ch−1)

)

= gr

(

M, v
C
, C

m
)

.

On the other hand, by E we know that

∑

i∈Ch

gi(N, v,C) = v(N)−
∑

i∈N\Ch

gi(N, v,C).

So, it is easy to deduce that

∑

i∈Ch

gi(N,v, C) = v(N)−
∑

i∈N\Ch

gi(N, v,C)

= v
C(M)−

∑

r∈M\{h}

gr

(

M,v
C
, C

m
)

= gh

(

M, v
C
, C

m
)

.

– Third case: There exists at least one union Cr ∈ C, r 6= h, such that |Cr| > 1.
Let us consider the set Mh = {r ∈ M \ {h} : |Cr| > 1}, with mh = |Mh|. In this
case we apply a procedure, which consists of mh stages. The procedure at each
stage is similar to the recursive procedure used in the second case until we get,
after

∑

r∈Mh
cr −mh steps, the TU–game with coalition structure denoted by

(

N

(

∑

r∈Mh
cr−mh

)

, v

(

∑

r∈Mh
cr−mh

)

, C

(

∑

r∈Mh
cr−mh

)
)

.

This TU–game with coalition structure satisfies that

∣

∣

∣

∣

∣

C

(

∑

r∈Mh
cr−mh

)

r

∣

∣

∣

∣

∣

= 1

for all r ∈ Mh and C

(

∑

r∈Mh
cr−mh

)

r = Cr for all r ∈ M \Mh. Moreover, if we
apply NAG at each step, we finally have that, for all i ∈ Ch,

gi

(

N

(

∑

r∈Mh
cr−mh

)

, v

(

∑

r∈Mh
cr−mh

)

, C

(

∑

r∈Mh
cr−mh

)
)

= gi(N, v,C).

Since the game

(

N

(

∑

r∈Mh
cr−mh

)

, v

(

∑

r∈Mh
cr−mh

)

, C

(

∑

r∈Mh
cr−mh

)
)

is in the

conditions of the first or second case, it is easy to prove that

∑

i∈Ch

gi(N, v,C)

=
∑

i∈Ch

gi

(

N

(

∑

r∈Mh
cr−mh

)

, v

(

∑

r∈Mh
cr−mh

)

, C

(

∑

r∈Mh
cr−mh

)
)

= v
C(M)−

∑

r∈M\{h}

gr

(

M,v
C
, C

m
)

= gh

(

M,v
C
, C

m
)

.
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Proof of part b)

Let us consider the TU–game with coalition structure (N,v, C) ∈ CG and
Ch ∈ C. It is straightforward to prove that any coalitional value g satisfying
∑

i∈Ch

gi(N,v, C) = Shh

(

M,vC
)

is a coalitional value for singletons and satisfies

QG.

On the other hand, if g is a coalitional value for singletons and satisfies QG,
then

∑

i∈Ch

gi(N, v,C) = gh

(

M,v
C
, C

m
)

= Shh

(

M,v
C
)

. �

Proof of part c)

According to part a), if a coalitional value g satisfies E and NAG then it satisfies

QG. Thus, if we apply part b) we obtain that
∑

i∈Ch

gi(N, v,C) = Shh

(

M,vC
)

for

all (N,v, C) ∈ CG and Ch ∈ C. �

Proof of part d)

Let us consider the TU–game with coalition structure (N,v, C) ∈ CG and
Ch ∈ C. We distinguish three cases:

– First case: C = Cn. Since g is a coalitional Banzhaf value for singletons we
have that g(N,v,C) = Bz(N,v) = BzOw(N, v,C).

– Second case: |Ch| = 1 and there exists at least one union Cr, r 6= h, such
that |Cr| > 1. Suppose that Ch = {i}. By 1–QG we obtain that gi(N, v,C) =

gh

(

M,vC , Cm
)

.

According to the first case and taking into account that BzOw also satisfies 1–

QG, gi(N, v,C) = gh

(

M,vC , Cm
)

= BzOwh

(

M,vC , Cm
)

= BzOwi(N, v,C).

– Third case: |Ch| = ch > 1. In this particular case we follow a recursive proce-
dure, which consists of ch − 1 steps:

Initially, we consider the TU–game with coalition structure
(

N(0), v(0), C(0)
)

=

(N,v,C). We also assume that C
(0)
h

=
{

i
(0)
1 , . . . , i

(0)
ch

}

. After ch − 1 steps we

obtain
(

N(ch−1), v(ch−1), C(ch−1)
)

, that satisfies that
∣

∣

∣
C

(ch−1)
h

∣

∣

∣
= 1. The pro-

cedure at each step p, with 1 ≤ p ≤ ch − 1, is as follows:

Suppose that, after step p− 1, we obtained the game
(

N(p−1), v(p−1), C(p−1)
)

with
∣

∣

∣
C

(p−1)
h

∣

∣

∣
= ch− p+1. Let us assume that C(p−1)

h
=

{

i
(p−1)
1 , . . . , i

(p−1)
ch−p+1

}

.

At step p we take players i
(p−1)
1 , i

(p−1)
2 ∈ C

(p−1)
h

and define
(

N(p), v(p), C(p)
)

as the
{

i
(p−1)
1 , i

(p−1)
2

}

–amalgamated game of
(

N(p−1), v(p−1), C(p−1)
)

. By def-

inition of amalgamated game, we know that
∣

∣

∣
C

(p)
h

∣

∣

∣
= ch − p and C

(p)
r = Cr for

all r 6= h.
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Moreover, by 2–EWU we know that

g
i
(p−1)
1

(

N
(p−1)

, v
(p−1)

, C
(p−1)

)

+ g
i
(p−1)
2

(

N
(p−1)

, v
(p−1)

, C
(p−1)

)

= g
i
(p−1)
1 i

(p−1)
2

(

N
(p)

, v
(p)

, C
(p)

)

.

We consider that the set
{

i
(p−1)
1 , i

(p−1)
2

}

is represented by the player i
(p)
1 and

that i
(p)
k

= i
(p−1)
k+1

for 2 ≤ k ≤ ch − p. If p < ch − 1, we go to next step.

After ch − 1 steps, we obtain the game
(

N(ch−1), v(ch−1), C(ch−1)
)

, where
∣

∣

∣
C

(ch−1)
h

∣

∣

∣
= 1 and C

(ch−1)
r = Cr for all r 6= h. In addition,

g
i
(ch−1)

1

(

N
(ch−1)

, v
(ch−1)

, C
(ch−1)

)

= g
i
(ch−2)

1

(

N
(ch−2)

, v
(ch−2)

, C
(ch−2)

)

+ g
i
(ch−2)

2

(

N
(ch−2)

, v
(ch−2)

, C
(ch−2)

)

...

= g
i
(0)
1

(

N
(0)

, v
(0)

, C
(0)

)

+ . . .+ g
i
(0)
ch

(

N
(0)

, v
(0)

, C
(0)

)

=
∑

i∈Ch

gi(N, v,C).

Then, the TU–game with coalition structure
(

N(ch−1), v(ch−1), C(ch−1)
)

is in

the conditions of the first or the second case (it depends on the size of the

coalitions). In both cases, we know that g
i
(ch−1)

1

(

N(ch−1), v(ch−1), C(ch−1)
)

= BzOw
i
(ch−1)

1

(

N(ch−1), v(ch−1), C(ch−1)
)

.

Therefore, since BzOw also satisfies 2–EWU,

∑

i∈Ch

gi(N, v,C) = g
i
(ch−1)

1

(

N
(ch−1)

, v
(ch−1)

, C
(ch−1)

)

= BzOw
i
(ch−1)

1

(

N
(ch−1)

, v
(ch−1)

, C
(ch−1)

)

=
∑

i∈Ch

BzOwi(N, v,C). �

Theorem 1

a) The Owen value is the only coalitional Shapley value for singletons that satisfies QG

and IBC.

b) The Owen value is the only coalitional Shapley value for singletons that satisfies E,

NAG and IBC.

c) The Owen value is the only coalitional value that satisfies E, C, NAG and IBC.

Proof

By the results contained in other papers where the Owen value is studied, we
know that the Owen value satisfies E, C, NAG, QG and IBC. Then, it only remains
to prove the uniqueness.
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Proof of uniqueness in part a)

Since g is in the conditions of Proposition 1 we can assume that, for all

(N, v,C) ∈ C G and all i ∈ Ch with Ch ∈ C, gi(N, v,C) = Shi

(

Ch, v
g,C

)

.

On the other hand, since g is in the conditions of part b) from Proposition 2,
we know that for all T ⊆ Ch,

v
g,C(T ) =

∑

i∈T

gi
(

(N \ Ch) ∪ T, v, C|T

)

= Shh

(

M,v
C|T

)

= v̂
Sh,C(T ).

Then, we know that for all (N, v,C) ∈ C G and all i ∈ Ch with Ch ∈ C,

gi(N,v, C) = Shi

(

Ch, v̂
Sh,C

)

= Owi(N, v,C). �

Proof of uniqueness in part b)

Since g is in the conditions of Proposition 1 we can assume that, for all

(N, v,C) ∈ C G and all i ∈ Ch with Ch ∈ C, gi(N, v,C) = Shi

(

Ch, v
g,C

)

.

Moreover, g is also in the conditions of Proposition 2 part c). If we apply this
result to the definition of the game vg,C , we obtain that for all T ⊆ Ch,

v
g,C(T ) =

∑

i∈T

gi
(

(N \ Ch) ∪ T, v, C|T

)

= Shh

(

M,v
C|T

)

= v̂
Sh,C(T ).

Then, we know that for all (N, v,C) ∈ C G and all i ∈ Ch with Ch ∈ C,

gi(N,v, C) = Shi

(

Ch, v̂
Sh,C

)

= Owi(N, v,C). �

Proof of uniqueness in part c)

Let us consider (N, v) ∈ G . By IBC applied to (N, v,CN ), we know that for all
i, j ∈ N ,

gi(N, v,C
N )− gi

(

N \ {j}, v, CN\{j}
)

= gj(N, v,C
N )− gj

(

N \ {i}, v, CN\{i}
)

.

And, taking into account the characterization for the Shapley value given by Myer-
son [23], this result jointly with E implies that g(N,v,CN ) = Sh(N, v) for all
(N, v) ∈ G . By C, we also know that g(N,v,Cn) = g(N,v,CN ) = Sh(N, v) for all
(N, v) ∈ G .

Then, since g is in the conditions of the part a) of this theorem, we can assert
that for all (N, v,C) ∈ CG and all i ∈ Ch with Ch ∈ C,

gi(N,v, C) = Shi

(

Ch, v̂
Sh,C

)

= Owi(N, v,C). �

Remark 2

• Note that part b) of Theorem 1 can be shown as a consecuence of part a). The
reason that motivates this argument is the fact that axioms E and NAG imply
axiom QG.

However, axioms E and NAG are not equivalent to axiom QG. In fact, axiom
QG does not imply E or NAG:
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- The symmetric coalitional Banzhaf value introduced by Alonso–Meijide and
Fiestras–Janeiro [8] and defined for all (N, v,C) ∈ CG and all i ∈ Ch, with
Ch ∈ C, by

∑

R⊆M\{h}

∑

T⊆Ch\{i}

1

2m−1

t!(ch − t− 1)!

ch!
[v(Q ∪ T ∪ {i}) − v(Q ∪ T )]

satisfies axioms NAG and QG but, however, does not satisfy axiom E.
- The coalitional value defined for all (N, v,C) ∈ CG and all i ∈ Ch, with Ch ∈ C,
by

γ
1
i (N, v,C) =



















Shh

(

M,vC
)

|Ch|
if |Cr| = 1 for all r ∈ M \ {h}

Owi(N,v,C) otherwise

satisfies axioms E and QG but it does not satisfy axiom NAG.

• While parts b) and c) only differ in one property, it is not possible to obtain a
similar characterization to a) for the Owen value just replacing the condition of
coalitional Shapley value for singletons by axiom C.

In fact, the coalitional value given by γ2
i (N, v,C) = 0 for all (N,v, C) ∈ CG

and all i ∈ N also satisfies the properties C, QG and IBC.

Remark 3 (Independence of the properties in Theorem 1)

• The axioms given in part a) are independent:

– The symmetric coalitional Banzhaf value satisfies both QG and IBC but it is
not a coalitional Shapley value for singletons.

– The coalitional value given for all (N, v,C) ∈ CG by γ3(N, v,C) = Sh(N, v) is
a coalitional Shapley value for singletons that satisfies IBC and fails QG.

– The two–step Shapley value defined by Kamijo [21] and given for all (N, v,C) ∈
CG and all i ∈ Ch, with Ch ∈ C, by the formula

Shi (Ch, v) +
1

ch

[

Shh

(

M, v
C
)

− v(Ch)
]

is a coalitional Shapley value for singletons that satisfies QG and fails IBC.

• The axioms given in part b) are independent:

– The coalitional value given for all (N, v,C) ∈ C G and all i ∈ Ch, with Ch ∈ C,
by γ4

i (N,v, C) = Shi (Ch, v1), where (Ch, v1) is the TU–game such that v1(T ) =
v (T ∪N \ Ch)

m
for all T ⊆ Ch, T 6= ∅, satisfies E, NAG and IBC but it is not a

coalitional Shapley value for singletons.
– The coalitional value studied by Alonso–Meijide et al. [6] and defined for all

(N,v,C) ∈ CG and all i ∈ Ch, with Ch ∈ C, by

∑

R⊆M\{h}

∑

T⊆Ch\{i}

(r+ t)!(m+ ch − r − t− 2)!

(m+ ch − 1)!
[v(Q ∪ T ∪ {i})− v(Q ∪ T )]

is a coalitional Shapley value for singletons that satisfies both NAG and IBC
but fails E.
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– The coalitional value γ3 is a coalitional Shapley value for singletons that satis-
fies E and IBC but fails NAG.

– The two–step Shapley value is a coalitional Shapley value for singletons that
satisfies E and NAG but fails IBC.

• The axioms given in part c) are independent:

– The Banzhaf–Owen value satisfies C, NAG and IBC but fails E.
– The coalitional value γ4 does not satisfy C but satisfies E, NAG and IBC.
– The coalitional value γ3 satisfies E, C and IBC and fails NAG.
– The two–step Shapley value is a coalitional value that satisfies E, C and NAG

but fails IBC.

Theorem 2

a) The Banzhaf–Owen value is the only coalitional Banzhaf value for singletons that

satisfies 2–EWU, 1–QG and IBC.

b) The Banzhaf–Owen value is the only coalitional Banzhaf value for singletons that

satisfies 2–EWU, NAG and IBC.

Proof

By the results contained in other papers where the Banzhaf–Owen value is
studied, we know that the Banzhaf–Owen value satisfies 2–EWU, NAG, 1–QG
and IBC. Then, it only remains to prove the uniqueness.

Proof of uniqueness in part a)

Since g is in the conditions of Proposition 1 we can assume that, for all

(N, v,C) ∈ C G and all i ∈ Ch with Ch ∈ C, gi(N, v,C) = Shi

(

Ch, v
g,C

)

.

Moreover, g is in the conditions of Proposition 2 part d). If we apply this result
to the definition of the game vg,C , we obtain that for all T ⊆ Ch,

v
g,C(T ) =

∑

i∈T

gi
(

(N \ Ch) ∪ T, v, C|T

)

=
∑

i∈T

BzOwi

(

(N \ Ch) ∪ T, v, C|T

)

.

Then, according to Remark 1, we know that for all (N, v,C) ∈ CG and all
i ∈ Ch with Ch ∈ C,

gi(N, v,C) = BzOwi(N,v, C). �

Proof of uniqueness in part b)

It is straightforward to prove that NAG implies 1–QG. Then, if a coalitional
value g is a coalitional Banzhaf value for singletons that satisfies 2–EWU, NAG
and IBC, this coalitional value is in the conditions of the part a) of this theorem.
It means that for all (N, v,C) ∈ CG and all i ∈ Ch with Ch ∈ C,

gi(N, v,C) = BzOwi(N,v, C). �

Remark 4 (Independence of the properties in Theorem 2)

Since axiom NAG implies axiom 1–QG, the independence of the properties in
both parts can be shown with the same coalitional values:
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– The coalitional value defined by Amer et al. [9] and defined for all (N,v,C) ∈
CG and all i ∈ Ch, with Ch ∈ C, by

∑

R⊆M\{h}

∑

T⊆Ch\{i}

r!(m− r − 1)!

m!

1

2ch−1
[v(Q ∪ T ∪ {i})− v(Q ∪ T )]

satisfies 2–EWU, NAG and IBC but, however, it is not a coalitional Banzhaf
value for singletons.

– The symmetric coalitional Banzhaf value is a coalitional Banzhaf value for
singletons, satisfies NAG and IBC but fails 2–EWU.

– The coalitional value given for all (N, v,C) ∈ C G by γ5(N, v,C) = Bz(N, v) is
a coalitional Banzhaf value for singletons that satisfies 2–EWU and IBC but
fails 1–QG.

– The coalitional value given, for all (N, v,C) ∈ C G and all i ∈ Ch, with Ch ∈ C,
by

γ
6
i (N, v,C) =







Bzi(Ch, v) if C 6= Cn

Bzi(N, v) if C = Cn

is a coalitional Banzhaf value for singletons that satisfies 2–EWU and NAG.
However, it does not satisfy axiom IBC.

5 Concluding remarks

The main purpose of this framework is to study the behaviour of two well–known
coalitional values: the Owen and Banzhaf–Owen values. In order to achieve this
objective, we make use of several properties and compare both coalitional values,
trying to deduce their main differences and similarities. As a consequence of this
study, some characterizations of these two values are obtained. All the results are
summarized in Table 3.

Table 3 Properties satisfied by the Owen and the Banzhaf–Owen values

Properties/Axioms Owen Banzhaf–Owen

Coalitional Shapley value for singletons X(1a,1b) ×

Coalitional Banzhaf value for singletons × X(2a,2b)

Efficiency (E) X(1b,1c) ×

2–Efficiency within unions (2–EWU) × X(2a,2b)

Coherence (C) X(1c) X

Neutrality for the amalgamated game (NAG) X(1b,1c) X(2b)

1–Quotient game (1–QG) X X(2a)

Quotient game (QG) X(1a) ×

Intracoalitional balanced contributions (IBC) X(1a,1b,1c) X(2a,2b)

In all the characterizations, the property of intracoalitional balanced contri-
butions (IBC) is a key axiom. In fact, we have provided an expression for all the
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coalitional values satisfying this property. However, we have taken into account
many other interesting properties in this framework, most of them crucial in the
context of coalitional values. All of them appear in Table 3.

The characterizations of the framework are collected in Section 4. In this sec-
tion, we investigate the relation between the Owen and Banzhaf–Owen values.
While in Theorem 1 part b) the Owen value is characterized as the only coalitional
Shapley value for singletons satisfying efficiency (E), neutrality of the amalgamated
game (NAG) and intracoalitional balanced contributions (IBC), in Theorem 2 part
b) a parallel characterization is obtained for the Banzhaf–Owen value, just replac-
ing coalitional Shapley value for singletons and efficiency with coalitional Banzhaf
value for singletons and 2–efficiency within unions (2–EWU).

In Theorem 1 part c), a new characterization of the Owen value is obtained.
This characterization only differs in one property from the characterization given
in Theorem 1 part b). However, it is not possible to find a similar result for the
Banzhaf–Owen value, since it is not possible to replace coalitional Bazhaf value for
singletons with coherence (C) in Theorem 2 part b). Although the Banzhaf–Owen
value satisfies 2–EWU, C, NAG and IBC, other coalitional values also satisfy these
properties:

– Given α ∈ R, the coalitional value defined for all (N, v,C) ∈ CG and all i ∈ N

by
∑

R⊆M\{h}

∑

T⊆Ch\{i}

α

2m+ch−2

[

v (Q ∪ T ∪ {i})− v(Q ∪ T )
]

,

satisfies 2–EWU, C, NAG and IBC. Since the case α = 1 corresponds to the
Banzhaf–Owen value, it suffices to consider any α 6= 1 to obtain another coali-
tional value that satisfies these properties.

On the other hand, Theorem 2 part b) can be seen as a result of Theorem 2
part a), since property 1–QG is weaker than NAG. But, although the Owen value
also satisfies 1–QG, we cannot characterize the Owen value as the only Shapley
coalitional value which satisfies E, 1–QG and IBC. Then, it is not possible to find
for the Owen value a parallel characterization to the one given for the Banzhaf–
Owen value in Theorem 2 part a). In fact:

– The coalitional value given for all (N, v,C) ∈ C G and all i ∈ Ch, with Ch ∈ C,
by γ7

i (N, v,C) = Shi (Ch, v5), where v5(T )

v5(T ) =























v4(T ) = Shω
C|T

h

(

M,vC|T

)

if |T | > 1 and

|Cr| > 1 for all r ∈ M \ {h}

v̂Sh,C(T ) = Shh

(

M, vC|T

)

otherwise

for all T ⊆ Ch, T 6= ∅, is a Shapley coalitional value that satisfies E, 1–QG and
IBC. As it was to be expected, this coalitional value does not satisfy NAG.
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14. Casas–Méndez, B., Garćıa–Jurado, I., van den Nouweland, A., & Vázquez–Brage, M.
(2003). An extension of the τ–value to games with coalition structures. European Journal

of Operational Research 148, 494–513.
15. Dubey, P., Neyman, A., & Weber, R.J. (1981). Value theory without efficiency. Mathe-

matics of Operations Research 6, 122–128.
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