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Abstract

Fraud detection is a significantly difficult problem due to the lack of likely patterns, small pro-
portion of positive cases, falsification of data and continuously changing strategies, which causes
a recurrent loss in financial institutions. A new approach is proposed on the basis of a loss
function, which motivates the construction of an expanded two-dimensional decision space. The
expansion allows intrinsically more freedom to the decision region, adjusting it and allowing to
adapt it to any restriction. Due to this adaptability an improvement is observed with respect to
classical classification techniques. This is proved in a real data set provided by a financial company.
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1 Introduction

One of the most dangerous risks in a financial
company when granting a loan is the credit fraud.
Its impact is greater than default risk because,
by definition, a fraud is an operation without any
payment intention. This leads to the total loss of
the financed credit. Furthermore, there are several
challenges regarding its detection, which entail a
lack of correct surveillance. The first challenge
comes due to the lack of likely patterns needed to
train any kind of supervised model, caused partly
by the second problem, the scarcity of fraudu-
lent cases available. To this is added the constant
change in fraud typology. Fraudsters learn from
and adapt to risk policies, which makes extremely
difficult its categorization. Lastly, there is a lack

of reliable data, as fraudsters usually modify or
falsify their information which derives in an intrin-
sic class overlap. All this configures a very adverse
setting in order to train a model. If that was not
enough, it must be considered that banks can not
use complex models as neural networks due to reg-
ulatory and implementation restrictions, although
they are used in another financial contexts as
credit card fraud detection [1, 4, 7, 8].

A few different approaches have been pro-
posed in the financial fraud detection problem.
One extended philosophy is to hypothesize that
good behavior does not change, so legitimate data
points have consistent position in the space and
pose the issue as an outlier detection problem
[11] or a legitimate subset estimation problem
[10]. Low positive class proportion makes fraud
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probability estimation difficult [6]. Several authors
have chosen to tune the estimated probabilities
[5, 6], use weighted models [2, 9], apply under-
sampling techniques [4] or adapt the decision
threshold [2, 14, 15]. The main drawback with
these approaches is that they do not consider
directly the loan amount in the decision making
so real losses are not considered.

In practice, the objective is not necessarily
to obtain the highest classification accuracy but
loss reduction, which is function of the request
amount. Thus, this work considers a loss func-
tion instead of classical metrics that only take into
account the classification error probability. With
this in mind, instead of focusing on more complex
models to estimate the fraud probability, the focus
is switched considering a more general decision
space taking into account susceptible losses. State
of the art models (which will be referred as clas-
sical models throughout the paper) consider an
estimated probability or score, with a subsequent
one-dimensional decision region. The proposed
method creates an expanded space with the vari-
ables that enters the loss function (estimated fraud
probability and loan amount in the real prob-
lem considered in this paper). Consequently, there
is more flexibility and tune possibilities to the
decision region.

Next section introduces the problem and the
information available for modeling, in order to
develop in parallel the explanation of the proposed
method and the practical implementation. Section
3 defines the construction of the error measure
that motivates the methodology. Section 4 shows
the results applying a classical approach, empha-
sizing on its disadvantages in the cost sensitive
setting. Section 5 introduces the construction of
the expanded decision space from a logistic regres-
sion score and introduces four different proposals.
Finally, Section 6 summarizes the computational
times and Section 7 the empirical results for all
approaches implemented, ending with conclusions
and possible extensions.

2 Problem description and
data available

Most classification algorithms output a proba-
bility/score of a data point that measures its
likelihood of belonging to the positive class (fraud

in this work). In this paper decision space is
denoted as the probability/score support, where
in classical approaches, a cut-off point is selected
to create a decision region related to the positive
class. The problem with this approach in the fraud
detection context is twofold. On the one hand it is
difficult to calculate an accurate probability esti-
mation due to the small proportion of positive
cases and the intrinsic overlap between classes. On
the other, although this focus have a good perfor-
mance when only interest is classification, it have
a worse performance in problems where not all
kind of errors have the same weight [7, 13]. This
is shown in greater depth in Section 4.

In the face of fraud detection, banks have fil-
ters and controls for its restraint that lead to
a specialist reviewing the operation legitimacy.
Here, correct selection of operations to review is
important, since not all of them can be reviewed
due to the limitation and cost of personnel [1]. In
this paper, a restriction related to this is assumed.
It consists in having a proportion of transactions
to analyze of less than 10%, and ideally smaller
than 5%. Taking this into account, operations of
greater amount are the most interesting to study,
since making a mistake will mean a greater loss.

Problems that address the classification of a
binary dependent variable Y ∈ {0, 1} (0 indicating
legitimate and 1 fraud) from a set of indepen-
dent variables X = (X1, . . . , Xp) taking into
account costs of prediction error (and potentially
other costs) are known as cost-sensitive problems.
In this setting the two variables of interest are
the estimated fraud probability and an exogenous
variable, ξ, on which the loss depend (the loan
amount in the fraud detection problem).

Banks should deny fraudulent transactions at
the moment of request, because once the credit
is formalized, the money has already been lost.
At this moment the only information available
is profile data, which could have been manipu-
lated, commerce’s historical information within
the company and of the request itself. Available
variables are aggregated within these three agents.
This implies another handicap as the information
is limited and a fraudster is not necessarily one
with a bad credit profile. Table 1 summarizes the
variables used in next sections. It is indicated to
which agent each variable refers to, the class and
the Information Value (a measure of the relation
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between a variable and the odds ratio [12]). Due to
the limited information available about the client,
the commerce takes a key role, given that for him
more information is available as it was previously
part of the entity’s portfolio. Ranges and densities
are not shown in order to maintain the portfolio
confidentiality of the financial collaborator.

In the practical application a real data set
of 210, 216 requests is considered. It was col-
lected between January 2018 to December 2021
with a 0.67% fraud proportion. The number of
registers was truncated to change the volume of
requests and fraud proportion in order to preserve
confidentiality. Only formalized requests are con-
sidered, because nothing can be assured about a
non-formalized operation. Note that these are the
operations of interest (and most difficult to detect)
as they are the ones that passed all the filters and
controls.

Table 1 Summary of variables used in the practical
implementation. It is indicated which agent each variable
corresponds to, its class and its Information Value (IV)

Variable Agent Class IV

Activity Commerce Categorical 0.227
Activity sector Client Categorical 0.162
Housing situation Client Categorical 0.152
Marital status Client Categorical 0.136
Profession Client Categorical 0.112
Autonomous

community
Client Categorical 0.108

Class Commerce Categorical 0.032
Previous request

indicator
Client Categorical 0.007

Monthly amount Commerce Continuous 0.007
Age Client Continuous 0.004
Default rate Commerce Continuous 0.001
Term Loan Continuous 0.001

3 Loss function

Classical classification techniques evaluate its per-
formance based on a confusion matrix, con-
structed from the true class Y and the predicted
class Ŷ ∈ {0, 1}. Classical evaluation metrics
include ROC curves, AUC, mean misclassifica-
tion error (MME), or accuracy among others. The
most widespread approach in the cost-sensitive
setting is the consideration of a cost matrix, which
assumes that every error of the same type have

the same cost. State of the art approaches pro-
pose weighted models [9], tuning of the score [5],
or selecting the threshold taking into account costs
[14], but exogenous variables are never considered
explicitly. This means a clear loss of information,
for which a loss function is proposed in order to
deepen into its effect with a more flexible way to
measure the error cost. In addition, an estimation
of the expected loss is obtained, the metric that
really concerns any business.

In the loss function construction it should be
considered all costs/gains associated with all four
possibilities arising from the confusion matrix.
Extra costs/gains can be considered as well. These
include, in order of appearance below, the cost of a
perpetrated fraud, the lost gain due to an incorrect
dictum of a loan and the personnel cost. Consider-
ing ξ the operation amount, the terms in the loss
function are given by:

1. I(Y = 1, Ŷ = 0)ξ, the total loss of the credit
amount due to not detecting the fraud.

2. c2c3I(Y = 0, Ŷ = 1)ξ, where c2 denotes the
analyst error rate (sanctioning a legitimate
operation as fraudulent) and c3 the relative per-
centage mean gain per operation. These values
are fixed based on the company experience.

3. c1I(Ŷ = 1), where c1 is the mean cost of ana-
lyzing a request. Note that this one appears
twice in the cost matrix.

As there is no chance of gain when dealing with
fraud, only losses are contemplated. Considering
all previous cases, the loss function for predicted
class u, operation amount t and true class v is:

ℓ(u, t, v) =I(v = 1, u = 0)t+

c2c3I(v = 0, u = 1)t+ (1)

c1I(u = 1)

The objective is the minimization of losses and
consequently of this function, which is bounded
from below by 0 if all frauds are detected with no
false positives. In this paper, the accuracy metric
considered is savings, with an spread use in the
literature [1]. It is expressed as:

Savings = 1−
∑n

i=1 ℓ(Ŷi, ξi, Yi)∑n
i=1 Yiξi

(2)
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where the denominator is the total loss faced if no
preventive action is taken, and n is the number of
operations in the sample.

4 One-dimensional decision
region

One of the most widespread algorithms used in
classification problems is logistic regression. As
the objective is to expand and explore the deci-
sion space and not necessarily improve estimated
probabilities, this model is taken as starting point.
Nevertheless it is to be expected that the more
accurate the estimated probabilities, the better
will be the decision region.

The data set is divided into train and test sets
with 70% and 30% of the sample respectively. A
logistic model is trained over the train set selecting
variables with a stepwise algorithm, considering
only significant variables in terms of the t-test.
Selected ones are summarized in Table 1. Figure 1
summarizes classification metrics calculated over
the test set considering different thresholds. In the
decision space generated by the estimated proba-
bility, p̂ = P̂ (Y = 1 | X = x), a grid of thresholds
is considered dividing this space in 100 segments.
Support of the decision space is re-scaled between
0 and 10 in order to preserve confidentiality. From
this moment, the scaled estimated probability is
denoted as the score z.

The foremost highlight about Figure 1 is the
uncorrelation between the accuracy and the min-
imization of the loss function. Accuracy is biased
due to the small proportion of frauds, so the
maximum is achieved labeling all data points as
legitimate. This is one of the main reasons that
motivates the consideration of a loss function in
this context. The same occur with the percent-
age of frauds detected. As not all operations have
the same amount, there are regions where detect-
ing more frauds worsens the loss function due to a
highest increase in false positives. Lastly, note in
the top graph the overlap between classes intrinsic
to the fraud problem, which makes unlikely to fit
a model with high fraud detection and small false
positive proportion. Regarding the model itself, it
reaches an AUC of 0.751, considered satisfactory
taking into account the difficulty of the problem.

In the practical problem, in the test set,
although savings can be maximized up to 35.7%,

Fig. 1 Summary graphs for the logistic model considering
a grid of thresholds. Top graph represents the score density
for legitimate (gray line) and fraudulent (red line) transac-
tions. Bottom graph summarizes various metrics calculated
over the test set considering the decision region created
by the cut-off point indicated in the horizontal axis. These
metrics are the F-score (black dashed line), accuracy (cyan
dashed line), percentage of positive predicted points (red
solid line) and savings (blue solid line). Classical classi-
fication metrics are plotted with a dashed line and the
considered in this work with a solid line.

it would imply evaluating 27.1% of the requests,
which greatly surpass the imposed restrictions.
If positive predicted points thresholds are con-
sidered, 29.1% savings can be achieved analyzing
8.4% and 16.3% analyzing 4.8% of the requests.
Decision space expansion is considered in the next
section. This is expected to improve savings while
reducing the proportion of operations to analyze.

5 Two-dimensional decision
region

As already noted, the exogenous variable, ξ, is not
used explicitly by the previous approaches. This
section considers expanding the decision space to
a two-dimensional map generated by the proba-
bility estimation, p̂, and the exogenous variable,
ξ (loan amount in the fraud detection setting).
This approach provides the rudiment to construct
a more flexible and effective decision region with
a significant impact on the loss function. For
instance, a point with a small estimated proba-
bility can be classified as fraud if the exogenous
variable is high. Note that this is just an extension
of the classical decision space, which is of the form
[a, 1]×R in the expanded decision space. Increas-
ingly adaptable regions are introduced, starting
from the least flexible possible (a double cut-off
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point) to the most one, based on nonparametric
techniques.

As will be highlighted later, the smoothness of
the decision region have an impact in the perfor-
mance in the test set. This smoothness is driven
by the k parameter, which defines the length of
the grid where the optimal search is performed
in each proposal. For the two-dimensional sample
{(zi, ξi)}i=1,··· ,n, a grid denoted by G(k) is defined
in the support of the data cloud by a step δ1 and
δ2 in the first and second dimension respectively:

G(K) = {(zmin + sδ1, ξmin + tδ2)}s,t∈{0,··· ,k} (3)

δ1 = (zmax − zmin)/k (4)

δ2 = (ξmax − ξmin)/k (5)

where

zmin = min{zi}ni=1, zmax = max{zi}ni=1,

ξmin = min{ξi}ni=1, ξmax = max{ξi}ni=1

5.1 Double cut-off point

When considering a two-dimensional decision
space, the first idea is to take two cut-off points,
one in each dimension, as a generalization of the
classical approach introduced in Section 4. Hence
the decision region consists of an upper right quad-
rant in R2 defined by a cut-off point x = (x1, x2)
as Rx =

{
(z, ξ) ∈ R2 | z > x1, ξ > x2

}
. The opti-

mization is performed evaluating the loss function
considering the quadrants generated by the set
of points in the grid G(k) with k = 100. With
this approach, considering the optimal decision
region obtained over the train set, savings ascend
to 41% for the test dataset, which corresponds to
analyzing 26.7% of the requests. This implies an
increase of 5.2% in savings with respect to the clas-
sical one dimensional decision region estimated in
Section 4. The biggest improvement is obtained
when considering the 5% positive labeled points
restriction, where the difference in savings is of
11% with respect the classical approach. Although
the increase in terms of savings is not significant,
it implies an improvement with an understand-
able model. Figure 2 shows the data cloud in the
expanded space together with the decision regions
obtained under each positive predicted proportion
restriction. Note that the most interesting points
are those located in the top-right zone, with high
probability of being fraud and high amount. This

is what triggers the increase in savings compared
to the classical approach and is further exploited
in next sections.

Fig. 2 Data cloud in the two-dimensional decision space
generated by the score and the amount. Legitimate requests
are represented with gray crosses and frauds with red
dots. Superimposed are represented optimal upper right
quadrants in terms of savings, meeting the restrictions of
positive labeled points ≤ 100% (black), ≤ 10% (blue),
≤ 5% (cyan).

5.2 Bayes minimum risk

The Bayes minimum risk approach [3] is consid-
ered as the reference model due to its good prac-
tical results and its relation to the methodology
proposed. This method considers the exogenous
variable in the decision making combined with an
estimated probability, P̂ (Y = y | X = x) [3]. The
model takes into account the risk of a data point:

R(y, ξ | x) =ℓ(y, ξ, y)P̂ (Y = y | X = x)+

ℓ(y, ξ, 1− y)(1− P̂ (Y = y | X = x))

where y ∈ {0, 1} and ℓ is the loss function (1).
Bayes minimum risk model labels a data point as
fraud if R(1, ξ | x) ≤ R(0, ξ | x), i.e. if the risk of
classifying it as a fraud is lower than as legitimate.
In the problem under study, considering the loss
function defined in (1), for a new data point i this
leads to the decision rule:

Ŷi =

1, if ξi ≥
c1

p̂i(1 + c2c3)− c2c3

0, otherwise
(6)

where p̂i = P̂ (Yi = 1 | X = xi).
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Considering the decision region derived from
this inequality, in the test set savings of 43.1% are
obtained analyzing 26% of the requests. Figure 3
shows the decision region. It is truncated in the
graph because as from some point, the minimum
amount in the sample is greater than the decision
frontier. The main drawback of this approach is
that the frontier defined by (6) does not include
any tuning parameter allowing flexibility in order
to adapt the decision region to the problem at
hand. In the practical problem, the proportion of
positive predicted points can not be controlled. So
despite its good performance, the method is not
flexible enough to fulfill the desired restrictions.

Fig. 3 Data cloud in the two-dimensional decision space
generated by the score and the amount. Legitimate requests
are represented with gray crosses and frauds with red dots.
Superimposed is represented Bayes minimum risk region.

5.3 Quadratic decision region

In this section a parabola is considered for the
frontier of the decision region. The loss function is
evaluated over the decision region generated by a
series of parabolas defined by a set of three param-
eters and the optimal is selected. The parameters
considered for the quadratic function are its ver-
tex (taken from G(k) as defined in (3) with k = 50
considering the subset where z > 5 and z < 9),
amplitude (ranging from 0.1 to 3.1 by a step 0.5)
and angle of rotation (ranging from 0 to Π/4
by a step Π/32). This ranges were set after a
preliminary search, in order to reduce the compu-
tational time that become boundless if complete
ranges were considered. There are configurations
of parameters that outputs a parabola that leaves
points to its right out of the region, which does
not make sense given the problem context. To

correct this, in these cases the decision region is
extended from the vertex of the parabola to the
right of the map, as can be seen in Figure 4. For
the optimal region, savings in the test set ascend
to 42% analyzing 26% of the transactions, which
improves the double threshold approach in terms
of both savings and percentage of points inside the
region. In order to exploit the susceptible improve-
ments when considering a more flexible region
than a single quadrant, next section introduces
a nonparametric approach for the decision region
estimation.

In addition, optimal parabolas fulfilling any
restriction on the proportion of positive predicted
transactions can be found, just sticking to the
subset that satisfies it. Figure 4 displays optimal
parabolas for three thresholds on the proportion of
positive labeled transactions. The decision region
is similar to the Bayes minimum risk approach but
leaving out the bottom of the map, which reduces
the proportion of fraud flags and improves sav-
ings. The major drawback regarding this proposal
is the computational time as there is needed an
intensive search over the set of parameters and
that the optimal decision region does not nec-
essarily have to have a quadratic form in other
problems. Next section introduces the most flexi-
ble approach proposed, which in addition reduces
the computational times.

Fig. 4 Data cloud in the two-dimensional decision space
generated by the score and the amount. Legitimate requests
are represented with gray crosses and frauds with red
dots. Superimposed are represented optimal parabolas in
terms of savings, meeting the restrictions of positive labeled
points ≤ 100% (black), ≤ 10% (blue), ≤ 5% (cyan).
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5.4 Nonparametric decision region

The last proposal is a nonparametric approach
based on adding quadrants recursively to the deci-
sion region until no improvement is found in
the loss function. Let’s consider x = (x1, x2) ∈
R2, which defines the upper right quadrant
Qx =

{
(z, ξ) ∈ R2 | z > x1, ξ > x2

}
. An aggre-

gated decision region defined by a set of points,
R = {xj}j=1,··· ,r, is constructed as the union of
their associated upper right quadrants Qxj ,

D(R) =

r⋃
j=1

Qxj (7)

Given an observation (zi, ξi), for a decision
region D(R) as defined in (7) by a set of fron-
tier points R, its predicted indicator of fraud

is Ŷ
D(R)
i = I ((zi, ξi) ∈ D(R)). For a sample

{(zi, ξi)}i=1,...,n the value of the loss function
considering the decision region D(R) is defined as:

L(R) =

n∑
i=1

ℓ(Ŷ
D(R)
i , ξi, Yi) (8)

Algorithm 1 is proposed for the optimal region
estimation. It starts by choosing a single quadrant
with vertex in the most northeast point, (10, 10)
for our dataset, which corresponds to the one with
highest estimated fraud probability and amount.
In a recursively manner, each of the points ”sur-
rounding” the current decision region by a step δ1
as defined in (4) in the first dimension and δ2 as
defined in (5) in the second dimension is added to
the current region as in (7) and the associated loss
function is calculated as in (8). The point whose
inclusion produces the greatest reduction in the
loss function is taken. If there is no improvement
respect the previous decision region, the process is
repeated with a 2δ1, 2δ2 step and so on. Here, the
parameter k takes a key role as smoothing param-
eter. Algorithm stops when the minimum in the
data support is reached in the evaluation.

In the non restricted scenario, the proposal
consists in just running Algorithm 1. An under-
standable region is obtained with freedom to select
the degree of flexibility taking into account any
threshold on the proportion of positive labeled
points. For the constrained cases, it is iterated
until the restriction (e.g. 10% or 5%) of points

Algorithm 1 Nonparametric decision region

1: Data Data set composed by z, ξ and the
fraud indicator Y

2: Input k parameter

3: Output A decision region defined as in (7)

4: Compute Grid G(k) as defined in (3);
5: Preliminary decision region D(R) defined by

the point R = (zmax, ξmax);
6: Steps δ1, δ2 as defined in (4) and (5) respec-

tively;
7: Frontier F as the subset of G(k) at distance

δ1 and δ2 in the first and second dimension
respectively from D(R)

8: while min(F ) ≥ (zmax, ξmax) do
9: Rold ← R

10: lf ← L(Rold)
11: t← 1
12: while R = Rold do
13: Set frontier F as the G(k) subset at

distance tδ1 and tδ2 in each dimension
from D(R)

14: for Every points in F do
15: Compute the loss function as in

(8) in the decision region obtained
adding the point to R as in (7)

16: end for
17: Obtain the point xmin ∈ F whose join-

ing to the current decision region, R,
outputs the smaller loss function

18: Join xmin to R
19: if L(R) ≥ lf then
20: R← Rold

21: end if
22: t← t+ 1
23: end while
24: end while

inside the region is met. The resulting regions are
plotted in Figure 5. Savings in the test set ascend
to 43.9% with 24.3% of positive labeled points
(k = 100), which corresponds to the greatest sav-
ings within all the approaches. In the restricted
scenarios, depending on the k parameter, the per-
formance in the test set is slightly worse than
previous approaches, probably due to a slight
over-fitting derived from the restricted search.
Regarding the computational time, in Section 6 is
commented how empirically it depends quadrati-
cally on k, which makes this approach suitable for
escalation to biggest data sets.
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Fig. 5 Data cloud in the two-dimensional decision space
generated by the score and the amount. Legitimate requests
are represented with gray crosses and frauds with red dots.
Superimposed are represented optimal nonparametric deci-
sion regions estimated running Algorithm 1 with k = 100 in
terms of savings, meeting the restrictions of positive labeled
points ≤ 100% (black), ≤ 10% (blue), ≤ 5% (cyan).

6 Computational times

Computational times of the different approaches
proposed were measured in order to compare
them. They are summarized in Table 2 along
with the proposals results. Times are consid-
ered marginally because in the nonparametric
approach, Algorithm 1 is ran and intermediate
optimal results satisfying the positive predicted
threshold restrictions are saved, so it was only ran
one time. The rest of the proposals implies the
total evaluation in the grid considered for the pos-
terior optimal selection, which in certain cases lead
to a greater computational time than the nonpara-
metric approach. It can be seen empirically how
the computational time of Algorithm 1 depends
quadratically on the k parameter.

The main advantage of all proposed methods
for the approximation of the decision region is
that the computational time depends on the size
of the search grid and not on the sample size. This
allows to scale this methodology to a broad range
of problems without necessarily a constraint in the
data size. In addition, as computational limita-
tions come from the number of iterations in the
optimal search, which can be parallelized or devel-
oped in batches, the escalation possibilities are
very high. Thus, this methodology fits in any kind
of cost-sensitive problem regardless of the sample
size and the complexity of the loss function to be
optimized.

7 Summary and conclusions

This work introduces a new method that can be
enriched and refined in so many ways thanks to its
flexibility. It is shown how certain regions of the
space are not worth considering despite having a
high probability of fraud due to the influence of
the amount in the loss function. This is exploited
with the proposed method. Although three differ-
ent new approaches are just considered, the are
many other possibilities that can be adapted to
any problem at hand. It is enough simply to adapt
the loss function and the decision space. Regarding
the computational costs, as all proposals depend
on k and not directly on the sample size as men-
tioned in Section 6, the method is suitable for its
escalation to biggest data sets.

Table 2 summarizes the results of all the
approaches introduced throughout the paper.
Main highlight is the consistent improvement
achieved just expanding the decision space in all
proposals compared with the classical approach.
Considering Table 2 and the positive predicted
proportion threshold mentioned in Section 2,
the best choice consists in the nonparametric
approach with the 5% restriction. This decision
region makes an easy-to-understand rule, satisfy-
ing the strictest restriction and with a significant
good performance in terms of loss reduction.
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Table 2 Summary table of the metrics of interest (savings defined in (1) and percentage of positive predicted points) for
the proposed approaches throughout the paper for the train sample (top) and the test sample (bottom). Last column
displays the computational time in minutes for the construction of each decision region.

TRAIN set Unrestricted <10% <5%

Decision region Savings % Savings % Savings %
Time

(minutes)

One dimensional 41.22 27.34 25.05 8.53 18.00 4.85 0.12
Double threshold 43.48 27.16 29.44 9.63 22.66 4.88 14.19

Bayesian 45.79 26.23 1.01
Quadratic 46.64 26.21 36.79 9.80 27.54 4.92 6475.95

Nonparametric (k = 20) 46.91 25.12 32.53 9.03 25.64 4.36 1.24
Nonparametric (k = 50) 47.91 24.03 36.19 9.91 29.10 4.44 26.29
Nonparametric (k = 100) 48.65 24.63 37.57 9.64 29.86 4.61 176.23

TEST set Unrestricted <10% <5%

Decision region Savings % Savings % Savings %
Time

(minutes)

One dimensional 35.74 27.10 29.09 8.36 16.26 4.75 0.12
Double threshold 40.98 26.72 33.24 9.32 27.31 4.65 14.19

Bayesian 43.06 25.99 1.01
Quadratic 41.96 25.95 32.72 9.50 26.58 4.75 6475.95

Nonparametric (k = 20) 43.41 24.85 27.31 9.01 21.87 4.22 1.24
Nonparametric (k = 50) 43.85 23.73 30.03 9.76 27.55 4.29 26.29
Nonparametric (k = 100) 43.92 24.35 31.61 9.36 25.59 4.38 176.23
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