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Abstract. Cross-validation is a well-known and widely used bandwidth selection method
in nonparametric regression estimation. However, this technique has two remarkable
drawbacks: (i) the large variability of the selected bandwidths, and (ii) the inability to
provide results in a reasonable time for very large sample sizes. To overcome these
problems, bagging cross-validation bandwidths are analyzed in this paper. This approach
consists in computing the cross-validation bandwidths for a finite number of subsamples
and then rescaling the averaged smoothing parameters to the original sample size. Un-
der a random-design regression model, asymptotic expressions up to a second-order for
the bias and variance of the leave-one-out cross-validation bandwidth for the Nadaraya–
Watson estimator are obtained. Subsequently, the asymptotic bias and variance and the
limit distribution for the bagged cross-validation selector are derived. Suitable choices
of the number of subsamples and the subsample size lead to an n−1/2 rate for the con-
vergence in distribution of the bagging cross-validation selector, outperforming the rate
n−3/10 of leave-one-out cross-validation. Several simulations and an illustration on a real
dataset related to the COVID-19 pandemic show the behavior of our proposal and its bet-
ter performance, in terms of statistical efficiency and computing time, when compared to
leave-one-out cross-validation.
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1. Introduction

The study of a variable of interest depending on other variable(s) is a common problem
that appears in many disciplines. To deal with this issue, an appropriate regression
model setting up the possible functional relationship between the variables is usually
formulated. As part of this analysis, the unknown regression function, describing the
general relationship between the variable of interest and the explanatory variable(s), has
to be estimated. This task can be carried out using nonparametric methods that do not
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assume any parametric form for the regression function, providing flexible procedures
and avoiding misspecification problems. Among the available nonparametric approaches,
kernel-type regression estimators (Wand and Jones, 1995) are perhaps the most popular.
To compute this type of estimators the user has to select a kernel function (typically a
density function) and a bandwidth or smoothing parameter that regulates the amount
of smoothing to be used, which in turn determines the trade-off between the bias and
the variance of the estimator. Although the choice of the kernel function is of secondary
importance, the smoothing parameter plays a crucial role. In this regard, numerous
contributions have been made over the last decades, providing methods to select the
bandwidth. These approaches include, among others, cross-validation methods (Härdle
et al., 1988) and plug-in selectors (Ruppert et al., 1995). In Köhler et al. (2014), a
complete review and an extensive simulation study of different data-driven bandwidth
selectors for kernel regression are presented. Due to their wide applicability and the
good performance obtained in this complete comparison, in the present paper, we focus
on analyzing cross-validation bandwidth selection techniques.

Cross-validation is a popular method of model selection that precedes an early dis-
cussion of the method by Stone (1974). In its simplest form, cross-validation consists
of splitting the dataset under study into two parts, using one part to fit one or more
models, and then predicting the data in the second part with the models so-built. In
this way, by not using the same data to fit and validate the models, it is possible to
objectively compare the predictive capacity of different models. The leave-one-out ver-
sion of cross-validation (of interest in the present paper) is somewhat more involved. It
excludes one datum from the dataset, fits a model from the remaining observations, uses
this model to predict the datum left out, and then repeats this process for all the data.

The present paper studies the leave-one-out cross-validation bandwidth selection
method and the application of bagging (Breiman, 1996) to this procedure. We derive
some asymptotic properties of the corresponding selectors when considering a random-
design regression model and the Nadaraya–Watson kernel-type estimator is used. The
Nadaraya–Watson estimator can be seen as a particular case of a wider class of nonpara-
metric estimators, the so-called local polynomial estimators (Stone, 1977; Cleveland,
1979; Fan, 1992), when performing a local constant fit. Given a random sample of size
n, bagging cross-validation consists of selecting N subsamples of size r < n, each without
replacement, from the n observations. One then computes a cross-validation bandwidth
from each of the N subsets, averages them, and then scales the average down appro-
priately to account for the fact that r < n. It is well-known that the use of bagging
can lead to substantial reductions in the variability of an estimator that is nonlinear
in the observations (see Friedman and Hall, 2007), as occurs in the case of the cross-
validation criterion function. The use of bagging in conjunction with cross-validation for
bandwidth selection has already been studied in the case of kernel density estimation by
several authors (see, for example Barreiro-Ures et al., 2020; Hall and Robinson, 2009). In
addition to the potential improvement in statistical precision, even in the case of small
sample sizes, the use of bagging (with appropriate elections of r and N) can drastically
reduce computation times, especially for very large sample sizes. Note that the com-
plexity of cross-validation is O(n2), while the complexity of bagging cross-validation is
O(Nr2). Larger reductions in computation time can also be additionally achieved with
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the application of binning techniques in the bagging procedure.
Apart from the theoretical analysis of the cross-validation bandwidth selection meth-

ods, another goal of this study is to apply the techniques studied in the present paper
to a dataset related to the current COVID-19 pandemic. In particular, using a mod-
erately large sample, provided by the Spanish Center for Coordinating Sanitary Alerts
and Emergencies, consisting of the age and the time in hospital of people infected with
COVID-19 in Spain, we are interested in studying the relationship between those two
variables by means of the Nadaraya–Watson estimator. Apart from its purely epidemio-
logical interest and due to the considerable size of the sample, this dataset is also useful
to put into practice the techniques analyzed in the present paper.

The remainder of the paper is as follows. In Section 2, the regression model consid-
ered, the Nadaraya–Watson regression estimator and the important problem of band-
width selection are presented. In Section 3, the leave-one-out cross-validation bandwidth
selection method is described and some asymptotic properties of the corresponding se-
lector are provided when the Nadaraya–Watson estimator is used. Section 4 considers
the use of bagging for cross-validation in bandwidth selection for the Nadaraya–Watson
estimator. Asymptotic expressions for the bias and the variance of the proposed band-
width selector, as well as for its limit distribution, are also derived in this section. In
Section 5, an algorithm is proposed to automatically choose the subsample size for the
bandwidth selector studied in Section 4. The techniques proposed are empirically tested
through several simulation studies in Section 6 and applied to the previously mentioned
COVID-19 dataset in Section 7. Finally, concluding remarks are given in Section 8. The
detailed proofs and some additional plots concerning the simulation study are included
in the accompanying supplementary materials.

2. Regression model and Nadaraya–Watson estimator

Let X = {(X1, Y1), . . . , (Xn, Yn)} be an independent and identically distributed (i.i.d.)
sample of size n of the two-dimensional random variable (X,Y ), drawn from the non-
parametric regression model:

Y = m(X) + ε, (1)

where m(x) = E(Y | X = x) denotes the regression function, and ε is the error term,
satisfying that E (ε | X = x) = 0 and E

(
ε2 | X = x

)
= σ2(x).

The Nadaraya–Watson estimator or local constant estimator (Nadaraya, 1964; Wat-
son, 1964) offers a nonparametric way to estimate the unknown regression function, m.
It is given by:

m̂h(x) =

n∑
i=1

Kh (x−Xi)Yi

n∑
i=1

Kh (x−Xi)

, (2)

where h > 0 denotes the bandwidth or smoothing parameter and K the kernel function.
As pointed out in the introduction, the value of the bandwidth is of great importance



4 Barreiro-Ures et al.

since it determines the amount of smoothing performed by the estimator and, there-
fore, heavily influences its behavior. Thus, in practice, data-driven bandwidth selection
methods are needed.

Optimal bandwidths often refer to smoothing parameter values that mimize some er-
ror criterion function. These functions are typically expected loss, in some sense. When
the aim is predicting the response variable, Y , given the value of the explanatory vari-
able, X, it is natural to consider expectations conditionally on the observed explanatory
sample, (X1, . . . , Xn). However, the focus of this paper is estimating the regression func-
tion on its own. Thus an unconditional expected loss view is adopted. Of course, there
exist arguments in favor of both type of criteria. More details on this issue can be found
in Köhler et al. (2014).

When adopting an unconditional view, a possible way to select a (global) optimal
bandwidth for (2) consists in minimizing, for instance, the mean integrated squared
error (MISE), a (global) optimality criterion defined as:

Mn(h) = E

[∫
{m̂h(x)−m(x)}2 f(x) dx

]
, (3)

where f denotes the marginal density function of X. The bandwidth that minimizes (3)
is called the MISE bandwidth and it will be denoted by hn0, that is,

hn0 = arg min
h>0

Mn(h). (4)

The MISE bandwidth depends on m and f and, since in practice both functions are
often unknown, hn0 cannot be directly calculated. However, it can be estimated, for
example, using the cross-validation method.

In the following section, we present the leave-one-out cross-validation bandwidth
selection criterion and provide the asymptotic properties of the corresponding selector
when using the estimator (2) and considering the regression model (1).

3. Cross-validation bandwidth

Cross-validation is a method that offers a criterion for optimality which works as an
empirical analogue of the MISE and so it allows us to estimate hn0. The cross-validation
function is defined as:

CVn(h) =
1

n

n∑
i=1

{
m̂

(−i)
h (Xi)− Yi

}2
, (5)

where m̂
(−i)
h denotes the Nadaraya–Watson estimator constructed using X \ {(Xi, Yi)},

that is, leaving out the i-th observation,

m̂
(−i)
h (x) =

n∑
j=1
j 6=i

Kh (x−Xj)Yj

n∑
j=1
j 6=i

Kh (x−Xj)

. (6)
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Hence, the cross-validation bandwidth, ĥCV,n, can be defined as

ĥCV,n = arg min
h>0

CVn(h). (7)

It is well-known that under suitable regularity conditions, up to first order,

Mn(h) = B1h
4 + V1n

−1h−1 +O
(
h6 + n−1h

)
,

where

B1 =
1

4
µ2(K)2

∫ {
m′′(x) + 2

m′(x)f ′(x)

f(x)

}2

f(x) dx,

V1 = R(K)

∫
σ2(x) dx,

with R(g) =
∫
g2(x) dx and µj(g) =

∫
xjg(x) dx, j = 0, 1, . . ., provided that these

integrals, as well as B1 and V1, exist finite. Then, the first-order term of the MISE
bandwidth, hn, has the expression hn = C0n

−1/5, where

C0 =

(
V1

4B1

)1/5

.

In order to obtain the asymptotic properties of (7) as an estimator of (4), it is
necessary to study certain moments of (5) and its derivatives. However, the fact that
the Nadaraya–Watson estimator has a random denominator makes this a very difficult
task. To overcome this problem, it will be useful to work with an approximation of
m̂h(x). For this, note that the Nadaraya–Watson estimator can be written as

m̂h(x) = A+B + C +D + E + F, (8)

where

A =
â

e
,

B =
a(e− ê)
e2

,

C =
(â− a)(e− ê)

e2
,

D =
a

e

(e− ê)2

e2
,

E =
â− a
e

(e− ê)2

e2
,

F =
â

ê

(e− ê)3

e3
,
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with

a = m(x)f(x),

e = f(x),

â =
1

n

n∑
i=1

Kh (x−Xi)Yi,

ê =
1

n

n∑
i=1

Kh (x−Xi) .

Expression (8) splits m̂h(x) as a sum of five ratios with no random denominator plus
an additional term, F , which has a random denominator. However, both E and F are
negligible with respect to the other terms. Thus, one may consider the modified version
of the Nadaraya–Watson estimator given by m̃h(x) =A+B + C +D, that is:

m̃h(x) = m(x) +
1

n2f(x)2

n∑
j=1

n∑
k=1

Kh (x−Xj) {Yj −m(x)} {2f(x)−Kh (x−Xk)} , (9)

which can be seen as a quadratic approximation of m̂h(x), where the terms E and F
are omitted due to their “cubic negligibility”. In practice, (9) is unobservable and,
therefore, it does not define an estimator but a theoretical approximation of (2). This
decomposition of m̂h(x) is in turn inspired by a similar approach proposed in Barbeito
(2020). There, a linear approximation of the Nadaraya–Watson estimator was considered
and so only the terms A and B were taken into account, leading to the simpler expression

m̄h(x) = m(x) +
1

nf(x)

n∑
i=1

Kh (x−Xi) {Yi −m(x)} . (10)

Following this approach, (9) could be used to define a theoretical approximation of
the MISE function defined in (3), namely

M̃n(h) =

∫
[E {m̃h(x)} −m(x)]2 f(x) dx+

∫
var {m̃h(x)} f(x) dx.

The bandwidth that minimizes M̃n(h) will be denoted by h̃n0. On the other hand,
(9) can also be used to define a modified version of the cross-validation criterion,

C̃V n(h) =
1

n

n∑
i=1

{
m̃

(−i)
h (Xi)− Yi

}2
, (11)

where m̃
(−i)
h denotes the leave-one-out version of (9) without the i-th observation, that

is,

m̃
(−i)
h (x) = m(x) +

1

(n− 1)2f(x)2

n∑
j=1
j 6=i

n∑
k=1
k 6=i

Kh (x−Xj) {Yj −m(x)}

{2f(x)−Kh (x−Xk)} . (12)
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The bandwidth that minimizes (11) will be denoted by h̃CV,n. Using Taylor expan-
sions, the following approximation can be obtained:

h̃CV,n − h̃n0 ≈ − C̃V
′
n(h̃n0)− M̃ ′n(h̃n0)

M̃ ′′n(h̃n0)

+

{
C̃V

′
n(h̃n0)− M̃ ′n(h̃n0)

}{
C̃V

′′
n(h̃n0)− M̃ ′′n(h̃n0)

}
M̃ ′′n(h̃n0)2

, (13)

where the second term of (13) is negligible with respect to the first one and is assumed
not to contribute to the bias and the variance of h̃CV,n. Since the first-order terms of

E

{
C̃V

k)

n (h)

}
and M̃

k)
n (h) coincide for every k ≥ 1, we need to calculate the second-

order terms of both E
{
C̃V

′
n(h̃n0)

}
and M̃ ′n(h̃n0) in order to analyze the bias of the

modified cross-validation bandwidth. As for the variance of the modified cross-validation
bandwidth, calculating the first-order term of var

{
C̃V

′
n(h̃n0)

}
will be enough, and so

it will be useful to work with the simpler, linear approximation of m̂h(x) given by (10).

3.1. Asymptotic results
The asymptotic bias and variance of the cross-validation bandwidth minimizing (11) are
derived in this section. For this, some previous lemmas are proved. The detailed proof
of these results can be found in the supplementary material. The following assumptions
are needed:

A1. K is a symmetric and differentiable kernel function.

A2. For every j = 0, . . . , 6, the integrals µj(K), µj(K
′) and µj(K

2) exist and are finite.

A3. The functions m and f are eight times differentiable.

A4. The function σ2 is four times differentiable.

Lemma 3.1 provides expressions for the first and second order terms of both the bias
and the variance of (9).

Lemma 3.1. Under assumptions A1–A4, the bias and the variance of the modified
version of the Nadaraya–Watson estimator defined in (9) satisfy:

E {m̃h(x)} −m(x) = µ2(K)

{
1

2
m′′(x) +

m′(x)f ′(x)

f(x)

}
h2

+

[
µ4(K)

{
1

24
m4)(x) +

1

6

m′′′(x)f ′(x)

f(x)
+

1

4

m′′(x)f ′′(x)

f(x)

+
1

6

m′(x)f ′′′(x)

f(x)

}
− µ2(K)2

f ′′(x)

f(x)

{
1

4
m′′(x) +

m′(x)f ′(x)

f(x)

}]
h4

+ O
(
h6 + n−1

)
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and

var {m̃h(x)} = R(K)σ2(x)f(x)−1n−1h−1

+

[
µ2(K

2)f(x)−2
{
ϕ3(x) +

1

2
m(x)2f ′′(x)− 2ϕ1(x)m(x)f(x)

}
− R(K)µ2(K)σ2(x)f(x)−2f ′′(x)

]
n−1h

+ O(n−1h2 + n−2h−2 + n−3h−3).

It follows from Lemma 3.1 that

M̃n(h) = B1h
4 + V1n

−1h−1 +B2h
6 + V2n

−1h+O
(
h8 + n−1h2 + n−2h−2 + n−3h−3

)
,

where

B2 = 2µ2(K)

∫ {
1

2
m′′(x) +

m′(x)f ′(x)

f(x)

}[
µ4(K)

{
1

24
m4)(x) +

1

6

m′′′(x)f ′(x)

f(x)

+
1

4

m′′(x)f ′′(x)

f(x)
+

1

6

m′(x)f ′′′(x)

f(x)

}
− µ2(K)2

f ′′(x)

f(x)

{
1

4
m′′(x) +

m′(x)f ′(x)

f(x)

}]
f(x) dx,

V2 =

∫ [
µ2(K

2)f(x)−2
{

1

2
f ′′(x)σ2(x) +m′(x)2f(x) +

1

2
σ2
′′
(x)f(x) + f ′(x)σ2

′
(x)

}
− R(K)µ2(K)σ2(x)f(x)−2f ′′(x)

]
f(x) dx.

are assumed to exist finite.
Lemma 3.2 provides expressions for the first and second order terms of both the

expectation and variance of C̃V
′
n(h).

Lemma 3.2. Let us define

A1 = 12µ2(K)µ4(K)

∫
f(x)−1

{
1

24
m(4)(x)f(x) +

1

6
m′′′(x)f ′(x) +

1

4
m′′(x)f ′′(x)

+
1

6
m′(x)f ′′′(x)

}{
1

2
m′′(x)f(x) +m′(x)f ′(x)

}
dx

− 6µ2(K)3
∫
f ′′(x)f(x)−2

{
1

2
m′′(x)f(x) +m′(x)f ′(x)

}2

,

A2 = µ2
(
K2
) ∫

f(x)−1
[

1

2
f ′′(x)σ2(x) + f ′(x)(σ2)′(x)

+ f(x)

{
1

2
(σ2)′′(x) +m′(x)2

}]
dx

− R(K)µ2(K)

∫
σ2(x)f ′′(x)f(x)−1 dx,

R1 = 32R(K)2µ2(K)2
∫
σ2(x)f(x)−1

{
1

4
m′′(x)2f(x)2 +m′(x)m′′(x)f(x)f ′(x)

+ m′(x)2f ′(x)2
}
dx,

R2 = 4µ2
{

(K ′)2
}∫

σ2(x)2 dx.
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Then, under assumptions A1–A4, and assuming that B1, V1, A1, A2, R1 and R2

exist finite:

E
{
C̃V

′
n(h)

}
= 4B1h

3 − V1n−1h−2 +A1h
5 +A2n

−1 +O
(
h7 + n−1h2

)
,

var
{
C̃V

′
n(h)

}
= R1n

−1h2 +R2n
−2h−3 +O

(
n−1h4 + n−2h−1

)
.

Finally, Theorem 3.1, which can be derived from (13), Lemma 3.1 and Lemma 3.2,
provides the asymptotic bias and variance of the cross-validation bandwidth that mini-
mizes (11).

Theorem 3.1. Under the assumptions of Lemma 3.2 and assuming that B2 and V2
exist finite, the asymptotic bias and variance of the bandwidth that minimizes (11) are:

E
(
h̃CV,n

)
− h̃n0 = Bn−3/5 + o

(
n−3/5

)
,

var
(
h̃CV,n

)
= V n−3/5 + o

(
n−3/5

)
,

where

B =
6B2C

5
0 + V2 −A1C

5
0 −A2

12B1C2
0 + 2V1C

−3
0

,

V =
R1C

2
0 +R2C

−3
0(

12B1C2
0 + 2V1C

−3
0

)2 .
Corollary 3.1. Under the assumptions of Theorem 3.1, the asymptotic distribution

of the bandwidth that minimizes (11) is given by:

n3/10
(
h̃CV,n − h̃n0

)
d−→ N(0, V ),

where the constant V was defined in Theorem 3.1.

Remark 3.1. Although the results presented so far involve only the modified cross-
validation bandwidth, defined as the bandwidth that minimizes (11), it seems reasonable
to think that these asymptotic results also apply to the standard cross-validation band-
width defined in (7), this being the rationale behind the decomposition of the Nadaraya–
Watson estimator proposed in (8). Under suitable assumptions, it can be proved that,
as the sample size increases,

h̃CV,n − h̃n0 = ĥCV,n − hn0 +Op

(
n−2/5

)
. (14)

Moreover, since h̃n0 − hn0 = O
(
n−4/5

)
, it follows that

h̃CV,n = ĥCV,n +Op

(
n−2/5

)
.

A sketch of the proof of (14) and some other related results are included in the supple-
mentary material.
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4. Bagged cross-validation bandwidth

While the cross-validation method is very useful to select reliable bandwidths in non-
parametric regression, it also has the handicap of requiring a high computing time if the
sample size is very large. This problem can be partially circumvented by using bagging
(Breiman, 1996), a statistical technique belonging to the family of ensemble methods
(Opitz and Maclin, 1999), in the bandwidth selection procedure. In this section, we
explain how bagging may be applied in the cross-validation context. Additionally, the
asymptotic properties of the corresponding selector are obtained. Apart from the ob-
vious reductions in computing time, the bagging cross-validation selector also presents
better theoretical properties than the leave-one-out cross-validation bandwidth. This
will be corroborated in the numerical studies presented in Sections 6 and 7.

Let X ∗ = {(X∗1 , Y ∗1 ), . . . , (X∗r , Y
∗
r )} be a random sample of size r < n drawn without

replacement from the i.i.d sample X defined in Section 2. This subsample is used to
calculate a cross-validation bandwidth, ĥCV,r. A rescaled version of ĥCV,r, given by

(r/n)1/5ĥCV,r, can be viewed as a feasible estimator of the optimal MISE bandwidth,
hn0, for m̂h. Bagging consists of repeating this resampling procedure independently
N times, leading to N rescaled bandwidths, (r/n)1/5ĥCV,r,1, . . . , (r/n)1/5ĥCV,r,N . The
bagging bandwidth is then defined as:

ĥ(r,N) =
1

N

( r
n

)1/5 N∑
i=1

ĥCV,r,i. (15)

In the case of kernel density estimation, both the asymptotic properties and the
empirical behavior of this type of bandwidth selector have been studied in Hall and
Robinson (2009) for N = ∞ and generalized in Barreiro-Ures et al. (2020), where the
asymptotic properties of the bandwidth selector are derived for the more practical case
of a finite N . Furthermore, as discussed there, an alternative approach is to apply
bagging to the cross-validation curves, wherein one averages the cross-validation curves
from N independent resamples of size r, finds the minimizer of the average curve, and
then rescales the minimizer as before. The asymptotic properties of the two approaches
are equivalent, but we prefer bagging the bandwidths since doing so does not require as
much communication between resamples and allows for parallel computing.

Following the same ideas employed in the previous section, a modified version of
(15) can be defined. This modified bagged bandwidth uses modified cross-validation

bandwidths h̃CV,r,i instead of ĥCV,r,i, for i = 1, . . . , N , and it is given by

h̃(r,N) =
1

N

( r
n

)1/5 N∑
i=1

h̃CV,r,i. (16)

In the next section, the asymptotic bias and variance of the bagging bandwidth
(16) when using the Nadaraya–Watson estimator (2) and the regression model (1) are
obtained. Moreover, its asymptotic distribution is also derived. From these results and
considering Remark 3.1, similar results for (15) could be obtained.
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4.1. Asymptotic results
Expressions for the asymptotic bias and the variance of (16) are given in Theorem 4.1.
The following additional assumption is needed:

A5. As r, n→∞, r = o(n) and N tends to a positive constant or ∞.

Theorem 4.1. Under assumptions A1–A5, the asymptotic bias and the variance of
the bagged cross-validation bandwidth h̃(r,N) are:

E
{
h̃(r,N)

}
− h̃n0 = (B + C1)r

−2/5n−1/5 + o
(
r−2/5n−1/5

)
,

var
{
h̃(r,N)

}
= V r−1/5n−2/5

{
1

N
+
( r
n

)2}
+ o

(
r−1/5n−2/5

N
+ r9/5n−12/5

)
,

where the constants B and V were defined in Theorem 3.1 and the constant C1 is defined
in expression (48) in the supplementary material.

Corollary 4.1. Under the assumptions of Theorem 4.1, the asymptotic distribution
of the bagged cross-validation bandwidth h̃(r,N) is:

r1/10n1/5√
1
N +

(
r
n

)2 {h̃(r,N)− h̃n0
}

d−→ N(0, V ),

where the constant V was defined in Theorem 3.1. In particular, assuming that r =

o
(
n/
√
N
)

, then,

r1/10n1/5
√
N
{
h̃(r,N)− h̃n0

}
d−→ N(0, V ).

Using (14) in Remark 3.1, it could be proved that similar results to those in Corollary

4.1 hold when considering ĥ(r,N) − hn0 instead of h̃(r,N) − h̃n0. It should be noted

that, while ĥCV,n − hn0 converges in distribution at the rate n−3/10, this result can be
improved with the use of bagging and letting r and N tend to infinity at adequate rates.
For example, if both r and N tended to infinity at the rate

√
n, then ĥ(r,N)−hn0 would

converge in distribution at the rate n−1/2, which is indeed a faster rate of convergence
than n−3/10.

5. Choosing an optimal subsample size

In practice, an important step of our approach is, for fixed values of n and N , choosing
the optimal subsample size, r0. A possible optimality criterion, considering the modified
bandwidths, could be to select the value of r that minimizes the main term of the
variance of h̃(r,N). In this case, we would get:

r
(1)
0 =

n

3
√
N

and the variance of the bagging bandwidth would converge to zero at the rate

var
{
h̃
(
r
(1)
0 , N

)}
∼ n−3/5N−9/10,
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which is a faster rate of convergence than that of the standard (modified) cross-validation
bandwidth. In particular,

var
{
h̃
(
r
(1)
0 , N

)}
var
(
h̃CV,n

) ∼ N−9/10.

The obvious drawback of this criterion is that it would not allow any improvement
in terms of computational efficiency, since the complexity of the algorithm would be
the same as in the case of standard cross-validation, O(n2). This makes this choice of
r0 inappropriate for very large sample sizes. Another possible criterion for selecting r0
would be to minimize, as a function of r, the asymptotic mean squared error (AMSE)
of h̃(r,N), given by:

AMSE
{
h̃(r,N)

}
= (B + C1)

2r−4/5n−2/5 + V r−1/5n−2/5
{

1

N
+
( r
n

)2}
. (17)

Since B, C1 and V are unknown, we propose the following method to estimate

r0 = arg min
r>1

AMSE
{
h̃(r,N)

}
.

Step 1. Consider s subsamples of size p < n, drawn without replacement from the original
sample of size n.

Step 2. For each of these subsamples, obtain an estimate, f̂ , of the marginal density func-
tion of the explanatory variable (using kernel density estimation, for example) and
an estimate, m̂, of the regression function (for instance, by fitting a polynomial of
a certain degree). Do the same for the required derivatives of both f and m.

Step 3. Use the estimates obtained in the previous step to compute the constants B[i], C [i]
1

and V [i] for each subsample, where i (i = 1, . . . , s) denotes the subsample index.

Step 4. Compute the bagged estimates of the unknown constants, that is,

B̂ =
1

s

s∑
i=1

B[i],

Ĉ1 =
1

s

s∑
i=1

C
[i]
1 ,

V̂ =
1

s

s∑
i=1

V [i],

and obtain ÂMSE
{
h̃(r,N)

}
by plugging these bagged estimates into (17).

Step 5. Finally, estimate r0 by:

r̂0 = arg min
r>1

ÂMSE
{
h̃(r,N)

}
.
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Additionally, assuming that r = o
(
n/
√
N
)

, then

r
(2)
0 =

{
−4(B + C1)

2

V
N

}5/3

and the rate of convergence to zero of the AMSE of the bagging bandwidth would be:

AMSE
{
h̃
(
r
(2)
0 , N

)}
∼ n−2/5N−4/3.

Hence,

AMSE
{
h̃
(
r
(2)
0 , N

)}
AMSE

(
h̃CV,n

) ∼ n1/5N−4/3,

and this ratio would tend to zero if N tended to infinity at a rate faster than n3/20.

Furthermore, if we let N = n3/20 and r = r
(2)
0 , then the computational complexity of

the algorithm would be O
(
n13/20

)
, much lower than that of standard cross-validation.

In fact, by selecting r0 in this way, the complexity of the algorithm will only equal to
that of standard cross-validation when N tends to infinity at the rate n6/13.

6. Simulation studies

The behavior of the leave-one-out and bagged cross-validation bandwidths is evaluated
by simulation in this section. We considered the following regression models:

M1: Y = m(X) + ε, m(x) = 2x, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

M2: Y = m(X) + ε, m(x) = sin(2πx)2, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

M3: Y = m(X) + ε, m(x) = x+ x2 sin(8πx)2, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

whose regression functions are plotted in Figure 1. The Gaussian kernel was used for
computing the Nadaraya–Watson estimator throughout this section. Moreover, to reduce
computing time in the simulations, we used binning to select the ordinary and the
bagged cross-validation bandwidths. The R (R Development Core Team, 2021) package
baggingbwsel (Barreiro-Ures et al., 2021) was employed to carry out the simulation
experiments.

In a first step, we empirically checked how close the bandwidths that minimize the
MISE of (2) and (9) are. For this, we simulated 100 samples of sizes 1000 and 5000 from
models M1, M2 and M3 and compute the corresponding MISE curves for the standard
Nadaraya–Watson estimator and for its modified version, given in (9). For the sake of
brevity, the plot containing these curves is included in the accompanying supplementary
materials. That plot shows that the bandwidth that minimizes the MISE of (9) and
the MISE of the standard Nadaraya–Watson estimator appear to be quite close for both
sample sizes, although the distance between the minima of both curves seems to tend to
zero as the sample size increases. Moreover, the standard cross-validation bandwidths
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Figure 1. Regression function of models M1 (top), M2 (middle) and M3 (bottom).

and the modified cross-validation selectors (using the standard and the modified version
of the Nadaraya–Watson estimator, respectively) are obtained for samples of sizes rang-
ing from 600 to 5000 drawn from model M2. The corresponding figure is also included
in the supplementary material. It shows that both bandwidth selectors provide similar
results, which in turn get closer as n increases.

In a second step, we checked how fast the statistic Sn = n3/10
(
ĥCV,n − hn0

)
ap-

proaches its limit distribution. For this, 1000 samples of size n were simulated from
model M2 (with values of n ranging from 50 to 5000) and the corresponding values of Sn
were computed. Figure 2 shows the kernel density estimates and boxplots constructed
using these samples of Sn. The empirical behavior observed in Figure 2 is in agreement
with the result derived from Corollary 3.1 (considering Remark 3.1), since the sampling
distribution of Sn seems to tend to a normal distribution with zero mean and constant
variance. Similar plots were obtained when considering models M1 and M3. They are
not shown here for the sake of brevity.

In the next part of the study, we focused on empirically analyzing the performance
of the bagged cross-validation bandwidth ĥ(r,N), given in (16), for different values of n,

r and N . Figure 3 shows the sampling distribution of ĥn/hn0, where ĥn denotes either
the ordinary or the bagged cross-validation bandwidth. For this, 1000 samples of size



Bagging cross-validation in nonparametric regression estimation 15

−0.06 −0.04 −0.02 0.00 0.02

0
10

20
30

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

50 600 1150 1700 2250 2800 3350 3900 4450 5000

−
0.

05
0.

00
0.

05

Sample size

Figure 2. Sampling distribution of Sn = n3/10(ĥCV,n − hn0): kernel density estimates (left
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limit distribution of Sn is also shown (dashed line).
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Figure 3. Sampling distribution of ĥCV,n/hn0 (first boxplot on each panel) and ĥ(r,N)/hn0
(second to sixth boxplots on each panel) for models M1 (left panel), M2 (central panel) and M3
(right panel), where the considered subsample sizes are r ∈ {100, 500, 1000, 5000, 104} and the
number of subsamples is N = 25. The original sample size is n = 105. Dashed lines are plotted
at values 0.9 and 1.1 for reference.

n = 105 from models M1, M2 and M3 were generated, considering in the case of ĥ(r,N)
the values r ∈ {100, 500, 1000, 5000, 10000} and N = 25. For all three models, it is
observed how the bias and variance of the bagging bandwidth decrease as the subsample
size increases and how its mean squared error seems to stabilize for values of r close
to 5000. Moreover, the behavior of the bagging selector turns out to be quite positive
even when considering subsample sizes as small as r = 100, perhaps excluding the case
of model M3 for which the variance of the bagging bandwidth is still relatively high for
r = 100, although it undergoes a rapid reduction as the subsample size increases slightly.

The effect that r has on the mean squared error of the bagged bandwidth is also
illustrated in Table 1, which shows the ratio of the mean squared errors of the bagged
bandwidth and the ordinary cross-validation bandwidth, MSE{ĥ(r,N)}/MSE(ĥCV,n),
for the three models.

Apart from a better statistical precision of the cross-validation bandwidths selected
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Table 1. Ratio of the mean squared errors of the
bagged and the ordinary cross-validation bandwidths
for models M1–M3. Different values of r and N = 25
were considered, for a sample size of n = 105.

Model
M1 M2 M3

Subsample size (r) MSE ratio
100 0.47 1.47 2.16
500 0.32 1.06 0.33

1, 000 0.26 0.80 0.23
5, 000 0.19 0.30 0.17
10, 000 0.16 0.22 0.16

using bagging, another potential advantage of employing this approach is the reduction
of computing times, especially with large sample sizes. To analyze this issue, Figure 4
shows, as a function of the sample size, n, the CPU elapsed times for computing the
standard and the bagged cross-validation bandwidths. Both variables are shown on a
logarithmic scale. In the case of the bagging selector, three different subsample size
values, r, depending on n were considered: r = n0.7, r = n0.8 and r = n0.9. Calculations
were performed in parallel using an Intel Core i5-8600K 3.6GHz CPU. Different sample
sizes, n ∈ {5000, 28750, 52500, 76250, 105}, and a fixed number of subsamples, N = 25,
were used. In this experiment, binning techniques were employed using a number of
bins of 0.1n for standard cross-validation and 0.1r in the case of bagged cross-validation.
The time required to compute the bagged cross-validation bandwidth was measured
considering the three possible growth rates for r, mentioned above.
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Figure 4. CPU elapsed time (seconds) as a function of the sample size of standard cross-
validation (solid line-circles) and bagged cross-validation. Both variables are shown on a loga-
rithmic scale. A fixed number of subsamples was used, N = 25. Three growth rates for r were
considered, namely, r = n0.7 (dashed line-triangles), r = n0.8 (dotted line-pluses) and r = n0.9

(dashed-dotted line-crosses).

Fitting an appropriate model, these CPU elapsed times could be used to predict the
computing times of the different selectors for larger sample sizes. Considering Figure 4,
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Table 2. Predicted CPU elapsed time for the standard and the bagging cross-
validation method using three different choices for the subsample size.

Sample size (n)
106 107 108

Method Computing time
Standard CV 6 hours 24 days 7 years
Bagged CV (r = n0.7, N = 25) 40 seconds 25 minutes 16 hours
Bagged CV (r = n0.8, N = 25) 16 minutes 17 hours 45 days
Bagged CV (r = n0.9, N = 25) 3 hours 11 days 2 years

the following log-linear model was used:

T (n) = αnβ, (18)

where T (n) denotes the CPU elapsed time as a function of the original sample size, n. In
the case of the bagged cross-validation bandwidths, there is a fixed time corresponding
to the one required for the setting up of the parallel socket cluster. This time, which
does not depend on n, r or N , but only on the CPU and the number of cores used
in the parallelization, was estimated to be 0.79. Using this value, the corrected CPU
elapsed times obtained for the bagged bandwidths, T − 0.79, were employed to fit the
log-linear model (18) estimating α, β > 0 by least squares and, subsequently, to make
predictions. Table 2 shows the predicted CPU elapsed time for ordinary and bagged
cross-validation for large sample sizes. Although we should take these predictions with
caution, the results in Table 2 serve to illustrate the important reductions in computing
time that bagging can provide for certain choices of r and N , especially for very large
sample sizes.

Next, the influence of the number of subsamples, N , in the computing times of the
bagged badwidths was studied. Similarly to Figure 4, Figure 5 shows the CPU elapsed
times for computing the cross-validation bandwidths (standard and bagged). For the
bagging method, the number of subsamples, N , was selected depending on the original
sample size (n) by N =

√
n. The growth rates used for r are the same as in the case of

Figure 4.
It should also be stressed that although the quadratic complexity of the cross-validation

algorithm is not so critical in terms of computing time for small sample sizes, even in
these cases, the use of bagging can still lead to substantial reductions in mean squared
error of the corresponding bandwidth selector with respect to the one selected by or-
dinary cross-validation. In order to show this, 1000 samples from model M1 of sizes
n ∈ {50, 500, 5000} were simulated and the ordinary and bagged cross-validation band-
widths for each of these samples were computed. In the case of the bagged cross-
validation bandwidth, both the size of the subsamples and the number of subsamples
were selected depending on n, choosing r = N = 4

√
n. Figure 6 shows the sampling dis-

tribution of ĥn/hn0, where ĥn denotes either the ordinary or the bagged cross-validation
bandwidth. In the three scenarios, it can be observed the considerable reductions in vari-
ance produced by bagging more than offset the slight increases in bias, thus obtaining
significant reductions in mean squared error with respect to the ordinary cross-validation
bandwidth selector. Specifically, the relative reductions in mean squared error achieved
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Figure 5. CPU elapsed time (seconds) as a function of the sample size of standard cross-
validation (solid line-circles) and bagged cross-validation. Both variables are shown on a loga-
rithmic scale. The number of subsamples grows with n at the rate N =

√
n. Three growth rates

for r were considered, namely, r = n0.7 (dashed line-triangles), r = n0.8 (dotted line-pluses) and
r = n0.9 (dashed-dotted line-crosses).

by the bagged bandwidth turned out to be 69.3%, 90.1% and 93.8% for n = 50, n = 500
and n = 5000, respectively. This experiment was repeated with models M2 and M3,
obtaining similar results.
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Figure 6. Sampling distribution of ĥn/hn0, where ĥn denotes either the ordinary or bagged
cross-validation bandwidth, for samples of size n = 50 (left panel), n = 500 (central panel)
and n = 5, 000 (right panel) drawn from model M1. The values of r and N were chosen as
r = N = 4

√
n. Dashed lines are plotted at values 0.9 and 1.1 for reference.

7. Application to COVID-19 data

In order to illustrate the performance of the techniques studied in the previous sections,
the COVID-19 dataset briefly mentioned in the introduction is considered. It consists of
a sample of size n = 105, 235 which contains the age (the explanatory variable) and the
time in hospital (the response variable) of people infected with COVID-19 in Spain from
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January 1, 2020 to December 20, 2020. Due to the high number of ties in this dataset and
in order to avoid problems when performing cross-validation, we decided to remove the
ties by jittering the data. The actual age differs from the observed age, rounded down
to years, by an amount that is in the interval (0, 1). Thus, it is reasonable to model this
difference between actual and observed age using the uniform distribution in the interval
(0, 1). On the other hand, the hospitalization time was calculated as the difference
between the day of discharge and the day of admission to the hospital. The specific time
of discharge and admission would be obtained by adding uniform variables, with support
in the interval (0, 1), to each of the two dates. In particular, three independent random
samples of size n, U1, U2 and U3, drawn from a continuous uniform distribution defined
on the interval (0, 1), were generated. Then, U1 was added to the original explanatory
variable and U2 − U3 to the original response variable. Figure 7 shows scatterplots for
the complete sample as well as for three randomly chosen subsamples of size 1, 000.
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Figure 7. Whole COVID-19 sample (top left panel) as well as three randomly chosen subsam-
ples of size 1000.

To compute the standard cross-validation bandwidth using binning, the number of
bins was set to 10, 000, that is, roughly 10% of the sample size. The value of the band-
width thus obtained was 1.84 and computing it took 72 seconds. For the bagged band-
width, 10 subsamples of size 30, 000 were considered. Binning was used again for each
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subsample, fixing the number of bins to 3, 000. The calculations associated with each
subsample were performed in parallel using 5 cores. The value of the bagged bandwidth
was 1.52 and its computing time was 33 seconds. Figure 8 shows the Nadaraya–Watson
estimates with both standard and bagged cross-validation bandwidths. For comparative
purposes, the local linear regression estimate with direct plug-in bandwidth (Ruppert
et al., 1995) was also computed.
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Figure 8. Kernel regression estimates for the COVID-19 data. The Nadaraya–Watson estimator
with standard (dashed line) and bagged (solid line) cross-validation bandwidths are shown.
Additionally, the local linear estimator with plug-in bandwidth (dotted line) is also presented.

Figure 8 shows that the Nadaraya–Watson estimator with standard cross-validation
bandwidth produces a slightly smoother estimate than the one obtained with the bagged
bandwidth, the latter being almost indistinguishable from the local linear estimate com-
puted with direct plug-in bandwidth. One can conclude that the expected time that a
person infected with COVID-19 will remain in hospital increases non-linearly with age
for people under approximately 70 years. This trend is reversed for people aged between
70 and 100 years. This could be due to the fact that patients in this age group are
more likely to die and, therefore, end the hospitalization period prematurely. Finally,
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the expected hospitalization time grows again very rapidly with age for people over 100
years of age, although this could be caused by some boundary effect, since the num-
ber of observations for people over 100 years old is very small, specifically 155, which
corresponds to roughly 0.15% of the total number of observations. In order to avoid
this possible boundary effect, the estimators were also fitted to a modified version of the
sample in which the explanatory variable was transformed using its own empirical distri-
bution function. The resulting estimators are shown in Figure 9, where the explanatory
variable was returned to its original scale by means of its empirical quantile function.
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Figure 9. Kernel regression estimators for the COVID-19 data, removing boundary effects. The
Nadaraya–Watson estimator with standard (dashed line) and bagged (solid line) cross-validation
bandwidths are shown.

Finally, the same procedure was followed to estimate the expected time in hospital
but splitting the patients by gender, as shown in Figure 10. This figure shows that the
expected time in hospital is generally shorter for women, except for ages less than 30
years or between 65 and 85 years. Anyhow, the difference in mean time in hospital for
men and women never seems to exceed one day. In Figure 10, only the Nadaraya–Watson
estimates computed with the bagged cross-validation bandwidths (h = 0.03 for men and
h = 0.028 for women) are shown. Both the Nadaraya–Watson estimates with standard
cross-validation bandwidths (h = 0.028 for men and h = 0.023 for women) and the local
linear estimates with direct plug-in bandwidths produced very similar and graphically
indistinguishable results from those shown in Figure 10.
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Figure 10. Kernel regression estimators for the COVID-19 data by gender, removing boundary
effects. The Nadaraya–Watson estimators with bagged cross-validation bandwidths are shown
for male (solid line) and female (dashed line) patients.

8. Discussion

The asymptotic properties of the leave-one-out cross-validation bandwidth for the Na-
daraya–Watson estimator considering a regression model with random design have been
studied in this paper. Additionally, a bagged cross-validation selector have been also an-
alyzed (theoretically and empirically) as an alternative to standard leave-one-out cross-
validation. The advantage of this bandwidth selector is twofold: (i) to gain compu-
tational efficiency with respect to standard leave-one-out cross-validation by applying
the cross-validation algorithm to several subsamples of size r < n rather than a single
sample of size n, and (ii) to reduce the variability of the leave-one-out cross-validation
bandwidth. Although the new bandwidth selector studied in the present paper can out-
perform the behavior of the standard cross-validation selector even for moderate sample
sizes, improvements in computation time become truly significant only for large-sized
samples.

The methodology presented in this paper can be applied to other bandwidth selection
techniques, apart from cross-validation, as mentioned in Barreiro-Ures et al. (2020).
Extensions to bootstrap bandwidth selectors is an interesting topic for a future research.
The bootstrap resampling plans proposed by Cao and González-Manteiga (1993) can
be used to derive a closed form for the bootstrap criterion function in nonparametric
regression estimation, along the lines presented by Barbeito et al. (2021) who have dealt
with matching and prediction.

Another interesting future research topic is the extension of the results presented
in this paper to the case of the local linear estimator, whose behavior is known to be
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superior to that of the Nadaraya–Watson estimator, especially in the boundary regions.
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Abstract. This supplementary material for “Bagging cross-validated bandwidth selection
in nonparametric regression estimation with applications to large-sized samples” contains
the proofs of the theoretical results included in the main paper. In addition, some plots
completing the simulation study presented in the main paper are also provided. Specif-
ically, a figure showing empirically the closeness between the MISE bandwidths when
considering the Nadaraya–Watson estimator and when using its modified version, given
in equation (9) of the main paper, in different scenarios, is included. Moreover, a figure
presenting the relationship between the standard cross-validation bandwidths and the cor-
responding modified cross-validation selectors (using the standard and modified version
of the Nadaraya–Watson estimator, respectively) is also added.

1. Theoretical results

This section includes the proofs of Lemmas 3.1 and 3.2, Theorems 3.1 and 4.1, and
Corollaries 3.1 and 4.1 of the main paper. A sketch of the proof of Remark 3.1 is also
included. The following assumptions are needed:

A1. K is a symmetric and differentiable kernel function.

A2. For every j = 0, . . . , 6 the integrals µj(K), µj(K
′) and µj(K

2) exist and are finite,
where µj(g) =

∫
xjg(x) dx.

A3. The functions m and f are eight times differentiable.

A4. The function σ2 is four times differentiable.

A5. As r, n→∞, r = o(n) and N tends to a positive constant or ∞.

†Address for correspondence: Mario Francisco-Fernández, University of A Coruña, Faculty of
Computer Science, Campus de Elviña, s/n, A Coruña, Spain. E-mail: mariofr@udc.es
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Lemma 3.1. Under assumptions A1–A4, the bias and the variance of the modified
version of the Nadaraya–Watson estimator defined just after equation (8) of the main
paper satisfy:

E {m̃h(x)} −m(x) = µ2(K)

{
1

2
m′′(x) +

m′(x)f ′(x)

f(x)

}
h2

+

[
µ4(K)

{
1

24
m4)(x) +

1

6

m′′′(x)f ′(x)

f(x)
+

1

4

m′′(x)f ′′(x)

f(x)

+
1

6

m′(x)f ′′′(x)

f(x)

}
− µ2(K)2

f ′′(x)

f(x)

{
1

4
m′′(x) +

m′(x)f ′(x)

f(x)

}]
h4

+ O
(
h6 + n−1

)
,

var {m̃h(x)} = R(K)σ2(x)f(x)−1n−1h−1

+

[
µ2(K

2)f(x)−2
{
ϕ3(x) +

1

2
m(x)2f ′′(x)− 2ϕ1(x)m(x)f(x)

}
− R(K)µ2(K)σ2(x)f(x)−2f ′′(x)

]
n−1h+O(n−1h2 + n−2h−2 + n−3h−3),

where R(K) =
∫
K(x)2 dx.

Proof. Let us start by defining

ϕ1(x) = f(x)−1
{

1

2
m′′(x)f(x) +m′(x)f ′(x) +

1

2
m(x)f ′′(x)

}
,

ϕ2(x) = f(x)−1
{

1

24
m4)(x)f(x) +

1

6
m′′′(x)f ′(x) +

1

4
m′′(x)f ′′(x) +

1

6
m′(x)f ′′′(x)

+
1

24
m(x)f4)(x)

}
,

ϕ3(x) =
1

2
f ′′(x)

{
m(x)2 + σ2(x)

}
+ f(x)

{
m(x)m′′(x) +m′(x)2 +

1

2
σ2
′′
(x)

}
+ f ′(x)

{
2m(x)m′(x) + σ2

′
(x)
}
.

Let us first study the bias of m̃h. Recall that m̃h(x) = A + B + C + D, where A,
B, C and D are defined just after equation (8) of the main paper. Then, E {m̃h(x)} =
E(A) + E(B) + E(C) + E(D).

To compute E(A), we start by expanding the following expectation:
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E

{
1

n

n∑
i=1

Kh(x−Xi)Yi

}
= E {Kh(x−X1)Y1} = E {Kh(x−X1)E(Y1 | X1)}

= E {Kh(x−X1)m(X1)} =

∫
Kh(x− x1)m(x1)f(x1) dx1

=

∫
K(u)m(x− hu)f(x− hu) du

= m(x)f(x) + h2µ2(K)f(x)ϕ1(x)

+ h4µ4(K)f(x)ϕ2(x) +O(h6).

Therefore,

E(A) = m(x) + h2µ2(K)ϕ1(x) + h4µ4(K)ϕ2(x) +O(h6). (1)

Similarly, to compute E(B), we compute the following expectation:

E

{
1

n

n∑
i=1

Kh(x−Xi)

}
= E{Kh(x−X1)} =

∫
Kh(x− x1)f(x1) dx1

=

∫
K(u)f(x− hu) du = f(x) +

1

2
h2µ2(K)f ′′(x)

+
1

24
h4µ4(K)f4)(x) +O(h6)

and, hence,

E(B) = −m(x)

f(x)

{
1

2
h2µ2(K)f ′′(x) +

1

24
h4µ4(K)f4)(x)

}
+O(h6). (2)

To compute E(C), we start by expanding the following expectation:

E
{
Y1Kh(x−X1)

2
}

= E
{
m(X1)Kh(x−X1)

2
}

=

∫
Kh(x− x1)2m(x1)f(x1) dx1

= h−1
∫
K(u)2m(x− hu)f(x− hu) du = R(K)m(x)f(x)h−1

+ hµ2(K
2)f(x)ϕ1(x) + h3µ4(K

2)f(x)ϕ2(x) +O(h5).

We now obtain some asymptotic expressions for some of the terms in E(C):

E(âê) = E

n−2
n∑

i=1

n∑
j=1

YiKh(x−X1)Kh(x−Xj)

 = n−2
[
nE
{
Y1Kh(x−X1)

2
}

+ n(n− 1)E {Y1Kh(x−X1)Kh(x−X2)}] = n−1E
{
Y1Kh(x−X1)

2
}

+ E {Y1Kh(x−X1)}E {Kh(x−X1)} = R(K)m(x)f(x)n−1h−1 +m(x)f(x)2

+ h2µ2(K)

{
1

2
f ′′(x)m(x)f(x) + f(x)2ϕ1(x)

}
+ h4

{
1

24
µ4(K)f4)(x)m(x)f(x)

+ µ4(K)f(x)2ϕ2(x) +
1

2
µ2(K)2f ′′(x)f(x)ϕ1(x)

}
+O(h6 + n−1).
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Therefore,

E(C) = −R(K)m(x)f(x)−1n−1h−1 − 1

2
h4µ2(K)2f ′′(x)f(x)−1ϕ1(x) +O(h6 + n−1). (3)

To deal with E(D), we proceed in a similar way:

E
{
Kh(x−X1)

2
}

=

∫
Kh(x− x1)2f(x1) dx1 = h−1

∫
K(u)2f(x− hu) du

= R(K)f(x)h−1 +
1

2
hµ2(K

2)f ′′(x) +
1

24
h3µ4(K

2)f4)(x) +O(h5),

E
(
ê2
)

= E

n−2
n∑

i=1

n∑
j=1

Kh(x−Xi)Kh(x−Xj)

 = n−2
[
nE
{
Kh(x−X1)

2
}

+ n(n− 1)E {Kh(x−X1)Kh(x−X2)}]

= n−1E
{
Kh(x−X1)

2
}

+
n− 1

n
E {Kh(x−X1)}2

= R(K)f(x)n−1h−1 + f(x)2 + h2µ2(K)f ′′(x)f(x)

+ h4
{

1

12
µ4(K)f4)(x)f(x) +

1

4
µ2(K)2f ′′(x)2

}
+O(h6 + n−1),

and, hence,

E(D) = R(K)m(x)f(x)−1n−1h−1 +
1

4
h4µ2(K)2f ′′(x)2m(x)f(x)−2 +O(h6 + n−1). (4)

Adding (1), (2), (3) and (4), we get

E {m̃h(x)} −m(x) = µ2(K)

{
1

2
m′′(x) +

m′(x)f ′(x)

f(x)

}
h2

+

[
µ4(K)

{
1

24
m4)(x) +

1

6

m′′′(x)f ′(x)

f(x)
+

1

4

m′′(x)f ′′(x)

f(x)

+
1

6

m′(x)f ′′′(x)

f(x)

}
− µ2(K)2

f ′′(x)

f(x)

{
1

4
m′′(x) +

m′(x)f ′(x)

f(x)

}]
h4

+ O
(
h6 + n−1

)
.

Regarding the variance of m̃h(x) = A+B + C +D, we have that

var {m̃h(x)} = var(A) + var(B) + var(C) + var(D)+2 {cov(A,B) + cov(A,C)

+ cov(B,C) + cov(A,D) + cov(B,D) + cov(C,D)} . (5)

The following second order moment will be needed to handle some of the variance
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and covariance terms:

E
{
Y 2
1 Kh(x−X1)

2
}

= E
{
Kh(x−X1)

2E
(
Y 2
1 | X1

)}
= E

[
Kh(x−X1)

2E
{

(m(X1) + ε1)
2 | X1

}]
= E

[{
m(X1)

2 + σ2(X1)
}
Kh(x−X1)

2
]

=

∫
Kh(x− x1)2

{
m(x1)

2 + σ2(x1)
}
f(x1) dx1

= h−1
∫
K(u)2

{
m(x− hu)2 + σ2(x− hu)

}
f(x− hu) du

= R(K)
{
m(x)2 + σ2(x)

}
f(x)h−1 + µ2(K

2)ϕ3(x)h+O(h3).

Therefore,

var(â) = n−2var

{
n∑

i=1

YiKh(x−Xi)

}
= n−1var {Y1Kh(x−X1)}

= n−1
[
E
{
Y 2
1 Kh(x−X1)

2
}
− E {Y1Kh(x−X1)}2

]
= R(K)

{
m(x)2 + σ2(x)

}
f(x)n−1h−1 −m(x)2f(x)2n−1

+ µ2(K
2)ϕ3(x)n−1h+O(n−1h2)

and

var(A) = R(K)
{
m(x)2 + σ2(x)

}
f(x)−1n−1h−1 −m(x)2n−1

+ µ2(K
2)ϕ3(x)f(x)−2n−1h+O(n−1h2). (6)

On the other hand,

var(ê) = n−2var

{
n∑

i=1

Kh(x−Xi)

}
= n−1var {Kh(x−X1)}

= n−1
[
E
{
Kh(x−X1)

2
}
− E {Kh(x−X1)}2

]
= R(K)f(x)n−1h−1 − f(x)2n−1 +

1

2
µ2(K

2)f ′′(x)n−1h+O(n−1h2)

and, so,

var(B) = R(K)m(x)2f(x)−1n−1h−1 −m(x)2n−1

+
1

2
µ2(K

2)m(x)2f(x)−2f ′′(x)n−1h+O(n−1h2). (7)
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Straightforward calculations lead to

cov(â, ê) = n−2
n∑

i=1

n∑
j=1

cov {YiKh(x−Xi),Kh(x−Xj)}

= n−1cov {Y1Kh(x−X1),Kh(x−X1)}
= n−1

[
E
{
Y1Kh(x−X1)

2
}
− E {Y1Kh(x−X1)}E {Kh(x−X1)}

]
= R(K)m(x)f(x)n−1h−1 −m(x)f(x)2n−1

+ µ2(K
2)ϕ1(x)f(x)n−1h+O(n−1h2)

and, hence,

cov(A,B) = −R(K)m(x)2f(x)−1n−1h−1 +m(x)2n−1

− µ2(K
2)ϕ1(x)m(x)f(x)−1n−1h+O(n−1h2). (8)

Now,

cov {Y1Kh(x−X1), Y1Kh(x−X1)Kh(x−X2)}
= var {Y1Kh(x−X1)}E {Kh(x−X1)}
= R(K)

{
m(x)2 + σ2(x)

}
f(x)2h−1 −m(x)2f(x)3

+
[
µ2(K

2)ϕ3(x)f(x)

+
1

2
R(K)µ2(K)

{
m(x)2 + σ2(x)

}
f(x)f ′′(x)

]
h+O(h2)

and

cov {Y1Kh(x−X1), Y2Kh(x−X2)Kh(x−X1)}
= cov {Y1Kh(x−X1),Kh(x−X1)}E {Y1Kh(x−X1)}
= R(K)m(x)2f(x)2h−1 −m(x)2f(x)3

+
{
µ2(K

2)ϕ1(x)m(x)f(x)2

+ R(K)µ2(K)ϕ1(x)m(x)f(x)2
}

+O
(
h2
)
.

Therefore,

cov(â, âê) = n−3
n∑

i=1

n∑
j=1

n∑
k=1

cov {YiKh(x−Xi), YjKh(x−Xj)Kh(x−Xk)}

= n−1 [cov {Y1Kh(x−X1), Y1Kh(x−X1)Kh(x−X2)}
+ cov {Y1Kh(x−X1), Y2Kh(x−X2)Kh(x−X1)}] +O(n−1h2)

= R(K)
{

2m(x)2 + σ2(x)
}
f(x)2n−1h−1 − 2m(x)2f(x)3n−1

+

[
µ2(K

2)ϕ3(x)f(x) +
1

2
R(K)µ2(K)

{
m(x)2 + σ2(x)

}
f(x)f ′′(x)

+ µ2(K
2)ϕ1(x)m(x)f(x)2 +R(K)µ2(K)ϕ1(x)m(x)f(x)2

]
n−1h

+ O(n−1h2)
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and

cov(A,C) = −R(K)µ2(K)

[
1

2

{
m(x)2 + σ2(x)

}
f(x)−2f ′′(x)

+ ϕ1(x)m(x)f(x)−1
]
n−1h+O(n−1h2). (9)

Some auxiliary covariances are needed:

cov {Kh(x−X1), Y1Kh(x−X1)Kh(x−X2)}
= cov {Kh(x−X1), Y1Kh(x−X1)}E {Kh(x−X1)}
= R(K)m(x)f(x)2h−1 −m(x)f(x)3 +

{
µ2(K

2)ϕ1(x)f(x)2

+
1

2
R(K)µ2(K)m(x)f(x)f ′′(x)

}
h+O(h2),

cov {Kh(x−X1), Y2Kh(x−X2)Kh(x−X1)}
= var {Kh(x−X1)}E {Y1Kh(x−X1)}
= R(K)m(x)f(x)2h−1 −m(x)f(x)3

+

{
1

2
µ2(K

2)m(x)f(x)f ′′(x) +R(K)µ2(K)ϕ1(x)f(x)2
}
h

+ O(h2).

Hence,

cov(ê, âê) = n−3
n∑

i=1

n∑
j=1

n∑
k=1

cov {Kh(x−Xi), YjKh(x−Xj)Kh(x−Xk)}

= n−1 [cov {Kh(x−X1), Y1Kh(x−X1)Kh(x−X2)}
+ cov {Kh(x−X1), Y2Kh(x−X2)Kh(x−X1)}]
+ n−2cov

{
Kh(x−X1),Kh(x−X1)

2Y1
}

= 2R(K)m(x)f(x)2n−1h−1 − 2m(x)f(x)3n−1

+

{
µ2(K

2)ϕ1(x)f(x)2 +
1

2
µ2(K

2)m(x)f(x)f ′′(x)

+
1

2
R(K)µ2(K)m(x)f(x)f ′′(x) +R(K)µ2(K)ϕ1(x)f(x)2

}
n−1h

+ O(n−1h2 + n−2h−2)

and

cov(B,C) = R(K)µ2(K)

{
1

2
m(x)2f(x)−2f ′′(x) + ϕ1(x)m(x)f(x)−1

}
n−1h

+ O(n−1h2 + n−2h−2). (10)
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Another covariance term is needed:

cov {Y1Kh(x−X1),Kh(x−X1)Kh(x−X2)}
= cov {Y1Kh(x−X1),Kh(x−X1)}E {Kh(x−X1)}
= R(K)m(x)f(x)2h−1 −m(x)f(x)3 +

{
µ2(K

2)ϕ1(x)f(x)2

+
1

2
R(K)µ2(K)m(x)f(x)f ′′(x)

}
h+O(h2).

Therefore,

cov(â, ê2) = n−3
n∑

i=1

n∑
j=1

n∑
k=1

cov {YiKh(x−Xi),Kh(x−Xj)Kh(x−Xk)}

= 2n−1cov {Y1Kh(x−X1),Kh(X −X1)Kh(x−X2)}
+ O(n−1h2 + n−2h−2)

= 2R(K)m(x)f(x)2n−1h−1 − 2m(x)f(x)3n−1 +
{

2µ2(K
2)ϕ1(x)f(x)2

+ R(K)µ2(K)m(x)f(x)f ′′(x)
}
n−1h+O(n−1h2 + n−2h−2)

and

cov(A,D) = R(K)µ2(K)m(x)2f(x)−2f ′′(x)n−1h+O(n−1h2 + n−2h−2). (11)

The following covariance is also needed:

cov {Kh(x−X1),Kh(x−X1)Kh(x−X2)} = var {Kh(x−X1)] E [Kh(x−X1)}
= R(K)f(x)2h−1 − f(x)3

+

{
1

2
µ2(K

2)f(x)f ′′(x)

+
1

2
R(K)µ2(K)f(x)f ′′(x)

}
h+O(h2).

Similarly,

cov(ê, ê2) = n−3
n∑

i=1

n∑
j=1

n∑
k=1

cov {Kh(x−Xi),Kh(x−Xj)Kh(x−Xk)}

= 2n−1cov {Kh(x−X1),Kh(x−X1)Kh(x−X2)}
+ O(n−1h2 + n−2h−2)

= 2R(K)f(x)2n−1h−1 − 2f(x)3n−1

+
{
µ2(K

2)f(x)f ′′(x) +R(K)µ2(K)f(x)f ′′(x)
}
n−1h

+ O(n−1h2 + n−2h−2)

and

cov(B,D) = −R(K)µ2(K)m(x)2f(x)−2f ′′(x)n−1h+O(n−1h2 + n−2h−2). (12)
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Hence,

var(âê) = R(K)
{

4m(x)2 + σ2(x)
}
f(x)3n−1h−1 − 4m(x)2f(x)4n−1

+
[
µ2(K

2)ϕ3(x)f(x)2 +R(K)µ2(K)
{

2m(x)2 + σ2(x)
}
f(x)2f ′′(x)

+ 4R(K)µ2(K)ϕ1(x)m(x)f(x)3 + 2µ2(K
2)ϕ1(x)m(x)f(x)3

+
1

2
µ2(K

2)m(x)2f(x)2f ′′(x)

]
n−1h+O

(
n−1h2 + n−2h−2 + n−3h−3

)
and

var(C) = O
(
n−1h2 + n−2h−2 + n−3h−3

)
. (13)

The remaining variances and covariances were not explicitly calculated because they
are clearly negligible with respect to n−1h. In particular, var(D) and cov(C,D) are both
O(n−1h2 + n−2h−2 + n−3h−3).

Therefore, plugging (6)–(13) into (5) yields

var {m̃h(x)} = R(K)σ2(x)f(x)−1n−1h−1

+

[
µ2(K

2)f(x)−2
{
ϕ3(x) +

1

2
m(x)2f ′′(x)− 2ϕ1(x)m(x)f(x)

}
− R(K)µ2(K)σ2(x)f(x)−2f ′′(x)

]
n−1h

+ O(n−1h2 + n−2h−2 + n−3h−3).

Lemma 3.2 provides expressions for the first and second order terms of both the

expectation and variance of C̃V
′
n(h), where C̃V n(h) is given in equation (11) of the

main paper.

Lemma 3.2. Let us define

A1 = 12µ2(K)µ4(K)

∫
f(x)−1

{
1

24
m(4)(x)f(x) +

1

6
m′′′(x)f ′(x) +

1

4
m′′(x)f ′′(x)

+
1

6
m′(x)f ′′′(x)

}{
1

2
m′′(x)f(x) +m′(x)f ′(x)

}
dx

− 6µ2(K)3
∫
f ′′(x)f(x)−2

{
1

2
m′′(x)f(x) +m′(x)f ′(x)

}2

,

A2 = µ2
(
K2
) ∫

f(x)−1
[

1

2
f ′′(x)σ2(x) + f ′(x)(σ2)′(x)

+ f(x)

{
1

2
(σ2)′′(x) +m′(x)2

}]
dx

− R(K)µ2(K)

∫
σ2(x)f ′′(x)f(x)−1 dx,

R1 = 32R(K)2µ2(K)2
∫
σ2(x)f(x)−1

{
1

4
m′′(x)2f(x)2 +m′(x)m′′(x)f(x)f ′(x)

+ m′(x)2f ′(x)2
}
dx,

R2 = 4µ2
{

(K ′)2
}∫

σ2(x)2 dx.
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Then, under assumptions A1–A4, and assuming that B1, V1, A1, A2, R1 and R2 exist
finite:

E
{
C̃V

′
n(h)

}
= 4B1h

3 − V1n−1h−2 +A1h
5 +A2n

−1 +O
(
h7 + n−1h2

)
, (14)

var
{
C̃V

′
n(h)

}
= R1n

−1h2 +R2n
−2h−3 +O

(
n−1h4 + n−2h−1

)
. (15)

where B1 and V1 are the main terms of the bias and the variance of the MISE of the
Nadaraya–Watson estimator, given by:

B1 =
1

4
µ2(K)2

∫ {
m′′(x) + 2

m′(x)f ′(x)

f(x)

}2

f(x) dx,

V1 = R(K)

∫
σ2(x) dx.

Proof. For the sake of simplicity, we will denote by “Z(h, n)
2
=” the second order

terms of a function Z(h, n). For example, if Z(h, n) = a0 +a1h+a2h
3 + o

(
h3
)
, for some

constants a0, a1 and a2, then we would denote Z(h, n)
2
= a1h.

If we define

α1(u) = K(u) + uK ′(u),

α1h(u) = h−1α1

(u
h

)
,

Γ1(u, v) = 2K(u)K(v) +K(u)K ′(v)v +K(v)K ′(u)u,

Γ1h(u, v) = h−1Γ1

(u
h
,
v

h

)
β1(u, v) = K(u)K(v) +K(u)K ′(v)v,

β1h(u, v) = h−1β
(u
h
,
v

h

)
,

then C̃V
′
n(h) can be expressed as follows:

C̃V
′
n(h) =

2

n

n∑
i=1

m(Xi)− Yi +
1

(n− 1)4hf(Xi)4

n∑
j=1
j 6=i

n∑
k=1
k 6=i

n∑
l=1
l 6=i

n∑
s=1
s 6=i

Kh (Xi −Xj)

{Yj −m(Xi)} {2f(Xi)−Kh (Xi −Xk)} {Yl −m(Xi)}{
−2f(Xi)α1h (Xi −Xl) + h−1Γ1h (Xi −Xl, Xi −Xs)

}]
(16)

and so

E
{
C̃V

′
n(h)

}
=

2

(n− 1)4h
E


n∑

j=2

n∑
k=2

n∑
l=2

n∑
s=2

(
Λj
11 + Λjk

12

)(
Λl
21 + Λls

22

) , (17)
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where

Λj
11 = 2f(X1)

−3Kh (X1 −Xj) {Yj −m(X1)} ,
Λjk
12 = −f(X1)

−4Kh (X1 −Xj)Kh (X1 −Xk) {Yj −m(X1)} ,
Λl
21 = −2f(X1)α1h (X1 −Xl) {Yl −m(X1)} ,

Λls
22 = h−1Γ1h (X1 −Xl, X1 −Xs) {Yl −m(X1)} .

We have

E

 n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λj
11Λ

l
21

 = (n− 1)2
{

(n− 1)E
(
Λ2
11Λ

2
21

)
+ (n− 1)(n− 2)E

(
Λ2
11Λ

3
21

)}
. (18)

Now,

E
(
Λ2
11Λ

2
21

)
= −4E

[
f(X1)

−2Kh (X1 −X2)α1h (X1 −X2) {Y2 −m(X1)}2
]

= −4E
(
f(X1)

−2Kh (X1 −X2)α1h (X1 −X2)[
σ2(X2) + {m(X2)−m(X1)}2

])
= −4h−1

∫∫
f(x1)

−1K(u)α1(u)
[
σ2(x1 − hu) + {m(x1 − hu)−m(x1)}2

]
f(x1 − hu) dx1du

2
= −4h−1

∫∫
f(x1)

−1K(u)α1(u)h2u2f(x1)ϕ4(x1) dx1du

= 2µ2
(
K2
)
h

∫
ϕ4, (19)

and

E
(
Λ2
11Λ

3
21

)
= −4E

[
f(X1)

−2Kh (X1 −X2)α1h (X1 −X3) {Y2 −m(X1)} {Y3 −m(X1)}
]

= −4E
[
f(X1)

−2Kh (X1 −X2)α1h (X1 −X3) {m(X2)−m(X1)}
{m(X3)−m(X1)}]

= −4

∫∫∫
f(x1)

−1K(u)α1(v) {m(x1 − hu)−m(x1)} {m(x1 − hv)−m(x1)}

f(x1 − hu)f(x1 − hv) dx1dudv

2
= −4

∫∫∫
f(x1)

−1K(u)α1(v)h6
(
u2v4 + u4v2

)
f(x1)

2ϕ6(x1)ϕ7(x1) dx1dudv

= 24µ2(K)µ4(K)h6
∫
ϕ6ϕ7f, (20)



12 Barreiro-Ures et al.

where

ϕ4(x) = f(x)−1
[

1

2
f ′′(x)σ2(x) + f ′(x)σ2

′
(x) + f(x)

{
1

2
σ2
′′
(x) +m′(x)2

}]
,

ϕ6(x) = f(x)−1
{

1

24
m4)(x)f(x) +

1

6
m′′′(x)f ′(x) +

1

4
m′′(x)f ′′(x) +

1

6
m′(x)f ′′′(x)

}
,

ϕ7(x) = f(x)−1
{

1

2
m′′(x)f(x) +m′(x)f ′(x)

}
,

and we have used the fact that∫
K(u)α1(u)ui du =

1− i
2

µi
(
K2
)
,∫∫

K(u)α1(v)uivj dudv = −jµi(K)µj(K).

Then, plugging (19) and (20) into (18) we get:

E

 n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λj
11Λ

l
21

 2
= 2µ2

(
K2
)
n3h

∫
ϕ4 + 24n4h6

∫
ϕ6ϕ7f. (21)

We have

E

 n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λjk
12Λ

l
21

 = (n− 1)
[
(n− 1)(n− 2)(n− 3)E

(
Λ23
12Λ

4
21

)
+ (n− 1)(n− 2)

{
E
(
Λ22
12Λ

3
21

)
+ E

(
Λ23
12Λ

2
21

)
+ E

(
Λ23
12Λ

3
21

)}]
+ o

(
n3h+ n4h6

)
. (22)

Now,

E
(
Λ23
12Λ

4
21

)
= 2E

[
f(X1)

−3Kh (X1 −X2)Kh (X1 −X3)α1h (X1 −X4)

{Y2 −m(X1)} {Y4 −m(X1)}]

= 2

∫∫∫∫
f(x1)

−2K(u)K(v)α1(w) {m(x1 − hv)−m(x1)}

{m(x1 − hw)−m(x1)} f(x1 − hu)f(x1 − hv)f(x1 − hw)

dx1dudvdw

2
= 2

∫∫∫∫
f(x1)

−2K(u)K(v)α1(w)h6
{

(w4v2 + w2v4)f(x1)
3

ϕ6(x1)ϕ7(x1) + w2u2v2
1

2
f ′′(x1)f(x1)

2ϕ7(x1)
2

}
f(x1 − hu)

f(x1 − hv)f(x1 − hw) dx1dudvdw

= −2h6
{

6µ2(K)µ4(K)

∫
ϕ6ϕ7f + µ2(K)3

∫
ϕ2
7f
′′
}
, (23)
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E
(
Λ22
12Λ

3
21

)
= 2E

[
f(X1)

−3Kh (X1 −X2)
2 α1h (X1 −X3) {Y2 −m(X1)}

{Y3 −m(X1)}]

= 2h−1
∫∫∫

f(x1)
−2K(u)2α1(v) {m(x1 − hu)−m(x1)}

{m(x1 − hv)−m(x1)} f(x1 − hu)f(x1 − hv) dx1dudv
2
= O

(
h3
)
, (24)

E
(
Λ23
12Λ

2
21

)
= 2E

[
f(X1)

−3Kh (X1 −X2)α1h (X1 −X2)Kh (X1 −X3)

{Y2 −m(X1)}2
]

= 2h−1
∫∫

f(x1)
−2K(u)α1(u)K(v)

[
σ2(x1 − hu)

+ {m(x1 − hu)−m(x1)}2
]
f(x1 − hu)f(x1 − hv) dx1dudv

2
= 2h−1

∫∫∫
f(x1)

−2K(u)α1(u)K(v)h2
{
u2f(x1)

2ϕ4(x1)

+ v2
1

2
σ2(x1)f(x1)f

′′(x1)

}
dx1dudv

= h

{
1

2
R(K)µ2(K)

∫
σ2f ′′f−1 − µ2

(
K2
) ∫

ϕ4

}
(25)

and

E
(
Λ23
12Λ

3
21

)
= 2E

[
f(X1)

−3Kh (X1 −X2)Kh (X1 −X3)α1h (X1 −X3)

{Y2 −m(X1)} {Y3 −m(X1)}]

= 2h−1
∫∫∫

f(x1)
−2K(u)K(v)α1(v) {m(x1 − hu)−m(x1)}

{m(x1 − hv)−m(x1)} f(x1 − hu)f(x1 − hv) dx1dudv
2
= O

(
h3
)
, (26)

where we have used the fact that

∫∫∫
K(u)K(v)α1(w)uivjwk dudvdw = −kµi(K)µj(K)µk(K),∫∫

K(u)2α1(v)uivj dudv = −jµi
(
K2
)
µj(K),∫∫

K(u)α1(u)K(v)uivj dudv =
1− i

2
µi
(
K2
)
µj(K).
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Then, plugging (23), (24), (25) and (26) into (22) we get

E

 n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λjk
12Λ

l
21

 2
= −2n4h6

{
6µ2(K)µ4(K)

∫
ϕ6ϕ7f + µ2(K)3

∫
ϕ2
7f
′′
}

+ n3h

{
1

2
R(K)µ2(K)

∫
σ2f ′′f−1 − µ2

(
K2
) ∫

ϕ4

}
.(27)

We have

E

 n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λj
11Λ

ls
22

 = (n− 1)2(n− 2)(n− 3)E
(
Λ2
11Λ

34
22

)
+ (n− 1)2(n− 2)

{
E
(
Λ2
11Λ

23
22

)
+ E

(
Λ2
11Λ

32
22

)
+ E

(
Λ3
11Λ

22
22

)}
+ o

(
n3h+ n4h6

)
. (28)

Now,

E
(
Λ2
11Λ

34
22

)
= 2h−1E

[
f(X1)

−3Kh (X1 −X2) Γ1h (X1 −X3, X1 −X4)

{Y2 −m(X1)} {Y3 −m(X1)}]

= 2

∫∫∫∫
f(x1)

−2K(u)Γ1(v, w) {m(x1 − hu)−m(x1)}

{m(x1 − hv)−m(x1)} f(x1 − hu)f(x1 − hv)f(x1 − hw)

dx1dudvdw

2
= 2

∫∫∫∫
f(x1)

−2K(u)Γ1(v, w)h6
{

(u2v4 + u4v2)f(x1)
3ϕ6(x1)ϕ7(x1)

+ w2u2v2
1

2
f ′′(x1)f(x1)

2ϕ7(x1)
2

}
dx1dudvdw

= −h6
{

12µ2(K)µ4(K)

∫
ϕ6ϕ7f + 4µ2(K)3

∫
ϕ2
7f
′′
}
, (29)

E
(
Λ2
11Λ

23
22

)
= 2h−1E

[
f(X1)

−3Kh (X1 −X2) Γ1h (X1 −X2, X1 −X4)

{Y2 −m(X1)}2
]

= 2h−1
∫∫∫

f(x1)
−2K(u)Γ1(u, v)

[
σ2(x1 − hu)

+ {m(x1 − hu)−m(x1)}2
]
f(x1 − hu)f(x1 − hv) dx1dudv

2
= 2h−1

∫∫∫
f(x1)

−2K(u)Γ1(u, v)h2
{
u2f(x1)

2ϕ4(x1)

+ v2
1

2
σ2(x1)f

′′(x1)f(x1)

}
dx1dudv

= −h
{
µ2
(
K2
) ∫

ϕ4 +
3

2
R(K)µ2(K)

∫
σ2f ′′f−1

}
, (30)
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E
(
Λ2
11Λ

32
22

)
= 2h−1E

[
f(X1)

−3Kh (X1 −X2) Γ1h (X1 −X3, X1 −X2)

{Y2 −m(X1)} {Y3 −m(X1)}]
= 2h−1f(x1)

−2K(u)Γ1(v, u) {m(x1 − hu)−m(x1)}
{m(x1 − hv)−m(x1)} f(x1 − hu)f(x1 − hv) dx1dudv

2
= O

(
h3
)

(31)

and

E
(
Λ3
11Λ

22
22

)
= 2h−1E

[
f(X1)

−3Kh (X1 −X3) Γ1h (X1 −X2, X1 −X2)

{Y2 −m(X1)} {Y3 −m(X1)}]
= 2h−1f(x1)

−2K(u)Γ1(v, v) {m(x1 − hu)−m(x1)}
{m(x1 − hv)−m(x1)} f(x1 − hu)f(x1 − hv) dx1dudv

2
= O

(
h3
)
, (32)

where we have used the fact that∫∫∫
K(u)Γ1(v, w)uivjwk dudvdw = (−k − j)µi(K)µj(K)µk(K),∫∫

K(u)Γ1(u, v)uivj dudv =
1− i− 2j

2
µi
(
K2
)
µj(K),

Γ1(u, v) = Γ1(v, u),∫∫
K(u)Γ1(v, v)uivj dudv = (1− j)µi(K)µj

(
K2
)
.

Then, plugging (29), (30), (31) and (32) into (28), we get

E

 n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λj
11Λ

ls
22

 2
= −n4h6

{
12µ2(K)µ4(K)

∫
ϕ6ϕ7f + 4µ2(K)3

∫
ϕ2
7f
′′
}

− n3h

{
µ2
(
K2
) ∫

ϕ4 +
3

2
R(K)µ2(K)

∫
σ2f ′′f−1

}
.(33)

We have

E

 n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λjk
12Λ

ls
22

 = (n− 1)(n− 2)(n− 3)(n− 4)E
(
Λ23
12Λ

45
22

)
+ (n− 1)(n− 2)(n− 3)

{
E
(
Λ22
12Λ

34
22

)
+ E

(
Λ23
12Λ

24
22

)
+ E

(
Λ23
12Λ

42
22

)
+ E

(
Λ32
12Λ

24
22

)
+ E

(
Λ32
12Λ

42
22

)
+ E

(
Λ34
12Λ

22
22

)}
+ o

(
n3h+ n4h6

)
. (34)
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Now,

E
(
Λ23
12Λ

45
22

)
= −h−1E

[
f(X1)

−4Kh (X1 −X2)Kh (X1 −X3) Γ1h (X1 −X4, X1 −X5)

{Y2 −m(X1)} {Y4 −m(X1)}]

= −
∫
. . .

∫
f(x1)

−3K(u)K(v)Γ1(w, z) {m(x1 − hu)−m(x1)}

{m(x1 − hw)−m(x1)} f(x1 − hu)f(x1 − hv)f(x1 − hw)f(x1 − hz)
dx1dudvdwdz

2
= −

∫
. . .

∫
f(x1)

−3K(u)K(v)Γ1(w, z)h
6
{

(u4w2 + u2w4)f(x1)
4

ϕ6(x1)ϕ7(x1) + (u2w2v2 + u2w2z2)
1

2
f(x1)

3f ′′(x1)ϕ7(x1)
2

}
dx1dudvdwdz

= h6
{

6µ2(K)µ4(K)

∫
ϕ6ϕ7f + 3µ2(K)3

∫
ϕ2
7f
′′
}

(35)

and

E
(
Λ23
12Λ

24
22

)
= −h−1E

[
f(X1)

−4Kh (X1 −X2)Kh (X1 −X3) Γ1h (X1 −X2, X1 −X4)

{Y2 −m(X1)}2
]

= −
∫∫∫∫

f(x1)
−3K(u)K(v)Γ1(u,w)

[
σ2(x1 − hu)

+ {m(x1 − hu)−m(x1)}2
]

f(x1 − hu)f(x1 − hv)f(x1 − hw)f(x1 − hz) dx1dudvdw
2
= −h−1

∫∫∫∫
f(x1)

−3K(u)K(v)Γ1(u,w)h2
{

(v2 + w2)
1

2
f(x1)

2σ2(x1)

f ′′(x1) + u2f(x1)
3ϕ4(x1)

}
dx1dudvdw

=
1

2
h

{
R(K)µ2(K)

∫
σ2f ′′f−1 + µ2

(
K2
) ∫

ϕ4

}
, (36)

where we have used the fact that∫∫∫∫
K(u)K(v)Γ1(w, z)u

ivjwkzl dudvdwdz = (−k − l)µi(K)µj(K)µk(K)µl(K),∫∫∫
K(u)K(v)Γ1(u,w)uivjwk dudvdw =

1− i− 2k

2
µi
(
K2
)
µj(K)µk(K).

Also, it is straightforward to see that the second order terms of E
(
Λ22
12Λ

34
22

)
, E
(
Λ23
12Λ

42
22

)
,

E
(
Λ32
12Λ

24
22

)
, E
(
Λ32
12Λ

42
22

)
, E
(
Λ34
12Λ

22
22

)
are O

(
h3
)
.
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Then, plugging (35) and (36) into (34), we get

E

 n∑
j=2

n∑
k=2

n∑
l=2

n∑
s=2

Λjk
12Λ

ls
22

 2
= n4h6

{
6µ2(K)µ4(K)

∫
ϕ6ϕ7f + 3µ2(K)3

∫
ϕ2
7f
′′
}

+
1

2
n3h

{
R(K)µ2(K)

∫
σ2f ′′f−1 + µ2

(
K2
) ∫

ϕ4

}
.(37)

Finally, plugging (21), (27), (33), and (37) into (17) yields:

E
{
C̃V

′
n(h)

}
= h5

{
12µ2(K)µ4(K)

∫
ϕ6ϕ7f − 6µ2(K)3

∫
ϕ2
7f
′′
}

+ n−1
{
µ2
(
K2
) ∫

ϕ4 −R(K)µ2(K)

∫
σ2f ′′f−1

}
,

which, considering the definitions of ϕ4, ϕ6 and ϕ7 given above, matches the second

order terms of E
{
C̃V

′
n(h)

}
given (14) in Lemma 3.2. Regarding the first order terms

of E
{
C̃V

′
n(h)

}
and as already mentioned, it is well known that these coincide with the

main term of M̃ ′n(h).

As for the variance of C̃V
′
n(h), recall that we are only interested in obtaining its

first-order terms. Thus, instead of working with the quadratic approximation of m̂h,
namely m̃h, given in equation (9) of the main paper, we can employ a simpler, linear
approximation of m̂h, denoted by m̄h. This linear approximation of the Nadaraya-
Watson estimator was already proposed in Barbeito (2020) and it is given in equation
(10) of the main paper. Its expression is:

m̄h(x) = m(x) +
1

nf(x)

n∑
i=1

Kh (x−Xi) {Yi −m(x)} .

Let us now define

CV n(h) =
1

n

n∑
i=1

{
m̄

(−i)
h (Xi)− Yi

}2
,

Pij =
Yi −m(Xi)

f(Xi)
{Yj −m(Xi)}α1h(Xi −Xj),

Qijk = f(Xi)
−2{Yj −m(Xi)}{Yk −m(Xi)}β1h(Xi −Xj , Xi −Xk).

Then,

var
{
CV

′
n(h)

}
=

4

n2(n− 1)4h2

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i

n∑
l=1

n∑
r=1
r 6=l

n∑
s=1
s 6=l

Cijklrs,

where

Cijklrs = cov (Pij , Plr)− h−1cov (Pij , Qlrs)− h−1cov (Plr, Qijk) + h−2cov (Qijk, Qlrs) .



18 Barreiro-Ures et al.

By counting the possible cases and using C122345 = C123455 = 0, we get

var
{
C̃V

′
n(h)

}
=

4

n2(n− 1)4h2
{n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)C123456

+ n(n− 1)(n− 2)(n− 3)(n− 4) (C123145 + 2C123415 + 2C123451

+ 2C123455 + C123425 + 2C123452 + C123453) + n(n− 1)(n− 2)(n− 3)

(2C122134 + C123124 + 2C123142 + C123143 + 2C122314 + C123214

+ 2C123412 + 2C123314 + 2C123413 + 2C122341 + 2C123421

+ C123341 + 2C123431 + C122344 + C123423 + C123432 + 2C123411

+ 2C122324 + 2C122342) + n(n− 1)(n− 2) (C122322 + C122133

+ C123123 + C123132 + C123213 + 2C123312 + C123321 + 2C122311

+ 2C123211 + 2C123311 + 2C123122 + 2C123322 + 2C122132 + 2C122312)

+ n(n− 1) (C122122 + C122211)} . (38)

Among the previous covariances, it can be argued that the only ones that contribute

to the dominant term of var
{
C̃V

′
n(h)

}
are C123245, C123425, C123124 and C123145. Before

we continue and with the intention of facilitating the calculations of the four Cijklrs

that we need, let us obtain general expressions for each of the summands that make up
Cijklrs. Since

E (Pij | Xi, Xj , Xl, Xr, Yj , Yr) = 0

and

cov {Yi −m(Xi), Yl −m(Xl) | Xi, Xl} = δilσ
2(Xi)

then

cov (Pij , Plr) = E {cov (Pij , Plr | Xi, Xj , Xl, Xr, Yj , Yr)}
= E

[
f(Xi)

−1f(Xl)
−1α1h(Xi −Xj)α1h(Xl −Xr){Yj −m(Xi)}

{Yr −m(Xl)}cov (Yi −m(Xi), Yl −m(Xl) | Xi, Xl)]

= δilE
[
f(Xi)

−2α1h(Xi −Xj)α1h(Xi −Xr){Yj −m(Xi)}
{Yr −m(Xi)}σ2(Xi)

]
.

Let us now consider the covariance

cov (Pij , Qlrs) = E
[
f(Xi)

−1f(Xl)
−2α1h(Xi −Xj)β1h(Xl −Xr, Xl −Xs)

{Yi −m(Xi)}{Yj −m(Xi)}{Yr −m(Xl)}{Ys −m(Xl)}] .

If r, s 6= i it is clear that cov (Pij , Qlrs) = 0. Now, for the cases r = i and s = i (both
cases imply i 6= l), let us define

t =

{
s, if r = i

r, if s = i
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and note that

cov {Yi −m(Xi), Yi −m(Xl) | Xi, Xl} = cov {εi, εi +m(Xi)−m(Xl) | Xi, Xl}
= var (εi | Xi) + cov {εi,m(Xi)−m(Xl) | Xi, Xl}
= σ2(Xi).

Then, using the law of total covariance:

cov (Pij , Qlrs) = E
[
f(Xi)

−1f(Xl)
−2α1h(Xi −Xj)β1h(Xl −Xr, Xl −Xs)

{Yj −m(Xi)}{Yt −m(Xl)}cov {Yi −m(Xi), Yi −m(Xl) | Xi, Xl}]
= E

[
f(Xi)

−1f(Xl)
−2α1h(Xi −Xj)β1h(Xl −Xr, Xl −Xs)

{Yj −m(Xi)}{Yt −m(Xl)}σ2(Xi)
]
.

Finally,

cov (Qijk, Qlrs)

= E {cov (Qijk, Qlrs | Xi, Xj , Xk, Xl, Xr, Xs)}
+ cov {E (Qijk | Xi, Xj , Xk, Xl, Xr, Xs) ,E (Qlrs | Xi, Xj , Xk, Xl, Xr, Xs)}
= E

(
f(Xi)

−2f(Xl)
−2β1h(Xi −Xj , Xi −Xk)β1h(Xl −Xr, Xl −Xs)

cov [{Yj −m(Xi)}{Yk −m(Xi)}, {Yr −m(Xl)}{Ys −m(Xl)} | Xi, Xj , Xk, Xl, Xr, Xs])

+ cov {E (Qijk | Xi, Xj , Xk, Xl, Xr, Xs) ,E (Qlrs | Xi, Xj , Xk, Xl, Xr, Xs)} .

Note that, if {j, k} ∩ {r, s} = ∅, then

cov [{Yj −m(Xi)}{Yk −m(Xi)}, {Yr −m(Xl)}{Ys −m(Xl)} | Xi, Xj , Xk, Xl, Xr, Xs] = 0.

Now, regarding the term C123245, since 1 6= 2 and 4, 5 6= 1, we have

cov (P12, P24) = cov (P12, Q245) = 0

and

cov (P24, Q123) = E
[
f(X2)

−1f(X1)
−2α1h(X2 −X4)β1h(X1 −X2, X1 −X3)

{Y4 −m(X2)}{Y3 −m(X1)}σ2(X2)
]

= E
[
f(X2)

−1f(X1)
−2α1h(X2 −X4)β1h(X1 −X2, X1 −X3)

{m(X4)−m(X2)}{m(X3)−m(X1)}σ2(X2)
]

=

∫∫∫∫
f(x2)

−1f(x1)
−2α1h(x2 − x4)β1h(x1 − x2, x1 − x3)

{m(x4)−m(x2)}{m(x3)−m(x1)}f(x1)f(x2)f(x3)f(x4) dx1dx2dx3dx4

Making the following changes of variable,
x4 = x2 − hu4
x3 = x1 − hu3
x2 = x1 − hu2
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and using the fact that∫∫∫
α1(u4)β1(u2, u3)u

i
4u

j
2u

k
3 du4du2du3 = ikµi(K)µj(K)µk(K) = 0

⇐⇒ i = 0 or k = 0 or (i, j or k is an odd number),

we obtain that

cov (P24, Q123) = h

∫∫∫∫
f(x1)

−1α1(u4)β1(u2, u3){m(x1 − hu2 − hu4)−m(x1 − hu2)}

{m(x1 − hu3)−m(x1)}σ2(x1 − hu2)f(x1 − hu3)
f(x1 − hu2 − hu4) dx1du2du3du4

= h

∫∫∫∫
f(x1)

−1α1(u4)β1(u2, u3)u
2
4u

2
3h

4

{
1

4
m′′(x1)

2σ2(x1)f(x1)
2

+ m′(x1)
2σ2(x1)f

′(x1)
2 +m′(x1)m

′′(x1)σ
2(x1)f(x1)f

′(x1)
}

dx1du2du3du4 +O
(
h7
)

= 4µ2(K)2h5
∫
f(x)−1σ2(x)

{
1

4
m′′(x)2f(x)2 +m′(x)2f ′(x)2

+ m′(x)m′′(x)f(x)f ′(x)
}
dx+O

(
h7
)
.

Since {2, 3} ∩ {4, 5} = ∅,

cov (Q123, Q245) = cov
[
f(X1)

−2β1h(X1 −X2, X1 −X3){m(X2)−m(X1)}
{m(X3)−m(X1)}, f(X2)

−2β1h(X2 −X4, X2 −X5)

{m(X4)−m(X2)}{m(X5)−m(X2)}]
= E

[
f(X1)

−2f(X2)
−2β1h(X1 −X2, X1 −X3)β1h(X2 −X4, X2 −X5)

{m(X2)−m(X1)}{m(X3)−m(X1)}{m(X4)−m(X2)}
{m(X5)−m(X2)}]

− E
[
f(X1)

−2β1h(X1 −X2, X1 −X3){m(X2)−m(X1)}
{m(X3)−m(X1)}]2

= O
(
h10
)
.

Therefore,

C123245 = −4µ2(K)2h4
∫
f(x)−1σ2(x)

{
1

4
m′′(x)2f(x)2 +m′(x)2f ′(x)2

+ m′(x)m′′(x)f(x)f ′(x)
}
dx+O

(
h6
)
. (39)

Regarding the term C123425, since 1 6= 4, 2, 3 6= 4 and 2, 5 6= 1, then

cov (P12, P42) = cov (P12, Q425) = cov (P42, Q123) = 0.
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We have that

h2
∫
. . .

∫
f(x1)

−2f(x4)
−2β1h(x1 − x2, x1 − x3)β1h(x4 − x2, x4 − x5)

{m(x3)−m(x1)}{m(x5)−m(x4)}
[
σ2(x2) + {m(x2)−m(x1)}{m(x2)−m(x4)}

]
f(x1)f(x2)f(x3)f(x4)f(x5)dx1dx2dx3dx4dx5

= h2
∫
. . .

∫
f(x1)

−1f(x1 − hu2 + hu4)
−1β1(u2, u3)β1(u4, u5) {m(x1 − hu3)

− m(x1)} {m(x1 − hu2 + hu4 − hu5)−m(x1 − hu2 + hu4)}
[
σ2(x1 − hu2)

+ {m(x1 − hu2)−m(x1)}{m(x1 − hu2)−m(x1 − hu2 + hu4)}] f(x1 − hu2)
f(x1 − hu3)f(x1 − hu2 + hu4 − hu5)dx1du2du3du4du5

= 4R(K)2µ2(K)2h6
∫
σ2f(x)−1

{
1

4
(m′′)2f2 +m′m′′ff ′ + (m′)2(f ′)2

}
+O

(
h8
)
,

where we have made the following change of variables,
x2 = x1 − hu2
x3 = x1 − hu3
x4 = x2 + hu4

x5 = x2 − hu5

and used the fact that∫∫∫∫
β1(u2, u3)β1(u4, u5)u

i
2u

j
3u

k
4u

l
5 du2du3du4du5 = jlµi(K)µj(K)µk(K)µl(K) = 0

⇐⇒ j = 0 or l = 0 or (i, j, k or l is an odd number).

Therefore,

C123425 = 8R(K)2µ2(K)2h4
∫
σ2f(x)−1

{
1

4
(m′′)2f2 +m′m′′ff ′ + (m′)2(f ′)2

}
+O

(
h6
)
.(40)

As for the term C123124, since 2, 4 6= 1 and 2, 3 6= 1, then

cov (P12, Q124) = cov (P12, Q123) = 0.

We have that

cov (P12, P12) = E
[
f(X1)

−2α1h(X1 −X2)
2σ2(X1)

{
(m(X2)−m(X1))

2 + σ2(X2)
}]

= h−1
∫∫

f(x1)
−1α1(u)2σ2(x1)

[
σ2(x1 − hu) + {m(x1 − hu)−m(x1)}2

]
f(x1 − hu) dx1du = µ2

{
(K ′)2

}
h−1

∫
(σ2)2 +O (h) ,

where we have used the fact that∫
α1(u)2ui du = −iµi(K2) + µi+2

{
(K ′)2

}
= 0 ⇐⇒ i is odd.
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On the other hand,

cov (Q123, Q124) = E
(
f(X1)

−4β1h(X1 −X2, X1 −X3)β1h(X1 −X2, X1 −X4)

{m(X3)−m(X1)}{m(X4)−m(X1)}
[
σ2(X2) + {m(X2)−m(X1)}2

])
− E

[
f(X1)

−2β1h(X1 −X2, X1 −X3){m(X2)−m(X1)}
{m(X3)−m(X1)}]2 = O

(
h5
)
.

Therefore,

C123124 = µ2
{

(K ′)2
}
h−1

∫
(σ2)2 +O (h) . (41)

Using similar arguments and calculations we get that

C123145 = 4µ2(K)2h4
∫
f−1σ2

{
1

4
(m′′)2f2 + (m′)2(f ′)2 +m′m′′ff ′

}
+O

(
h6
)
. (42)

Finally, considering (38), (39), (40), (41) and (42), we obtain (15).

Now, from the following decomposition (equation (13) of the main paper):

h̃CV,n − h̃n0 ≈ − C̃V
′
n(h̃n0)− M̃ ′n(h̃n0)

M̃ ′′n(h̃n0)

+

{
C̃V

′
n(h̃n0)− M̃ ′n(h̃n0)

}{
C̃V

′′
n(h̃n0)− M̃ ′′n(h̃n0)

}
M̃ ′′n(h̃n0)2

, (43)

and using Lemmas 3.1 and 3.2, the asymptotic bias and variance of the cross-validation
bandwidth that minimizes the modified version of the cross-validation criterion given in
equation (11) of the main paper:

C̃V n(h) =
1

n

n∑
i=1

{
m̃

(−i)
h (Xi)− Yi

}2
, (44)

can be obtained. Theorem 3.1 contains this result.

Theorem 3.1. Under the assumptions of Lemma 3.2 and assuming that B2 and V2
exist finite, the asymptotic bias and the variance of the bandwidth that minimizes (44)
are:

E
(
h̃CV,n

)
− h̃n0 = Bn−3/5 + o

(
n−3/5

)
,

var
(
h̃CV,n

)
= V n−3/5 + o

(
n−3/5

)
,

where

B =
6B2C

5
0 + V2 −A1C

5
0 −A2

12B1C2
0 + 2V1C

−3
0

,

V =
R1C

2
0 +R2C

−3
0(

12B1C2
0 + 2V1C

−3
0

)2 .
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The constants B2 and V2 were defined in p. 8 of the main paper, and the constant
C0 was defined in p. 5 of the main paper.

Proof. From equation (43), it follows that, up to first order,

E
(
h̃CV,n

)
− h̃n0 =

M̃ ′n(h̃n0)− E
{
C̃V

′
n(h̃n0)

}
M̃ ′′n(h̃n0)

, (45)

var
(
h̃CV,n

)
=

var
{
C̃V

′
n(h̃n0)

}
M̃ ′′n(h̃n0)2

. (46)

Since the first-order terms of M̃ ′n(h̃n0) and E
{
C̃V

′
n(h̃n0)

}
coincide, we must consider

the second-order terms of M̃ ′n(h̃n0) and E
{
C̃V

′
n(h̃n0)

}
for the bias of h̃CV,n, while for the

variance, it will suffice to consider the first-order term of var
{
C̃V

′
n(h̃n0)

}
. Therefore,

to proof Theorem 3.1, we only have to plug the results of Lemma 3.1 and Lemma 3.1
into (45) and (46).

Corollary 3.1. Under assumptions of Theorem 3.1, the asymptotic distribution of
the bandwidth that minimizes the modified version of the cross-validation criterion, given
in equation (11) of the main paper, satisfies

n3/10
(
h̃CV,n − h̃n0

)
d−→ N(0, V ),

where the constant V was defined in Theorem 3.1.

Proof. Using the Cramér-Wold device (Cramér and Wold, 1936) and an argument
similar to that followed in Barreiro-Ures et al. (2020), it is possible to derive the asymp-

totic normality of the statistic of interest, namely n3/10
(
h̃CV,n − h̃n0

)
. The mean and

variance of the asymptotic distribution of this statistic are an immediate consequence of
Theorem 3.1.

Remark 3.1. Under suitable assumptions:

h̃CV,n − h̃n0 = ĥCV,n − hn0 +Op

(
n−2/5

)
.

Proof. We shall begin the sketch of the proof by showing that it stands to reason
that the following expressions hold:

Mn(h)− M̃n(h) = O
(
h8 + n−1h2 + n−2

)
,

CVn(h)− C̃V n(h) = Op

(
h6 + n−1/2h7/2 + n−1

)
,

h̃n0 − hn0 = O
(
n−4/5

)
.
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Recall that the Nadaraya–Watson estimator, m̂h, and its quadratic approximation,
m̃h, can be expressed as

m̂h(x) = T + E + F,

m̃h(x) = T,

where T = A+B+C +D and A,B,C,D,E and F were defined just after equation (8)
of the main paper. From the proof of Lemma 3.1 and the fact that

E(âê2) = E

n−3
n∑

i=1

n∑
j=1

n∑
k=1

YiKh(x−Xi)Kh(x−Xj)Kh(x−Xk)


= n−3

[
nE
{
Y1Kh(x−X1)

3
}

+ n(n− 1)E
{
Y1Kh(x−X1)Kh(x−X2)

2
}

+ 2n(n− 1)E
{
Y1Kh(x−X1)

2Kh(x−X2)
}

+ n(n− 1)(n− 2)E {Y1Kh(x−X1)Kh(x−X2)Kh(x−X3)}]
= 3R(K)m(x)f(x)2n−1h−1 +m(x)f(x)3

+
{
µ2(K)m(x)f(x)2f ′′(x) + µ2(K)ϕ1(x)f(x)3

}
h2

+

{
1

4
µ2(K)2m(x)f(x)f ′′(x)2 + µ4(K)f(x)3ϕ2(x)

+ µ2(K)2f(x)2ϕ1(x)f ′′(x)
}
h4

+ O(h6 + n−1),

it follows that

E(E) = O
(
h6 + n−1

)
,

var (E) = O
(
n−1h7

)
,

and the same could be said of F . Then,

[E {m̂h(x)} −m(x)]2 = [E {m̃h(x)} −m(x) + E (E + F )]2

= [E {m̃h(x)} −m(x)]2 + E (E + F )2

+ 2E (E + F ) [E {m̃h(x)} −m(x)]

= [E {m̃h(x)} −m(x)]2 +O
(
h8 + n−1h2 + n−2

)
,

where we have used the fact that both E (E) and E (F ) are O
(
h6 + n−1

)
and

E {m̃h(x)} −m(x) = O
(
h2
)
.

Also,

var {m̂h(x)} = var {m̃h(x)}+ var (E + F ) + 2cov {m̃h(x), E + F}
= var {m̃h(x)}+O

(
n−1h3

)
,
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where we have used the fact that both var (E) and var (F ) are O
(
n−1h7

)
and

var (E + F ) = var (E) + var (F ) + 2cov (E,F )

≤ var (E) + var (F ) + 2
√

var (E) var (F )

= O
(
n−1h7

)
,

cov {m̃h(x), E + F} ≤
√

var {m̃h(x)} var (E + F ) = O
(
n−1h3

)
.

Thus, it follows that

Mn(h) = M̃n(h) +O
(
h8 + n−1h2 + n−2

)
.

To avoid confusion, the functions E and F will be denoted below as En(x) and Fn(x),
respectively, to indicate the fact that E and F depend on n and x. Now, there exist
functions αE , βE and γE such that

E {En(x)} = αE(x)h6 + βE(x)n−1 + o
(
h6 + n−1

)
,

var {En(x)} = γE(x)n−1h7 + o
(
n−1h7

)
and so

E
{
En(X1)

2
}

= E
[
E
{
En(X1)

2 | X1

}]
= E

[
E {En(X1) | X1}2 + var {En(X1) | X1}

]
= E

[{
αE(X1)h

6 + βE(X1)n
−1 + o

(
h6 + n−1

)}2
+ γE(X1)n

−1h7

+ o
(
n−1h7

)]
= h12

∫
α2
Ef + n−2

∫
β2Ef + n−1h7

∫
(2αEβE + γE) f

+ o
(
h12 + n−1h7 + n−2

)
determines the order in probability of En(X1)

2 due to En(X1)
2 being a random variable

that only takes positive values.
Since similar results can be obtained for E

{
Fn(X1)

2
}

and E {En(X1)Fn(X1)} (using
the Cauchy–Schwarz inequality), it can be stated that

E

[
1

n

n∑
i=1

{
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
}2
]

= E

[
1

n

n∑
i=1

{En−1(Xi) + Fn−1(Xi)}2
]

= E
[
{En−1(X1) + Fn−1(X1)}2

]
= E

{
En−1(X1)

2 + Fn−1(X1)
2 + 2En−1(X1)Fn−1(X1)

}
= Op

(
h12 + n−1h7 + n−2

)
.

Then, since the random variable 1
n

n∑
i=1

{
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
}2

only takes positive

values, its order in probability is given by its expected value and, hence,

1

n

n∑
i=1

{
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
}2

= Op

(
h12 + n−1h7 + n−2

)
.
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Therefore, using the Cauchy–Schwarz inequality,

CVn(h)− C̃V n(h) =
1

n

[
n∑

i=1

{
m̂

(−i)
h (Xi)− Yi

}2
−

n∑
i=1

{
m̃

(−i)
h (Xi)− Yi

}2
]

=
1

n

n∑
i=1

{
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
}{

m̂
(−i)
h (Xi) + m̃

(−i)
h (Xi)− 2Yi

}
≤

[
1

n

n∑
i=1

{
m̂

(−i)
h (Xi)− m̃(−i)

h (Xi)
}2

1

n

n∑
i=1

{
m̂

(−i)
h (Xi) + m̃

(−i)
h (Xi)− 2Yi

}2
]1/2

= Op

(
h6 + n−1/2h7/2 + n−1

)
,

where we have used

1

n

n∑
i=1

{
m̂

(−i)
h (Xi) + m̃

(−i)
h (Xi)− 2Yi

}2
= Op (1) .

Proceeding in a similary manner, albeit with more tedious calculations, it can be
argued that

CV ′n(h∗n)− C̃V
′
n(h∗n) = Op

(
n−4/5

)
,

for any bandwidth h∗n that tends to zero at the optimal rate n−1/5.
Finally, by means of a Taylor expansion, we have

0 = M ′n(hn0) = M ′n(h̃n0) +M ′′n(h̄n0)
(
hn0 − h̃n0

)
,

for some h̄n0 between hn0 and h̃n0. Then, using the fact that M̃ ′n(h̃n0) = 0,

M ′n(h̃n0) = M̃ ′n(h̃n0) +O
(
n−6/5

)
= O

(
n−6/5

)
and

M ′′n(h̄n0) = L0n
−2/5 + o

(
n−2/5

)
,

for some constant L0, we have

hn0 − h̃n0 = − M ′n(h̃n0)

M ′′n
(
h̄n0
) = O

(
n−4/5

)
.

Now, a Taylor expansion yields

0 = CV ′n(ĥCV,n) = CV ′n(h̃CV,n) + CV ′′n (h∗)
(
ĥCV,n − h̃CV,n

)
,
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for some h∗ between ĥCV,n and h̃CV,n. Note that

M̃ ′′n(h∗)− M̃ ′′n(C0n
−1/5) = M ′′′n (h∗∗)

(
h∗ − C0n

−1/5
)

= op

(
n−2/5

)
,

for some h∗∗ between h∗ and the asymptotically optimal bandwidth, C0n
−1/5, where we

have used M̃ ′′′n (h∗∗) = Op

(
n−1/5

)
and h∗−C0n

−1/5 = op
(
n−1/5

)
. Then, since the order

in probability of C̃V
′′
n(h∗) is given by its expected value, that is, M̃ ′′n(h∗), we have:

C̃V
′′
n(h∗) = L0n

−2/5 + op

(
n−2/5

)
.

Consequently,

ĥCV,n − h̃CV,n = −
CV ′n(h̃CV,n)

CV ′′n (h∗)
=

Op

(
n−4/5

)
L0n−2/5 + op

(
n−2/5

) = Op

(
n−2/5

)
,

where we have used the fact that C̃V
′
n(h̃CV,n) = 0 and so

CV ′n(h̃CV,n) = C̃V
′
n(h̃CV,n) +Op

(
n−4/5

)
= Op

(
n−4/5

)
.

Moreover, since hn0 − h̃n0 = O
(
n−4/5

)
, we can also write

ĥCV,n − hn0 = h̃CV,n − h̃n0 +Op

(
n−2/5

)
.

Finally, expressions for the asymptotic bias and the variance of the bagged cross-
validation bandwidth,

h̃(r,N) =
1

N

( r
n

)1/5 N∑
i=1

h̃CV,r,i. (47)

are given in Theorem 4.1.

Theorem 4.1. Under assumptions A1–A5, the asymptotic bias and the variance of
the bagged cross-validation bandwidth defined in (47) are:

E
{
h̃(r,N)

}
− h̃n0 = (B + C1)r

−2/5n−1/5 + o
(
r−2/5n−1/5

)
,

var
{
h̃(r,N)

}
= V r−1/5n−2/5

{
1

N
+
( r
n

)2}
+ o

(
r−1/5n−2/5

N
+ r9/5n−12/5

)
,

where the constants B and V were defined in Theorem 3.1 and the constant C1 is defined
in (48).

Proof. If we define

C1 = − 6B2C
5
0 + V2

12B1C2
0 + 2V1C

−3
0

, (48)
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then we have

h̃r0 = C0r
−1/5 + C1r

−3/5 + o
(
r−3/5

)
,( r

n

)1/5
h̃r0 = C0n

−1/5 + C1r
−2/5n−1/5 + o

(
r−2/5n−1/5

)
and ( r

n

)1/5
h̃r0 − h̃n0 = C1

(
r−2/5n−1/5 − n−3/5

)
+ o

(
r−2/5n−1/5 + n−3/5

)
= C1r

−2/5n−1/5 + o
(
r−2/5n−1/5

)
,

where we have used the fact that r = o(n). Therefore,

E
{
h̃(r,N)

}
− h̃n0 = E

{( r
n

)1/5
h̃CV,r,1

}
− h̃n0

=
( r
n

)1/5
E
(
h̃CV,r,1 − h̃r0

)
+

{( r
n

)1/5
h̃r0 − h̃n0

}
= (B + C1)r

−2/5n−1/5 + o
(
r−2/5n−1/5

)
.

Regarding the variance, we have

var
{
h̃(r,N)

}
=

1

N

( r
n

)2/5 {
var
(
h̃CV,r,1

)
+ (N − 1)cov

(
h̃CV,r,1, h̃CV,r,2

)}
(49)

and

cov
(
h̃CV,r,1, h̃CV,r,2

)
≈ M̃ ′′r (h̃r0)

−2cov
{
C̃V

′
1(h̃r0), C̃V

′
2(h̃r0)

}
, (50)

where for q ∈ {1, 2},

C̃V
′
q(h) =

2

r(r − 1)2h

∑
i,j,k∈Iq
j,k 6=i

{
Aijα1h(Xi −Xj)− h−1Bijkβ1h(Xi −Xj , Xi −Xk)

}
,

with I1, I2 ∼ U(P) and P = {I ⊂ {1, . . . , n} | #I = r}.
Now,

cov
{
C̃V

′
1(h), C̃V

′
2(h)

}
= cov

[
E
{
C̃V

′
1(h) | I1, I2

}
,E
{
C̃V

′
2(h) | I1, I2

}]
+ E

[
cov

{
C̃V

′
1(h), C̃V

′
2(h) | I1, I2

}]
= E

[
cov

{
C̃V

′
1(h), C̃V

′
2(h) | I1, I2

}]
since E

{
C̃V

′
q(h) | I1, I2

}
, for q ∈ {1, 2}, does not depend on I1, I2 and, therefore, it is

not random.
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On the other hand,

cov
{
C̃V

′
1(h), C̃V

′
2(h) | I1, I2

}
=

4

r2(r − 1)4h2

∑
i,j,k∈I1
l,s,t∈I2
j,k 6=i
s,t 6=l

cov {Aijα1h(Xi −Xj) (51)

− h−1Bijkβ1h(Xi −Xj , Xi −Xk), Alsα1h(Xl −Xs)

− h−1Blstβ1h(Xl −Xs, Xl −Xt)
}
.

Following the proof of Lemma 3.2, we only need to count the number of cases associ-
ated with C123124 and C123425. If we define M = # (I1 ∩ I2), which is a random variable,
then the number of times C123124 and C123425 appear in (51) is M(M−1)(r2−4r−M) =
M2r2 + o

(
M2r2

)
for C123124, and M2r3 + o

(
M2r3

)
for C123425.

Plugging these numbers into (51), we get

cov
{
C̃V

′
1(h), C̃V

′
2(h) | I1, I2

}
=

4

r2(r − 1)4h2
(
C123124M

2r2 + C123425M
2r3
)

+ Z,

where Z = op
(
C123124M

2r−4 + C123425M
2r−3

)
.

To compute the expected value of the previous term we proceed by computing:

E
(
M2 | I1

)
= E

{∑
i∈I1

1I2(i)

}2

| I1

 = E

∑
i∈I1

∑
j∈I1

1I2(i)1I2(j) | I1


=

∑
i∈I1

∑
j∈I1

P(i, j ∈ I2 | I1) = rP(1 ∈ I2) + r(r − 1)P(1 ∈ I2)2

= r
r

n
+ r(r − 1)

r2

n2

=
r2{n+ r(r − 1)}

n2

= E
(
M2
)
,

where 1I2(·) denotes the indicator function of I2 and we have used the fact that 1I2(i) is
a Bernoulli distribution with parameter r/n. Therefore,

cov
{
C̃V

′
1(h), C̃V

′
2(h)

}
= R1(n

−1r−1h2 + rn−2h2)

+ R2n
−2h−3 +O

(
n−2h−1 + n−1r−1h4 + n−2rh4

)
and

cov
{
C̃V

′
1(hr0), C̃V

′
2(hr0)

}
= R1C

2
0 (n−1r−7/5 + n−2r3/5)

+ R2C
−3
0 n−2r3/5 +O

(
n−1r−9/5 + n−2r1/5

)
. (52)

Now, plugging (52) into (50), we get

cov
(
h̃CV,r,1, h̃CV,r,2

)
= V n−2r7/5 +Wn−1r−3/5 +O

(
n−2r + n−1r−1

)
, (53)
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where

W =
R1C

2
0(

12B1C2
0 + 2V1C

−3
0

)2 .
Finally, plugging (53) into (49) yields

var
{
h̃(r,N)

}
= V r−1/5n−2/5

{
1

N
+
( r
n

)2}
+ o

(
r9/5n−12/5

)
.

Corollary 4.1. Under the assumptions of Thorem 4.1, the asymptotic distribution
of the bagged cross-validation bandwidth defined in (47) satisfies:

r1/10n1/5√
1
N +

(
r
n

)2 {h̃(r,N)− h̃n0
}

d−→ N(0, V ),

where the constant V was defined in Theorem 3.1. In particular, if we assume that

r = o
(
n/
√
N
)

, then,

r1/10n1/5
√
N
{
h̃(r,N)− h̃n0

}
d−→ N(0, V ).

Proof. The result is obtained immediately from Corollary 3.1 and Theorem 4.1.

2. Simulation studies

In this section, we complete the simulations presented in the main paper, adding two
additional plots not included in the paper for reasons of space. In this simulation study,
we considered the following regression models:

M1: Y = m(X) + ε, m(x) = 2x, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

M2: Y = m(X) + ε, m(x) = sin(2πx)2, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

M3: Y = m(X) + ε, m(x) = x+ x2 sin(8πx)2, X ∼ Beta(3, 3), ε ∼ N(0, 0.12),

whose regression functions are plotted in Figure 1 of the main paper. The R (R Devel-
opment Core Team, 2021) package baggingbwsel (Barreiro-Ures et al., 2021) was em-
ployed to carry out the simulation experiments. In a first step, we empirically checked
how close the bandwidths that minimize the MISE of the Nadaraya–Watson estimator
and its modified version given, respectively, in equations (2) and (9) of the main paper
are. For this, we simulated 100 samples of sizes 1000 and 5000 from models M1, M2 and
M3 and compute the corresponding MISE curves for the standard Nadaraya–Watson
estimator and for its modified version, using the Gaussian kernel. Figure 1 shows these
curves. It can be observed that the bandwidth that minimizes the MISE of standard
Nadaraya–Watson estimator and the MISE of its modified version appear to be quite
close for both sample sizes, although the distance between the minima of both curves
seems to tend to zero as the sample size increases. On the other hand, Figure 2 shows
the standard and modified cross-validation bandwidths (using the standard and modified
version of the Nadaraya–Watson estimator, respectively) obtained for samples of sizes
ranging from 600 to 5000 drawn from model M2. It can be seen that both bandwidth
selectors provide similar results, which in turn get closer as n increases.
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Figure 1. MISE curve for the standard Nadaraya–Watson estimator (black line) for its modified
version (red line) and with their minima (red and black points, respectively). First row: model
M1, second row: model M2, third row: model M3. First column: n = 1000, second column:
n = 5000

References

Barbeito, I. (2020) Exact bootstrap methods for nonparametric curve estimation. Ph.D.
thesis, Universidade da Coruña. https://ruc.udc.es/dspace/handle/2183/26466.

Barreiro-Ures, D., Cao, R., Francisco-Fernández, M. and Hart, J. D. (2020) Bagging
cross-validated bandwidths with application to big data. Biometrika. https://doi.

org/10.1093/biomet/asaa092.

Barreiro-Ures, D., Hart, J. D., Cao, R. and Francisco-Fernández, M. (2021) baggingbwsel:
Bagging Bandwidth Selection in Kernel Density and Regression Estimation. R package
version 1.0. https://cran.r-project.org/package=baggingbwsel.

Cramér, H. and Wold, H. (1936) Some theorems on distribution functions. Journal of

https://ruc.udc.es/dspace/handle/2183/26466
https://doi.org/10.1093/biomet/asaa092
https://doi.org/10.1093/biomet/asaa092
https://cran.r-project.org/package=baggingbwsel


32 Barreiro-Ures et al.

●

●

●
● ●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●

●

● ●

●

●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=600

Standard

M
o

d
if
ie

d

●
● ●

●
●

●

●●
●●

●
●

●

●

●

●●
● ●

●

●
●●

●●

●

●●●

●

●●

●

● ●
●● ●

●

●

●

●
●

●● ●●
●●●

●
● ●

● ●

●
●

●

● ●

●
● ●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

● ●
●

●

●

●

● ●
●

●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=1150

Standard

M
o

d
if
ie

d

●

● ●

●

●

●
●

●

●
●●

●

●●
●

●●

●

●●

●

● ●● ● ●
● ●
●

●
●●

●

●
●
●

●
●

●

●

●
●● ●

●

●●

●
●●

●
● ●

●
●

●
●

●

●
●

●
●

●

●

● ●
●

●●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●
●

●

●
●●● ●

●●

●

●

●
● ●

●
●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=1700

Standard

M
o

d
if
ie

d

●

●
●

●

●

●●
●

●
●

●
●

●●

●

●●
●

●
●●●

●

●●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●
●

●
● ●
●●

●

●

● ●

●

●

● ● ●

●●

●
●

●●
●

●
● ●

●●
●

●
●

●

●
●
●●

●
●

●

●

●●

●
●

● ●
●

●●●
●●

●
●●

●

●

●
●

●
●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=2250

Standard

M
o

d
if
ie

d

●
●●●

●

●
●●

● ●●
●

●● ●
●

●●
●

●
●●● ●

●
●

● ●●●
●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●
● ●

●●●●
● ●

●

●●

● ●

●●
●●

●

●●

●●
●●

●
●

●
●

●

● ● ●●●●
●●

● ●

●
●

●

●
●●

●

●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=2800

Standard

M
o

d
if
ie

d

● ●●●●
● ●●

●
●

●
●

● ● ●
●

●

●●●●●● ●
●

●

● ●●●
●

●

●
●

●

●●
●

●
●

●●

●

●
●

● ●
●

●

●

●

●

●●● ●●
●●

●●●
●●
●

●

●
●

●
●

●

●

●

●
●

●
●

●● ●●

●
●

●

●
●●●

●●● ●
●

●
●

●

●
●

●
●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=3350

Standard

M
o

d
if
ie

d

● ●●
●

●

●
●●● ●●●

● ● ●●●
●

●
●●●●

●●
●

●
● ●●
●

●

●●

●

● ●
●

●
●

●
● ●

●
●

●●
●●●

●

●
●

●● ●● ●●●●●
●● ●

●

●

●
●

●

●
●

●

●
●

●●

●● ● ●
●●

● ● ●●●
●●● ●●

●●

●

●

●
●●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=3900

Standard

M
o

d
if
ie

d

●●●
●

●

●
● ●● ●●●

● ● ●●●
●

●
●● ● ●

●●
●

●
● ●●

●

●

● ●

●

● ●
●

●
●

●
●●

●
●

● ●●●●
●

●
●

●● ●● ●● ●●●
●● ●

●

●

●
●

●

●
●

●

●
●

●●

●●● ●
● ●

● ● ●●●
● ●● ●●

●●

●

●

●
●●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=4450

Standard

M
o

d
if
ie

d

●●
●●

●

●

●●● ●
●●

●
●

●
●

●●●
●

●
●●●● ●●

● ●
● ●

●
● ●

●

● ● ●

●
●

● ●
●

●
●

●

●●

●

●

●
●

●●● ●●
●

●● ●● ●●
● ●●

●●
●●●

●
●

●●●
●●●

●

●
●●

●●
●

●
●

●
● ●
●●

●

●
●

●
●●

0.008 0.010 0.012 0.014 0.016 0.018

0
.0

0
5

0
.0

1
5

n=5000

Standard

M
o

d
if
ie

d

Figure 2. Cross-validation bandwidths using the standard Nadaraya–Watson estimator (x-axis)
and its modified version (y-axis) for samples of sizes ranging from 600 to 5000 drawn from model
M2.
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