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Abstract

In this paper, an estimator of the probability of default (PD) in credit risk is
proposed. It is derived from a nonparametric conditional survival function estimator
based on cure models. Asymptotic expressions for the bias and the variance, as well
as the asymptotic normality of the proposed estimator are presented. A simulation
study shows the performance of the nonparamtric estimator compared with Beran’s
PD estimator and other semiparametric methods. Finally, an empirical study based
on modified real data illustrates the practical behaviour.
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1 Introduction

In the context of credit risks or credit scoring one is often interested in modelling and esti-

mating the probability of default (PD) measuring the probability of an obligor to run into

arrears on his/her credit obligation. A binary classification of customers into two categories

(default or not default) is then required, which can be done using various statistical tech-

niques ranging from purely parametric to fully nonparametric. However, a more refined

analysis is possible, in which apart from this binary outcome (default or not default) one

also takes the timing of default into account. The probability that a customer defaults

before a given time point is of practical importance, since it can provide the bank with the

ability to compute the profitability over a customer’s lifetime and perform profit scoring.

In this paper we will propose a novel method to estimate the probability of default (PD) in

a time horizon t + b from a maturity time t using nonparametric estimators. To estimate

this probability, one commonly faces the problem that the time of default is censored to

the right. This is because at the end of the study period some (or many) customers will

not have defaulted, or some customers might be lost to follow up for various reasons in the

course of the study period. As a result, appropriate estimators that take right censoring

into account should be used. This has been recognized by Peláez et al. (2021a,b), who used

nonparametric estimators of the PD based on Beran’s estimator of the conditional survival

function (Beran (1981)) given a set of covariates. This estimator is an extension of the

Kaplan and Meier (1958) estimator to the regression context, where kernel smoothing and

an appropriate bandwidth are used for the covariates. See also Naraim (1992), Stepanova

and Thomas (2002), Roszbach (2003), Glennon and Nigro (2005), Allen and Rose (2006),

Baba and Goko (2006), and Dirick et al. (2003), among others, for other contributions on

the use of survival analysis in the context of credit scoring.

In this paper we go one step further. In fact, the time to default does not only face a
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problem of right censoring. There is a second issue that should also be taken into account,

and which is caused by the fact that some customers never default, that is, no matter how

long you observe such individuals, they will never experience the event of interest. Hence,

the survival function of the time to default will have a point mass at infinity. Survival

models that take this feature into account are called cure models. We refer to Amico and

Van Keilegom (2018), for an overview paper on this topic. Instead of working with the

Beran estimator (Beran (1981)), we will therefore use another nonparametric estimator,

that estimates separately the probability of no default (so the point mass at infinity), called

the incidence, and the survival function for the defaulted customers, called the latency. For

both quantities a kernel estimator (depending on possibly different bandwidths) will be

used. This is useful, since different degrees of smoothness for the incidence and latency

require different bandwidths in order to estimate the PD in an optimal way.

Cure survival models are nowadays well developed in the statistics and biostatistics

literature, where the number of papers studying various aspects of cure models (on e.g.

estimation, testing, prediction, model selection, among others) has increased a lot over the

last 10 years. However in the area of credit risks cure models have not been used a lot so

far, despite their natural applications. Notable exceptions are Beran and Djäıdja (2007),

Dirick et al. (2019) and Dirick et al. (2015). In the latter paper an AIC variable selection

procedure is proposed in the context of PD estimation based on cure models.

The remainder of this paper is organized as follows. In Section 2, the nonparametric

estimator of the PD based on mixture cure models is proposed. Asymptotic properties

of this PD estimator are presented in Section 3. In Section 4, a simulation study shows

the behaviour of the nonparametric cure model estimator and a comparison with Beran’s

estimator and other semiparametric estimators. In Section 5, the PD estimators are ap-

plied to a set of modified real data. Finally, Section 6 contains some concluding remarks.

Appendices A and B include the assumptions and detailed proofs of the theoretical results.
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2 Probability of default estimator

Let {(Xi, Zi, δi)}ni=1 be a random sample of (X,Z, δ) where X is the credit scoring, Z =

min{T,C} is the observed maturity, T is the time to default, C is the time until the end of

the study or the time until the anticipated cancellation on the credit and δ = I(T ≤ C) is

the uncensoring indicator. Let ν be a binary variable where ν = 0 indicates if the individual

belongs to the susceptible group (the individual will eventually experience the default if

followed for long enough) and ν = 1 indicates if the subject is cured (the individual will

never experience the default). Therefore, T = (1−ν)T0+ν∞, where T0 denotes the survival

time of an individual susceptible to default. According to these variables, the population

is classified into three groups: those who are susceptible to default and censored (ν = 0,

δ = 0), those who are susceptible to default and noncensored (ν = 0, δ = 1) and the group

of cured individual who are not susceptible to default (ν = 1, δ = 0). The situation ν =1

and δ =1 is not feasible. In practice, distinguishing whether or not the censored individual

was susceptible to experiencing the default (belongs to first or third group) is not possible

without additional assumptions. In this context, the Law of Total Probability provides a

useful decomposition of the conditional survival function as follows

S(t|x) = P (T > t|ν = 1, X = x)P (ν = 1|X = x)

+P (T > t|ν = 0, X = x)P (ν = 0|X = x) = 1− p(x) + S0(t|x)p(x),

where p(x) is the probability of not being cured (susceptible to default) and S0(t|x) the

conditional survival function of the uncured population. The functions 1−p(x) and S0(t|x)

are called the incidence and the latency, respectively.

Let x be a fixed value of the covariate X (typically, the scoring) and b a horizon time

(typically, b = 12 in months), then the probability of default in a time horizon t + b from

a maturity time t is defined as follows

PD(t|x) = P (T ≤ t+ b|T > t,X = x) = 1− S(t+ b|x)

S(t|x)
. (1)
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Replacing S(t|x) with a conditional survival function estimator, Ŝh(t|x), in (1), the follow-

ing estimator for PD(t|x) is obtained:

P̂Dh(t|x) = 1− Ŝh(t+ b|x)

Ŝh(t|x)
, (2)

where h = hn is the smoothing parameter for the covariable.

The aim is to find an appropriate survival estimator, Ŝh(t|x), that captures the existence

of a group of individuals not susceptible to default or cured, resulting in a good estimator

of the probability of default, P̂Dh(t|x), in this context. For this purpose, a nonparametric

survival estimator based on cure models is considered. Beran’s estimator which, a priori,

does not take into account the proportion of the curative population is also considered in

this work to estimate the probability of default.

2.1 Beran’s estimator

The estimator of the conditional survival function with censored data formulated in Beran

(1981) is given by

ŜBh (t|x) =
n∏
i=1

(
1−

I{Zi≤t, δi=1}wh,i(x)

1−
∑n

j=1 I{Zj<Zi}wh,j(x)

)
(3)

where the weights are

wh,i(x) =
K
(
(x−Xi)/h

)∑n
j=1K

(
(x−Xj)/h

) , i = 1, . . . , n,

where K is a kernel function (typically a density function to be picked up by the user) and

h > 0 is a smoothing parameter.

Replacing (3) in (2), we obtain Beran’s estimator of the probability of default. It was

previously used in Cao et al. (2009), Peláez et al. (2021b) and Peláez et al. (2021a).
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2.2 Nonparametric cure model estimator

The nonparametric cure model estimator of the conditional survival function proposed by

López-Cheda (2018) is given by

ŜNPCMh,g (t|x) = 1− p̂h(x) + p̂h(x)Ŝ0,g(t|x). (4)

The incidence estimator, 1 − p̂h(x), is proposed by Xu and Peng (2014) and deeply

studied in López-Cheda et al. (2017b). It corresponds to Beran’s estimator evaluated at

the highest uncensored lifetime:

1− p̂h(x) = ŜBh
(

max{Ti : i = 1, ..., n, δi = 1}|x
)
.

The latency estimator depending on one single bandwidth, Ŝ0,g(t|x), proposed by López-

Cheda et al. (2017a) is as follows:

Ŝ0,g(t|x) =
ŜBg (t|x)−

(
1− p̂g(x)

)
p̂g(x)

.

Replacing (4) in (2), we obtain the nonparametric cure model estimator (NPCM) of the

probability of default.

Note that the particular case h = g corresponds to Beran’s estimator, which does not

take into account a priori the existence of a group of cured individuals. In López-Cheda

(2018) it was found by simulation that the bandwidths h and g are substantially different

in practice, although they have the same convergence order. Choosing the best bandwidth

h for incidence and the best bandwidth g for latency has a considerable effect on the

estimation of the conditional survival curve in cure models and could have a considerable

effect on the estimation of PD.

3 Asymptotic properties of the NPCM estimator

Asymptotic properties of the NPCM survival estimator are already available in López-

Cheda et al. (2017a) and López-Cheda et al. (2017b) and those of Beran’s survival estimator
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in Iglesias-Pérez and González-Manteiga (1999) and Van Keilegom and Veraverbeke (1997).

In this Section, asymptotic properties of the corresponding probability of default estimators

are studied. Since Beran’s estimator of the probability of default has been deeply studied

in Peláez et al. (2021b) and details about its asymptotic properties can be found in that

work, this section will focus on the NPCM estimator of the PD. The following notation is

used.

Let R : R −→ R be any function and define the constants

cR =

∫
R(t)2dt, dR =

∫
t2R(t)dt,

and given any constant a ∈ R,

c̃R(a) =

∫
R(at)R(t)dt. (5)

Given any function f : Rk −→ R, its first derivative with respect to the first variable is

denoted by: f ′(x1, ..., xk) =
∂f(x1, ..., xk)

∂x1
. Correspondingly, the second derivative with

respect to the first variable is denoted by f ′′(x1, ..., xk).

The following functions are required to state the results. A number of notations used

below are defined in Appendix A.

ξ(Z, δ, t, x) =
1{Z≤t,δ=1}

1−H(Z|x)
−
∫ t

0

1{u≤Z}dH1(u|x)(
1−H(u|x)

)2 ,
η(Z, δ, t, x) = −S(t|x)

p(x)
ξ(Z, δ, t, x)−

(
1− p(x)

)(
1− S(t|x)

)
p2(x)

ξ(Z, δ,∞, x),

Φ(u, t, x) = E
[
ξ(Z, δ, t, x)|X = u

]
, Φ2(u, t, x) = E

[
ξ2(Z, δ, t, x)|X = u

]
,

B1(t, x) =
dK
(
S0(t|x)− 1

)(
p(x)− 1

)
2m(x)

∂2

∂u2
(
Φ(u, t, x)m(u)

)
|u=x,

B2(t, x) = −dkS(t|x)

2m(x)

∂2

∂u2
(
Φ(u, t, x)m(u)

)
|u=x

−
dK
(
1− p(x)

)(
1− S(t|x)

)
2p(x)m(x)

∂2

∂u2
(
Φ(u,∞, x)m(u)

)
|u=x,

B̃1(t, x) = − 1

S(t|x)
B1(t+ b, x) +

S(t+ b|x)

S2(t|x)
B1(t, x),

B̃2(t, x) = − 1

S(t|x)
B2(t+ b, x) +

S(t+ b|x)

S2(t|x)
B2(t, x),
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D(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), ξ(Z1, δ1, t2, x)

∣∣∣X1 = u
]
m(u),

L(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), η(Z1, δ1, t2, x)

∣∣∣X1 = u
]
m(u),

C1(t1, t2, x) =
cKS(t1|x)S(t2|x)

p2(x)
D(x, t1, t2, x) +

cKS(t1|x)
(
1− S(t2|x)

)
p3(x)

D(x, t1,∞, x)

+
cK
(
1− S(t1|x)

)
S(t2|x)

(
1− p(x)

)
p3(x)

D(x,∞, t2, x)

+
cK
(
1− p(x)

)2(
1− S(t1|x)

)(
1− S(t2|x)

)
p4(x)

Φ2(x,∞, x)m(x),

V1(t1, t2, x) =

(
S0(t1|x)− 1

)(
S0(t2|x)− 1

)(
p(x)− 1

)2
m(x)

cKΦ2(x,∞, x),

V2(t1, t2, x) =
p2(x)C1(t1, t2, x)

m2(x)
.

V3(t1, t2, x) =

(
S0(t1|x)− 1

)(
p(x)− 1

)
p(x)

m2(x)
L(x,∞, t2, x)(

S0(t2|x)− 1
)(
p(x)− 1

)
p(x)

m2(x)
L(x, t1,∞, x).

The required assumptions are listed in Section A. They are standard in the literature

and not too restrictive in this context. They were previously assumed in Peláez et al.

(2021a), Dabrowska (1989), Iglesias-Pérez and González-Manteiga (1999), López-Cheda

et al. (2017a) and López-Cheda et al. (2017b) in the nonparametric conditional survival

function estimation setup.

Assumptions A.1 and A.2 are about characteristics and independence of the variables

involved. Assumptions A.3-A.12 are needed to bound some population functions. They

require existence and continuity of population function derivatives. Kernel function re-

quirements are covered in Assumption A.13 and bandwidth assumptions are included in

A.14 and A.15. Assumption A.16 refers to the differentiability of the functions previously

defined in this section.

Lemma 3.1 (Almost sure representation of the NPCM estimator for the conditional sur-

vival function). Under Assumptions A.1-A.16, for fixed values (t, x) ∈ [l, u]× I, defined in
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Appendix A,

ŜNPCMh,g (t|x)− S(t|x) =
(
S0(t|x)− 1

)(
p(x)− 1

)∑n
i=1w

A
h,i(x)ξ(Zi, δi,∞, x)

+p(x)
∑n

i=1w
A
g,i(x)η(Zi, δi, t, x) +R1

n(t|x) a.s.,

where wAh,i(x) =
1

nh

K
(
(x−Xi)/h

)
m(x)

and sup(t,x)∈[l,u]×I |R1
n(t|x)| = Op

(
lnn

(
1

nh
+

1

ng

))3/4

.

Theorem 3.1 (Almost sure representation of the NPCM estimator for the PD). Under

Assumptions A.1-A.16, for fixed values (t, x), (t+ b, x) ∈ [l, u]× I,

P̂D
NPCM

h,g (t|x)− PD(t|x) =
n∑
i=1

Ψn,i(t, x) +R2
n(t|x) a.s.,

where

Ψn,i(t, x) = − 1

S(t|x)
ϕn,i(t+ b, x) +

S(t+ b|x)

S2(t|x)
ϕn,i(t, x),

ϕn,i(t, x) =
(
S0(t|x)− 1

)(
p(x)− 1

)
wAh,i(x)ξ(Zi, δi,∞, x) + p(x)wAg,i(x)η(Zi, δi, t, x),

and R2
n(t|x) = Op

(
lnn

(
1

nh
+

1

ng

))3/4

.

Theorem 3.2 (Asymptotic bias and variance of the NPCM estimator for the PD). Under

Assumptions A.1-A.16, for fixed values (t, x), (t+b, x) ∈ [l, u]×I, the asymptotic expressions

of the bias and the variance of the dominant term in the almost sure representation of

P̂D
NPCM

h,g (t|x) are the following:

ABias
(
P̂D

NPCM

h,g (t|x)
)

= B̃1(t, x)h2 + B̃2(t, x)g2 + o(h2) + o(g2) (6)

(i) If Ch,g := lim
n→∞

h

g
∈ (0,∞), then

AVar
(
P̂D

NPCM

h,g (t|x)
)

=
(
Ṽ1(t+ b, t, x) + Ch,gṼ2(t+ b, t, x)

+Ch,g c̃K(Ch,g)Ṽ3(t+ b, t, x)
) 1

nh
+ o

(
1

nh

)
+O

(
h

n

)
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(ii) If lim
n→∞

h

g
= 0, then

AVar
(
P̂D

NPCM

h,g (t|x)
)

= Ṽ1(t+ b, t, x)
1

nh
+ o

(
1

nh

)
+O

(
g

n

)

(iii) If lim
n→∞

g

h
= 0, then

AVar
(
P̂D

NPCM

h,g (t|x)
)

= Ṽ2(t+ b, t, x)
1

ng
+ o

(
1

ng

)
+O

(
h

n

)
,

where

Ṽi(t1, t2, x) =
1

S2(t2|x)
Vi(t1, t1, x) +

S2(t1|x)

S2(t2|x)
Vi(t2, t2, x) + 2

S(t1|x)

S2(t2|x)
Vi(t1, t2, x)

with i = 1, 2, 3 and c̃K is defined in (5).

Theorem 3.3 (Asymptotic normality of the NPCM estimator for the PD). Under As-

sumptions A.1-A.16, for fixed values (t, x), (t + b, x) ∈ [l, u] × I, the limit distribution of

P̂D
NPCM

h,g (t|x) is the following:

(i) Assuming Ch := limn→∞ n
1/5h ∈ (0,∞), Cg := limn→∞ n

1/5g ∈ (0,∞), then

√
nh
(
P̂D

NPCM

h,g (t|x)− PD(t|x)
) d−→ N(µ, s),

where µ = C
5/2
h B̃1(t, x) + C

5/2
g B̃2(t, x) and s2 =

(
Ṽ1(t + b, t, x) + Ch,gṼ2(t + b, t, x) +

Ch,g c̃K(Ch,g)Ṽ3(t+ b, t, x)
)
.

(ii) Assuming Cg := limn→∞ n
1/5g ∈ (0,∞) and limn→∞ n

1/5h = 0,
(lnn)3

nh
→ 0 and(

lnn

ng

)3/4

(nh)1/2 → 0, then

√
nh
(
P̂D

NPCM

h,g (t|x)− PD(t|x)
) d−→ N(µ, s),

where µ = C
5/2
g B̃2(t, x) and s2 = Ṽ1(t+ b, t, x).
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(iii) Assuming Ch := limn→∞ n
1/5h ∈ (0,∞), limn→∞ n

1/5g = 0,
(lnn)3

ng
→ 0 and(

lnn

nh

)3/4

(ng)1/2 → 0, then

√
ng
(
P̂D

NPCM

h,g (t|x)− PD(t|x)
) d−→ N(µ, s),

where µ = C
5/2
h B̃1(t, x), s2 = Ṽ2(t + b, t, x) and Ṽi(t1, t2, x), i = 1, 2, 3 are defined in

Theorem 3.2.

Proofs of the results presented here are included in Appendix B.

4 Simulation study

A simulation study was conducted in order to compare the performance of the two proposed

estimators of the probability of default. The study is focused on three different models.

All three have a non zero probability of cure and the proportion of cured subjects and

the survival distribution of uncured subjects are modeled separately. Therefore, they are

mixture cure models.

In Model 1, the probability of cure 1 − p(x) is a logistic function with the incidence

given by p(x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
where β0 = 1 and β1 = −1. A uniform distribution

U(0, 1) is considered for the credit scoring variable X. In the uncured population, the time

to default conditional to the credit scoring, T0|X=x, follows a Weibull distribution with

parameters d and A(x)−1/d, with d = 2 and A(x) = 1 + 5x, T0|X=x ∼ W(d,A(x)−1/d), and

the censoring time conditional to the credit scoring, C0|X=x, follows a Weibull distribution

with parameters d and B(x)−1/d, with B(x) = 10− 22x+ 20x2, C0|X=x ∼ W(d,B(x)−1/d).

Therefore, the latency is given by S0(t|x) = e−A(x)t
d
. It is quite close to fulfill a proportional

hazards model and an accelerated failure time model, since the polynomial A(x) is a linear

function which is reasonable close to the function exp(γx) for some γ.
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In this scenario, the conditional survival function and the probability of default are the

following:

S(t|x) = 1− p(x) + p(x)e−A(x)t
d

,

PD(t|x) = 1− 1− p(x) + p(x)e−A(x)(t+b)
d

1− p(x) + p(x)e−A(x)td
.

In Model 2, the incidence is given by

p(x) =
exp(β0 + β1x+ β2x

2 + β3x
3)

1 + exp(β0 + β1x+ β2x2 + β3x3)
(7)

where β0 = 15, β1 = −190/3, β2 = 88 and β3 = −128/3. A uniform distribution U(0, 1)

is considered for the credit scoring variable X. In the uncured population, the time to

default conditional to the credit scoring, T0|X=x, follows an exponential distribution with

parameter Q(x) = 2+58x−160x2+107x3, and the censoring time conditional to the credit

scoring, C0|X=x, follows an exponential distribution with parameter R(x) = 10−55

2
x+20x2.

Therefore, the latency is given by S0(t|x) = e−Q(x)t. In this scenario, the conditional survival

function and the probability of default are the following:

S(t|x) = 1− p(x) + p(x)e−Q(x)t,

PD(t|x) = 1− 1− p(x) + p(x)e−Q(x)(t+b)

1− p(x) + p(x)e−Q(x)t
.

The incidence of this model is not a logistic function and the latency function does not fit

a proportional hazards model nor an accelerated failure time model, since the polynomial

Q(x) is not monotone in x and, therefore, is far from an exponential function.

In Model 3, the incidence is given by (7) with β0 = 31, β1 = −398/3, β2 = 184

and β3 = −256/3. A uniform distribution U(0, 1) is considered for the credit scoring

variable X. In the uncured population, the time to default conditional to the credit scoring,

T0|X=x, follows a Weibull distribution with parameters k1(x) = 5
1000

+ 28x − 16x2 and

B1(x) = (log(2))1/k1(x), T0|X=x ∼ W
(
k1(x), 1/B1(x)

)
, and the censoring time conditional

to the credit scoring, C0|X=x, follows a Weibull distribution with parameters k2(x) =

12



1 + 8x and B2(x) = (log(2))1/k2(x), C0|X=x ∼ W
(
k2(x), 1/B2(x)

)
. Therefore, the latency is

given by S0(t|x) = e−(B1(x)t)k1(x) . In this scenario, the conditional survival function and the

probability of default are the following:

S(t|x) = 1− p(x) + p(x)e−(B1(x)t)k1(x) ,

PD(t|x) = 1− 1− p(x) + p(x)e−(B1(x)(t+b))k1(x)

1− p(x) + p(x)e−(B1(x)t)k1(x)
.

The incidence of this model is not a logistic function and the latency function does not

fit a proportional hazards model nor an accelerated failure time model, since the shape

paremeter of the Weibull distribution, k1(x), depends on X.

The simulation analysis is conducted for different credit scoring values in each model.

The unconditional probability of censoring of Models 1, 2 and 3 and the probabilities of

censoring conditional on each chosen value of x are shown in Table 1.

Model 1 Model 2 Model 3

P(δ = 0) 0.771510 0.656636 0.706833

P(δ = 0|X = 0.2) 0.835720 0.399251 0.483227

P(δ = 0|X = 0.5) 0.709519 0.611111 0.745433

P(δ = 0|X = 0.8) 0.730474 0.884726 0.870492

Table 1: Unconditional and conditional probabilities of censoring in Models 1, 2 and 3.

Figure 1 shows the theoretical probability of default for Models 1, 2 and 3 when the

credit scoring is x = 0.5.
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Figure 1: Theoretical probability of default for Model 1 (left), Model 2 (center) and Model

3 (right) when x = 0.5.

The software for Beran’s estimator was developed in R by the authors themselves. The

nonparametric estimators of the incidence and latency required to compute the NPCM

estimator are implemented in the R-Package npcure (see López-de Ullibarri et al. (2020)).

Two other estimators are considered in this analysis as benchmark methods: the propor-

tional hazards cure model estimator (PHCM) and the accelerated failure time cure model

estimator (AFTCM).

The PHCM estimator and the AFTCM estimator both assume that the conditional

survival function is defined by S(t|x) = 1−p(x) +p(x)S0(t|x) with 1−p(x) fiting a logistic

model and the latency S0(t|x) fiting a proportional hazards model and an accelerated failure

time model, respectively. The details of the methods can be consulted in Sy and Taylor

(2000) and Sy and Taylor (2001). They are both implemented in the R-Package smcure

(see Cai et al. (2012)).

Model 1 fits Cox and AFT cure models with logistic cure probability, meanwhile Model

2 and 3 move away from semiparametric models. Therefore, the PHCM and AFTCM

methods are expected to have a reasonable behaviour in Model 1 but worse in Models 2

and 3.

The conditional survival function and the probability of default are estimated in a time
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grid of size nt, 0 < t1 < · · · < tnt , where tnt +b = F−10 (0.95|x) with F0 being the distribution

function of the time variable in the uncured population and b is about 20% of the time

grid. The size of the time grid is nt = 100. The sample size is n = 400. The truncated

Gaussian kernel is used for the covariable smoothing in Beran’s estimator.

The optimal value of the bandwidth h, involved in Beran’s estimator, is chosen as the

value that minimises a Monte Carlo approximation of the MISE given by

MISEx(h) = E

(∫ (
P̂D

B

h (t|x)− PD(t|x)
)2
dt

)
based on the estimation for N = 100 simulated samples for each value of h in a grid of

nh = 50 possible values. Then, N = 300 samples are simulated to approximate MISEx(h).

The optimal bivariate bandwidth (h, g) involved in the NPCM estimator is chosen (from

a meshgrid of 50 values of h and 50 values of g) as the pair that minimises a Monte Carlo

approximation of the MISE given by

MISEx(h, g) = E

(∫ (
P̂D

NPCM

h,g (t|x)− PD(t|x)
)2
dt

)
based on N = 100 simulated samples. Then, N = 300 simulated samples are used to

approximate MISEx(h, g).

Of course, these bandwidths cannot be used in practice, but this choice produces a fair

comparison since the two estimators are constructed using their best possible bandwidths.

The value of MISE and its square root, RMISE, are used as a measure of the estimation

error committed by the PD estimators.

Tables 2-4 contain the optimal bandwidths and the square root of MISE (RMISE) for

each estimator in Models 1, 2 and 3 when x = 0.2, x = 0.5 and x = 0.8.

The NPCM estimator is performing very well in all scenarios. In general, it provides

smaller errors than the semiparametric methods in Model 2 and 3. As expected, the

behaviour of the AFTCM estimator is better under semiparametric Model 1, although the

NPCM estimator is still competitive.
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Beran’s estimation error is similar to the NPCM estimation error in some cases. This is

remarkable given that Beran’s estimator does not consider the existence of a cured group

in its definition, as the NPCM estimator does. Beran’s estimator makes no assumptions

about the survival function, but uses only the information provided by the data, being able

to detect the nonzero tendency of the survival function and reflect it in the PD estimation.

Beran NPCM PHCM AFTCM

x
=

0
.2 h/(h,g) 0.522449 (0.926531, 0.871429) — —

RMISE 0.135059 0.134939 0.139143 0.096897

x
=

0
.5 h/(h,g) 0.559184 (1.000000, 0.724490) — —

RMISE 0.058921 0.058925 0.054809 0.050675

x
=

0
.8 h/(h,g) 0.430612 (1.000000, 0.687755) — —

RMISE 0.037749 0.037591 0.045671 0.045183

Table 2: Optimal bandwidth and RMISE of the probability of default estimators when

x = 0.2, x = 0.5 and x = 0.8 in Model 1.

Beran NPCM PHCM AFTCM

x
=

0
.2 h/(h,g) 0.108163 (0.127551, 0.375510) — —

RMISE 0.089049 0.076577 0.093894 0.102628

x
=

0
.5 h/(h,g) 0.185714 (0.457143, 0.302041) — —

RMISE 0.025038 0.025178 0.029877 0.030471

x
=

0
.8 h/(h,g) 0.146939 (0.263265, 0.632653) — —

RMISE 0.066779 0.055069 0.051907 0.052058

Table 3: Optimal bandwidth and RMISE of the probability of default estimators when

x = 0.2, x = 0.5 and x = 0.8 in Model 2.
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Beran NPCM PHCM AFTCM

x
=

0
.2 h/(h,g) 0.393878 (0.724490, 0.761225) — —

RMISE 0.042748 0.0431205 0.154723 0.160884
x

=
0
.5 h/(h,g) 1.000000 (0.151020, 1.157143) — —

RMISE 0.053389 0.045287 0.053021 0.054394

x
=

0
.8 h/(h,g) 0.118367 (0.283673, 0.761224) — —

RMISE 0.027654 0.021950 0.018683 0.035929

Table 4: Optimal bandwidth and RMISE of the probability of default estimators when

x = 0.2, x = 0.5 and x = 0.8 in Model 3.

Since computation time is an important aspect to be considered in the comparison of the

estimators, a small study of CPU time is addressed in this section. Table 5 shows the CPU

times in seconds needed to estimate the PD for a single sample of different sizes with the

four studied estimators. Table 6 shows the CPU times in seconds needed to approximate

the optimal bandwidths to estimate the PD from N = 100 simulated samples of different

sizes with Beran’s estimator and the NPCM estimator. The estimators based on PH cure

model and AFT cure model do not depend on any smoothing parameter.

According to Table 5, the NPCM estimator is the fastest of the four studied estimators.

The NPCM estimator and Beran’s estimator are barely affected by the increase in the

sample size. Given the definitions of Beran’s and the NPCM estimators, the differences in

their computational costs are probably due to programming efficiency. The semiparametric

methods are slower; in particular, the AFTCM estimator. However, the optimal bandwidth

approximation is what slows down nonparametric methods as opposed to semiparametric

methods, which do not depend on bandwidth parameters, as can be seen in Table 6.
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Sample size n = 100 n = 400 n = 800 n = 1600 n = 2400

Beran 0.02 0.03 0.03 0.04 0.04

NPCM 0.02 0.02 0.02 0.02 0.02

PHCM 0.24 0.40 0.43 1.39 2.49

AFTCM 0.42 1.61 6.12 39.57 82.96

Table 5: CPU time (in seconds) for the estimation of PD(t|x) in time grid of size 100 and

x = 0.5 for one sample of size n with Beran’s estimator, the NPCM estimator, the PHCM

estimator and the AFTCM estimator.

Sample size n = 100 n = 400 n = 800 n = 1600 n = 2400

Beran 5.51 12.03 20.37 47.62 67.84

NPCM 532.96 604.20 606.65 725.58 803.07

Table 6: CPU time (in seconds) for the approximation of the optimal bandwidth from

N = 100 samples of size n to estimate PD(t|x) in time grid of size 100 and x = 0.5 with

Beran’s estimator and the NPCM estimator.

5 Application to real data

In this section we apply the above PD estimators to the German Credit data set which is

publicly available on the webpage http://archive.ics.uci.edu/ml/datasets/Statlog+

(German+Credit+Data) and was previously analysed in Strzalkowska-Kominiak and Cao

(2013). This data set includes information of 1000 credits with a censoring ratio of 70.7%.

The duration of the credits in months (Z) is available along with the amount of the credit

in DM (X1), the amount of money in the checking account in thousands of Deutsche Marks

(X2), the savings amount in thousands of Deutsche Marks (X3) and years of employment

(X4). Let the credit scoring be denoted by X = X1 + θ2X2 + θ3X3 + θ4X4. Since some

of the original covariates are ordinal (interval) variables, they are changed into numerical
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variables by following the criteria explained in Strzalkowska-Kominiak and Cao (2013)

and the single-index method proposed there is used to estimate (1, θ2, θ3, θ4), obtaining

X = X1 + 3.2091X2 + 0.2312X3 + 2.1891X4. A distinction is made between credits for

which default is observed and those that are censored. Censored credits correspond to cured

credits that will never run into arrears, credits cancelled in advance or credits susceptible

to default if the follow-up of the credit would be longer enough. The probability of default

conditional on the credit scoring is estimated using the four estimators presented in this

paper and the result is shown in Figure 2. The estimations of these curves are obtained at

x = 0.85 through empirically chosen bandwidths based on visual inspection and considering

the ranges in which the variables lie: h = 5 for Beran’s estimator and (h, g) = (10, 2) for

the NPCM estimator.

Figure 2: PD(t|x = 0.85) estimated by Beran’s estimator (solid line), NPCM estimator

(dashed line), PHCM estimator (dotted line) and AFTCM estimator (dash-dotted line).

6 Conclusion

A nonparametric estimator of the probability of default is proposed in this paper. This

estimator takes into account the existence of a group of cured individuals who will never
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experience the default. It is based on the nonparametric survival estimator for mixture

cure models proposed by López-Cheda (2018). The asymptotic bias and variance and the

asymptotic normality of the NPCM probability of default estimator are proved. The sim-

ulation study carried out shows that the NPCM estimator is a very reasonable choice for

estimating the probability of default, since it provides smaller estimation errors than clas-

sical methods, even in semiparametric models. The good behaviour of Beran’s estimator,

which was also included in the comparative study as another nonparametric method, is

remarkable. Work is currently underway to develop a method for choosing the smooth-

ing parameters involved in the above-mentioned estimators. Using cure models when the

cure status is partially known is an appealing idea to be considered for future work. A

nonparametric view along the lines similar to Safari et al. (2020) can be used.

A Assumptions

A.1. X, T , C are absolutely continuous random variables.

A.2. The density function of X, m, has support [0, 1].

A.3. Let H(t) = P (Z ≤ t) be the distribution function of Z and H(t|x) be the conditional

distribution function of Z|X = x,

(a) Let I = [x1, x2] be an interval contained in the support of m such that,

0 < γ = inf{m(x) : x ∈ Ic} < sup{m(x) : x ∈ Ic} = Γ <∞

for some Ic = [x1 − c, x2 + c] with c > 0 and 0 < cΓ < 1.

(b) For any x ∈ I, the random variables T and C are conditionally independent given

X = x.

(c) Denoting lH(·|x) = inf{t : H(t|x) > 0} and uH(·|x) = inf{t : H(t|x) = 1}, for any

x ∈ Ic, 0 ≤ lH(·|x), 0 ≤ uH(·|x) <∞

20



(d) There exist l, u, θ ∈ R with l < u, satisfying inf{1 − H(u|x) : x ∈ Ic} ≥ θ > 0.

Therefore 1−H(t|x) ≥ θ > 0 for every (t, x) ∈ [l, u]× Ic.

A.4. Let G(t) = P (C ≤ t) be the distribution function of C and G(t|x) be the conditional

distribution function of C|X = x. Let τG(x) = sup{t : G(t|x) < 1}, τS0(x) = sup{t :

S0(t|x) > 0} and τ0 = sup{τS0(x) : x ∈ I}, then, τ0 < τG(x), ∀x ∈ I.

A.5. Let H1(t) = P (Z ≤ t, δ = 1) be the subdistribution function of Z when δ = 1. The

corresponding subdensity functions of H(t) and H1(t) are uniformly bounded away

from 0 on [l, u].

A.6. The first and second derivatives of m, m′(x) and m′′(x), respectivaly, exist and are

continuous on Ic.

A.7. Let H1(t|x) be the conditional subdistribution function of Z|X = x when δ = 1. The

first derivatives with respect to t of the functions S0(t|x), G(t|x), H(t|x) and H1(t|x),

i.e. S ′0(t|x), G′(t|x), H ′(t|x) and H ′1(t|x) exist and are continuous on [l, u]× Ic.

A.8. The first and second derivatives with respect to t of the functions H(t|x) and H1(t|x),

i.e. H ′(t|x), H ′1(t|x), H ′′(t|x) and H ′′1 (t|x), exist and are continuous on [l, u]× Ic.

A.9. The second partial derivatives first with respect to x and second with respect to t of

the functions H(t|x) and H1(t|x), i.e. Ḣ ′(t|x) and Ḣ ′1(t|x) respectively, exist and are

continuous on [l, u]× Ic.

A.10. The functions S0(t|x), H(t|x) and G(t|x) have bounded second-order derivatives with

respect to x ∈ Ic given any value of t ∈ [l, u].

A.11. The density function of T , f(t) is bounded away from 0 on [l, u].

A.12.

∫ ∞
0

dH1(t|x)(
1−H(t|x)

)2 <∞ ∀x ∈ I.
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A.13. The kernel, K, is a symmetric, continuous and differentiable density function with

compact support [−1, 1] and the total variation of K is less than some λ <∞.

A.14. The smoothing parameter h = hn satisfies h→ 0,
nh5

lnn
= O(1) and

(lnn)3

nh
→ 0.

A.15. The smoothing parameter g = gn satisfies g → 0,
ng5

lnn
= O(1) and

(lnn)3

ng
→ 0.

A.16. Let (t, x) ∈ [l, u] × Ic. The second derivative of m(u) exists at u = x. The sec-

ond derivative of Φ(u, t, x) exists at (x, t, x) and (x,∞, x). The second derivative of

Φ2(u, t, x) exists at (x, t, x) and (x,∞, x). The second derivative of D(u, t1, t2, x) ex-

ists at (x, t, t+b, x), (x, t,∞, x) and (x,∞, t, x). The second derivative of L(u, t1, t2, x)

exists at (x, t,∞, x) and (x,∞, t, x).

B Proofs

Proof of Theorem 3.1

Let us denote P̂Dh,g(t|x) := P̂D
NPCM

h,g (t|x) and Ŝh,g(t|x) := ŜNPCMh,g (t|x). Consider the

function

Wh,g(t, t+ b, x) =
S(t|x)

(
Ŝh,g(t+ b|x)− S(t+ b|x)

)
− S(t+ b|x)

(
Ŝh,g(t|x)−S(t|x)

)
Ŝh,g(t|x)S(t|x)

.

Since
Ŝh,g(t+ b|x)

Ŝh,g(t|x)
− S(t+ b|x)

S(t|x)
= −

(
P̂Dh,g(t|x)− PD(t|x)

)
, and

Ŝh,g(t+ b|x)

Ŝh,g(t|x)
− S(t+ b|x)

S(t|x)
=

=
S(t|x)

(
Ŝh,g(t+ b|x)− S(t+ b|x)

)
− S(t+ b|x)

(
Ŝh,g(t|x)− S(t|x)

)
Ŝh,g(t|x)S(t|x)

= Wh,g(t, t+ b, x)

(
Ŝh,g(t|x)

S(t|x)
+ 1− Ŝh,g(t|x)

S(t|x)

)
=

1

S(t|x)

(
Ŝh,g(t+ b|x)− S(t+ b|x)

)
− S(t+ b|x)

S2(t|x)

(
Ŝh,g(t|x)− S(t|x)

)
+Wh,g(t, t+ b, x)

(
1− Ŝh,g(t|x)

S(t|x)

)
,
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we have

P̂Dh,g(t|x)− PD(t|x) = a1
(
Ŝh,g(t+ b|x)− S(t+ b|x)

)
+ a2

(
Ŝh,g(t|x)− S(t|x)

)
+Wh,g(t, t+ b, x)

(
Ŝh,g(t|x)

S(t|x)
− 1

) (8)

with a1 = − 1

S(t|x)
and a2 =

S(t+ b|x)

S2(t|x)
.

Using the almost sure representation of Ŝh,g(t + b|x) from Lemma 3.1 in (8) and con-

sidering the functions ϕn,i(t|x) and R2
n(t|x) defined in the statement of Theorem 3.1, the

almost sure representation of P̂Dh,g(t|x) is as follows:

P̂Dh,g(t|x)− PD(t|x) = a1
∑n

i=1 ϕn,i(t+ b|x) + a2
∑n

i=1 ϕn,i(t|x) +R2
n(t|x)

=
∑n

i=1 Ψn,i(t, x) +R2
n(t|x),

(9)

where Ψn,i(t, x) = a1ϕn,i(t + b|x) + a2ϕn,i(t|x) are independent and identically distributed

for all i = 1, ..., n and

R2
n(t|x) = − 1

S(t|x)
R1
n(t+ b|x) +

S(t+ b|x)

S2(t|x)
R1
n(t|x) +Wh,g(t, t+ b, x)

(
Ŝh,g(t|x)− S(t|x)

S(t|x)

)
.

From Equation (6) in Lemma 3.1, we have Ŝh,g(t|x)− S(t|x) = τ1 + τ2 + τ3 where

τ1 =
(
S0(t|x)− 1

)(
p(x)− 1

) n∑
i=1

wAh,i(x)ξ(Zi, δi,∞, x),

τ2 = p(x)
n∑
i=1

wAg,i(x)η(Zi, δi, t, x),

τ1 = Op

(
lnn

(
1

nh
+

1

ng

))3/4

.

Lemmas 1 and 2 and straightforward but tedious calculations give τ1 = Op

(
h2 +

1√
nh

)
and τ2 = Op

(
g2 +

1
√
ng

)
. Since

nh

(lnn)3
→ ∞ and

ng

(lnn)3
→ ∞, τ3 is negligible with

respect to τ1 and τ2. Then,

Wh,g(t, t+ b, x)

(
Ŝh,g(t|x)− S(t|x)

S(t|x)

)
= Op

(
h4 + g4 +

1

nh
+

1

ng

)
.
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Therefore,

R2
n(t|x) = Op

(
lnn

(
1

nh
+

1

ng

))3/4

+Op

(
h4 + g4 +

1

nh
+

1

ng

)
.

Using Assumptions A.14 and A.15, the second term in R2
n(t|x) is negligible with respect to

Op

(
lnn

(
1

nh
+

1

ng

))3/4

and Theorem 3.1 is proved.

Proof of Theorem 3.2

According to the almost sure representation of P̂Dh,g(t|x) := P̂D
NPCM

h,g (t|x), the asymp-

totic expression of the bias is obtained from its dominant term. Then,

E

[ n∑
i=1

Ψn,i(t, x)

]
=

n∑
i=1

E
[
Ψn,i(t, x)

]
= nE

[
Ψn,1(t, x)

]
= na1E

[
ϕn,1(t+ b, x)

]
+ na2E

[
ϕn,1(t, x)

]
,

(10)

with a1 = − 1

S(t|x)
and a2 =

S(t+ b|x)

S2(t|x)
.

The expression of E
[
ϕn,1(t, x)

]
in (10) is then calculated using Lemmas 1 and 2:

E
[
ϕn,1(t, x)

]
=

(
S0(t|x)− 1

)(
p(x)− 1

)
E
[
wAh,1(x)ξ(Z1, δ1,∞, x)

]
+p(x)E

[
wAg,i(x)η(Z1, δ1, t, x)

]
= B1(t, x)

h2

n
+B2(t, x)

g2

n
+ o

(
h2

n

)
+ o

(
g2

n

)
.

(11)

Replacing the expression (11) in (10), the bias part of the theorem is proved:

E

[ n∑
i=1

Ψn,i(t, x)

]
= B̃1(t, x)h2 + B̃2(t, x)g2 + o(h2) + o(g2),

where B̃1(t, x) and B̃1(t, x) were defined in Section 3.

The asymptotic expression of the variance of P̂Dh,g(t|x) is obtained from the variance

of the dominant term of its almost sure representation:

V ar

[ n∑
i=1

Ψn,i(t, x)

]
=

n∑
i=1

V ar
[
Ψn,1(t, x)

]
= nV ar

[
Ψn,1(t, x)

]
= na21V ar

[
ϕn,1(t+ b, x)

]
+ na22V ar

[
ϕn,1(t, x)

]
+2na1a2Cov

[
ϕn,1(t+ b, x), ϕn,1(t, x)

]
.

(12)
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To find the asymptotic expression of Cov
[
ϕn,1(t+ b, x), ϕn,1(t, x)

]
,

Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
=

(
S0(t1|x)− 1

)(
S0(t2|x)− 1

)(
p(x)− 1

)2 1

n2h2m2(x)
A1

+
(
S0(t1|x)− 1

)(
p(x)− 1

)
p(x)

1

n2hgm2(x)
A2

+
(
S0(t2|x)− 1

)(
p(x)− 1

)
p(x)

1

n2hgm2(x)
A3 + p2(x)

1

n2g2m2(x)
A4.

(13)

First, from Lemma 2,

A1 = V ar

[
K

(
x−X1

h

)
ξ(Z1, δ1,∞, x)

]
= hΦ2(x,∞, x)m(x)cK +O(h3). (14)

Second, using Lemmas 2 and 3,

A4 = Cov

[
K

(
x−X1

g

)
η(Z1, δ1, t1, x), K

(
x−X1

g

)
η(Z1, δ1, t2, x)

]
= C1(t1, t2, x)g +O(g3).

(15)

In order to obtain asymptotic expressions of A2 and A3, an asymptotic expression for

Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

g

)
η(Z1, δ1, t2, x)

]
is obtained by distinguishing three different cases:

(i) If Ch,g := lim
n→∞

h

g
∈ (0,∞):

Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

g

)
η(Z1, δ1, t2, x)

]

' Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

h/Ch,g

)
η(Z1, δ1, t2, x)

]
= E

[
Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

h/Ch,g

)
η(Z1, δ1, t2, x)

∣∣∣X1

]]

+E

[
K

(
x− u
h

)
K

(
Ch,g

x− u
h

)
Φ(X1, t1, x)Φη(X1, t2, x)

]

−E

[
K

(
x−X1

h

)
Φ(X1, t1, x)

]
E

[
K

(
Ch,g

x− u
h

)
Φη(X1, t2, x)

]
= S1 + S2 − S3.
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Considering the function L(u, t1, t2, x) and its Taylor expansion when u = x − hv

around u = x:

S1 =

∫ +∞

−∞
K

(
x− u
h

)
K

(
Ch,g

x− u
h

)
L(u, t1, t2, x)du

= h

∫ +∞

−∞
K(v)K(Ch,gv)

(
L(x, t1, t2, x)− hvL′(x, t1, t2, x) +O(h2)

)
dv.

Since K is symmetric, K(Ch,gv) = K(−Ch,gv) and the function K(v)K(Ch,gv) is also

even. Consequently,
∫ +∞
−∞ K(v)K(Ch,gv)vdv = 0. Then,

S1 = c̃K(Ch,g)L(x, t1, t2, x)h+O(h3). (16)

Defining Bη(u, t1, t2, x) = Φ(u, t1, x)Φη(u, t2, x)m(u) and using a Taylor expansion for

Bη(u, t1, t2, x) when u = x−hv around u = x and considering that Bη(x, t1, t2, x) = 0

for all t1, t2 ∈ [0,∞), x ∈ I, since Φ(x, t, x) = 0 for all (t, x) ∈ [0,∞)× I:

S2 =

∫ +∞

−∞
K

(
x− u
h

)
K

(
Ch,g

x− u
h

)
Φ(u, t1, x)Φη(u, t2, x)m(u)du

= c̃K(Ch,g)Bη(x, t1, t2, x)h+O(h3) = O(h3).

(17)

From Lemma 1, E

[
K

(
x−X1

h

)
Φ(X1, t, x)

]
= O(h3).

Now, using a Taylor expansion for Φη(u, t, x)m(u) when u = x− hv around u = x,

E

[
K

(
Ch,g

x−X1

h

)
Φη(X1, t, x)

]
=

(∫ +∞

−∞
K
(
Ch,gv

)
dv

)
Φη(x, t, x)m(x)h+O(h3).

Considering the definition of the function η(Z, δ, t, x) given in Section 3 and Lemma

1, Φη(x, t, x) = 0 for all (t, x) ∈ [0,∞) × I and E

[
K

(
Ch,g

x−X1

h

)
Φη(X1, t, x)

]
=

O(h3). Therefore,

S3 = O(h6). (18)

Using the expresions of S1 in (16), S2 in (17) and S3 in (18),

Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

g

)
η(Z1, δ1, t2, x)

]
= c̃K(Ch,g)L(x, t1, t2, x)h+O(h3).
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Therefore,

A2 = Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1,∞, x), K

(
x−X1

g

)
η(Z1, δ1, t2, x)

]
= c̃K(Ch,g)L(x,∞, t2, x)h+O(h3)

(19)

and

A3 = Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

g

)
η(Z1, δ1,∞, x)

]
= c̃K(Ch,g)L(x, t1,∞, x)h+O(h3).

(20)

Replacing (14), (15), (19) and (20) in (13) and assuming lim
n→∞

h

g
= Ch,g, we have

Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
=

(
S0(t1|x)− 1

)(
S0(t2|x)− 1

)(
p(x)− 1

)2
m(x)

cKΦ2(x,∞, x)
1

n2h

+Ch,g c̃K(Ch,g)

(
S0(t1|x)− 1

)(
p(x)− 1

)
p(x)

m2(x)
L(x,∞, t2, x)

1

n2h

+Ch,g c̃K(Ch,g)

(
S0(t2|x)− 1

)(
p(x)− 1

)
p(x)

m2(x)
L(x, t1,∞, x)

1

n2h

+Ch,g
p2(x)C1(t1, t2, x)

m2(x)

1

n2h
+ o

(
1

n2h

)
+O

(
h

n2

)
.

Considering the functions V1, V2 and V3, defined in Section 3:

Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
=

(
V1(t1, t2, x) + Ch,gV2(t1, t2, x) + Ch,g c̃K(Ch,g)V3(t1, t2, x)

) 1

n2h

+o

(
1

n2h

)
+O

(
h

n2

)
.

(21)

Using Equation (21) with t1 = t2 = t + b and t1 = t2 = t, the expressions of

V ar
[
ϕn,1(t + b, x)

]
and V ar

[
ϕn,1(t, x)

]
are also available. Therefore, Case (i) of the

Theorem is proved by replacing (21) in (12):

V ar
[∑n

i=1 Ψn,i(t, x)
]

=
(
Ṽ1(t+ b, t, x) + Ch,gṼ2(t+ b, t, x) + Ch,g c̃K(Ch,g)Ṽ3(t+ b, t, x)

) 1

nh

+o

(
1

nh

)
+O

(
h

n

)
.
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(ii) If lim
n→∞

h

g
= 0:

From Lemma 2 and Equation (15) when t1 = t2, we have

V ar

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x)

]
= hcKΦ2(x, t1, x)m(x) +O(h3)

V ar

[
K

(
x−X1

g

)
η(Z1, δ1, t2, x)

]
= C1(t2, t2, x)g +O(g3).

Then, using the Cauchy–Schwarz inequality:

Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

g

)
η(Z1, δ1, t2, x)

]

≤
√
hgcKΦ2(x, t1, x)m(x)C1(t2, t2, x) +O(hg3) +O(gh3). (22)

Therefore,

A2 = O
(
(hg)1/2

)
, A3 = O

(
(hg)1/2

)
. (23)

Plugging (14), (15) and (23) in (13), we have

Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
=

(
S0(t1|x)− 1

)(
S0(t2|x)− 1

)(
p(x)− 1

)2
m(x)

cKΦ2(x,∞, x)
1

n2h

+
p2(x)C1(t1, t2, x)

m2(x)

1

n2g
+O

(
h

n2

)
+O

(
g

n2

)
+O

(√
hg

n2hg

)
.

(24)

Assuming lim
n→∞

h

g
= 0 and considering the function V1(t1, t2, x), we have

Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
= V1(t1, t2, x) + o

(
1

n2h

)
+O

(
g

n2

)
. (25)

Using the expression of Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
in (25) with t1 = t2 = t + b and

t1 = t2 = t, the expressions of V ar
[
ϕn,1(t+b, x)

]
and V ar

[
ϕn,1(t, x)

]
are also available.

Therefore, Case (ii) of the Theorem is proved by replacing (25) in (12):

V ar
[∑n

i=1 Ψn,i(t, x)
]

= Ṽ1(t+ b, t, x)
1

nh
+ o

(
1

nh

)
+O

(
g

n

)
.
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(iii) From Equation (24) and assuming that lim
n→∞

g/h = 0, we have

Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
= V2(t1, t2, x)

1

n2g
+ o

(
1

n2g

)
+O

(
h

n2

)
. (26)

Considering the expression of Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
in (26) with t1 = t2 = t+ b

and t1 = t2 = t, the expressions of V ar
[
ϕn,1(t + b, x)

]
and V ar

[
ϕn,1(t, x)

]
are also

available. Therefore, Case (iii) of the Theorem is proved by replacing (26) in (12):

V ar
[∑n

i=1 Ψn,i(t, x)
]

= Ṽ2(t+ b, t, x)
1

ng
+ o

(
1

ng

)
+O

(
h

n

)
.

Proof of Theorem 3.3

(i) From Equation (9) in the proof of Lemma 3.1 we have

√
nh
(
P̂Dh,g(t|x)− PD(t|x)

)
=
√
nh
∑n

i=1 Ψn,i(t, x) + R̃2
n(t|x), (27)

where Ψn,i(t, x) = a1ϕn,i(t + b|x) + a2ϕn,i(t|x) with a1 = − 1

S(t|x)
, a2 =

S(t+ b|x)

S2(t|x)

and R̃2
n(t|x) =

√
nhR2

n(t|x). The variables Ψn,i(t, x) are independent and identically

distributed for all i = 1, ..., n.

From Theorem 3 in López-Cheda et al. (2017b) and Theorem 1 and Theorem 3 in

López-Cheda et al. (2017a) and assuming limn→∞
h

g
∈ (0,∞), it follows that

R̃2
n(t|x) =

√
nhR2

n(t|x) =
√
nhOP

(
lnn

nh

)3/4

+
√
nhOP

(
lnn

ng

)3/4

+
√
nhOP

(
h4 + g4 +

1

nh
+

1

ng

)
.

Under the assumptions of Theorem 3.3,
(lnn)3

nh
→ 0,

(
lnn

ng

)3/4

(nh)1/2 → 0 and

nh→∞, the remainder term R̃2
n(t|x) is negligible with respect to the dominant term

of (27).

On the other hand, from Case (i) of Theorem 3.2 and Equation (27), the variance of

the dominant term is finite, since it is given by:
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V ar
[√
nh
∑n

i=1 Ψn,i(t, x)
]

= nh
(
Ṽ1(t+ b, t, x) + Ch,gṼ2(t+ b, t, x) + Ch,g c̃K(Ch,g)Ṽ3(t+ b, t, x)

) 1

nh

+nh o

(
1

nh

)
+ nhO

(
h

n

)
= O(1).

Therefore, the asymptotic distribution of
√
nh
(
P̂Dh,g(t|x) − PD(t|x)

)
is the same

as the asymptotic distribution of
√
nh
∑n

i=1 Ψn,i(t, x). If Lindeberg’s condition for

triangular arrays (see Theorem 7.2 in Billingsley (1968)) is satisfied, then

n∑
i=1

(√
nhΨn,i(t, x)− E

[√
nhΨn,i(t, x)

]) d−→ N(0, s), (28)

where s2 = Ṽ1(t+ b, t, x) + Ch,gṼ2(t+ b, t, x) + Ch,g c̃K(Ch,g)Ṽ3(t+ b, t, x).

Lindeberg’s condition is now checked. It is given by

lim
n→∞

1

s2
E

[ n∑
i=1

(√
nhΨn,i(t, x)− E

[√
nhΨn,i(t, x)

])2
1n,i

]
= 0 (29)

for every ε > 0, where 1n,i denotes the indicator function given by

1n,i = 1

(∣∣√nhΨn,i(t, x)− E[
√
nhΨn,i(t, x)]

∣∣ > εs
)
.

Using Assumption A.3d, ξ(Z, δ, t, x) is found out to be bounded:

|ξ(Z, δ, t, x)| ≤ 1

θ
+

∫ t

0

dH1(u|x)

θ2
≤ 1

θ
+
H(t|x)

θ2
≤ 1

θ
+

1

θ2

and, consequently, η is also bounded:

|η(Z, δ, t, x)| ≤ S(t|x)

p(x)

(
1

θ
+

1

θ2

)
+

(
1− p(x)

)(
1− S(t|x)

)
p2(x)

(
1

θ
+

1

θ2

)
.

Since η is bounded, K and m(x) have compact support and nh → ∞,
{

Ψn,i(t, x) −

E
[
Ψn,i(t, x)

]
, i = 1, ..., n, n ∈ N

}
is a sequence of random variables which is bounded

by a convergent to zero nonrandom sequence,
εs√
nh

. Hence, there exists n0 ∈ N such

that for all i = 1, ..., n, 1n,i = 0 for all n ≥ n0 and accordingly,

lim
n→∞

1

s2
E

[ n∑
i=1

(√
nhΨn,i(t, x)− E

[√
nhΨn,i(t, x)

])2
1n,i

]
= 0,
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which proves Lindeberg’s condition in (29).

Finally, assuming h = Chn
−1/5 and g = Cgn

−1/5 and considering Equation (6), we

have

√
nh

n∑
i=1

Ψn,i(t, x)
d−→ N(µ, s),

where µ = C
5/2
h B̃1(t, x) + C

5/2
g B̃2(t, x).

(ii) Considering again (27), under the assumptions of Case (ii) in Theorem 3.3 and fol-

lowing the argument of the previous case, the remainder term R̃2
n(t|x) is found to be

negligible with respect to the dominant term in (27). Furthermore, the variance of

this dominant term is finite, since, from the proof of Theorem 3.2,

V ar
[√
nh
∑n

i=1 Ψn,i(t, x)
]

= nh

(
Ṽ1(t+ b, t, x)

1

nh
+ o

(
1

nh

)
+O

(
h

n

))
= O(1).

Therefore, the asymptotic distribution of
√
nh
(
P̂Dh,g(t|x)−PD(t|x)

)
is the same as

the asymptotic distribution of
√
nh
∑n

i=1 Ψn,i(t, x). If Lindeberg’s condition given in

(29) is satisfied, then

n∑
i=1

(√
nhΨn,i(t, x)− E

[√
nhΨn,i(t, x)

]) d−→ N(0, s), (30)

where s2 = Ṽ1(t+ b, t, x).

Lindeberg’s condition is proved here following the same argument shown in the first

case. Finally, assuming g = Cgn
−1/5 and n1/5h→ 0 and considering Equation (6),

√
nh

n∑
i=1

Ψn,i(t, x)
d−→ N(µ, s),

where µ = C
5/2
g B̃2(t, x).

(iii) Assuming Ch := limn→∞ n
1/5h ∈ (0,∞) and limn→∞ n

1/5g = 0:

Considering again (27), under the assumptions of Case (iii) in Theorem 3.3 and fol-

lowing the argument of the first case, the remainder term R̃2
n(t|x) is found to be
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negligible with respect to the dominant term in (27). Furthermore, the variance of

this dominant term is finite, since, from the proof of Theorem 3.2,

V ar
[√
ng
∑n

i=1 Ψn,i(t, x)
]

= ng

(
Ṽ2(t+ b, t, x)

1

ng
+ o

(
1

ng

)
+O

(
h

n

))
= O(1).

Therefore, the asymptotic distribution of
√
ng
(
P̂Dh,g(t|x)− PD(t|x)

)
is the same as

the asymptotic distribution of
√
ng
∑n

i=1 Ψn,i(t, x). If Lindeberg’s condition given in

(29) is satisfied, then

n∑
i=1

(√
ngΨn,i(t, x)− E

[√
ngΨn,i(t, x)

]) d−→ N(0, s), (31)

where s2 = Ṽ2(t+ b, t, x).

Lindeberg’s condition is proved here following the same arguments used in the first

case. Finally, assuming h = Chn
−1/5 and n1/5g → 0 and considering Equation (6), we

have

√
ng

n∑
i=1

Ψn,i(t, x)
d−→ N(µ, s),

where µ = C
5/2
h B̃1(t, x).
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Safari, W. C., López-de Ullibarri, I., and Jácome, M. A. (2020). A product-limit estimator

of the conditional survival function when cure status is partially known. Biometrical

Journal, 63(5):984–1005.

Stepanova, M. and Thomas, L. (2002). Survival analysis methods for personal loan data.

Operations Research, 50(2):277–289.

Strzalkowska-Kominiak, E. and Cao, R. (2013). Maximum likelihood estimation for condi-

tional distribution single-index models under censoring. Journal of Multivariate Analysis,

114:74–98.

Sy, J. P. and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure model.

Biometrics, 56(1):227–236.

Sy, J. P. and Taylor, J. M. G. (2001). Standard errors for the cox proportional hazards

cure model. Mathematical and Computer Modelling, 33(12):1237–1251.

Van Keilegom, I. and Veraverbeke, N. (1997). Estimation and bootstrap with censored

data in fixed design nonparametric regression. Annals of the Institute of Statistical

Mathematics, 49(3):467–491.

Xu, J. and Peng, Y. (2014). Nonparametric cure rate estimation with covariates. The

Canadian Journal of Statistics, 42(1):1–17.

35



SUPPLEMENTARY MATERIAL



Probability of default estimation in credit
risk using mixture cure models

Rebeca Peláez∗, Ingrid Van Keilegom†, Ricardo Cao‡ and Juan Vilar§

April 27, 2022

Abstract

In this paper, an estimator of the probability of default (PD) in credit risk is
proposed. It is derived from a nonparametric conditional survival function estimator
based on cure models. Asymptotic expressions for the bias and the variance, as well
as the asymptotic normality of the proposed estimator are presented. A simulation
study shows the performance of the nonparamtric estimator compared with Beran’s
PD estimator and other parametric methods. Finally, an empirical study based on
modified real data illustrates the practical behaviour.
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SUPPLEMENTARY MATERIAL

Lemma 1. Denote Φ(u, t, x) = E
[
ξ(Z, δ, t, x)|X = u

]
with ξ(T, δ, t, x) defined in Section

3. Under Assumptions A.13 and A.16, then

E

[
K

(
x−X1

h

)
ξ(Z1, δ1, t, x)

]
=

1

2
h3

∂2

∂u2
(
Φ(u, t, x)m(u)

)
|u=x + o(h3).

Proof. Using a Taylor expansion for Φ(u, t, x)m(u) when u = x − hv around u = x and

Assumption A.13:

E

[
K

(
x−X1

h

)
ξ(Z1, δ1, t, x)

]
=

∫ +∞

−∞
K

(
x− u
h

)
Φ(u, t, x)m(u)du

= Φ(x, t, x)m(x)h+
dK
2

∂2

∂u2
(
Φ(u, t, x)m(u)

)∣∣
u=x

h3 + o(h3).

Moreover, Φ(x, t, x) = 0 ∀(t, x) ∈ [0,∞)× I, since

Φ(u, t, x) = E
[
ξ(Z, δ, t, x)|X = u

]
=

∫ t

0

dH1(z|u)

1−H(z|x)
−
∫ t

0

1−H(v|u)(
1−H(v|x)

)2dH1(v|x).

Lemma 2. Denote Φ2(u, t, x) = E
[
ξ2(Z, δ, t, x)|X = u

]
with ξ(Z, δ, t, x) defined in Section

3. Under Assumptions A.13 and A.16, then

V ar

[
K

(
x−X1

h

)
ξ(Z1, δ1, t, x)

]
= hΦ2(x,∞, x)m(x)cK

+h3
dK2

2

∂2

∂u2
(
Φ2(u,∞, x)m(u)

)
|u=x + o(h3).

Proof. First,

V ar

[
K

(
x−X1

h

)
ξ(Z1, δ1, t, x)

]

= E

[
K2

(
x−X1

h

)
ξ2(Z1, δ1, t, x)

]
− E

[
K

(
x−X1

h

)
ξ(Z1, δ1, t, x)

]2
.

Using a Taylor expansion for Φ2(u, t, x)m(u) when u = x − hv around u = x and

Assumption A.13:

E

[
K2

(
x−X1

h

)
ξ2(Z1, δ1, t, x)

]
=

∫ +∞

−∞
K2

(
x− u
h

)
Φ2(u, t, x)m(u)du

= cKΦ2(x, t, x)m(x)h+
dK2

2

∂2

∂u2
(
Φ2(u, t, x)m(u)

)∣∣
u=x

h3 + o(h3).

2



From Lemma 1, E

[
K

(
x−X1

h

)
ξ(Z1, δ1, t, x)

]2
= O(h6). Then,

V ar

[
K

(
x−X1

h

)
ξ(Z1, δ1, t, x)

]
= cKΦ2(x, t, x)m(x)h+

dK2

2

∂2

∂u2
(
Φ2(u, t, x)m(u)

)∣∣
u=x

h3 + o(h3).

Lemma 3. Denote D(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), ξ(Z1, δ1, t2, x)|X1 = u

]
and

B(u, t1, t2, x) = Φ(u, t1, x)Φ(u, t2, x)m(u). Under Assumptions A.13 and A.16, then

Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

h

)
ξ(Z1, δ1, t2, x)

]
= cKD(x, t1, t2, x)h+

dK2

2

(
D′′(x, t1, t2, x) +B′′(x, t1, t2, x)

)
h3 + o(h3).

Proof. Using the Law of total covariance,

Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

h

)
ξ(Z1, δ1, t2, x)

]

= E

[
Cov

[
K

(
x−X1

h

)
ξ(Z1, δ1, t1, x), K

(
x−X1

h

)
ξ(Z1, δ1, t2, x)

∣∣X1

]]

+E

[
K2

(
x−X1

h

)
Φ(X1, t1, x)Φ(X1, t2, x)

]

−E

[
K

(
x−X1

h

)
Φ(X1, t1, x)

]
E

[
K

(
x−X1

h

)
Φ(X1, t2, x)

]
= S1 + S2 − S3.

(1)

Using a Taylor expansion for D(u, t1, t2, x)m(u) when u = x − hv around u = x and

Assumption A.13:

S1 = cKD(x, t1, t2, x)h+
dK2

2
D′′(x, t1, t2, x)h3 + o(h3).

Using a Taylor expansion for B(u, t1, t2, x) when u = x − hv around u = x and

Assumption A.13 and considering that B(x, t1, t2, x) = 0 for all t1, t2 ∈ [0,∞), since

Φ(x, t, x) = 0 ∀(t, x) ∈ [0,∞)× I:

S2 =
dK2

2
B′′(x, t1, t2, x)h3 + o(h3).

Finally, from Lemma 1, E

[
K

(
x−X1

h

)
Φ(X1, t, x)

]
= O(h3). Then, S3 = O(h6), and

replacing S1, S2 and S3 in (1), the lemma is proved.
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Proof of Lemma 3.1

Let us denote Ŝh,g(t|x) := ŜNPCM
h,g (t|x). According to the definition of the NPCM estimator

in (4),

Ŝh,g(t|x)− S(t|x) = 1− p̂h(x) + p̂h(x)Ŝ0,g(t|x)−
(

1− p(x) + p(x)S0(t|x)
)

=
(
S0(t|x)− 1

)(
p̂h(x)− p(x)

)
+ p(x)

(
Ŝ0,g(t|x)− S0(t|x)

)
+
(
p̂h(x)− p(x)

)(
Ŝ0,g(t|x)− S0(t|x)

)
.

(2)

From Theorem 3 in López-Cheda et al. (2017b) and Theorem 3 in López-Cheda et al.

(2017a), the almost sure representations of the incidence and the latency nonparametric

estimators are available:

p̂h(x)− p(x) =
(
p(x)− 1

) n∑
i=1

wA
h,i(x)ξ(Zi, δi,∞, x) +Rn(x), (3)

Ŝ0,g(t|x)− S0(t|x) =
n∑

i=1

wA
g,i(x)η(Zi, δi, t, x) +Rn(t|x). (4)

Replacing (3) and (4) in (2), the almost sure representation of the NPCM survival

estimator is as follows:

Ŝh,g(t|x)− S(t|x) =

=
(
S0(t|x)− 1

)(
p(x)− 1

) n∑
i=1

wA
h,i(x)ξ(Zi, δi,∞, x) + p(x)

n∑
i=1

wA
g,i(x)η(Zi, δi, t, x)

+
(
S0(t|x)− 1

)
Rn(x) + p(x)Rn(t|x) +

(
p̂h(x)− p(x)

)(
Ŝ0,g(t|x)− S0(t|x)

)
.

From Theorem 3 in López-Cheda et al. (2017b) and Theorem 3 in López-Cheda et al.

(2017a), it follows that

p̂h(x)− p(x) = Op

(
1√
nh

)
, Ŝ0,g(t|x)− S0(t|x) = Op

(
1
√
ng

)
.

Then, (
p̂h(x)− p(x)

)(
Ŝ0,g(t|x)− S0(t|x)

)
= Op

(
1

n
√
hg

)
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and

Ŝh,g(t|x)− S(t|x) =
(
S0(t|x)− 1

)(
p(x)− 1

) n∑
i=1

wA
h,i(x)ξ(Zi, δi,∞, x)

+p(x)
n∑

i=1

wA
g,i(x)η(Zi, δi, t, x) +R1

n(t|x),

where

R1
n(t|x) =

(
S0(t|x)− 1

)
Rn(x) + p(x)Rn(t|x) +Op

(
1

n
√
hg

)
= Op

(
lnn

(
1

nh
+

1

ng

))3/4

.
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