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Abstract:

A procedure for bias testing in a large-sized sample possibly subject

to sampling bias is proposed in this paper. A small-sized unbiased

simple random sample from the real population is assumed to be

additionally observed. The method proposed consists of using an

adaptation of two-sample existing methods to test the equality of

distributions and the equality of means, but considering the dis-

tinctive feature of the context proposed in which two very differ-

ent sample sizes are involved. For the equality of distributions, the

two-sample Kolmogorov-Smirnov test, the Cramer-von Mises crite-

rion and the Mann-Whitney U -test are considered. In the case of

testing the mean, the Welch’s adaptation of the Student’s t-test is

used. This two-sample mean test has been considered since differ-

ent distributions do not necessary imply different means. Some bias
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indices are also proposed in order to measure the amount of bias in

the big data sample. A comparative analysis between the different

methods proposed is performed. Simulation results show the good

performance of these methods for bias testing. The proposed tech-

niques are also applied to a real data set concerning airline on-time

performance of US flights.

1 Introduction

Big Data Analytics offers many advantages nowadays but also presents new

challenges, such as the importance of handling truthful and quality data. The

false assumption that with enough data, numbers speak for themselves, often

considered in this Big Data era, has been widely discussed. Massive data sets

are not always totally objective, since on certain occasions, a large sample may

not be completely representative of the population due to being biased: Big-

But-Biased Data (B3D).1,2 Some interesting examples are the data provided by

the StreetBump smartphone app or the tweets generated by hurricane Sandy.3

In this context, when a large amount of data can be collected but the sam-

pling mechanism is not controlled, even though the sample size is very large, the

distribution from which this sample comes from does not necessarily coincide

with that of the population of interest. This idea has been previously formal-

ized.2 Let us consider a continuous population with cumulative distribution

function F (density f) and let us denote by

X = (X1, . . . , Xn)

a simple random sample of size n from this population. Let us assume that we
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are not able to observe this sample but we observe, instead, another sample,

Y = (Y1, . . . , YN )

of a much larger size (N >> n) from a biased distribution G (with density g)

different from F but with a common support, D. This condition is formulated

assuming a positive biasing function, w(x),∀x ∈ D, such that

g(x) = w(x)f(x) ∀x ∈ D. (1)

In order to reduce the significant bias that may appear in Big Data, bias cor-

rection methods have been already developed, proposing general nonparametric

estimators for the mean of a transformation of a continuous random variable.1,2

For this purpose, when ignoring the biasing weight function, a small-sized sim-

ple random sample (SRS) of the real population is assumed to be additionally

observed.

However, when working with a large database, a logical first step, previous

to bias correction, would be to check if we are in a context of biased data.

Therefore, the main objective of this paper is to develop testing methods for

bias detection.

The rest of the paper proceeds as follows. Section 2 presents the methods

for bias testing and the bias indices introduced. Simulations results and a real

data application are included in Section 3. The main conclusions are collected

in Section 4. The mathematical proofs of the results presented in Section 2 are

included in the Supplementary Material.
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2 Methods

In order to detect if bias exist, we can use several existing methods that allow to

test if the two distributions involved (F and G) come from the same distribution

(unbiased situation) or not (biased situation). This is tantamount to using tests

for the null hypothesis:

H0 : F = G

against the alternative

H1 : F 6= G,

like, for instance, the Kolmogorov-Smirnov test or the Cramer-von Mises crite-

rion.

Despite the fact that the following tests for bias detection are widely known

methods, it is important to consider the distinctive feature of our B3D context:

we will assume that the ratio of both samples sizes involved does not tend to

a constant but to infinity N/n → ∞, i.e., the size of the B3D sample tends to

infinity faster than that of the SRS.

2.1 Kolmogorov-Smirnov test

The Kolmogorov–Smirnov test4,5 (KS test) is a nonparametric test of equality

of distributions used to compare the population distribution with a reference

probability distribution

H0 : F = F0,

or to compare two populations and conclude if they have the same distribution

H0 : F = G.

Let Fn be the empirical cumulative distribution function (ecdf) for the sam-
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ple (X1, X2, . . . , Xn) and GN the ecdf for the sample (Y1, Y2, . . . , YN ), defined

as:

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}, (2)

GN (x) =
1

N

N∑
j=1

1{Yj≤x}, (3)

where 1 denotes de indicator function.

It is well known that Fn and GN are the nonparametric maximum likelihood

estimators of F and G, respectively. Therefore, the proximity of Fn and GN

will be indicative of the veracity of H0, while a large distance between both ecdf

will evidence that H0 is probably false.

The two-sample Kolmogorov–Smirnov statistic quantifies the distance be-

tween the two ecdf involved:

DN,n = sup
x∈R
|GN (x)− Fn(x)|,

where sup denotes the supremum over all x ∈ R, while the one-sample test

statistic computes the distance between the ecdf of the sample and the cdf of

the reference distribution:

DF0
n = sup

x∈R
|Fn(x)− F0(x)|.

Many authors have studied the limiting distribution of DF0
n under the as-

sumption that F0(x) is continuous4,5, 6, 7, 8 and showed that the exact distribu-

tion of DF0
n under H0 is independent of F0, if F0 is continuous.9

As it happens with the one-sample test statistic with continuous F = G

under the null hypothesis, it can be proven that the exact distribution of the

two-sample test statistic does not depend on the distributions involved, it is
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distribution-free.

Proposition 1. The two-sample Kolmogorov-Smirnov test is a distribution-free

test under H0 if F = G is continuous.

The proof of Proposition 1 is included in the Supplementary Material.

For n and N sufficiently large, under H0 the statistic

√
N · n
N + n

DN,n

has the same asymptotic distribution that the Kolmogorov distribution:5

P

(√
N · n
N + n

DN,n ≤ t

)
d−→ K(t) = 1− 2

∞∑
i=1

(−1)i−1e−2i
2t2

=

√
2π

t

∞∑
i=1

e−(2i−1)
2π2/(8t2),

if N/n→ c ∈ (0,∞), where K(t) denotes the Kolmogorov-Smirnov cdf.

Let’s see now what happens when considering the distinctive feature of our

B3D context, i.e., N/n→∞:

Proposition 2. Assuming F = G and N/n → ∞, the statistic

√
N · n
N + n

DN,n

has the same asymptotic distribution as the statistics

√
Nn

N + n
DF
n and

√
nDF

n

when F = F0.

As a consequence, when N/n → ∞, the two-sample statistic, DN,n, will

be used but it has to be callibrated with the asymptotic distribution of the

one-sample test.

Apart from this test, we could also consider other tests or criterions. In

Subsections 2.2 and 2.3 the Cramer-von Mises criterion and the Mann-Whitney

U test will be used for bias detection.
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2.2 Cramer-von Mises criterion

The Cramer-von Mises criterion, like the Kolmogorov-Smirnov test, is used to

judge the goodness of fit of a theoretical cumulative distribution function, F0,

compared to the empirical distribution function, Fn.10,11 As F is unknown, the

two following statistics could be used:

ω̃2 =

∫ ∞
−∞

[Fn(x)− F0(x)]2dFn(x),

ω̃2 =

∫ ∞
−∞

[Fn(x)− F0(x)]2dF0(x)

For comparing two empirical distributions, the generalization to the two-

sample case is given by:

ω2 =

∫ ∞
−∞

[Fn(x)−GN (x)]2dHN+n(x)

which compares the two empirical cdf.12 In our context, Fn and GN denote the

empirical distribution functions of the SRS and the B3D sample respectively,

HN+n the empirical distribution function corresponding to the pooled sample,

i.e., (N + n)HN+n(x) = nFn(x) +NGN (x).

The statistic for the one-sample case is

Tn = nω̃2 = n

∫ ∞
−∞

[Fn(x)− F0(x)]2dF0(x) =
1

12n
+

n∑
i=1

[
2i− 1

2n
− F0

(
X(i)

)]2
,

where X(1) ≤ X(2) ≤ . . . ≤ X(n) is the ordered sample and for the two-sample

case:

TN,n =
Nn

N + n
ω2 =

Nn

N + n

∫ ∞
−∞

[Fn(x)−GN (x)]2dHN+n(x)

=
V

Nn(N + n)
− 4Nn− 1

6(N + n)
,
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where V is defined by

V = n

n∑
i=1

(ri − i)2 +N

N∑
j=1

(sj − j)2

being ri, i = 1, 2, . . . , n, the ranks of the ordered SRS, X(1) ≤ X(2) ≤ . . . ≤ X(n),

in the combined sample and sj , j = 1, 2, . . . , N , the ranks of the ordered B3D

sample, Y(1) ≤ Y(2) ≤ . . . ≤ Y(n), in the pooled sample.

It has been proved that, under the null hypothesis (F = G), TN,n has the

same limiting null distribution (F = F0) as Tn when n → ∞, N → ∞ and

N/n→ λ, being λ a positive constant.13 For moderate sample sizes, the limiting

distribution is a good approximation to the exact distribution.

Proposition 3. Assuming F = G and N/n → ∞, the statistic TN,n has the

same asymptotic distribution that the statistic Tn under F = F0.

2.3 Mann–Whitney U test

The Mann–Whitney U test, also called the Mann–Whitney–Wilcoxon (MWW)

or Wilcoxon rank-sum test,14,15 is a nonparametric test of the null hypothesis

that, for randomly selected values X and Y from two populations, the proba-

bility of X being greater than Y is equal to the probability of Y being greater

than X:

H0 : P (X > Y ) = P (Y > X).

The U test is weaker than that of Kolmogorov-Smirnov, since it does not

test the equality of distributions, but a condition that is verified in that case.

To compute the statistic, U , the pooled sample is ranked and each of the

values of the two samples is assigned to its rank (i.e., rank 1 is assigned to the

smallest observation, rank 2 to the second smallest observation, and so on).

If two or more observations are equal, the mean rank is assigned to the tied
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observations. Finally, RX and RY , the adjusted rank-sums, (i.e. the sum of the

ranks in each of the samples X and Y , respectively), are computed. This allows

to construct:

UX = Nn+
n(n+ 1)

2
−RX

UY = Nn+
N(N + 1)

2
−RY .

Knowing that

RX +RY =
(N + n)(N + n+ 1)

2
,

the sum of two values is given by

UX + UY = Nn.

The U statistic is defined as the minimum between UX and UY :

U = min{UX , UY }.

For large sized samples, U is approximately normally distributed under the

null hypothesis. In that case, the standardized value, z = (U −mU )/σU , has a

standard normal asymptotic distribution, where mU and σU are the mean and

the standard deviation of U , under H0, which are given by mU = (Nn)/2 and

σU =
√

[Nn(N + n+ 1)]/12.

When the two populations have very different distributions, the Mann-

Whitney U -test can lead to a misinterpretation of the results.16 In that case,

it is recommended to use the unequal variances version of the t-test (Welch’s

t-test), which provides more reliable results.
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2.4 Bias detection for mean estimation

Since different distributions may have equal means, it would be reasonable to

use a specific two-sample test for the means when studying bias testing in a

mean estimation problem.

To see the effect of bias on mean estimation, the Student’s t-test for equal

means will be used. In particular, in our context, the Welch’s adaptation of

the two sample t-test17,18 will be considered. Welch’s t-test is a more reliable

version of the test when the two populations have unequal variances and/or the

samples have unequal sizes.

Welch’s t-test defines the statistic as follows:

t =
X − Y√
S2
X

n
+
S2
Y

N

,

where
S2
X

n
and

S2
Y

N
denote the estimated variances of X and Y , respectively;

being the degrees of freedom:

d.f. =

(
S2
X

n
+
S2
Y

N

)2

S4
X

n2(n− 1)
+

S4
Y

N2(N − 1)

.

This test will not be affected by the condition N/n→∞ since, in that case,

the variance of X − Y ,

σ2
X

n
+
σ2
Y

N

tends to the variance of X. In fact, when N >> n, the degrees of freedom are
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approximately d.f. ' n− 1 and the statistic t is approximately equal to

X − µ√
S2
X

n

,

which has a standard normal asymptotic distribution.

2.5 Bias indices

Several indices to measure the amount of bias are defined below. All of them

are invariant under location and scale transformations. This means that if we

consider any positive constant a > 0 and any real number b, the index defined

for the two new random variables, X ′ = aX + b and Y ′ = aY + b, has the same

value as for the original random variables, X and Y . This is a very convenient

property since the value of the index does not depend on the measure units

used. All the indices except i1 are defined in such a way that they all lie within

the interval [0,1]. The value 0 for all those indices corresponds to no bias, while

the value 1 is the maximal possible value of them.

The first index considers the absolute value of the difference of the population

means of the distributions involved in each case. The average of the standard

deviations in the denominator is necessary in order to obtain an scale-invariant

index:

i1 =
|µY − µX |
σX + σY

2

.

The following two indices are based, respectively, on the L1 and L2 distances
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between the density functions:

dL1 = ‖f − g‖1 =

∫ b

a

|f(x)− g(x)|dx,

dL2
= ‖f − g‖2 =

[∫ b

a

(f(x)− g(x))2dx

]1/2
,

where [a, b] is the common support of F and G.

Since the distance dL1 takes values between 0 and 2, the second index is

divided by 2 in order to be in the range [0, 1]:

i2 =
1

2
‖f − g‖1.

Since the distance dL2
is not an scale-invariant measure, it is transformed to

obtain the third relative index in [0, 1]:

i3 =
‖f − g‖2
‖f‖2 + ‖g‖2

.

The fourth and fifth indices consider the Kolmogorov-Smirnov and the Cramer-

von Mises distances between the distribution functions, respectively:

dKS = sup
x∈R
|F (x)−G(x)|,

dCvM =

∫ ∞
−∞

(F (x)−G(x))2
1

2
d (F +G) (x).

The Kolmogorov-Smirnov distance is already a location and scale invariant mea-

sure that takes values in [0, 1], therefore it does not require any modification to

obtain the fourth index:

i4 = dKS = sup
x∈R
|F (x)−G(x)|.
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Since the Cramer-von Mises distance is location and scale invariant but takes

values between 0 and 1/3, the fifth index is:

i5 = 3

∫ ∞
−∞

(F (x)−G(x))2
1

2
d (F +G) (x).

Finally, an index that measures the proximity of the biasing weight function,

w, defined in (1), to its nearest constant function is considered:

i6 =
‖w − cw‖2
‖w‖2 + ‖cw‖2

=

[∫ b
a

(w(x)− cw)2dx
]1/2

[∫ b
a
w(x)2dx

]1/2
+ (b− a)1/2 · cw

,

where

cw =
1

b− a

∫ b

a

w(x)dx

and the correction in the denominator is introduced to get a location and scale

invariant index with values in [0, 1].

3 Results and Discussion

3.1 Experiments

The performance of the tests proposed in Section 2 is studied via simulation.

We generated 1, 000 pairs of datasets, each with sample size n = 1, 000 in the

case of the sample X and sample size N = 1, 000, 000 for the sample Y.

Let us consider a population with density f ,

f(x) =
3

14
(x2 + 1) 1[0,2](x),

from which the sample X is generated and the following class of biasing weight
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functions,

w(x) = εk 1[0,ε](x) + xk 1(ε,2](x),

with different choices of k > 0 and ε > 0.

The biased density is

g(x) =
3

14c
εk(x2 + 1) 1[0,ε](x) +

3

14c
(xk+2 + xk) 1(ε,2](x),

being

c =
1

14

[
k · εk+3 + 3 · 2k+3

k + 3
+

3(k · εk+1 + 2k+1)

k + 1

]
,

from which we simulate the sample Y.

Different combinations of k and ε are considered in this simulation study,

providing very biased situations (k = 2, ε = 0.1) and others in which bias is

quite significant (see Figure 1), decreasing the degree of bias by decreasing k

and increasing ε (see Figure 2), until reaching situations in which bias is almost

imperceptible (see Figure 3) or it does not exist (k = 0, ε = 2).

Figure 1: Densities f (dashed gray line) and g (dotted black line) involved in
the simulated models for different values of k and ε for the biasing function, w
(solid line). Left panel: k = 2, ε = 0.1; middle panel: k = 1.5, ε = 0.1; right
panel: k = 1.5, ε = 1.



3.1 Experiments 15

Figure 2: Densities f (dashed gray line) and g (dotted black line) involved in
the simulated models for different values of k and ε for the biasing function, w
(solid line). Left panel: k = 1.5, ε = 1.5; middle panel: k = 1, ε = 1.5; right
panel: k = 0.5, ε = 1.5.

Figure 3: Densities f (dashed gray line) and g (dotted black line) involved in
the simulated models for different values of k and ε for the biasing function, w
(solid line). Left panel: k = 0.1, ε = 1.5; middle panel: k = 0.1, ε = 1.8; right
panel: k = 0, ε = 2.

Table 1 shows the values of the different bias indices considered. It is clearly

observed that in the most biased situation the value of all indices is greater,

decreasing as the bias decreases.

For the implementation of the two sample KS test in R the pkolmim function
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Table 1: Values of the six relative bias indices for the nine scenarios
considered.

k ε i1 i2 i3 i4 i5 i6

2 0.1 0.661 0.276 0.263 0.276 0.121 0.382
1.5 0.1 0.573 0.231 0.223 0.231 0.085 0.333
1.5 1 0.344 0.165 0.173 0.165 0.041 0.192
1.5 1.5 0.114 0.067 0.086 0.067 0.006 0.065
1 1.5 0.074 0.044 0.057 0.044 0.002 0.042
0.5 1.5 0.037 0.022 0.028 0.022 0.001 0.020
0.1 1.5 0.007 0.004 0.006 0.004 10−5 0.004
0.1 1.8 0.001 0.001 0.002 0.001 10−6 0.001
0 2 0 0 0 0 0 0

of the kolmim package19 is used. This is an improved version of the function

ks.test. The reason for using this package is that the ks.test function returns

approximated values in case of ties, being the pkolmim function more efficient

since it returns the exact values. For the implementation of the two-sample

Cramer-von Mises criterion we use the cvm test function of the twosamples

package with 1000 bootstrap iterations and for the Mann-Whitney test the

wilcox.test function of the stats package. As for the ks.test function, wilcox.test

returns approximated values due to the presence of ties. For equal means testing,

the t.test with unequal variances is used.

Table 2 shows the rejection proportions obtained for different test proposed

for bias testing. Except for the Cramer-von Mises criterion, whose bad results

apparently come from a malfunction of the twosamples package, the rest of the

methods considered to test F = G offer similar conclusions. As the indices

considered in Table 1 showed, for the first combinations of k and ε the absence

of bias is totally rejected with probability 1, while in the last cases, H0 is

rejected only 5% of the times. Regarding the two-sample test for equal means,

the conclusions are similar.
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Table 2: Rejection proportions when testing the equality of the distribu-
tions, F and G, using the-two sample KS test, through the ks.test and
the pkolmim functions, the two-sample Cramer-von Mises criterion and the
Mann-Whitney-Wilcoxon U -test and rejection proportions for the two sample
means test using the Welch’s t-test for different values of k and ε (n = 1, 000,
N = 1, 000, 000, trials=1, 000, α = 0.05)

k ε ks.test pkolmim cvm test wilcox.test t.test

2 0.1 1 1 1 1 1
1.5 0.1 1 1 1 1 1
1.5 1 1 1 1 1 1
1.5 1.5 0.990 0.991 1 0.990 0.956
1 1.5 0.781 0.786 0.915 0.774 0.651
0.5 1.5 0.237 0.247 0.468 0.273 0.209
0.1 1.5 0.053 0.055 0.161 0.059 0.050
0.1 1.8 0.048 0.050 0.150 0.052 0.052
0 2 0.049 0.050 0.154 0.051 0.050

3.2 Real data application

The airline on-time performance (AOTP) data set consists of nearly 180 million

records about flight arrival and departure details for all commercial flights within

the US, from October 1987 to December 2021. It is available at Bureau of

Transportation Statistics.20

The main interest is the mean arrival delay time (in minutes) of US flights

for the whole year 2017. It is assumed that all the 2017 are not available, but

only data until January 11th, 2017 have been collected. Presence of bias in

other big data sets is studied. The sample Y is considered as the whole data

set for the year 2016 (N = 5, 617, 658). Within 2017, only the arrival delay

time for the flights of January 11th, 2017, X, (n = 14, 568) is assumed to be

available. Since the first days of January are atypical due to the holiday period

and since weekends and Mondays do not always accurately reflect the behavior

of a normal labor day, the first available Wednesday (January 11th, 2017) has

been consider in order to obtain something close to a SRS of the true 2017

population.
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Figure 4: Estimated densities involved in the case study with AOTP data.
Densities of arrival delays in 2016 (dashed black line), 2017 (solid gray line) and
January 11th, 2017 (dotted gray line).

To illustrate the difference between the density functions of the arrival delay

of US flights in 2016 and 2017, two kernel density estimations have been plotted

in Figure 4. These density estimates are based on nearly 6 million data each.

Although the two estimated annual densities are very similar, they exhibit some

subtle differences, for instance the level of the density at the mode. Figure 4 also

contains the kernel density estimation based on the arrival delays of January

11th, 2017.

To test for sampling bias, we use some of the methods proposed in Section

2. Looking at the values of the estimated bias indices shown in Table 3, it seems

that bias is practically imperceptible. However, the value of the sixth index in

Table 3 and the results obtained in Table 4 offer different conclusions.



19

Table 3: Comparison of the estimated relative bias indices.

Variable i1 i2 i3 i4 i5 i6

Arrival delay 0.0258 0.0149 0.0624 0.0337 0.0025 0.3194

To test the equality of distributions we use the two-sample Kolmogorov–

Smirnov test through the pkolmim function since it is the only one that returns

the exact p-value. We also test the equality of means using the Student’s t-test.

The p-values obtained in Table 4 allow to reject the null hypothesis of no bias

with both methods. So there exists statistical evidence of the presence of bias

and difference of means. Therefore, although looking at Figure 4 and the values

of the indices obtained in Table 3 bias seems to be negligible, we can conclude

that the difference is big enough to take it into account. In fact, the sample

mean of January 11th, 2017 is X = 4.742243, quite different from Y = 3.519290,

the sample mean of the whole 2016. Using the correction method proposed,2

the bias-corrected estimate is µ̂ = 4.326778, relatively close to the sample mean

of the whole 2017, 4.326357.

Table 4: p-values obtained using the two-sample Kolmogorov–Smirnov test for
equality of distributions through the pkolmim function and using the two-
sample Student’s t-test for equality of means.

Variable pkolmim t.test

Arrival delay 4.3 ×10−14 0.005194

4 Conclusions

In the era of big data, sampling bias is more present than before in statistical

data analysis. Testing for sampling bias is an extremely important issue in a big

data context. Several existing methods have been used to test for no sampling

bias (i.e. F = G). Of course, the fact that N/n→∞makes a difference with the
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classical asymptotic theory. So the test procedures have been adapted. Several

relative bias indices have been proposed in order to quantify the amount of

existing bias. The performance of the proposed tests has been studied through

a simulation study, showing their good behavior when detecting the presence of

bias. These techniques have been also applied to a real data set. The results

show how, even in situations with little bias, it is likely that this bias would be

considerable enough to be taken into account.
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Supplementary material

Proposition 1. The two-sample Kolmogorov-Smirnov test is a distribution-free

test under H0 if F = G is continuous.

Proof. Let us define the generalized inverse of F (or quantile function) by

F−1(t) = min{x : F (x) ≥ t}.

Taking into account the change of variable t = F (x) or x = F−1(t), we can

write the statistic as

DN,n = sup
x∈R
|GN (x)− Fn(x)| = sup

0<t<1
|GN (F−1(t))− Fn(F−1(t))|.

Using the definitions of the ecdfs (2) and (3), under the null hypothesis H0,

we obtain:

Fn(F−1(t)) =
1

n

n∑
i=1

1{Xi≤F−1(t)} =
1

n

n∑
i=1

1{F (Xi)≤t},

GN (F−1(t)) =
1

N

N∑
j=1

1{Yj≤F−1(t)} =
1

N

N∑
j=1

1{F (Yj)≤t},

and therefore,

sup
0<t<1

|GN (F−1(t))−Fn(F−1(t))| = sup
0<t<1

∣∣∣∣∣∣ 1

N

N∑
j=1

1{F (Yj)≤t} −
1

n

n∑
i=1

1{F (Xi)≤t}

∣∣∣∣∣∣ .
The distributions of F (Xi) and F (Yj) are uniform on the interval [0, 1] since

P (F (Xi) ≤ t) = P (Xi ≤ F−1(t)) = F (F−1(t)) = t

1



and

P (F (Yj) ≤ t) = P (Yj ≤ F−1(t)) = F (F−1(t)) = t.

Therefore, the random variables Ui = F (Xi), i = 1, . . . , n and Vj = F (Yj), j =

1, . . . , N are independent and have uniform distribution on [0, 1], so:

DN,n = sup
x∈R
|GN (x)− Fn(x)| = sup

0<t<1

∣∣∣∣∣∣ 1

N

N∑
j=1

1{Vj≤t} −
1

n

n∑
i=1

1{Ui≤t}

∣∣∣∣∣∣ ,
which clearly does not depend on F .

Proposition 2. Assuming F = G and N/n → ∞, the statistic

√
N · n
N + n

DN,n

has the same asymptotic distribution as the statistics

√
Nn

N + n
DF
n and

√
nDF

n

when F = F0.

Proof. Assuming F = G and defining

DG
N = sup

x∈R
|GN (x)−G(x)|

and

DF
n = sup

x∈R
|Fn(x)− F (x)|,

give

√
N · n
N + n

DN,n =

√
N · n
N + n

sup
x∈R
|GN (x)−G(x) + F (x)− Fn(x)|

≤
√

N · n
N + n

sup
x∈R
|GN (x)−G(x)|+

√
N · n
N + n

sup
x∈R
|Fn(x)− F (x)|

=

√
n

N + n

√
NDG

N +

√
N

N + n

√
nDF

n
d−→ K, (4)

2



since, when N/n→∞,

√
n

N + n
'
√
n

N
= o(1),

√
NDG

N
d−→ K,√

N

N + n
'
√
N

N
= 1

and
√
nDF

n
d−→ K.

On the other hand, under F0 = F = G, the one-sample test statistic, DF
n ,

satisfies:

√
nDF

n =
√
n sup
x∈R
|Fn(x)− F (x)| =

√
n sup
x∈R
|Fn(x)−GN (x) +GN (x)−G(x)|

≤
√
nDN,n +

√
nDG

N =
√
nDN,n +

√
n

N

√
NDG

N ,

which implies that

√
N

N + n

√
nDF

n ≤
√

Nn

N + n
DN,n +

√
n

N + n

√
NDG

N

and therefore

√
N

N + n

√
nDF

n −
√

n

N + n

√
NDG

N ≤
√

Nn

N + n
DN,n. (5)

Considering (4) and (5), we obtain:

√
N

N + n

√
nDF

n −
√

n

N + n

√
NDG

N ≤
√

N · n
N + n

DN,n

≤
√

N

N + n

√
nDF

n +

√
n

N + n

√
NDG

N

3



and since

√
n

N + n

√
NDG

N ' op(1), it is concluded that the asymptotic distri-

bution of

√
N · n
N + n

DN,n is the same as that of

√
N

N + n

√
nDF

n , which, since

N/n→∞, is the same as the asymptotic distribution of
√
nDF

n .

Proposition 3. Assuming F = G and N/n → ∞, the statistic TN,n has the

same asymptotic distribution that the statistic Tn under F = F0.

Proof. Defining

TGN = N

∫ ∞
−∞

[GN (x)−G(x)]2dG(x),

TFn = n

∫ ∞
−∞

[Fn(x)− F (x)]2dF (x)

and

TFN,n =
Nn

N + n

∫ ∞
−∞

[Fn(x)−GN (x)]2dF (x),

it can be proven that, under F = G, TN,n has the same asymptotic distribution

that TFN,n.

On the one hand, using the triangular inequality:

(∫ ∞
−∞

[Fn(x)− F (x) +G(x)−GN (x)]2dF (x)

)1/2

≤
(∫ ∞
−∞

[Fn(x)− F (x)]2dF (x)

)1/2

+

(∫ ∞
−∞

[GN (x)−G(x)]2dG(x)

)1/2

,

which, using F = G, implies that

TFN,n =
Nn

N + n

∫ ∞
−∞

[Fn(x)− F (x) +G(x)−GN (x)]2dF (x) (6)

≤ Nn

N + n

∫ ∞
−∞

[Fn(x)− F (x)]2dF (x) +
Nn

N + n

∫ ∞
−∞

[GN (x)−G(x)]2dG(x)

+
2Nn

N + n

(∫ ∞
−∞

[Fn(x)− F (x)]2dF (x)

)1/2(∫ ∞
−∞

[GN (x)−G(x)]2dG(x)

)1/2

.

4



On the other hand, using again the triangular inequality:

(∫ ∞
−∞

[Fn(x)−GN (x) +GN (x)−G(x)]2dF (x)

)1/2

≤
(∫ ∞
−∞

[Fn(x)−GN (x)]2dF (x)

)1/2

+

(∫ ∞
−∞

[GN (x)−G(x)]2dG(x)

)1/2

,

then, using that F0 = F = G, the one-sample test statistic, TFn , satisfies:

TFn = n

∫ ∞
−∞

[Fn(x)− F (x)]2dF (x)

= n

∫ ∞
−∞

[Fn(x)−GN (x) +GN (x)−G(x)]2dF (x)

≤ n

∫ ∞
−∞

[Fn(x)−GN (x)]2dF (x) + n

∫ ∞
−∞

[GN (x)−G(x)]2dG(x)

+ 2n

(∫ ∞
−∞

[Fn(x)−GN (x)]2dF (x)

)1/2(∫ ∞
−∞

[GN (x)−G(x)]2dG(x)

)1/2

,

which implies that

N

N + n
TFn −

n

N + n
TGN −

2
√
Nn

N + n

(
TFn
)1/2 (

TGN
)1/2 ≤ TFN,n. (7)

Considering (6) and (7), we obtain:

N

N + n
TFn −

n

N + n
TGN −

2
√
Nn

N + n

(
TFn
)1/2 (

TGN
)1/2 ≤ TFN,n

≤ N

N + n
TFn +

n

N + n
TGN +

2
√
Nn

N + n

(
TFn
)1/2 (

TGN
)1/2

and since, when N/n→∞,

n

N + n
' n

N
= o(1),

√
Nn

N + n
'

√
n√

N + n
= o(1),

5



TFn = OP (1)

and

TGN = OP (1),

it is concluded that the asymptotic distribution of TFN,n is the same as that of

N

N + n
TFn , which, since N/n → ∞, is the same as the asymptotic distribution

of TFn .
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