
Nonparametric estimation of the conditional survival
function with double smoothing
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Abstract

In this paper a conditional survival function estimator for censored data is

proposed. It is based on a double smoothing technique: both the covariate

and the variable of interest (usually, the time) are smoothed. Asymptotic ex-

pressions for the bias and the variance and the asymptotic normality of the

smoothed survival estimator derived from Beran’s estimator are found. A simu-

lation study shows the performance of some doubly smoothed estimators of the

conditional survival function and compares them with the smoothed ones only

in the covariate. The influence of the two smoothing parameters involved in the

proposed estimators is also studied.

Keywords: Censored data, Conditional survival function, Survival analysis,

Nonparametric estimator

1. Introduction

Let T be the time until the occurrence of an event and let X be a covariate

related to the time. For instance, the survival time of an individual involved in

a clinical study and his physiological features or the time until a debtor goes

into default and his credit scoring in a credit risk context. In several cases the5

time variable, T , is subject to random right censoring. In this scenario it is of
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interest to estimate the distribution function of T conditional to X = x, that is,

F (t|x) = P (T ≤ t|X = x) or, equivalently, to estimate the conditional survival

function S(t|x) = 1− F (t|x).

The most commonly used nonparametric estimator of F (t|x) was introduced10

by [1]. This estimator turns out to be the Kaplan-Meier estimator (see [2])

in absence of covariates. Asymptotic properties of this estimator have been

widely studied in the literature [3], [4], [5] and [6], among others. Another

nonparametric estimator of the conditional distribution function with censored

data is proposed by [7], [8]. It presents a better behaviour than Beran’s estimator15

when estimating the ditribution function in the right tail with heavy censoring.

In [9] and [10] an alternative estimator based on the local linear method proposed

in [11] is studied. All these nonparametric distribution estimators are based on

a covariate smoothing. Here, a double smoothing both in the covariate and

in the time variable is proposed. Although this idea can be applied to any20

nonparametric estimator of the distribution (or survival) function, this paper

focuses on Beran’s estimator with double smoothing.

Survival analysis and, in particular, survival function estimation have tradi-

tionally been used for medical problems. However, in recent years they have also

been successfully applied to risk problems, especially credit risk. See, among25

others, the works of [12], [13], [14] and [15].

The remainder of this paper is organized as follows. In Section 2, the non-

parametric estimator of the conditional survival function with double smoothing

is defined. Asymptotic properties of the nonparametric estimator with double

smoothing associated with Beran’s estimator [1] are presented in Section 3. In30

Section 4 a simulation study shows the improvement obtained by using the dou-

ble smoothing in several nonparametric estimators of the conditional survival

function for censored data. Section 5 contains some concluding remarks. Fi-

nally, in Section 6 sketches of the proofs of the theoretical results presented in

Section 3 are shown.35
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2. Doubly smoothed conditional survival estimator

Let {(Xi, Zi, δi)}ni=1 be a simple random sample of (X,Z, δ) with X being the

covariate, Z = min{T,C} the observed variable and δ = IT≤C the uncensoring

indicator. Usually, T is the time until the occurrence of an event and C is

the censoring time. The distribution function of T is denoted by F (t) and its40

survival function by S(t). The functions F (t|x) and S(t|x) are the conditional

distribution and survival functions of T given X = x evaluated at t. Let Ŝh(t|x)

be a nonparametric estimator of the conditional survival function with h = hn

being the smoothing parameter for the covariate. Then, the expression of the

smoothed survival estimator is as follows:45

S̃h,g(t|x) = 1−
n∑
i=1

s(i)K
(
t− Z(i)

g

)
(1)

where s(i) = Ŝh(Z(i−1)|x) − Ŝh(Z(i)|x) with Z(i) the i-th element of the sorted

sample of Z, K(t) is the distribution function of a kernel K, K(t) =
∫ t
−∞K(u)du,

and g = gn is the smoothing parameter for the time variable.

This survival estimator is not only smoothed in the covariate but also in

the time variable. It is based on the idea of estimating the survival function50

in a point t conditional to x by means of a weighted mean of the values that

the estimator Ŝh(t|x) takes in points near t so that a smoothed estimation is

obtained.

According to the nonparametric estimator Ŝh(t|x) used in (1), the corre-

sponding doubly smoothed estimator of S(t|x) is obtained. Therefore, the pro-55

posed estimator, S̃h,g(t|x), is very general. In this paper, the study focuses on

Beran’s estimator given by

ŜBh (t|x) =

n∏
i=1

(
1−

I{Zi≤t, δi=1}wn,i(x)

1−
∑n
j=1 I{Zj<Zi}wn,j(x)

)
(2)

where

wn,i(x) =
K
(
(x−Xi)/h

)∑n
j=1K

(
(x−Xj)/h

)
with i = 1, ..., n and h = hn is the smoothing parameter for the covariable. The
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smoothed survival function estimator based on Beran’s estimator, S̃Bh,g(t|x), is

obtained by replacing Ŝh(t|x) with ŜBh (t|x) in (1).60

The idea of a time variable smoothing is used in [16] to propose a smoothed

Kaplan-Meier estimator and the doubly smoothed Beran’s estimator, S̃Bh,g(t|x),

was considered in [17]. In these two papers the behaviour of the smoothed

estimator is compared with the original one by simulation, but the asymptotic

properties of the estimator are not studied. This issue will be addressed in the65

next section.

3. Asymptotic results of the smoothed Beran’s estimator

Asymptotic properties of the smoothed Beran’s estimator of the conditional

survival function are studied here. The following assumptions will be required

in the results.70

A.1. X, T , C are absolutely continuous random variables.

A.2. The density function of X, m, has support [0, 1].

A.3. Let H(t|x) be the conditional distribution function of Z|X = x,

(a) Let I = [x1, x2] be an interval contained in the support of m such that,

0 < γ = inf{m(x) : x ∈ Ic} < sup{m(x) : x ∈ Ic} = Γ <∞

for some Ic = [x1 − c, x2 + c] with c > 0 and 0 < cΓ < 1.

(b) For any x ∈ I, the random variables T |X=x and C|X=x are indepen-75

dent.

(c) Denoting aH(·|x) = inf{t/H(t|x) > 0} and bH(·|x) = inf{t/H(t|x) = 1},

for any x ∈ Ic, 0 ≤ aH(·|x), 0 ≤ bH(·|x)

(d) There exist a, b, θ ∈ R with a < b, satisfying inf{1−H(b|x) : x ∈ Ic} ≥

θ > 0. Therefore 1−H(t|x) ≥ θ > 0 for every (t, x) ∈ [a, b]× Ic.80

A.4. The first and second derivatives of m, m′(x) and m′′(x), respectivaly, exist

and are continuous in Ic.

A.5. Let H1(t|x) = P (T ≤ t, δ = 1|X = x) be the conditional subdistribution

function when δ = 1. The corresponding density functions of H(t) and

H1(t) are bounded away from 0 in [a, b].85
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A.6. The first and second derivatives with respect to t of the functions H(t|x)

and H1(t|x), i.e. H ′(t|x), H ′1(t|x), H ′′(t|x) and H ′′1 (t|x), exist and are

continuous in [a, b]× Ic.

A.7. The second partial derivatives first with respect to x and second with

respect to t of the functions H(t|x) and H1(t|x), i.e. Ḣ ′(t|x) and Ḣ ′1(t|x)90

respectively, exist and are continuous in [a, b]× Ic.

A.8. The kernel, K, is a symmetric, continuous and differentiable density func-

tion with compact support [−1, 1].

These assumptions are standard in the literature and affordable in this con-

text. They were previously required in [3] and [6]. Conditions A.2, A.3a, A.3b95

and A.4 are assumed in [3] to obtain exponential bounds for the tails of the

distribution of ŜBh (t|x) and, from them, to obtain the weak and strong conver-

gence of this estimator. Assumptions given in A.3c and A.3d are necessary to

estimate the tails of the distribution functions involved. Conditions A.5, A.6

and A.7 along with those imposed on the kernel function ensure asymptotic100

unbiasedness of ŜBh (t|x).

The following notation will be used. Let R : R −→ R be any function, the

constants cR and dR are defined as follows

cR =

∫
R(t)2dt, dR =

∫
t2R(t)dt.

In particular, one can consider the kernel K and its distribution function K

to define these constants. In this case, Assumption A.8. guarantees that cK

and dK are finite. Being that,

cK =

∫
K(t)2dt ≤ 2‖K‖2∞ <∞

dK =

∫
t2K(t)dt ≤

∫ 1

−1

t2‖K‖∞dt ≤
2

3
‖K‖∞ <∞

From A.8. it follows that K(u) = 1−K(−u). Therefore

cK =

∫ 1

−1

K2(u)du =

∫ 0

−1

(
1−K(−u)

)2
du+

∫ 1

0

K2(u)du

=

∫ 1

0

(
1− 2K(u)

(
1−K(u)

))
du ≤ 1
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The following functions are also defined,

Kl(u) = ulK(u), Kl(u) =

∫ u

−∞
Kl(t)dt. (3)

Given any function f : Rk −→ R, its first derivatives with respect to the

first and second variables are denoted as follows:

f ′(x1, ..., xk) =
∂f(x1, ..., xk)

∂x1
, ḟ(x1, ..., xk) =

∂f(x1, ..., xk)

∂x2

Correspondingly, the second derivatives with respect to the first or second vari-

able are denoted by f ′′(x1, ..., xk) and f̈(x1, ..., xk). Finally, let f ∗ g be the

convolution of any two functions f and g.105

In [6], an almost sure representation is found for a generalized Beran’s esti-

mator of the conditional survival function when the data are subject to random

left truncation and right censoring. Taking into account we do not consider

truncation but only right censoring, an almost sure representation of Beran’s

estimator can be obtained from the results shown in [6].110

Theorem 1 (Almost sure representation for Beran’s estimator of the condi-

tional survival function). Under assumptions A.1-A.8, if a < aH(·|x) for any

x ∈ I, then

ŜBh (t|x)− S(t|x) = (1− F (t|x))

n∑
i=1

wn,i(x)ξ(Zi, δi, t, x) +Rn(t|x)

for t ∈ [a, b], x ∈ I, where

ξ(Z, δ, t, x) =
1{Z≤t,δ=1}

1−H(Z|x)
−
∫ t

0

1{u≤Z}(
1−H(u|x)

)2 dH1(u|x)

and

sup
[a,b]×I

|Rn(t|x)| = O

(
lnn

nh

)3/4

a.s.

Theorem 1 is a direct consequence of Theorem 2(c) in [6] by just assuming a

degenerated in zero distribution for the left truncation time variable. A similar

result is obtained below for the smoothed Beran’s estimator.
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Theorem 2 (Almost sure representation for the smoothed Beran’s estimator of

the conditional survival function). Under assumptions A.1-A.8, if a < aH(·|x)

for any x ∈ I, then

S̃Bh,g(t|x)−S(t|x) =

n∑
i=1

wn,i(x)η(Zi, δi, t, x)− 1

2
dKF

′′(t|x)g2 +R1
n(t|x)+R2

n(t|x)

for t ∈ [a′, b′], x ∈ I, where a′ = a+ ε, b′ = b− ε for ε > 0,

η(Z, δ, t, x) =

∫
K(u)

(
1− F (t− gu|x)

)
ξ(Z, δ, t− gu, x)du,

sup
(t,x)∈[a′,b′]×I

∣∣∣R1
n(t|x)

∣∣∣ = O

(
lnn

nh

)3/4

a.s.,

and

R2
n(t|x) = o(g2).

Applying Theorem 2, the asymptotic bias and covariance of the smoothed

Beran’s estimator of the conditional survival function are obtained. Firstly, the115

smoothed Beran’s estimator S̃Bh,g(t|x) is split into two terms: one dominant term

and some insignificant summands. This is shown in Lemma 1.

Lemma 1. Under the assumptions of Theorem 2, the smoothed Beran’s esti-

mator S̃Bh,g(t|x) can be split into the following terms

S̃Bh,g(t|x) = S̃ABh,g (t|x) +R1
n(t|x) +R2

n(t|x) +R3
n(t|x)

where

S̃ABh,g (t|x) = S(t|x) +

n∑
i=1

wAn,i(x)η(Zi, δi, t, x)− 1

2
dKF

′′(t|x)g2,

with

wAn,i(x) =
1

nh

K
(
(x−Xi)/h

)
m(x)

for all i = 1, ..., n, R1
n(t|x) and R2

n(t|x) are the terms in Theorem 2 and

R3
n(t|x) = Op

(
h2 +

1√
nh

) n∑
i=1

wAn,i(x)η(Zi, δi, t, x).
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Theorem 3 (Bias and covariance of S̃ABh,g (t|x)). Under the assumptions of The-

orem 2, the asymptotic expressions for the bias and the covariance of S̃Bh,g(t|x)

are the following:

Bias
(
S̃ABh,g (t|x)

)
=

dK
2m(x)

(
2Φ′η(x, t, x)m′(x) + Φ′′η(x, t, x)m(x)

)
h2

−1

2
dKF

′′(t|x)g2 + o(h2),

Cov
(
S̃ABh,g (t1|x), S̃ABh,g (t2|x)

)
=

cK
m(x)

V1(x, t1, t2)
1

nh
+

cK
m(x)

V2(x, t1, t2)
g

nh

+
cK
m(x)

V3(x, t1, t2)
g2

nh
+

dK2

m2(x)
V4(x, t1, t2)

h

n

+o

(
g2

nh
+
h

n

)
.

where

Φη(u, t, x) =
∫
K(v)

(
1− F (t− gv|x)

)
Φξ(u, t− gv, x)dv,

Φξ(u, t, x) = E
[
ξ(Z1, δ1, t, x)|X1 = u

]
with ξ(u, t, x) defined in Theorem 1,120

V1(x, t1, t2) = 2J(t1|x)
(
1− F (t2|x)

)
K ∗K

(
t2 − t1
g

)
,

V2(x, t1, t2) = 2J(t1|x)f(t2|x)K ∗K1

(
t1 − t2
g

)
+2J ′(t1|x)

(
1− F (t2|x)

)
K ∗K1

(
t2 − t1
g

)
,

V3(x, t1, t2) = J ′′(t1|x)
(
1− F (t2|x)

)
K ∗K2

(
t2 − t1
g

)
−J(t1|x)f ′(t2|x)

(
dK −K ∗K2

(
t1 − t2
g

))
125

+2J ′(t1|x)f(t2|x)K1 ∗K1

(
t2 − t1
g

)
,

V4(x, t1, t2) = m(x)
(
1− F (t1|x)

)(
1− F (t2|x)

)
Φ′ξ(x, t1, x)Φ′ξ(x, t2, x)

+
1

2
D′′(x, t1, t2, x),

D(u, t1, t2, x) = Cov
[
η(Z1, δ1, t1, x), η(Z1, δ1, t2, x)|X1 = u

]
m(u),

J(t|x) =
(
1− F (t|x)

)
L(t|x),130

L(t|x) =

∫ t

0

dH1(z|x)(
1−H(z|x)

)2 .
Finally, the asymptotic distribution of the smoothed Beran’s estimator of

the conditional survival function is obtained.
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Theorem 4 (Limit distribution of S̃Bh,g(t|x)). Under the assumptions of Theo-

rem 2, the limit distribution of S̃Bh,g(t|x) is given by

S̃Bh,g(t|x)− S(t|x)− µn
σn

d−→ N(0, 1)

where µn = Bias
(
S̃ABh,g (t|x)

)
given in Theorem 3 and σ2

n = Var
(
S̃ABh,g (t|x)

)
with

Var
(
S̃ABh,g (t|x)

)
=

cK
m(x)

(
1− F (t|x)

)2
L(t|x)

1

nh

+
cK(cK − 1)

m(x)

(
1− F (t|x)

)2
L′(t|x)

g

nh

− cK
m(x)

(
dK
(
1− F (t|x)

)
f(t|x)L(t|x)−

(
1

2
− µ1(K2)

)
L′′(t|x)

−2
(
µ1(K2)− 1

)(
1− F (t|x)

)
f(t|x)L′(t|x)

)
g2

nh

+
dK2

m2(x)

((
1− F (t|x)

)2(
Φ′ξ(x, t, x)

)2
+

1

2
D′′(x, t, t, x)

)
h

n

+o

(
g2

nh
+
h

n

)
.

The asymptotic properties of Beran’s estimator for the conditional survival

function were proven in both [3] and [6]. It is worth noting that the asymptotic135

bias of Beran’s estimator and the smoothed Beran’s estimator have the same

order as long as g is negligible with respect to h, i.e., g = o(h). On the other

hand, assuming h→ 0 and g → 0, the asymptotic variance of Beran’s estimator

and the smoothed Beran’s estimator have the same order since the terms g/nh

and h/n are negligible compared to 1/nh.140

3.1. Bandwidth ratio

In this section, a discussion about the smoothing parameters of the smoothed

Beran’s survival estimator takes place in order to find the asymptotic optimal

bandwidths defined as those that minimize the mean square error (MSE).

Considering only the dominant terms of the bias and the variance of the

asymptotic estimator S̃ABh,g (t|x) from the expressions given in Theorems 3 and

4, it follows that

Var
(
S̃ABh,g (t|x)

)
= c1

1

nh
− c2

g

nh
+ c3

h

n
+ o

(
g

nh

)
,
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Bias
(
S̃ABh,g (t|x)

)
= c4h

2 + c5g
2 + o(h2) + o(g2),

where the constants c1, c2, c3, c4 and c5 are defined by

c1 = cK

(
1− F (t|x)

)2
L(t|x)

m(x)
> 0,

c2 = cK(1− cK)

(
1− F (t|x)

)2
L′(t|x)

m(x)
> 0,

c3 = dK2

(
1

m(x)

(
1− F (t|x)

)2(
Φ′ξ(x, t, x)

)2
+

1

2m2(x)
D′′(x, t, t, x)

)
,

c4 =
dK

2m(x)

(
2Φ′η(x, t, x)m′(x) + Φ′′η(x, t, x)m(x)

)
,

c5 =
1

2
dKF

′′(t|x).

Then, the asymptotic bandwidths that minimize the dominant terms of the

MSE can be obtained by minizing the formula:

Ψ(h, g) = c1
1

nh
− c2

g

nh
+ c3

h

n
+ c24h

4 + c25g
4 + 2c4c5h

2g2.

In order to obtain the asymptotically optimal bandwidths, it is necessary to

consider the partial derivatives of Ψ with respect to both h and g, equal them to

zero and distinguish three different cases depending on the relative asymptotic

behaviour of h and g. The partial derivative of Ψ with respect to h is

∂Ψ

∂h
= −c1

1

nh2
+ c2

g

nh2
+ c3

1

n
+ 4c24h

3 + 4c4c5hg
2,

but, the terms c2
g

nh2
and c3

1

n
are negligible with respect to the term

c1
nh2

.

Similarly,
∂Ψ

∂g
= −c2

1

nh
+ 4c25g

3 + 4c4c5h
2g.

Therefore, the equations to be taken into account are the following ones145

−c1
1

nh2
+ 4c24h

3 + 4c4c5hg
2 = 0, (4)

−c2
1

nh
+ 4c25g

3 + 4c4c5h
2g = 0. (5)

There are three possible cases for the asymptotic behaviour of
g

h
.
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Case 1. g = o(h)

Equations equivalent to (4) and (5) in this case are

−c1
1

nh2
+ 4c24h

3 = 0,

−c2
1

nh
+ 4c4c5h

2g = 0.

Then, the optimal bandwidths are hopt = c0n
−1/5 and gopt = d0n

−2/5 with

c0 =

(
c1
4c24

)1/5

and d0 =
c2c

1/5
4

42/5c
3/5
1 c5

. In this case,

Ψ(hopt, gopt) =

(
c1
c0

+c24c
4
0

)
n−4/5+

(
c3c0+2c4c5c

2
0d

2
0−

c2d0

c0

)
n−6/5+c25d

4
0n
−8/5.

Case 2. h = o(g)

When h = o(g), asymptotically equivalent versions of Equations (4) and (5)

are

− c1
nh2

+ 4c4c5hg
2 = 0,

− c2
nh

+ 4c25g
3 = 0.

and the solution of this system is hopt = e0n
−1/7 and gopt =

(
c2

4c25e0

)1/3

n−2/7
150

with e0 =

(
c1(4c25)2/3

4c4c5c
2/3
2

)3/7

. So, gopt = o(hopt) which contradicts the initial

hypothesis. Case 2 is discarded.

Case 3. lim
h→∞

h

g
= α > 0, α ∈ R.

In this case,
h

g
= α asymptotically and the expression for Ψ becomes

Ψ(h, g) =
c1
nαg

− c2
nα

+ c6g
4

with c6 = c24α
4 + c25 + 2c4c5α

2 = (c4α
2 + c5)2.

The option c6 = 0 is discarded because it leads to an optimal bandwidth g155

which does not tend to zero. Therefore, c6 = (c4α
2 + c5)2 > 0 and the minimun

is reached at hopt = αl0n
−1/5 and gopt = l0n

−1/5 with l0 =

(
c1

4c6α

)1/5

. This

means that the minimal value of Ψ is attained at α =∞ which contradicts Case

3.

From the arguments above it follows that g = o(h) is the only feasible case,160

obtaining the corresponding optimal bandwidths for the estimator S̃ABh,g (t|x).
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4. Simulation study

A simulation study was conducted in order to compare the performance of

the proposed estimator of the conditional survival function. The study considers

two models, one with Weibull lifetime and censoring time distributions and165

another one with exponential distributions.

For Model 1, the covariate X follows a U(0, 1) distribution. The time to

occurrence of the event conditional to the covariate, T |X=x, follows a Weibull

distribution with parameters d and A(x)−1/d where d = 2 and A(x) = 1 + 5x,

and the censoring time conditional to the covariate, C|X=x, follows a Weibull

distribution with parameters d and B(x)−1/d where d = 2 and B(x) = 10 +

b1x + 20x2. In this case, the conditional survival function and the censoring

conditional probability are given by:

S(t|x) = e−A(x)td ,

P (δ = 0|X = x) =
B(x)

A(x) +B(x)
.

Having set the value of the covariate, x = 0.6 the value of b1 is chosen so that the

censoring conditional probability is 0.2, 0.5 and 0.8. These values are b1 = −27,

b1 = −22 and b1 = −2, respectively. The conditional survival function for

this model is estimated in a time grid of size nt, 0 < t1 < · · · < tnt , where170

tnt
+ b = F−1(0.95|x) for the value of the covariable x = 0.6.

Model 2 considers a U(0, 1) distribution for X. The time to occurrence of

the event conditional to the covariate, T |X=x, follows an exponential distribu-

tion with parameter Γ(x) = 2 + 58x − 160x2 + 107x3, and the censoring time

conditional to the covariate, C|X=x, follows an exponential distribution with

parameter ∆(x) = 10 + d1x + 20x2. In this scenario, the conditional survival

function and the censoring conditional probability are the following:

S(t|x) = e−Γ(x)t,

P (δ = 0|X = x) =
∆(x)

Γ(x) + ∆(x)
.
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Having set the value of the covariate, x = 0.8, the value of b1 is chosen so

that the censoring conditional probability is 0.2, 0.5 and 0.8. These values are

d1 = −113/4, d1 = −55/2 and d1 = −123/5, respectively. The conditional

survival function is estimated in a time grid of size nt, 0 < t1 < · · · < tnt
, where175

tnt + b = F−1(0.95|x) for the value of the covariable x = 0.8.

It can be proved that Model 1 is close to a proportional hazards model, while

Model 2 moves away from this parametric model. These two models were used

in the simulation study by [15]. The standard Gaussian kernel truncated in the

range [−50, 50] is used for both the covariate and the time variable smoothing.180

The sample size is n = 400, and the size of the lifetime grid is nt = 100. In

addition, the boundary effect is corrected using the reflexion principle proposed

in [18].

The optimal bandwidth for ŜBh (t|x), h1, is taken as the value which mini-

mizes a Monte Carlo approximation of the MISE given by

MISEx(h) = E

(∫ (
ŜBh (t|x)− S(t|x)

)2
dt

)
based on N = 100 simulated samples. The value of MISE using this smoothing

parameter is approximated from N = 1000 simulated samples and used, along185

with its square root (RMISE), as a measure of the estimation error which is

committed by ŜBh (t|x).

The smoothed survival estimator S̃Bh,g(t|x) depends on two bandwidths. Two

strategies are be used in order to obtain these smoothing parameters.

Strategy 1. It consists in fixing the covariate smoothing parameter to the opti-

mal one, h1, and approximating the time variable smoothing parameter. The

error to minimize is

MISEx(h1, g) = E

(∫ (
S̃Bh1,g(t|x)− S(t|x)

)2
dt

)
considered as a function of the bandwidth g. It is approximated from N = 100190

simulated samples in a grid of 50 values of g and the bandwidth which provides

the smaller error is chosen as g1. Then, N = 1000 samples are simulated
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to approximate MISEx(h1, g1) which is the measure of the estimation error

of S̃Bh,g(t|x). The main advantage of using this strategy is its relatively low

computational cost.195

Strategy 2. The optimal bandwidth (h2, g2) is chosen (from a meshgrid of 50

values of h and 50 values of g) as the pair which minimizes some Monte Carlo

approximations of

MISEx(h, g) = E

(∫ (
S̃Bh,g(t|x)− S(t|x)

)2
dt

)
based on N = 100 simulated samples. Then, the value of the MISE committed

by S̃Bh2,g2
(t|x) is approximated from N = 1000 simulated samples.

Neither the bandwidth obtained with Strategy 1 nor Strategy 2 can be used

in practice but their choice produces a fair comparison since the estimators are

built using the best possible smoothing parameters.200

Figure 1 shows the function MISEx(h1, g) for each level of censoring con-

ditional probability and each model. These graphs show the error curve to

minimize in order to obtain the optimal time smoothing parameter. It follows

from this that the optimal bandwidth g is easily approximated by Strategy 1.
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Figure 1: MISEx(h1, g) function approximated via Monte Carlo for the smoothed Beran’s

estimator using N = 100 simulated samples from Model 1 (top) and Model 2 (bottom) with

P (δ = 0|x) = 0.2 (left), P (δ = 0|x) = 0.5 (center) and P (δ = 0|x) = 0.8 (right).

Figure 2 shows the function MISEx(h, g) of Model 1 and Model 2 for the205

lowest and highest censoring level. These graphs show the two-dimensional

functions to be minimized in Strategy 2. The red zone is where this minimum

is reached and its coordinates provide the optimal smoothing bandwidths.
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Figure 2: MISEx(h, g) function approximated via Monte Carlo for the smoothed Beran’s

estimator using N = 100 simulated samples from Model 1 (top) and Model 2 (bottom) with

P (δ = 0|x) = 0.2 (left) and P (δ = 0|x) = 0.5 (right).

The graphs for both strategies show that the smoothing parameters can be

well approximated and bandwidths slightly larger or smaller than the true opti-210

mum value do not greatly affect the estimation error, so the different estimators

can be reasonably compared.

It is clear that the magnitude of the estimation error is notably affected by

the choice of the time smoothing bandwidth (g). However, for a fixed value of

h, the value of g for which the smallest error is committed does not seem to215

vary too much depending on the value of the covariate smoothing bandwidth
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(h). This can be seen in Figure 3. There, MISEx(h, g) is shown as a function

of g for some fixed values of h within the interval where the optimum is reached.

The obtained curves are similar and close for all the h values and every model.

Figure 3: MISEx(h, g) as a function of g approximated via Monte Carlo for the smoothed

Beran’s estimator using N = 100 simulated samples for some fixed equispaced values of

h ∈ [0.1, 0.4] for Model 1 (top) and h ∈ [0.01, 0.18] for Model 2 (bottom) with P (δ = 0|x) = 0.2

(left), P (δ = 0|x) = 0.5 (center) and P (δ = 0|x) = 0.8 (right).

Table 1 shows the optimal bandwidths and the estimation errors that are

committed by Beran’s estimator and the smoothed Beran’s estimator with both

Strategies 1 and 2 for each model. In order to compare the behaviour of the

estimators and quantify the improvement of the smoothing over the original

estimator, the ratio Ri is defined

Ri(t|x) =
RMISE

(
S̃Bhi,gi

(t|x)
)

RMISE
(
ŜBh1

(t|x)
)

with i = 1, 2 depending on the smoothing strategy used. The closer to 0 the220

value of R1 or R2, the greater the improvement with respect to Beran’s esti-

mator. The relation between R1 and R2 (R1 greater than R2 or viceversa) also
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informs which of the two strategies reduces the error most.

In all cases, RMISE values are lower for the smoothed Beran’s estimator

than for Beran’s estimator and this difference becomes bigger when increasing225

the censoring conditional probability. Moreover, the values of R1 and R2 satisfy

0 < R2 < R1 < 1 in all cases, so the estimator S̃Bh,g(t|x) with optimal bandwidth

(h2, g2) (Strategy 2) provides the most accurate estimation.

When the censoring conditional probability is 0.2 or 0.5, the time smoothing,

with either Strategy 1 or 2, reduces the error by about 8% in Model 1, this230

improvement is about 40% when the probability of conditional censoring is

0.8. The error reduction in Model 2 with respect to the nonsmoothed survival

estimator is more significant, reaching 30% and 70% when censoring is moderate

or heavy, respectively.

Model 1 Model 2

P(δ = 0|x) 0.2 0.5 0.8 0.2 0.5 0.8

ŜB
h1

h1 0.25918 0.22857 0.23469 0.04490 0.05265 0.12837

RMISE 0.02304 0.03186 0.08641 0.11112 0.14644 0.28914

S̃B
h1,g1

h1 0.25918 0.22857 0.23469 0.04490 0.05265 0.12837

g1 0.05110 0.05620 0.16330 0.54082 0.62857 1.23469

RMISE 0.02144 0.02943 0.05185 0.07817 0.10091 0.08886

R1 0.93055 0.92373 0.60005 0.70347 0.68909 0.30733

S̃B
h2,g2

h2 0.24082 0.20408 0.20408 0.11061 0.16980 2

g2 0.05265 0.06041 0.16510 0.88776 1.03061 1.35714

RMISE 0.02129 0.02907 0.05067 0.05248 0.06379 0.07550

R2 0.92405 0.91243 0.58639 0.47228 0.43561 0.26112

Table 1: Optimal bandwidths, RMISE, R1 and R2 of the survival estimation for Beran’s es-

timator, the smoothed Beran’s estimator with Strategy 1 and the smoothed Beran’s estimator

with Strategy 2 in each level of censoring conditional probability for Models 1 and 2.

Table 2 shows the computation time (in seconds) of Beran’s estimator and235

smoothed Beran’s estimator when estimating the conditional survival curve in a
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100-point time grid and a fixed value of x for different values of the sample size

in Model 1. The smoothing parameters are fixed to the optimal values before

estimating the curve.

n 50 100 200 400 1200

Beran 0.01 0.01 0.01 0.02 0.02

SBeran 0.01 0.01 0.02 0.03 0.07

Table 2: CPU time (in seconds) for estimating S(t|x) in a time grid of size 100 for each

estimator and different sample sizes (n).

Time variable smoothing results in an increase of the CPU time. The240

smoothed Beran’s estimator is the most affected by the increase of the sam-

ple size and its CPU times are higher than those of the nonsmoothed estimator.

It is also interesting to compare the computational efficiency of the two

strategies used to find the optimal bandwidths, since Strategy 1 seems to be

faster but Strategy 2 provides smaller estimation errors. Table 3 shows the245

CPU time (in minutes) for each strategy and several number of trials.

Strategy 1 consists in looking for the optimal bandwidth for ŜBh (t|x) as the

value which minimizes MISEx(h) out of nh = 50 possible values. It is called

h1 and it is fixed when lookig for the optimal bandwidth for S̃Bh1,g
(t|x) out of

ng = 50 possible values, g1. Strategy 2 cosists in obtanining the pair (h2, g2)250

as the value that minimizes MISEx(h, g) for S̃Bh,g(t|x) from a two-dimensional

grid of size nh × ng = 50× 50.

In both strategies the sample size is n = 400 and the conditional survival

function is estimated in a time grid of size nt = 100. The number of simulated

samples (N) used to approximate the MISE by Monte Carlo is the parameter255

that varies to compare the time each strategy takes to obtain the optimal band-

widths. The results clearly show the computational advantage of using Strategy

1, since Strategy 2 is significantly slower.
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N 50 100 150 200

Strategy 1 1.12 1.95 2.99 3.86

Strategy 2 37.58 79.83 117.79 159.99

Table 3: CPU time (in minutes) for approximating the optimal bandwidth (h, g) for S̃B
h,g(t|x)

with Strategies 1 and 2 and different numbers of trials (N).

The advantages or disadvantages of the smoothed Beran’s survival estimator

have been discussed. Now, it is interesting to compare the behaviour of other260

survival estimators with their smoothed versions. In a second simulation study,

three nonparametric estimators of the conditional survival function are consid-

ered: Beran’s estimator, the Weighted Nadaraya-Watson estimator (WNW) and

the Van Keilegom-Akritas estimator (VKA). The WNW estimator was built fol-

lowing the idea of [11], where the survival estimator is based on a local lineal265

regression. Since the weighted local lineal estimator presents problems when

estimating probabilities, a constant fit is proposed in [15]. The VKA estimator

was defined in [7]. Their expressions are shown in Section 2 of [15] and they are

denoted by ŜWNW
h (t|x) and ŜV KAh (t|x). Their smoothed versions (SWNW and

SVKA) are built according to Equation (1), obtaining the following smoothed270

survival estimators: S̃WNW
h,g (t|x) and S̃V KAh,g (t|x).

Since the computational cost of these estimators is pretty high, only Strategy

1 is used to look for the optimal smoothing parameters. Strategy 2 would further

increase the computation time of the simulations.

Table 4 shows the values of the optimal smoothing parameters and the error

committed by each estimator. In order to quantify the improvement that the

time smoothing brings to the survival estimation and compare the performance

of the three estimators, the ratios R•S and R•c are defined as follows and included

in Table 4:

R•S(t|x) =
RMISE

(
S̃•h1,g1

(t|x)
)

RMISE
(
Ŝ•h1

(t|x)
)

R•c(t|x) =
RMISE

(
S̃•h1,g1

(t|x)
)

RMISE
(
ŜBh2,g2

(t|x)
)
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being • = B, WNW, V KA.275

The values of R•S report the influence of the smoothing. The smaller the

value, the better the estimation obtained with the doubly smoothed estimator

compared to the corresponding single smoothed estimator. Since its value is

less than 1 in all cases of Models 1 and 2, the time smoothing seems to improve

the estimators. Moreover, the further away from 1 the value of R•S , the greater280

the improvement. In general, the estimator whose error is reduced the most is

the WNW estimator, especially when censoring is heavy.

The value of R•c is used to compare the behaviour of the three estimators

with the behaviour of the smoothed Beran’s estimator (Strategy 2). Almost all

the R•c values obtained are greater than 1. Therefore, the smoothed Beran’s285

estimator with Strategy 2 provides more accurate survival estimations. The

smoothed Beran’s estimator with Strategy 1 is the second best option for es-

timating the survival function, since its R•c values are the closest to 1. When

using Strategy 1, the smoothed WNW estimator appears to be competitive with

Beran’s estimator.290

P(δ = 0|x) = 0.2 P(δ = 0|x) = 0.5 P(δ = 0|x) = 0.8

SBeran SWNW SVKA SBeran SWNW SVKA SBeran SWNW SVKA

Model 1

h1 0.2592 1.5000 0.2592 0.2286 0.3755 0.2286 0.2347 1.5000 0.2347

g1 0.0511 0.0751 0.0294 0.0562 0.1402 0.0896 0.1633 0.4530 0.3225

RMISE 0.0214 0.0196 0.0489 0.0294 0.0350 0.0857 0.0519 0.0653 0.1025

R•S 0.9306 0.8602 0.9817 0.9237 0.8064 0.9666 0.6001 0.4507 0.5737

R•c 1.0066 0.9188 2.2944 1.0124 1.2037 2.9481 1.0233 1.2895 2.0229

Model 2

h1 0.0449 0.0410 0.0457 0.0527 0.0449 0.0538 0.1284 0.0737 0.1284

g1 0.5408 0.0193 0.1994 0.6286 1.1531 0.5469 1.2347 1.4123 1.2000

RMISE 0.0782 0.0840 0.4171 0.1009 0.0883 0.2062 0.0889 0.0756 0.0558

R•S 0.7035 0.5757 0.8858 0.6891 0.3401 0.4427 0.3073 0.1512 0.1104

R•c 1.4895 1.6014 7.9482 1.5819 1.3839 3.2319 1.1770 1.0014 0.7393

Table 4: Optimal bandwidths, RMISE, R•
S and R•

c of the survival estimation for the

smoothed Beran’s estimator, the smoothed WNW estimator and the smoothed VKA estimator

with Strategy 1 in each level of censoring conditional probability for Models 1 and 2.
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The computation time of these techniques should be considered in the com-

parison. Table 5 shows the CPU times (in seconds) that each of the estimators

spends in estimating the conditional survival function in a 100-point time’s grid

and a fixed value of x for different values of the sample size in Model 1.

Time variable smoothing always results in an increase of the CPU time295

since smoothed versions of Beran’s, the WNW and the VKA estimators have

higher CPU times than Beran’s estimator. The smoothed Beran’s estimator is

barely affected by the increase of the sample size and it is the fastest of the

three smoothed estimators. The following one is the smoothed VKA, although

its CPU time increases very fast with the sample size. The slowest and most300

affected by the sample size increase is the smoothed WNW estimator.

n 50 100 200 400 1200

Beran 0.01 0.01 0.01 0.02 0.02

SBeran 0.01 0.01 0.02 0.03 0.07

SWNW 1.5 3.15 10.80 47.40 710.13

SVKA 0.40 1.65 7.33 36.56 608.90

Table 5: CPU time (in seconds) for estimating S(t|x) in a time grid of size 100 for every

estimator and different sample sizes (n).

5. Conclusions

A general doubly smoothed estimator of the conditional survival function is

proposed in this paper. Asymptotic properties of the smoothed survival estima-

tor based on Beran’s estimator are proved. The asymptotic expressions of the305

bias and the variance of this estimator are complex but the rate of convergence

is equal to that of Beran’s estimator.

The first simulation study carried out shows that the estimation error is

reduced when using the smoothed Beran’s estimator of the conditional sur-

vival function, most notably with heavy censoring. However, the time variable310

smoothing increases the computation time, with Strategy 2 being much less ef-
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ficient than Strategy 1. The second simulation study revealed that the double

smoothing also implies an improvement of other nonparametric survival esti-

mators. As a general conclusion, the good behaviour of the doubly smoothed

Beran’s estimator in the different analysed contexts is remarkable.315

This work could be extended to the case of having a multidimensional covari-

ate x = (x1, ..., xq) where each xi is a feature of the individual. In the credit risk

context, all these features are usually sumarized in the covariate called credit

scoring.

6. Proofs320

Proofs of the results shown in Section 3 are complex. In this section a sketch

of them is given. The following lemma will be used in the proofs.

Lemma 2 (Integration by parts formula for Riemann-Stiltjes integral with a

piecewise-defined function). Let u : [0, L] −→ R be a differentiable function in

[0, L] and let v : [0, L] −→ R be a nondecreasing piecewise function, i.e.,

v(x) =

k−1∑
j=1

bj1[aj−1,aj)(x) + bk1[ak−1,ak](x)

where 0 = a0 < a1 < · · · < ak = L and bi ∈ R for all i = 1, ..., k, b1 < b2 <

· · · < bk. Then,∫ L

0

u(x)v(dx) =
[
u(x)v(x)

]x=L

x=0
−
∫ L

0

u′(x)v(x)dx.

Proof of Lemma 2.

On the one hand,∫ L

0

u(x)v(dx) =

k−1∑
i=1

u(ai)
(
v(ai)− v(ai−1)

)
=

k−1∑
i=1

u(ai)
(
bi+1 − bi

)
(6)

On the other hand,325
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[
u(x)v(x)

]x=L

x=0
−
∫ L

0

u′(x)v(x)dx =

= u(L)v(L)− u(0)v(0)−
k∑
j=1

∫ aj

aj−1

u′(x)v(x)dx

= u(L)v(L)− u(0)v(0)−
k∑
j=1

bj
(
u(aj)− u(aj−1)

)
= u(L)v(L)− u(0)v(0) + b1u(a0)− bku(ak) +

k−1∑
j=1

(bj+1 − bj)u(aj)

Since a0 = 0, ak = L, v(a0) = b1 and v(ak) = bk, we have

[
u(x)v(x)

]x=L

x=0
−
∫ L

0

u′(x)v(x)dx =

k−1∑
j=1

(bj+1 − bj)u(aj) (7)

Now, using (6) and (7), the lemma is proved.

Proof of Theorem 2.

Denoting F̃Bh,g(t|x) = 1 − S̃Bh,g(t|x) and F̂Bh (dt|x) = 1 − ŜBh (dt|x), standard330

algebra gives

F̃Bh,g(t|x)− F (t|x) =

∫
K
(
t− u
g

)
F̂Bh (du|x)− F (t|x) = A1 +A2, (8)

where

A1 =

∫
K
(
t− u
g

)(
F̂Bh (du|x)− F (du|x)

)
and

A2 =

∫
K
(
t− u
g

)
F (du|x)− F (t|x).

Using Lemma 2 and Theorem 1, it is obtained

A1 =

∫
K(u)

(
F̂Bh (t− gu|x)− F (t− gu|x)

)
du

=

∫
K(u)

(
−
(
1− F (t− gu|x)

) n∑
i=1

wn,i(x)ξ(Zi, δi, t− gu, x)

+Rn(t− gu|x)
)
du

= A11 +A12,

(9)
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where A11 = −
∫
K(u)

(
1 − F (t − gu|x)

) n∑
i=1

wn,i(x)ξ(Zi, δi, t − gu, x)du and

A12 =

∫
K(u)Rn(t− gu|x)du.

First considering A11 in (9),

A11 = −
∫
K(u)

(
1− F (t− gu|x)

) n∑
i=1

wn,i(x)ξ(Zi, δi, t− gu, x)du

= −
n∑
i=1

wn,i(x)

∫
K(u)

(
1− F (t− gu|x)

)
ξ(Zi, δi, t− gu, x)du,

and denoting η(Z, δ, t, x) :=
∫
K(u)

(
1 − F (t − gu|x)

)
ξ(Z, δ, t − gu, x)du, it is335

obtained

A11 = −
n∑
i=1

wn,i(x)η(Zi, δi, t, x). (10)

Considering A12 in (9) and using A.8, it follows that

|A12| ≤
∫ 1

−1

K(u)
∣∣∣Rn(t− gu|x)

∣∣∣du ≤ sup
z∈[t−g,t+g]

∣∣∣Rn(z|x)
∣∣∣.

Fix ε > 0 and define a′ = a+ ε, b′ = b− ε. Then,

sup
(t,x)∈[a′,b′]×I

|A12| ≤ sup
(t,x)∈[a′,b′]×I

{
sup

z∈[t−g,t+g]

∣∣∣Rn(z|x)
∣∣∣} (11)

On the one hand, there exists n0 ∈ N such that g = gn ≤ ε for all n ≥ n0.

So, z ∈ [t−g, t+g] implies that |z−t| ≤ g ≤ ε and equivalently, t−ε ≤ z ≤ t+ε.

On the other hand, t ∈ [a′, b′] implies that a+ ε = a′ ≤ t ≤ b′ = b− ε.340

Therefore,

z ≤ t+ ε ≤ (b− ε) + ε = b⇒ z ≤ b

and also,

z ≥ t− ε ≥ (a+ ε)− ε = a⇒ z ≥ a.

Hence, z ∈ [a, b] and x ∈ I. So, for t ∈ [a′, b′],

sup
z∈[t−g,t+g]

∣∣∣Rn(z|x)
∣∣∣ ≤ sup

(t′,x′)∈[a,b]×I

∣∣∣Rn(t′|x′)
∣∣∣. (12)

Recalling the inequality obtained in (11) and applying the inequality in (12),

one has

sup
(t,x)∈[a′,b′]×I

|A12| ≤ sup
(t,x)∈[a′,b′]×I

{
sup

(t′,x′)∈[a,b]×I

∣∣∣Rn(t′|x′)
∣∣∣}

25



and from Theorem 1,

sup
(t′,x′)∈[a,b]×I

∣∣∣Rn(t′|x′)
∣∣∣ = O

(
lnn

nh

)3/4

a. s.

Finally, defining R1
n(t|x) = A12, the following is obtained

sup
(t,x)∈[a′,b′]×I

∣∣∣R1
n(t|x)

∣∣∣ = sup
(t,x)∈[a′,b′]×I

|A12| = O

(
lnn

nh

)3/4

a. s. (13)

Now, considering A2 in (8) and using Lemma 2, it follows that

A2 =

∫ +∞

−∞

1

g
K

(
t− y
g

)
F (y|x)dy − F (t|x)

=

∫ +∞

−∞
K(u)F (t− gu|x)du− F (t|x).

Assuming that g = gn tends to zero when n tends to infinity, Taylor’s formula

for F (t− gu|x) gives:

F (t− gu|x) = F (t|x)− guF ′(t|x) +
1

2
(gu)2F ′′(t|x) + o(g2)

Then, using assumption A.8,

A2 =
1

2
dKF

′′(t|x)g2 +R2
n(t|x) (14)

with R2
n(t|x) = o(g2).

Finally, Equations (8) - (14) give

F̃Bh,g(t|x)−F (t|x) = −
n∑
i=1

wn,i(x)η(Zi, δi, t, x)+
1

2
dKF

′′(t|x)g2+R1
n(t|x)+R2

n(t|x)

where

sup
(t,x)∈[a′,b′]×I

∣∣∣R1
n(t|x)

∣∣∣ = O

(
lnn

nh

)3/4

a. s.

which proves Theorem 2 since S̃Bh,g(t|x)− S(t|x) = F (t|x)− F̃Bh,g(t|x).345

Proof of Lemma 1.

Theorem 2 gives

S̃Bh,g(t|x)−S(t|x) =

n∑
i=1

wn,i(x)η(Zi, δi, t, x)−1

2
dKF

′′(t|x)g2+R1
n(t|x)+R2

n(t|x) a.s.,
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where

wn,i(x) =
K
(
(x−Xi)/h

)∑n
j=1K

(
(x−Xj)/h

) .
Note that

m̂h(x) :=
1

nh

n∑
j=1

K
(
(x−Xj)/h

)
is the Parzen-Rosenblatt estimator of the density function of X, m(x). Then,

n∑
i=1

wn,i(x)η(Zi, δi, t, x) =

n∑
i=1

1

nh

K
(
(x−Xi)/h

)
m̂h(x)

η(Zi, δi, t, x)

=

n∑
i=1

1

nh

K
(
(x−Xi)/h

)
m(x)

η(Zi, δi, t, x)

+
m(x)− m̂h(x)

m̂h(x)

n∑
i=1

1

nh

K
(
(x−Xi)/h

)
m(x)

η(Zi, δi, t, x)

=

n∑
i=1

wAn,i(x)η(Zi, δi, t, x) +R3
n(t|x)

where

wAn,i(x) =
1

nh

K
(
(x−Xi)/h

)
m(x)

for all i = 1, ..., n and

R3
n(t|x) =

m(x)− m̂h(x)

m̂h(x)

n∑
i=1

wAn,i(x)η(Zi, δi, t, x)

Since m̂h(x) is a consistent estimator of m(x) and its bias and variance conver-

gence rates are O(h2) and O(1/nh), respectively (see [18]),

R3
n(t|x) = Op

(
h2 +

1√
nh

) n∑
i=1

wAn,i(x)η(Zi, δi, t, x).

Proof of Theorem 3.

Lemma 1 gives

S̃ABh,g (t|x)− S(t|x) =

n∑
i=1

wAn,i(x)η(Zi, δi, t, x)− 1

2
dKF

′′(t|x)g2

=
1

m(x)n

n∑
i=1

ϕn,i(t, x)− 1

2
dKF

′′(t|x)g2
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where ϕn,i(t, x) =
1

h
K

(
x−Xi

h

)
η(Zi, δi, t, x) are independent and identically350

distributed random variables for all i = 1, ..., n. Consequently,

Bias
(
S̃ABh,g (t|x)

)
=

1

m(x)
E
(
ϕn,1(t, x)

)
− 1

2
dKF

′′(t|x)g2 (15)

and

Cov
(
S̃ABh,g (t1|x), S̃ABh,g (t2|x)

)
=

1

m2(x)n
Cov

(
ϕn,1(t1, x), ϕn,1(t2, x)

)
. (16)

First, an expression for E
(
ϕn,1(t, x)

)
is found:

E
(
ϕn,1(t, x)

)
=

1

h
E

[
K

(
x−X1

h

)
E
[
η(Z1, δ1, t, x)|X1

]]
=

∫
K(v)Φη(x− hv, t, x)m(x− hv)dv

=

∫
K(v)

(
Φη(x, t, x)m(x)− hv∂Φη(u, t, x)m(u)

∂u

∣∣∣
u=x

+
h2v2

2

∂2Φη(u, t, x)m(u)

∂u2

∣∣∣
u=x

)
dv + o(h2)

= Φη(x, t, x)m(x) +
h2

2
dK

(
Φη(x, t, x)m′′(x)

+2Φ′η(x, t, x)m′(x) + Φ′′η(x, t, x)m(x)
)

+ o(h2)

Next, an explicit expression for Φη is obtained,

Φη(u, t, x) =

∫
K(v)

(
1− F (t− gv|x)

)
Φξ(u, t− gv, x)dv

where Φξ(u, t, x) = E
[
ξ(Z1, δ1, t, x)|X1 = u

]
can be written as follows:

Φξ(u, t, x) =

∫ t

0

dH1(z|u)

1−H(z|x)
−
∫ t

0

1−H(v|u)(
1−H(v|x)

)2 dH1(v|x).

Then, Φξ(x, t, x) = 0 for any x and t and, consequently, Φη(x, t, x) = 0 for any

x and t. Hence,

E
(
ϕn,1(t, x)

)
=
dK
2

(
2Φ′η(x, t, x)m′(x) + Φ′′η(x, t, x)m(x)

)
h2 + o(h2),

and replacing it in (15) the bias of S̃ABh,g (t|x) is available.

In order to achieve the covariance of the estimator, an asymptotic expression

for Cov
(
ϕn,1(t1, x), ϕn,1(t2, x)

)
is obtained355

Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
= C11 − C12 + C2, (17)
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where

C11 = E

[
1

h2
K2

(
x−X1

h

)
Φη(X1, t1, x)Φη(X1, t2, x)

]
,

C12 = E

[
1

h
K

(
x−X1

h

)
Φη(X1, t1, x)

]
E

[
1

h
K

(
x−X1

h

)
Φη(X1, t2, x)

]
and

C2 = E
[
Cov

[
ϕn,1(t1, x), ϕn,1(t2, x)|X1

]]
.

Asymptotic expressions for the terms involved in (17) are found. The first

becomes

C11 =

∫
1

h2
K2

(
x− u
h

)
Φη(u, t1, x)Φη(u, t2, x)m(u)du

=

∫ ∫ ∫
1

h
K2(w)K(v1)K(v2)

(
1− F (t1 − gv1|x)

)(
1− F (t2 − gv2|x)

)
B(x− hw, t1 − gv1, t2 − gv2, x)dv1dv2dw

where B(u, z1, z2, x) := Φξ(u, z1, x)Φξ(u, z2, x)m(u).

By means of a Taylor expansion of B(u, t1−gv1, t2−gv2, x) when u = x−hw

around u = x,

B(x−hw, t1−gv1, t2−gv2, x) = h2w2Φ′ξ(x, t1−gv1, x)Φ′ξ(x, t2−gv2, x)m(x)+O(h3).

Thus,

C11 =

∫ ∫ ∫
hw2K2(w)K(v1)K(v2)

(
1− F (t1 − gv1|x)

)(
1− F (t2 − gv2|x)

)
·Φ′ξ(x, t1 − gv1, x)Φ′ξ(x, t2 − gv2, x)m(x)dv1dv2dw +O(h2)

Now, using Taylor expansions of the functions involved when z1 = t2 − gv1 and

z2 = t2 − gv2 around z1 = t1 and z2 = t2, respectively, leads to

C11 = hdK2m(x)
(
1− F (t1|x)

)(
1− F (t2|x)

)
Φ′ξ(x, t1, x)Φ′ξ(x, t2, x)

+O(h2) +O(hg2).
(18)

Let us denote C(u, z, x) = Φξ(u, z, x)m(u). Then,

E

[
1

h
K

(
x−X1

h

)
Φη(X1, t, x)

]
360

=
h2

2
dK

∫
K(v)

(
1− F (t− gv|x)

)(
Φ′′ξ (x, t− gv, x)m(x)

+2Φ′ξ(x, t− gv, x)m′(x)
)
dv +O(h3) = O(h2)
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Hence,

C12 = O(h4). (19)

Now,

C2 =

∫
1

h2
K2

(
x− z
h

)
Cov

[
η(Z1, δ1, t1, x), η(Z1, δ1, t2, x)|X1 = z

]
m(z)dz

=
1

h
cKD(x, t1, t2, x) + hdK2D′′(x, t1, t2, x) +O(h2)

(20)

where D(u, t1, t2, x) is defined in the statement of Theorem 3. An expression

for D(x, t1, t2, x) is calculated. Since

E
[
η(Z1, δ1, t, x)|X1 = x

]
= Φξ(x, t, x) = 0

and

E
[
η(Z1, δ1, t1, x)η(Z1, δ1, t2, x)|X1 = x

]
=

∫ ∫
K(v1)K(v2)

(
1− F (t1 − gv1|x)

)(
1− F (t2 − gv2|x)

)
E
[
ξ(Z1, δ1, t1 − gv1, x)ξ(Z1, δ1, t2 − gv2, x)|X1 = x

]
dv1dv2,

it follows that

D(x, t1, t2, x)

= E
[
η(Z1, δ1, t1, x)η(Z1, δ1, t2, x)|X1 = x

]
m(x)

= m(x)

∫ ∫
K(v1)K(v2)

(
1− F (t1 − gv1|x)

)(
1− F (t2 − gv2|x)

)
E
[
ξ(Z1, δ1, t1 − gv1, x)ξ(Z1, δ1, t2 − gv2, x)|X1 = x

]
dv1dv2.

Long calculations lead to the following expression for D(x, t1, t2, x):365

D(x, t1, t2, x) = m(x)V1(t1, t2, x) +m(x)V2(t1, t2, x)g

+m(x)V3(t1, t2, x)g2 +O(g3)
(21)

where V1(t1, t2, x), V2(t1, t2, x) and V3(t1, t2, x) are defined in Theorem 3.

By means of similar but more tedious calculations, omitted here, a general

expression for D(u, t1, t2, x) could be obtained. Thus, using expression (21) in
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(20), gives:

C2 = cKm(x)V1(t1, t2, x)
1

h
+ cKm(x)V2(t1, t2, x)

g

h
+

cKm(x)V3(t1, t2, x)
g2

h
+
dK2

2
D′′(x, t1, t2, x)h

+O

(
g3

h

)
+O(h2).

(22)

Now, plugging (18), (19) and (22) in (17) gives

Cov
(
ϕn,1(t1, x), ϕn,1(t2, x)

)
= cKm(x)V1(t1, t2, x)

1

h
+ cKm(x)V2(t1, t2, x)

g

h

+cKm(x)V3(t1, t2, x)
g2

h
+ dK2V4(t1, t2, x)h

+O(h2) +O

(
g3

h

)
+O(hg2).

where

V4(t1, t2, x) = m(x)
(
1− F (t1|x)

)(
1− F (t2|x)

)
Φ′ξ(x, t1, x)Φ′ξ(x, t2, x)

+
1

2
D′′(x, t1, t2, x)

Replacing the expression of Cov
(
ϕn,1(t1, x), ϕn,1(t2, x)

)
in (16) leads to

Cov
(
S̃ABh,g (t1|x), S̃ABh,g (t2|x)

)
=

cK
m(x)

V1(t1, t2, x)
1

nh
+

cK
m(x)

V2(t1, t2, x)
g

nh

+
cK
m(x)

V3(t1, t2, x)
g2

nh
+

dK2

m2(x)
V4(t1, t2, x)

h

n

+O

(
h2

n

)
+O

(
g3

nh

)
+O

(
hg2

n

)
.

and the covariance part of the theorem is proved.370

Proof of Theorem 4.

From Theorem 3 an expression of the asymptotic variance of S̃ABh,g (t|x) is

obtained:

Var
(
S̃ABh,g (t|x)

)
=

cK
m(x)

V1(t, t, x)
1

nh
+

cK
m(x)

V2(t, t, x)
g

nh
+

cK
m(x)

V3(t, t, x)
g2

nh

+
dK2

m2(x)
V4(t, t, x)

h

n
+ o

(
g2

nh
+
h

n

)
.
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where

V1(t, t, x) = 2
(
1− F (t|x)

)2
L(t|x)K ∗K(0),

V2(t, t, x) = 2
(
1− F (t|x)

)2
L′(t|x)K ∗K1(0),

V3(t, t, x) =
(
− f ′(t|x)L(t|x)

(
1− F (t|x)

)
−2f(t|x)L′(t|x)

(
1− F (t|x)

))
K ∗K2(0)

−
(
1− F (t|x)

)
L(t|x)f ′(t|x)

(
dK −K ∗K2(0)

)(
− 2f2(t|x)L(t|x) +

(
1− F (t|x)

)
L′(t|x)f(t|x)

)
K1 ∗K1(0)

V4(t, t, x) = m(x)
(
1− F (t|x)

)2(
Φ′ξ(x, t, x)

)2
+

1

2
D′′(x, t, t, x),

Definitions of Kl(u) and Kl(u) in (3) and assumption A.8 give: K∗K(0) =
1

2
,

K ∗K1(0) = −1

2
+

1

2
cK, K ∗K2(0) =

1

2
− µ1(K2), K1 ∗K1(0) = 0. Therefore,

V1(t, t, x) =
(
1− F (t|x)

)2
L(t|x),

V2(t, t, x) = (cK − 1)
(
1− F (t|x)

)2
L′(t|x),

V3(t, t, x) = −dK
(
1− F (t|x)

)
L(t|x)f ′(t|x)

+

(
1

2
− µ1(K2)

)(
1− F (t|x)

)2
L′′(t|x)

+
(
2µ1(K2)− 1

)(
1− F (t|x)

)
L′(t|x)f(t|x),

from which the expression of Var
(
S̃ABh,g (t|x)

)
derives.375

Finally, the asymptotic normality of S̃Bh,g(t|x) is proved. In the proof of

Theorem 3 the estimator S̃Bh,g(t|x) is splited up into the following terms:

S̃Bh,g(t|x)− S(t|x) =
1

m(x)n

n∑
i=1

ϕn,i(t, x)− 1

2
dKF

′′(t|x)g2

+R1
n(t|x) +R2

n(t|x) +R3
n(t|x) a.s.,

where ϕn,i(t, x) =
1

h
K

(
x−Xi

h

)
η(Zi, δi, t, x) are independent and identically

distributed random variables for all i = 1, ..., n.

Since the supports of the functions K and m are compact and F (t|x) is

bounded, it is guaranteed that Var
(
ϕn,i(t, x)

)
< ∞. On the other hand, it is

clear that

σ2
n =

1

m2(x)n2

n∑
i=1

Var
(
ϕn,i(t, x)

)
> 0.
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Therefore, if the Lindeberg’s condition is satisfied, then∑n
i=1

(
ϕn,i(t, x)− E

[
ϕn,i(t, x)

])
σn

d−→ N(0, 1).

The Lindeberg’s condition requires that

1

σ2
n

n∑
i=1

∫
|ϕn,i(t,x)|>εσn

(
ϕn,i(t, x)− E

[
ϕn,i(t, x)

])2
dP −→ 0 ∀ε > 0.

Denoting 1(A) as the indicator function of A the following indicator is defined

1n,i = 1
(
|ϕn,i(t, x)− E[ϕn,i(t, x)]| > εσn

)
= 1

((
1

h
K

(
x−Xi

h

)
η(Zi, δi, t, x)−E

[
1

h
K

(
x−Xi

h

)
η(Zi, δi, t, x)

])2

>ε2σ2
n

)
the Lindeberg’s condition can be expressed as follows

1

σ2
n

n∑
i=1

∫{∣∣ϕn,i(t, x)− E[ϕn,i(t, x)]
∣∣ > εσn

} (ϕn,i(t, x)− E
[
ϕn,i(t, x)

])2

dP

=
1

σ2
n

E

[ n∑
i=1

(
ϕn,i(t, x)− E

[
ϕn,i(t, x)

])2

1n,i

]
=

1

σ2
n

E
(
ϕn
)

By applying assumption A.3d, it is easy to prove that ξ(Z, δ, t, x), defined in

Theorem 1, is bounded:

|ξ(Z, δ, t, x)| =

∣∣∣∣ 1{Z≤t,δ=1}

1−H(Z|x)
−
∫ t

0

dH1(u|x)(
1−H(u|x)

)2 ∣∣∣∣
≤

1{Z≤t,δ=1}

1−H(Z|x)
+

∫ t

0

dH1(u|x)(
1−H(u|x)

)2 ≤ 1

θ
+

∫ t

0

dH1(u|x)

θ2

≤ 1

θ
+
H(t|x)

θ2
≤ 1

θ
+

1

θ2

and, consequently, η is also bounded:

|η(Z, δ, t, x)| ≤
∫
K(u)

(
1− F (t− gu|x)

)(1

θ
+

1

θ2

)
du

=

(
1

θ
+

1

θ2

)((
1− F (t|x)

)
+
g2

2
dK
(
1− F ′′(t|x)

))
+O(g2)

Due to the fact that (nh)−1 −→ 0 and K and η are bounded,

∃n0 ∈ N/n ≥ n0 ⇒ 1n,i(w) = 0, ∀w and ∀i ∈ {1, 2, . . . , n}

⇔ ∃n0 ∈ N/n ≥ n0 ⇒ ϕn(w) = 0,∀w

33



⇔ ∃n0 ∈ N/n ≥ n0 ⇒ E
(
ϕn
)

= 0

Hence, lim
n→∞

1

σ2
n

E
(
ϕn
)

= 0 and the Lindeberg’s condition is proved. As a con-

sequence, ∑n
i=1

(
ϕn,i(t, x)− E

[
ϕn,i(t, x)

])
σn

d−→ N(0, 1)

where σ2
n = Var

(
S̃ABh,g (t|x)

)
. The asymptotic normality of the estimator then380

holds.
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[6] M. C. Iglesias-Pérez, W. González-Manteiga, Strong representation of a

generalized product-limit estimator for truncated and censored data with

some applications, Journal of Nonparametric Statistics 10 (3) (1999) 213–

244.

[7] I. Van Keilegom, M. Akritas, Transfer of tail information in censored re-405

gression models, The Annals of Statistics 27 (5) (1999) 1745–1784.

[8] I. Van Keilegom, M. Akritas, N. Veraverbeke, Estimation of the condi-

tional distribution in regression with censored data: a comparative study.,

Computational Statistics & Data Analysis 53 (2001) 457–481.

[9] A. Gannoun, J. Saracco, A. Yuan, G. Bonney, Nonparametric quantile410

regression with censored data, Scandinavian Journal of Statistics 32 (2005)

527–550.

[10] A. Gannoun, J. Saracco, K. Yu, Comparison of kernel estimator of condi-

tional distribution function and quantile regression under censoring, Sta-

tistical Modelling 7 (4) (2007) 329–344.415

[11] Z. Cai, Weighted local linear approach to censored nonparametric regres-

sion, in: M. G. Akritas, D. N. Politis (Eds.), Recent Advances and Trends

in Nonparametric Statistics, 2003, p. 217–231.

[12] L. N. Allen, L. C. Rose, Financial survival analysis of defaulted debtors,

Journal of the Operational Research Society 57 (6) (2006) 630–636.420

[13] R. Cao, J. M. Vilar, A. Devia, Modelling consumer credit risk via survival

analysis (with discussion), Statistics and Operations Research Transactions

33 (1) (2009) 3–30.

[14] L. Dirick, G. Claeskens, B. Baesens, Time to default in credit scoring using

survival analysis: a benchmark study, Journal of the Operational Research425

Society 68 (2017) 652–665.

35
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