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Abstract

This work deals with a coupled acoustic problem involving a compressible fluid and a poroe-
lastic material contained in a cavity whose walls are all rigid except for the top, where a flexible
plate is placed. The fluid is described utilizing its acoustic pressure, whereas, for the plate,
the Naghdi model is used. The mechanical behaviour of the absorbing layer attached to the
plate is described by using a Biot-Allard model, where the governing equations are written in
the displacement-based formulation. A comprehensive three-dimensional analysis is performed,
comparing numerical and experimental results and showing the advantages of using the Biot-
Allard poroelastic model over other fluid-equivalent formulations, such as the Allard-Champoux
model.
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method.

1 Introduction

The use of poroelastic materials is widespread across various industries. For instance, they are
commonly employed in thermal applications [1], quasi-ceramic fibres used in burner designs [2], as
well as veils, compression pads, and thermal barriers found in battery packs for electric vehicles [3].
In the realm of acoustic engineering, porous materials are often associated with passive noise
control, which is of particular importance in sectors such as transportation and mobility ([4, 5]),
consumer goods ([6, 7]), and the enhancement of acoustics within noisy rooms [8]. To effectively
use poroelastic materials in these industrial applications, it is essential to understand the impact
of introducing these materials on the mechanical system under consideration and to accurately
identify their intrinsic properties, including flow resistivity and structural stiffness.

Therefore, with regard to vibroacoustic comfort, precise modelling of absorbing materials is
essential for the development of passenger compartment designs. In classical literature, the math-
ematical modelling of these absorbing materials has been extensively detailed. Comprehensive
reviews on the physical properties of such materials, methods for their measurement, various math-
ematical models, as well as their applications to different porous materials, can be found in sources
such as [9, 10].

These references present three different approaches to modelling porous materials. The first
approach involves experimental impedance measurements, which are detailed in sources such as
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[11, 12]. The second approach treats the porous medium as a fluid-equivalent model with specific
dissipative properties, as can be seen in [13–15]. Finally, the third approach involves modelling the
material as an elastic medium comprising two media, with a structural stiffness associated with
the solid phase and a fluid stiffness to account for fluid flow interaction. This approach is shown
in works such as [16–18], all of which are based on Biot theory [19]. The most recent Biot-Allard
model [9] includes the dissipative behaviour of poroelastic materials by introducing frequency-
dependent damping expressions in the inertial and stress terms of the classical Biot model.

Further advances in the characterization of complex absorbing materials have been developed
recently. For instance, Bravo and Maury [20] determined the key constitutive parameters that
primarily influence the axial attenuation or normal absorption for rigidly-backed fibrous anisotropic
materials in contact with a uniform mean flow. These parameters include fibre orientation and
the degree of anisotropy. The absorption and attenuation properties of fibres with varying radii,
randomly distributed in planes parallel to the surface, were modelled using Multiple Scattering
Theory. Meanwhile, [21] analyzed the microstructure of sound-absorbing porous media with a rigid
frame, taking into account the periodic geometry and using direct multi-scale computations as well
as hybrid multi-scale calculations based on numerically determined transport parameters of porous
materials. A similar approach was also used in [22] to derive new poroelastic Biot-like models from
a two-scale homogenization procedure. Recently, other unphysical models that apply artificial
intelligence methods, such as neural networks [23], have also emerged as data-driven modelling
approaches.

In the process of selecting a method for modelling absorbing materials, it is essential to carefully
consider the assumptions underlying each method and their respective ranges of validity. Reliable
results in any numerical simulation also require experimental characterization of the material’s
mechanical properties, including its elastic stiffness, as well as the frequency range of interest and
whether the vibrations are structural-borne or airborne in origin. Furthermore, it is important
to keep in mind that each modelling approach has a different computational cost and generates
qualitatively different frequency responses based on the angle of acoustic excitation. For instance,
responses may vary depending on whether the excitation is normal or oblique when it impinges on
the absorbing material.

In [17], a three-dimensional finite element model was developed to predict sound transmission
loss through multilayer systems comprising elastic, acoustic, and poroelastic media. The three-
dimensional poroelastic medium was modelled using the Biot theory, while a fluid-equivalent model
was used to simulate fluid cavity absorption. However, this model becomes inaccurate when the
absorbent is bonded to the elastic plate as the stiffness and damping of the absorbing material
increase. In the subsequent work [18], the authors addressed the computational efficiency of different
algorithms. They employed a three-dimensional finite element approach to solving the vibroacoustic
coupled problem numerically, modelling the poroelastic material using the Biot-Allard theory. To
avoid the need to recompute large frequency-dependent finite element matrices at each frequency
step, they transformed the discretized equations of motion into a more appropriate form that
explicitly separated the solid and fluid degrees of freedom.

Atalla et al. proposed a novel mixed displacement-pressure formulation for modelling poroe-
lastic materials in [24]. In this formulation, the pressure field accounts for the compressible effects
in a poroelastic medium, while the displacement field describes its overall vibrational behaviour.
Compared to the classical two-displacement formulation, this pressure-displacement formulation
has a significant computational advantage in reducing the number of degrees of freedom in the
finite element implementations. Later on, the authors presented a three-dimensional finite element
method for designing macro-perforated porous materials using a non-homogeneous porous media
model in [25] and the mixed pressure-displacement formulation to model the poroelastic mate-
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rial. The results demonstrated that the proposed approach could effectively predict the acoustic
properties of the designed materials.

The present study focuses on a three-dimensional coupled problem involving a compressible fluid
and a poroelastic material that is attached to an elastic plate. The Biot-Allard model describes the
absorbing material’s behaviour, while the elastic plate is modelled using the Naghdi model, which
accounts for the transversal and in-plane structural displacements. The coupling between these
three types of elements in the mechanical system increases the complexity of understanding the
system’s frequency response. Although a mixed pressure-displacement formulation could benefit the
discretization of the poroelastic material, a displacement-displacement formulation is employed to
achieve a natural coupling with respect to the degrees of freedom of the Naghdi plate displacements.
In addition, an acoustic pressure-based model is used to describe the adiabatic compressional
effects on the fluid cavity. The in-house finite element implementation has been validated using
a simplified problem with a known analytical solution. Then the obtained numerical results were
compared with experimental data from two different types of absorbing materials. Furthermore,
the numerical frequency responses obtained with the Biot-Allard model and the fluid-equivalent
Allard-Champoux model have also been analyzed when the acoustic source is placed in a frontal
or lateral location with respect to the position of the absorbing poroelastic layer.

The structure of this paper is organized as follows. Section 2 presents the strong formulation of
the problem. Section 3 introduces the variational formulation, and subsequently, it is discretized in
Section 4 by presenting its matrix formulation. The numerical implementation of the proposed finite
element code is validated in Section 5 by using a three-dimensional benchmark with plane-wave
solutions, and it shows the expected order of convergence. In Section 6, numerical and experimental
results highlight the differences between the fluid-equivalent and Biot-Allard models. Finally, the
main conclusions of this numerical and experimental study are included in Section 7.

2 Porous-fluid-plate coupled model

Throughout this work, all the acoustic sources are assumed time-harmonic, with a time dependence
e−iωt, being ω the angular frequency. Consequently, the solution is also time-harmonic due to the
linearity of the coupled problem considered throughout this manuscript. Hence, all the computa-
tions are implicitly assumed in the frequency domain. Two-dimensional cuts of the geometrical
setting of the coupled problem are shown in Figure 1(a).

As usual for interior vibroacoustic problems (see [26], for example), exterior loads are neglected,
and the compressible fluid in ΩF is assumed to be homogeneous, inviscid, barotropic, and ideal.
Then, it can be modelled by means of the Lagrangian fluctuation of the pressure, pF, governed by
the classical Helmholtz equation,

− 1

ρFω2
∆pF − 1

ρFc2F
pF = g in ΩF, (1)

where ρF and cF stand for the fluid mass density and the sound speed within it, and g is the
acoustic volumetric source in the fluid subdomain.

To describe the vibrations of the poroelastic material, the classical (uF
A,u

S
A)-displacement for-

mulation of the Biot-Allard equations (see [9, 19]) has been used. The Biot-Allard equations
consider two stress tensors that describe the internal loads resulting from the presence of fluid and
solid phases within the poroelastic material. These stress tensors can be mathematically expressed
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(a) A two-dimensional vertical cut
of the computational domain

(b) Detail of the locations of the
screws for fixing the plate

Figure 1: The computational domain is composed of the fluid, the poroelastic subdomains (high-
lighted in white and grey, respectively), and the plate on the top (left). The rigid walls are marked
in black. The screw boundaries on the plate are highlighted with thick black thick segments (right).

as follows:

σS
A = (PA − 2NA)(divu

S
A)I + 2NAϵ(u

S
A) +QA(divu

F
A)I,

σF
A = RA(divu

F
A)I +QA(divu

S
A)I,

where ϵ is the three-dimensional strain tensor defined by

ϵij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ 3. (2)

The coefficients involved in the fluid and solid stress tensors can be expressed in terms of the elastic
mechanical properties of the fluid and the solid frame of the poroelastic material as follows:

NA =
EA(1 + iηA)

2(1 + νA)
, PA =

2NA(1 + νA)

3(1− 2νA)
+

4

3
NA +

(1− ϕ)2

ϕ
K(ω),

QA = (1− ϕ)K(ω), RA = ϕK(ω),

where EA, ηA, and νA denote the Youngs’ modulus, the loss factor, and the Poisson coefficient of
the elastic material of the solid frame of the poroelastic material, respectively. In contrast to the
classical Biot model, where no dissipative effects are included in the stress tensor, the Biot-Allard
model accounts for the viscous and thermal losses in the microstructure of the poroelastic material.
In that manner, the frequency-dependent dynamic bulk modulus,

K(ω) = γP0

(
γ − (γ − 1)

/(
1 +

8ηF
iΛ′2PrωρF

√
1 + iρFωPrΛ′2

16ηF

))−1

,

has been involved in the expression of the tensor coefficients. In the expression above, ρF and
ρS denote the mass density of the saturated fluid and the solid skeleton of the porous material,
respectively, and ϕ and Λ′ are the porosity and the characteristic thermal length of the porous
material. Additionally, the expression of K(ω) involves four saturated fluid-related parameters:
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the atmospheric pressure, P0 = 101320 Pa, and the adimensional Prandtl’ number, Pr = 0.71,
the ratio for the specific heats γ = 1.4, and the dynamic fluid viscosity of the saturated fluid
ηF = 1.81× 10−5 Pa s.

Considering the stiffness and the inertial terms, the Biot-Allard model in the absorbing subdo-
main, ΩA, can be posed as

−divσF
A − ω2ρ̂22(ω)u

F
A − ω2ρ̂12(ω)u

S
A = 0 in ΩA, (3)

−divσS
A − ω2ρ̂11(ω)u

S
A − ω2ρ̂12(ω)u

F
A = 0 in ΩA. (4)

The inertial terms in the Biot-Allard model involve ρ̂11 and ρ̂22, which represent, respectively, the
mass densities of the fluid and solid frames in the porous medium, and ρ̂12 the inertial coupling
between both phases. To model the dissipative effects of the poroelastic material, the Biot-Allard
mass damping is included in the mass coefficients given by (see [9])

ρ̂11(ω) = ρS − ρ̂12(ω),

ρ̂12(ω) = −ϕρF(α∞ − 1) + irϕ2G(ω)

ω
,

ρ̂22(ω) = ϕρF − ρ̂12(ω),

with G(ω) =
√
1 + i4α2

∞ηFρFω/(rΛϕ), being r the flow resistivity of the poroelastic material, α∞
the tortuosity and Λ the characteristic viscous length of the poroelastic material.

Finally, the Naghdi model [27] has been used to model the elastic plate’s behaviour, which takes
into account the shear strain on the mid surface of the plate, ΓP. This model is written by means
of, by one side, the displacements of the mean surface of the plate, uP =

(
u1P, u

2
P, u

3
P

)
, decomposed

into in-plane (membrane) displacements, uM
P =

(
u1P, u

2
P

)
, and normal displacements, u3P, and, by

the other side, the rotations of the fibers initially normal to the plate surface, βP =
(
β1
P, β

2
P

)
. Then,

the model splits into two uncoupled systems of equations: First, the Reissner-Mindlin equations
for the transverse displacements:

− t3EP

24
(
1− ν2P

) [(1− νP)∆βP + (1 + νP)∇divβP]

− kPtEP

2 (1 + νP)

[
∇u3P − βP

]
− ω2 t

3ρP
12

βP = 0 on ΓP, (5)

− kPtEP

2 (1 + νP)

(
∆u3P − divβP

)
− ω2tρPu

3
P = gP on ΓP. (6)

Here, t stands for the thickness of the plate, EP is its Young modulus, νP the Poisson ratio, kP
a shear strain correction factor (which is usually fixed to 5/6 for clamped plates), ρP is the mass
density of the plate, and gP is the structural load (pressure) exerted on the plate. Secondly, the
two-dimensional linear elasticity equation accounts for the in-plane plate motion:

− EPt

12
(
1− ν2P

) [(1− νP)∆uM
P + (1 + νP)∇divuM

P

]
− ω2tρPu

M
P = 0 on ΓP. (7)

Regarding the coupling conditions between the different media, and the boundary conditions,
kinematic and kinetic conditions must be imposed among the fluid, the poroelastic, and the plate:

(A) Coupling conditions on the fluid-poroelastic interface ΓFA:
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(A.1) The continuity of fluid and poroelastic loads is ensured by taking into account the balance
of the loads in terms of the fluid and solid stress tensors in the poroelastic material as
follows:

σF
An = −ϕpFn, σS

An = −(1− ϕ)pFn on ΓFA,

where ϕ is the porosity of the porous material.

(A.2) Equality of normal displacements (slipping condition):

1

ρFω2

∂pF
∂n

=
(
(1− ϕ)uS

A + ϕuF
A

)
· n =

(
uS
A + ϕ(uF

A − uS
A)
)
· n on ΓFA.

(B) Coupling conditions at the poroelastic-plate interface ΓP:

(B.1) Continuity of loads:
(
σF
A + σS

A

)
n = gPn on ΓP, where gP is the load exerted on the

plate (see the right-hand side in (6)).

(B.2) Equality of normal displacements between the plate and the fluid part of the absorbing
medium (slipping condition) and equality of displacements between the plate and the
solid part of the absorbing medium (no-slipping condition),

uF
A · n = uP · n = u3P, uS

A = uP on ΓP.

(C) Boundary conditions on the outer boundaries of the computational domain:

(C.1) Null normal displacements on the walls of the fluid subdomain,

1

ρFω2

∂pF
∂n

= 0 on ΓN ∩ ∂ΩF.

(C.2) Null normal displacements of the solid part and the fluid part on the walls of the ab-
sorbent subdomain, this is,

uS
A · n = 0, uF

A · n = 0 on ΓD ∩ ∂ΩA.

(D) Boundary conditions for the plate:

(D.1) Null normal displacements of the mean surface of the plate in the locations of the screws
and null rotations of the fibres that were initially normal to the plate surface in the same
locations,

uP = 0, βP = 0 on ℓD.

(D.2) Free conditions on the exterior boundary of the plate, outside the screws (see [28]),

n ·C(βP)n = s ·C(βP)n = 0,
∂u3P
∂n

= βP · n on ∂ΓP \ ℓD,

where C stands for the tensor associated with the linear elasticity in the plate, appearing
in the first term of equation (5), and s denotes the unitary vector tangential to the plate
boundary.

A detailed analysis of the importance to consider bolted boundary conditions versus clamped
ones is described in [29], where the shear correction factor is assumed kP = 5/6.
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3 Variational formulation

In order to apply a classical numerical Galerkin-type method (i.e., a finite element method), a
variational formulation must be obtained from the coupled system (1)-(7) jointly with the coupling
boundary conditions and boundary conditions, (A)-(D). For this purpose, an adequate functional
space must be settled for the trial and the test functions of the weak problem associated with the
coupled problem. Attending to the differential operators involved in the governing equations, the
solution to the variational problem is sought in

V =
{(

qF,v
F
A,v

S
A,vP,ηP

)
∈ H1(ΩF)×

(
H1(ΩA)

)3 × (H1(ΩA)
)3 × (H1(ΓP)

)3 × (H1(ΓP)
)2

:

vF
A · n

∣∣
ΓP

= v3P, vS
A

∣∣
ΓP

= vP, vF
A · n

∣∣
∂ΩA∩ΓD

= vS
A · n

∣∣
∂ΩA∩ΓD

= 0, vP|ℓD = ηP|ℓD = 0
}
. (8)

Once the governing equations (1)-(7) are multiplied by their respective test functions qF, v
F
A, v

S
A,

vP, ηP, and after applying Green’s formulae considering the corresponding coupling and boundary
coupling conditions, the variational formulation of the problem can be written as follows (see [30]
for further details): Find

(
pF,u

F
A,u

S
A,uP,βP

)
∈ V such that∫

ΩF

1

ρFω2
∇pF ·∇qFdΩ−

∫
ΩF

1

ρFc2F
pFqFdΩ−

∫
ΓFA

ϕ
(
uF
A · n

)
qFdΓ−

∫
ΓFA

(1− ϕ)
(
uS
A · n

)
qFdΓ

−
∫
ΓFA

ϕpF(v
F
A · n)dΓ +RA

∫
ΩA

divuF
Adivv

F
AdΩ +QA

∫
ΩA

divuS
Adivv

F
AdΩ−

∫
ΩA

ω2ρ̂22u
F
A · vF

AdΩ

−
∫
ΩA

ω2ρ̂12u
S
A · vF

AdΩ−
∫
ΓFA

(1− ϕ)pF(v
S
A · n)dΓ + (PA − 2NA)

∫
ΩA

divuS
Adivv

S
AdΩ

+ 2NA

∫
ΩA

ϵ
(
uS
A

)
: ϵ
(
vS
A

)
dΩ +QA

∫
ΩA

divuF
Adivv

S
AdΩ−

∫
ΩA

ω2ρ̂11u
S
A · vS

AdΩ−
∫
ΩA

ω2ρ̂12u
F
A · vS

AdΩ

+
t3

12

∫
ΓP

ϵP(βP) : ϵP(ηP)dΓ + t

∫
ΓP

ϵP(u
M
P ) : ϵP(v

M
P )dΓ + kPt

∫
ΓP

(
∇u3P − βP

)
·
(
∇v3P − ηP

)
dΓ

−
∫
ΓP

ω2ρPuPvPdΓ− ω2 t
3

12

∫
ΓP

ρPβP · ηPdΓ =

∫
ΩF

gqFdΩ, (9)

for all
(
qF,v

F
A,v

S
A,vP,ηP

)
∈ V. Here the double dot denotes the inner product for tensors, and ϵP

denotes the two-dimensional strain tensor for the plate, defined in an analogous way to the tensor
ϵ in (2).

4 Finite element discretization and matrix formulation

A finite element method has been considered for computing numerically the solution of the varia-
tional problem (9), based on a quasi-uniform hexahedral mesh. With this aim, a three-dimensional
hexahedral mesh, which is compatible with the boundary between the fluid and porous subdo-
mains, has been used. The fluid pressure is discretized with continuous Q1-Lagrange elements (one
degree of freedom per vertex in ΩF). Analogous (Q1)

3-Lagrange elements are used to discretize the
displacement fields uF

A and uS
A in the poroelastic subdomain, involving six degrees of freedom per

vertex in ΩA.
The mesh on the plate is extracted from the top faces of the porous medium mesh, resulting in a

mesh composed of quadrilateral elements. The plate discretization combines standard Q1-Lagrange
elements for the membrane displacements uM

P with MITC4 elements for the bending displacements
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u3
P, as shown in [31]. Elements MITC4 are the lowest order element for quadrilateral meshes

within the MITC family. Bathe and Dvorkin introduced this family in [32]. It is widely used
for avoiding the shear-locking phenomenon (namely, a significant reduction in numerical accuracy
when the thickness of the plate decreases, which is typical for an incorrect discretization of the
Reissner-Mindlin equations).

Taking into account this finite element discretization, the discrete variational problem associated
with (9) in matrix form is as follows: Find the finite element approximations pF,h, u

F
A,h, u

S
A,h, u

M
P,h,

u3P,h, and βP,h which are solution of the block linear system

A11 A12 A13 0 0 0
At

12 A22 A23 0 0 0
At

13 At
23 A33 0 0 0

0 0 0 A44 0 0
0 0 0 0 A55 A56

0 0 0 0 At
56 A66





pF,h
uF
A,h

uS
A,h

uM
P,h

u3P,h
βP,h


=



b
0
0
0
0
0

 . (10)

Here, the first line in the left-hand side matrix stands for the integrals in ΩF and its boundary,

qtF,hA11pF,h =
1

ρFω2

∫
ΩF

∇pF,h ·∇qF,hdΩ− 1

ρFc20

∫
ΩF

pF,hqF,hdΩ,

qtF,hA12u
F
A,h = −ϕ

∫
ΓFA

uF
A,hnqF,hdΓ,

qtF,hA13u
S
A,h = −(1− ϕ)

∫
ΓFA

uS
A,hnqF,hdΓ.

The second block in that matrix represents the integrals in ΩA,

(vF
A,h)

tA22u
F
A,h =RA

∫
ΩA

divuF
A,hdivv

F
A,hdΩ− ω2

∫
ΩA

ρ̂22u
F
A,h · vF

A,hdΩ,

(vF
A,h)

tA23u
S
A,h =QA

∫
ΩA

divuS
A,hdivv

F
A,hdΩ− ω2

∫
ΩA

ρ̂12u
S
A,h · vF

A,hdΩ,

(vS
A,h)

tA33u
S
A,h =(PA − 2NA)

∫
ΩA

divuS
A,hdivv

S
A,hdΩ +

∫
ΩA

ϵ
(
uS
A,h

)
: ϵ
(
vS
A,h

)
dΩ

− ω2

∫
ΩA

ρ̂11u
S
A,h · vS

A,hdΩ.

The third block stands for the integrals on ΓP,

(vM
P,h)

tA44u
M
P,h =t

∫
ΓP

ϵP(u
M
P,h) :ϵP(v

M
P,h)dΓ− ω2

∫
ΓP

ρPu
M
P,hv

M
P,hdΓ,

(v3P,h)
tA55u

3
P,h =kPt

∫
ΓP

∇u3P,h ·∇v3P,hdΓ− ω2

∫
ΓP

ρPu
3
P,hv

3
P,hdΓ,

ηt
P,hA56u

3
P,h =− kPt

∫
ΓP

∇u3P,h ·RηP,hdΓ,

ηt
P,hA66βP,h =

t3

12

∫
ΓP

ϵP(βP,h) · ϵP(ηP,h)dΓ + kPt

∫
ΓP

RβP,h ·RηP,hdΓ

− ω2 t
3

12

∫
ΓP

ρPβP,h · ηP,hdΓ.
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Matrices A56 and A66 involves the reduction operator R, which is characteristic of MITC methods.
In this case, the operator R projects the discrete functions onto the rotated Raviart-Thomas finite
element space (see, for example, [33] for further details). Finally, the external source appears on
the right-hand side as

b =

∫
ΩF

gqF,hdΩ.

In the matrix description of the discrete coupled problem, the notation is abused since the discrete
finite element functions and the complex-valued vectors with the values associated with the degrees
of freedom in the finite element discretization are denoted in the same manner. Additionally,
although the degrees of freedom u3P,h and uM

P,h associated with the plate discretization and the

poroelastic discretization uS
A,h seem uncoupled in the linear system (10), the coupling boundary

condition (B.2) enables the assembly of the degrees of freedom of the plate displacement into the
degrees of freedom associated with the poroelastic displacement of the solid part.

5 Numerical validation benchmark

The accuracy of the finite element discretization and the performance of its computer imple-
mentation have been thoroughly examined and validated using an analytical benchmark with a
closed-form exact solution. To achieve this, a three-dimensional problem is stated, where the rigid
boundary on the bottom is replaced by a piston-like boundary that enforces constant pressure.
Specifically, the Dirichlet boundary condition pF(x, y, 0) = 1 is imposed on the fluid subdomain’s
bottom surface located at z = 0, as illustrated schematically in Figure 2.

Figure 2: Two-dimensional vertical cross-section of the geometric setting used in the benchmark
problem. The arrows on the bottom boundary highlight the imposed Dirichlet boundary condition
on the pressure field.

If the computational domain is assumed to be a parallelepiped with all internal coupling bound-
aries being planar and parallel to the bottom boundary, the exact solution can be uniquely described
in terms of the vertical direction due to the computational domain’s symmetry. Consequently, the
analytical solution can be obtained by solving a straightforward plane-wave transmission problem
using the transfer matrix method (for a detailed discussion, refer to Appendix A).

The discrete variational problem (10) has been solved using successively refined uniform meshes
over the parallelepiped computational domain (−0.3, 0.3)× (−0.3, 0.3)× (0, 6)m. The poroelastic
subdomain is situated between the planes z = 0.4m and z = 0.6m, while the elastic plate is
assumed to be free and located at the top boundary z = 0.6. By comparing the approximated
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solution with the exact solution, the accuracy and convergence error of the proposed finite element
discretization can be analyzed.

In the following analysis, the numerical results obtained using the finest mesh are computed for
a frequency of 100Hz. The compressible fluid is assumed to be air with properties ρF = 1.21 kg/m3

and cF = 340 m/s. The physical parameters of the poroelastic material are derived from the
Acusticell material, as listed in Table 1. As for the aluminium plate in the coupled system, its
properties considered include a thickness of t = 0.001m, a Poisson ratio of νP = 0.334, a mass
density of ρP = 2660.9 kg/m3, and complex-valued frequency-dependent Young’s modulus EP,
whose real and imaginary part are plotted in Figure 8(b) (see [29] for a detailed discussion).

The plots in Figures 3-5 depict the real and imaginary parts (left) as well as the L2-relative
error (right) for the pressure field in the fluid domain, the displacement field of the fluid and solid
parts of the absorbing material, and the normal displacement of the plate. Since the exact solution
is dependent only on the vertical direction z, all the fields are plotted at the vertices of the mesh
along the central line x = y = 0, spanning from the midpoint of the bottom boundary to the
location of the plate at the top. Specifically, for the plate displacements, the normal displacement
in the z direction is plotted along the line y = 0, z = 0.6.
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Figure 3: Numerical results of the exact and discrete approximation of the pressure field in the
fluid subdomain plotted at the central line x = y = 0.

Figure 6 shows the L2-relative error plotted with respect to the mesh size of the finite element
discretization for the pressure field in the fluid domain and the plate displacement (left plot) and the
displacement fields of the fluid and solid part of the absorbing medium (right plot). The expected
second-order convergence O(h2) is observed in all cases.

6 Experimental validation

This section presents a variety of numerical simulations aimed at validating and comparing different
vibroacoustic coupled models with respect to two approaches for the poroelastic material. Firstly,
the numerical results obtained from the fluid-equivalent Allard-Champoux model (as conducted
in [29]) are compared with the numerical results obtained using the Biot-Allard model described
in this manuscript. Both sets of numerical results are validated by comparison with experimental
data.

Second, the coupled problem is numerically solved again, considering both the Allard-Champoux
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Figure 4: Numerical results of the exact and discrete approximation of the displacement fields uF
A

and uS
A in the poroelastic subdomain plotted at the central line x = y = 0.

and the Biot-Allard models, but now in two distinct scenarios. These scenarios involve placing the
acoustic source in frontal and lateral configurations within the fluid cavity. By examining the plate
vibrations in these two scenarios, qualitatively different behaviours between the two models are
observed.

6.1 Experimental setting

The same experimental setup described in [29] has been employed for the experimental validation
in this study. It is important to note that quasi-uniform hexahedral and quadrilateral meshes were
utilized for the Allard-Champoux and Biot-Allard simulations, although with slight variations in
each case. In the numerical tests presented in [29], non-matched meshes were used, with an element
size of 0.02m for the plate and 0.1m for the fluid domain. However, for the numerical results
corresponding to the Biot-Allard model, refined compatible meshes with an element size of 0.025m
have been employed for all subdomains (fluid, poroelastic, and plate).

The experimental validation setup (see Figure 7) comprises a 0.6m×0.6m×0.6m parallelepiped
box. Five of its faces are rigid, made of wood with a thickness of 0.040m and covered with an
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Figure 5: Numerical results of the exact and discrete approximation of the normal displacement
field on the plate plotted at the line y = 0, z = 0.6.
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Figure 6: Convergence curves for the finite element approximation of the fluid pressure field and
the displacements in the poroelastic subdomain and the plate.

aluminium layer. The top face consists of a flexible aluminium plate with a thickness of 0.001m.
The plate is rigidly joined to the remaining walls of the cavity using screws.

A calibrated loudspeaker serves as the acoustic source, positioned at the centre of the base and
considered as a baffled source. In the numerical model, the loudspeaker is represented as a pulsating
sphere, and the source term in (1) is modelled as a monopole g = iQ̂/ωδx0 , where δx0 denotes the
Dirac’s delta function supported at x0 ∈ ΩF. The volume velocity of the loudspeaker, denoted
as Q̂, has been experimentally determined using the method proposed in [34]. A comprehensive
description of the source characterization is provided in [29], and the frequency response of Q̂ is
illustrated in Figure 8(a).

Once the cavity is excited by the loudspeaker with a random signal in the frequency range of
interest, the acoustic pressure is measured experimentally at nine different points inside the cavity
(see the black points sketched in Figure 8(c)) being normalized by the loudspeaker input voltage at
each point (see Figure 8(d)). The root mean squared (RMS) value is obtained from the amplitude of
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(a) Exterior (b) Interior (c) Plate

Figure 7: Experimental validation setting with a detailed view of the exterior, interior (with the
frontal location of the loudspeaker in the bottom), and the plate (where the screw locations are
highlighted in yellow).

those measurements, that is, RMS =
√∑9

j=1 |pF(xj)/V (xj)|2, where recall pF is the fluid pressure,

V is the loudspeaker input voltage measured experimentally, and xj are the spatial coordinates of
the measurement points depicted in Figure 8(c).

As in [29], the plate has been assumed clamped in the locations of the screws (see the plate
boundary highlighted in yellow in Figure 7(c)). Additionally, the plate Young’s modulus has been
characterized experimentally according to the ASTM754-04 standard [35] measuring its real and
imaginary part by the method proposed by Caraccilo et al. in [36].

Regarding the physical values taken into account in the experimental validation, the mass
density of the fluid (air at normal conditions) is assumed ρF = 1.21 kg/m3 and its speed of sound
cF = 340 m/s. The physical values for the two absorbent materials are listed in Table 1. Finally, the
mechanical behaviour of the aluminium plate is characterized by its mass density ρP = 2660.9 kg/m3,
the Poisson’s coefficient νP = 0.334, and the complex-valued Young’s modulus whose frequency
response functions for the real and imaginary parts are plotted in Figure 8(b).

Porous layer Acustifiber P Acusticell

Thickness (10−3 m): 39 24

Flow resistivity, r : (Ns/m4) 2000 22000
Porosity, ϕ: >0.95 >0.95
Tortuosity, α∞: 1.03 1.38
Viscous length, Λ (10−6m): 420 17
Thermal length, Λ′ (10−6m): 650 40

Skeleton density, ρS(kg/m3): 17 26
Young Modulus, EA(kPa): 13 192
Loss factor, ηA: 0.23 0.13
Poisson ratio, νA: 0.0 0.23

Table 1: Physical parameters of the Biot-Allard model for Acoustifiber P and Acusticell absorbing
materials.
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Figure 8: Frequency response function of loudspeaker volume velocity (top-left) and complex-valued
Young modulus of the plate (top-right). Location of measurement points (bottom-left) and input
voltage (bottom-right).

6.2 Scenario with a frontal acoustic source

First, an acoustic excitation is positioned in front of the plate and the absorbing layer, located
at the centre of the base of the fluid cavity (x0 = (x, y, z) = (0.30, 0.30, 0.00)). Figure 9 shows
the RMS frequency response function for both absorbent materials detailed in Table 1, comparing
the experimental data, the numerical results obtained using the Allard-Champoux fluid-equivalent
model (as described in [29]), and the results obtained using the Biot-Allard model described in
this work. In this figure, it can be observed that both numerical methods provide accurate ap-
proximations of the resonance frequencies of the coupled system. However, the model presented
in this study (blue curve) exhibits superior predictive capabilities throughout the entire frequency
spectrum, closely matching the experimental response observed in the laboratory.

Figures 10 and 11 show the numerical results obtained from both methods for two resonance
frequencies: 70Hz (second mode of the coupled system) and 286Hz (third mode of the coupled
system, which is closed to the first mode of the fluid cavity). For both methods, the pressure
magnitude in the fluid and the normal displacement magnitude in the plate are displayed. With
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Figure 9: Comparison of the experimental data with the finite element approximation of the RMS
frequency response in a frontal source scenario.

respect to the porous medium, due to the use of a different discretization variable, the pressure
field is shown for the Allard-Champoux model and the vertical component of the displacement of
the solid part for the Biot-Allard model.

6.3 Scenario with a lateral acoustic source

The second test-case scenario involves a lateral excitation, where the same acoustic source is posi-
tioned at the centre of one of the side walls of the fluid cavity (x0 = (x, y, z) = (0.00, 0.30, 0.30)).
Figure 12 presents the RMS frequency response for both the Allard-Champoux and Biot-Allard
models. While this lateral configuration has not been experimentally reproduced, the available
experimental data from the frontal configuration has been included in the figure as a reference
curve.

Similar to frontal excitation, the model presented in this study demonstrates enhanced predic-
tive ability within the analysed frequency range. By incorporating two compression waves and one
shear wave in the porous medium, the Biot-Allard model combined with Nagdhi’s plate formulation
accurately captures the plate’s dynamic behaviour. Consequently, it produces more precise results
compared to the Allard-Champoux model.

Figure 13 shows the pressure and displacement fields computed using both models at a frequency
of 286Hz, corresponding to the excitation of the first resonance mode in the fluid cavity. The same
fields as those shown in Figures 10 and 11 are displayed, including fluid pressures and normal
displacements in the plate. In the case of the poroelastic layer, the pressure field is plotted for the
Allard-Champoux model, while vertical displacements are depicted for the Biot-Allard model.

Figure 14 presents the in-plane displacements on the plate for this lateral source scenario.
Specifically, the displacements in the x and y directions are plotted on the left and right-hand
panels, respectively. It can be observed that these displacements are several orders of magnitude
smaller than the normal displacements. However, accurately capturing these displacements can be
advantageous in certain practical applications, such as when multiple folded plates cover the fluid.
The proposed coupled modelling approach using the Biot-Allard governing equations in this study
successfully achieves this objective. In contrast, the Allard-Champoux model does not account for
these displacements due to its fluid-equivalent modelling approach.
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Figure 10: Finite element approximation of the fluid pressure field and the vertical displacements
for the Allard-Champoux model (left) and the Biot-Allard model (right) at 70Hz in the frontal
source scenario. The geometry has been exploited and translated to better inspect the fields at the
coupling boundaries.

7 Conclusions

A detailed description of a coupled vibroacoustic problem has been provided, involving a compress-
ible fluid domain and an elastic plate coated with a poroelastic layer. The acoustic fluid is modelled
based on the pressure field, whereas the poroelastic material is governed by the Biot-Allard model
written in a displacement-based formulation. Additionally, the fluid-equivalent Allard-Champoux
model, which only considers the pressure field, has also been considered for comparison purposes.
The plate vibrations are modelled using the Naghdi plate model, accounting for the in-plane and
the normal displacements of the middle layer of the plate and the rotations of the initially normal
fibres. The coupled vibroacoustic system is discretized using bilinear Lagrange elements for the
fluid and poroelastic medium on hexahedral meshes and mixed MITC4 elements for the elastic
plate.

The finite element implementation has been validated on a test example with a known closed-
form solution, demonstrating optimal convergence order. Subsequently, the frequency response
using both the Allard-Champoux and Biot-Allard models has been numerically computed and
compared with experimental data in two test-case scenarios: frontal and lateral locations for the
acoustic source. The Biot-Allard approach accurately predicts the experimental results when a
frontal excitation is considered, surpassing the numerical results obtained by the equivalent fluid
Allard-Champoux model. In the case of a lateral excitation where the acoustic source is placed with
respect to the poroelastic layer, the advantages of using the Biot-type model are evident. It allows
for the prediction of not only the normal displacements of the elastic plate but also the membrane
(in-plane) displacements, which are neglected in the Allard-Champoux model. This vibroacoustic
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Figure 11: Finite element approximation of the fluid pressure field and the vertical displacements
for the Allard-Champoux model (left) and the Biot-Allard model (right) at 286Hz in the frontal
source scenario. The geometry has been exploited and translated to better inspect the fields at the
coupling boundaries.

feature is crucial in industrial applications where shear stresses need to be predicted on structures
where the poroelastic patches are located.

A Plane-wave solution of a piston-like benchmark

A plane wave solution under normal incidence is sought across the fluid and poroelastic domains
to obtain the analytical expression of the exact solution in the benchmark test (see Section 5).
Considering the symmetry of the boundary conditions and the computational domain, the solution
depends only on the z-coordinate. Hence, it can be written as a linear combination of compressional
plane waves. Specifically, the pressure field, as well as the vertical component of the fluid and solid
displacement fields in the absorbing subdomain, can be expressed as follows:

pF(z) = P i
Fe

−ikFz + P r
Fe

+ikFz,

uS3A (z) = e−ik+AzUS,1i
A + e+ik+AzUS,1r

A + e−ik−AzUS,2i
A + e+ik−AzUS,2r

A , uF3A (z) = µAu
S3
A (z),

where the fluid and poroelastic compressional wavenumber are kF = ω/cF and

k±A = ω

√
b+

√
b2 − 4a(ρ̂11ρ̂22 − ρ̂212)

2a
,

being b = RAρ̂11+PAρ̂22−2QAρ̂12 and a = RAPA−Q2
A (see [9] for further details). The amplitude

ratio µA between the amplitude of the displacements of fluid and solid parts in the absorbing
medium is given by µA = (PA(k

±
A)

2 − ω2ρ̂11)/(ω
2ρ̂12 −QA(k

±
A)

2).
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Figure 12: Comparison of the experimental data with the finite element approximation of the RMS
frequency response in a lateral source scenario.

Since the pressure and displacement fields in the poroelastic subdomains only depend on the
z-coordinate, the loads exerted by the absorbing material on the plate at z = 0.6 will be con-
stant. Hence, combining this fact with the simply supported boundary conditions imposed on the
plate leads to β = (β1, β2) = (0, 0), and the normal displacement on the plate will be constant.
Consequently, the governing equation of the plate is reduced to tρPω

2u3P = gP.
Now, applying the coupling boundary conditions (A)-(D) and the boundary condition associated

with the Dirichlet boundary condition on the bottom boundary leads to the following linear system
of equations:

P i
F + P r

F = 1,

e−ikF(H−tA)P i
F + e+ikF(H−tA)P r

F

+ ik1 [PA +QA(µ1 + 1) +RAµ1]
(
−e−ik1(H−tA)US,1i

A + eik1(H−tA)US,1r
A

)
+ ik2 [PA +QA(µ2 + 1) +RAµ2]

(
−e−ik2(H−tA)US,2i

A + eik2(H−tA)US,2r
A

)
= 0,

ikF
ρFω2

(
−e−ikF(H−tA)P i

F + e+ikF(H−tA)P r
F

)
− [1 + ϕ(µ1 − 1)]

(
e−ik1(H−tA)US,1i

A + eik1(H−tA)US,1r
A

)
− [1 + ϕ(µ2 − 1)]

(
e−ik2(H−tA)US,2i

A + eik2(H−tA)US,2r
A

)
= 0,

e−ikF(H−tA)P i
F + e+ikF(H−tA)P r

F

+
ik1
ϕ

(QA +RAµ1)
(
−e−ik1(H−tA)US,1i

A + eik1(H−tA)US,1r
A

)
+

ik2
ϕ

(QA +RAµ2)
(
−e−ik2(H−tA)US,2i

A + eik2(H−tA)US,2r
A

)
= 0,
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Figure 13: Finite element approximation of the fluid pressure field and the vertical displacements
for the Allard-Champoux model (left) and the Biot-Allard model (right) at 286Hz in the lateral
source scenario. The geometry has been exploited and translated to better inspect the fields at the
coupling boundaries.

e−ik1HUS,1i
A + eik1HUS,1r

A + e−ik2HUS,2i
A + eik2HUS,2r

A − u3P = 0,

(µ1 − 1)
(
e−ik1HUS,1i

A + eik1HUS,1r
A

)
+ (µ2 − 1)

(
e−ik2HUS,2i

A + eik2HUS,2r
A

)
= 0,

ik1 [PA +QA(µ1 + 1) +RAµ1]
(
−e−ik1HUS,1i

A + eik1HUS,1r
A

)
+ ik2 [PA +QA(µ2 + 1) +Rµ2]

(
−e−ik2HUS,2i

A + eik2HUS,2r
A

)
− tρPω

2u3P = 0,

where H is the height of the parallepiped computational domain and tA is the thickness of the
porous layer.
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structure acoustic interaction. In S. Marburg and B. Nolte, editors, Computational Acoustics
of Noise Propagation in Fluids, pages 253–286. Springer-Verlag, 2008.

[27] P. M. Naghdi. The theory of shells and plates. In C. Truesdell, editor, Linear Theories of
Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells,
pages 425–640. Springer Berlin Heidelberg, Berlin, Heidelberg, 1973.

21



[28] D.N. Arnold and R.S. Falk. Asymptotic analysis of the boundary layer for the reissner-mindlin
plate model. SIAM Journal on Mathematical Analysis, 27(2):486–514, 1996.

[29] X. Sagartzazu, L. Hervella-Nieto, and J. M. Pagalday. Numerical computation of the acoustic
pressure in a coupled covered plate/fluid problem: Experimental validation. Acta Acustica
united with Acustica, 96:317–327, 2010.
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