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Abstract

We present an extension of the local discontinuous Galerkin (LDG) method
introduced in [9] for nonlinear diffusion problems to nonlinear stationary con-
vection-diffusion problems. We develop a numerical study of the convergence
properties of the new method and solve the stationary compressible Reynolds
lubrication equation under some realistic conditions.
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1. Introduction

Discontinuous Galerkin (DG) methods were introduced in 1973 by Reed
and Hill [25] for solving the neutron transport equation. These methods have
been successfully applied to the solution of convection-diffusion equations when
convection is dominant [16, 18, 15, 22, 23, 17, 14, 27]. Indeed, Cockburn and
Shu [16] introduced the so-called Local Discontinuous Galerkin (LDG) method
as an extension to general convection-diffusion problems of the numerical scheme
proposed by Bassi and Rebay [5] for the compressible Navier-Stokes equations.

In general, these methods have the disadvantage of requiring more degrees
of freedom than usual continuous Galerkin methods. However, their high degree
of accuracy can compensate this drawback. In [18] a multiscale discontinuous
Galerkin (MDG) method that has the computational structure and cost of a
conforming method was introduced, and later analyzed in [7, 20]. On the other
hand, a hybridizable discontinuous Galerkin method for convection-diffusion-
reaction problems was proposed in [15]. This method shows optimal convergence
properties for both the total flux and the scalar variable. Moreover, it exhibits
superconvergence properties for the approximation of the scalar variable. In
[22], a different approximation for the total flux is considered and the method
is extended to time-dependent linear convection-diffusion equations. Steady-
state and time-dependent nonlinear convection-diffusion equations with smooth
solution are considered in [23].
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More recently, the discontinuous Galerkin method was combined with a
mixed method to solve a linear stationary convection-diffusion problem [17],
a method based on the interior penalty discontinuous Galerkin (IPDG) method
was proposed in [14] for the same equation, and the nonsymmetric DG method
with interior penalties (NIPG) and the symmetric DG method with interior
penalties (SIPG) on modified graded meshes were analyzed in [27].

We are interested in the numerical solution of the compressible Reynolds
lubrication equation modified for slip flow. This equation arises, for instance, in
the modelling of read/write processes in magnetic storage devices, such as hard
disks [6]. It is a nonlinear convection-dominated convection-diffusion equation.
Concerning its one-dimensional version, in [19] a Locally exact Partial Differ-
ential Equation Method (LPDEM), combined with a Newton-Raphson method
was applied. On the other hand, an algorithm based on the approximation
by characteristics of the convection dominating terms and a duality method to
treat the nonlinear diffusive term was studied in one [2] and two dimensions [3]
(see also [11]). However, up to the authors’ knowledge, regardless their possible
advantages, no discontinuous Galerkin methods have been applied to solve this
equation.

In this work we explore the applicability of a local discontinuous Galerkin
method introduced in [9] for nonlinear diffusion problems to nonlinear station-
ary convection-diffusion equations. We develop a numerical study of the con-
vergence properties of the method and solve the two-dimensional compressible
Reynolds lubrication equation modified for slip flow in several academic and
realistic situations.

The paper is organized as follows. Section 2 briefly describes the compress-
ible Reynolds lubrication equation modelling the hydrodynamic behaviour of
magnetic reading devices. In Section 3, we present the extension of the method
introduced in [9] to a general nonlinear stationary convection-diffusion equation.
In Section 4 we describe the flux formulation. Then, in Section 5 we provide
some numerical results for the compressible Reynolds lubrication equation mod-
ified for slip flow. Finally, in Section 6 we draw some conclusions.

2. The compressible Reynolds lubrication equation

The compressible Reynolds lubrication equation models thin gas films. For
example, in magnetic recording devices (such as computer hard disks) an air
layer flows between the rigid disk, where the data are stored, and the reading
head. In this case, as both bodies are rigid, the thickness (or gap) of the air layer
is a known function. In other kinds of devices, the data are stored in a flexible
magnetic tape; thus, the air gap is not known a priori and has to be computed,
jointly with the air pressure, as the solution of a coupled elastohydrodynamic
problem [26].

In an isothermal and stationary regime, compressible Reynolds equation for
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a (perfect) gas lubricating film with pure sliding conditions is [6]:

∇ ·
[
ph3

η
∇p
]

= 6
∂

∂x1
(Uph) ,

where x1 and x2 are the spatial coordinates (x1 is the coordinate in the direc-
tion of sliding), η is the viscosity of the gas, U is the sliding velocity of the
moving bearing surface (which we will assume to be constant), h is the local
film thickness and p is the local pressure of the gas.

Following Burgdorfer [8], local viscosity η is related to viscosity at ambient
conditions, ηa, by:

η =
ηa

1 + 6aλ/h
,

where a and λ are parameters related to the surface and the gas, respectively.
Introducing the Knudsen number at ambient conditions, M , the viscosity can
be written as:

η =
ηa

1 + 6aMpahm/(ph)
,

where pa is the ambient pressure and hm is the mean film thickness. Thus,
Reynolds equation becomes:

∇ ·
[
ph3

(
1 +

6aMpahm
ph

)
∇p
]

= 6ηa
∂

∂x1
(Uph) . (1)

As it is usual in other fluid mechanics models, we introduce adimensional
variables:

P =
p

pa
, H =

h

hm
, X1 =

x1

L
, X2 =

x2

L
,

where L is a characteristic dimension of the domain. Then (1) takes the following
form:

∇ ·
[(

1 +
6aM

PH

)
PH3∇P

]
=

6ηaUL

pah2
m

∂

∂X1
(PH) . (2)

Introducing the bearing number

Λ =
6ηaUL

pah2
m

leads us to:

Λ
∂

∂X1
(PH)−∇ ·

[(
1 +

6aM

PH

)
PH3∇P

]
= 0

or, in an equivalent form,

∂

∂X1
(PH)−∇ ·

[
αH2∇P + βH3P∇P

]
= 0 , (3)

where the constant coefficients are given by:

α =
6aM

Λ
and β =

1

Λ
.
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Thus, for usual values of parameters [6] we have

α = 3.32× 10−3 , β = 7.01× 10−4

so that the linear contribution to diffusion is sensibly larger than the nonlinear
one.

3. A local discontinuous Galerkin method for nonlinear stationary
convection-diffusion equations

Let d = 2, 3 and let Ω ⊂ Rd be a polygonal or polyhedral domain with
boundary Γ. We consider the following nonlinear convection-diffusion problem:
find u : Ω→ R such that

d∑
i=1

∂xi

(
fi(u)−

d∑
j=1

aij(u)∂xju
)

= l in Ω

u = g on Γ

(4)

where fi, aij , l and g are sufficiently smooth given functions.
We follow [9] and introduce as auxiliary unknowns the gradient, s = ∇u,

and the total flux, σ, with components σi =
∑d
j=1 aij(u)sj , for i = 1, . . . , d, in

Ω. Then, problem (4) can be rewritten equivalently as follows:

s = ∇u in Ω ,

σi =

d∑
j=1

aij(u)sj , for i = 1, . . . , d in Ω ,

d∑
i=1

∂xi
fi(u)−∇ · σ = l in Ω ,

u = g on Γ .

(5)

Let {Th}h be a regular family of triangulations of Ω, made up of triangles if
d = 2 or tetrahedra if d = 3, where Ω = ∪T∈ThT . We multiply the first three
equations of problem (5) by smooth test functions τ , t and v, respectively, and
integrate over an element T ∈ Th:

∫
T

s · τ =

∫
T

∇u · τ ,∫
T

σ · t =

∫
T

d∑
i=1

d∑
j=1

aij(u)sj ti ,∫
T

d∑
i=1

∂xifi(u) v −
∫
T

∇ · σ v =

∫
T

l v ,

where u = g on Γ.
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Integrating by parts in the first and third equations, we have

∫
T

s · τ +

∫
T

u∇ · τ −
∫
∂T

u τ · nT = 0 ,∫
T

d∑
i=1

d∑
j=1

aij(u)sj ti −
∫
T

σ · t = 0 ,

∫
T

d∑
i=1

∂xifi(u) v +

∫
T

σ · ∇v −
∫
∂T

σ · nT v =

∫
T

l v ,

(6)

where nT is the unit outward normal to T . Moreover, u = g on Γ.
Let k be a nonnegative integer. We denote by Pk(T ) the space of polynomials

of degree at most k on T . Then, we consider the discrete spaces

V kh := {vh ∈ L2(Ω) : vh|T ∈ Pk(T ) , ∀T ∈ Th}

and
Σkh := {τh ∈ [L2(Ω)]d : τh|T ∈ [Pk(T )]d , ∀T ∈ Th} .

We then approximate the exact solution (s, u,σ) by (sh, uh,σh) ∈ Σk1h × V
k2
h ×

Σk3h (in general, we will take k1 = k2 = k3 or k1 = k3 = k2 − 1).
The idea of the local discontinuous Galerkin method is to enforce the con-

servation laws given in (6) by substituting the values of σ and u on ∂T by
appropriate numerical approximations σ̂ and û, respectively. We consider the
following formulation: find (sh, uh,σh) ∈ Σk1h × V k2h × Σk3h such that for all
T ∈ Th,

∫
T

sh · τh +

∫
T

uh∇ · τh −
∫
∂T

û τh · nT = 0 ,∫
T

d∑
i=1

d∑
j=1

aij(uh)(sh)j (th)i −
∫
T

σh · th = 0 ,

∫
T

d∑
i=1

∂xifi(uh) vh +

∫
T

σh · ∇vh −
∫
∂T

σ̂ · nT vh =

∫
T

l vh ,

for all (th, vh, τh) ∈ Σk1h ×V
k2
h ×Σk3h , where the numerical fluxes σ̂ and û usually

depend on σh, uh and the boundary conditions; in particular, û = g on Γ.
In order to define the specific numerical fluxes that we will employ in our

formulation, we need to introduce some notations. Let T and T ′ be two adjacent
elements in Th. Then, an interior edge (face) of Th is the (nonempty) interior of
∂T ∩ ∂T ′; analogously, if T is a boundary element of Th, a boundary edge (face)
of Th is the (nonempty) interior of ∂T ∩ Γ. We denote by EI the union of all
interior edges (faces) of Th, by E∂ the union of all boundary edges (faces), and
by E := EI ∪ E∂ .

Given v := (vT )T∈Th ∈ ΠT∈ThL
2(∂T ) and τ := (τT )T∈Th ∈ ΠT∈Th [L2(∂T )]d,

we denote by vT,e := vT |e and τT,e := τT |e, ∀T ∈ Th and ∀ e ∈ E . Let e ∈ EI ,
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e = ∂T ∩ ∂T ′. Then, we define the average of v on e as

{v} :=
1

2
(vT,e + vT ′,e)

and the jump of v across e as

[v] := vT,enT + vT ′,enT ′ .

Analogously, we define the average and the jump of τ across e ∈ EI as

{τ} :=
1

2
(τT,e + τT ′,e) , [τ ] := τT,e · nT + τT ′,e · nT ′ .

We remark that [v] is a vector whereas [τ ] is a scalar quantity.
Let e ∈ E∂ . Since the traces of v and τ are defined in a unique way, we

denote
[v] := vT,enT , {τ} := τT,e .

We follow [10, 24] and define the numerical fluxes û and σ̂ for each T ∈ Th
as follows:

ûT,e :=

{ {uh}+ ζ · [uh] if e ⊂ EI

g if e ⊂ E∂
(7)

and

σ̂T,e :=

{ {σh} − ζ[σh]− δ[uh] if e ⊂ EI

σh − δ(uh − g)n if e ⊂ E∂
(8)

where the auxiliary functions δ (scalar) and ζ (vector) are univalued on each
edge (face) e ∈ E and must be chosen appropriately.

From the definitions (7) and (8), it follows that

{û} = û , [û] = 0 , {σ̂} = σ̂ , [σ̂] = 0 , on EI , (9)

which implies that the numerical fluxes are consistent and conservative (see [1]
or [10] for the corresponding definitions).

4. The flux formulation

First of all, we recall from [9] that for v := (vT )T∈Th ∈ ΠT∈ThL
2(∂T ) and

τ := (τT )T∈Th ∈ ΠT∈Th [L2(∂T )]d, we have the following identity:∑
T∈Th

∫
∂T

vT τ · nT =
∑
e∈EI

∫
e

{v}[τ ] +
∑
e∈EI

∫
e

[v] · {τ}+
∑
e∈E∂

∫
e

[v] · {τ} . (10)
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Now, summing up in (6) over all the elements T ∈ Th, using the identity
(10) and the properties (9), we have that

∫
Ω

sh · τh +

∫
Ω

uh∇h · τh −
∑
e⊂EI

∫
e

û[τh]−
∑
e⊂E∂

∫
e

û τh · n = 0 ,

∫
Ω

d∑
i=1

d∑
j=1

aij(uh)(sh)j (th)i −
∫

Ω

σh · th = 0 ,

∫
Ω

d∑
i=1

∂xi,hfi(uh) vh +

∫
Ω

σh · ∇hvh −
∑
e⊂EI

∫
e

σ̂ · [vh]−
∑
e⊂E∂

∫
e

σ̂ · [vh] =

∫
Ω

l vh ,

(11)
where ∇h· and ∇h denote, respectively, the piecewise-divergence and piecewise-
gradient operators.

Integrating by parts the second term of the left-hand side of the first equation
in (11), using the definition of the numerical flux û, (7), and the identity (10),
we deduce:∫

Ω

sh ·τh−
∫

Ω

∇huh ·τh+

∫
EI

[uh] · ({τh}−ζ[τh]) +

∫
E∂
uh τh ·n =

∫
E∂
g τh ·n ,

(12)
where we denote

∫
EI :=

∑
e⊂EI

∫
e

and
∫
E∂ :=

∑
e⊂E∂

∫
e
.

Similarly, using the definition of the flux σ̂, (8), the third equation of (11)
is written as follows:∫

Ω

d∑
i=1

∂xi,hfi(uh) vh +

∫
Ω

σh · ∇hvh −
∫
EI

({σh} − ζ[σh]) · [vh] +

∫
EI
δ[uh] · [vh]

−
∫
E∂

σh · n vh +

∫
E∂
δ uh vh =

∫
E∂
δ g vh +

∫
Ω

l vh .

(13)
Summing up equation (13) to the second equation of (11) and taking into

account (12) instead of the first equation of (11), we obtain

∫
Ω

d∑
i=1

∂xi,hfi(uh) vh +

∫
Ω

d∑
i=1

d∑
j=1

aij(uh)(sh)j (th)i −
∫

Ω

σh · th

+

∫
Ω

σh · ∇hvh −
∫
EI

({σh} − ζ[σh]) · [vh] +

∫
EI
δ[uh] · [vh]−

∫
E∂

σh · n vh

+

∫
E∂
δ uh vh =

∫
E∂
δ g vh +

∫
Ω

l vh ,∫
Ω

sh · τh −
∫

Ω

∇huh · τh +

∫
EI

[uh] · ({τh} − ζ[τh]) +

∫
E∂
uh τh · n =

∫
E∂
g τh · n .

(14)
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Now, let us define the semilinear form A(·, ·) by:

A((sh, uh), (th, vh)) :=

∫
Ω

d∑
i=1

∂xi,hfi(uh) vh +

∫
Ω

d∑
i=1

d∑
j=1

aij(uh)(sh)j (th)i

+

∫
EI
δ[uh] · [vh] +

∫
E∂
δ uh vh ,

the bilinear form B(·, ·) by:

B((th, vh),σh) := −
∫

Ω

σh·th+

∫
Ω

σh·∇hvh−
∫
EI

({σh}−ζ[σh])·[vh]−
∫
E∂

σh·n vh ,

and the functionals F and G by:

F (th, vh) :=

∫
E∂
δ g vh +

∫
Ω

l vh , G(τh) :=

∫
E∂
g τh · n ,

for all (sh, uh,σh), (th, vh, τh) ∈ Σk1h ×V
k2
h ×Σk3h . Then, problem (14) is equiv-

alently written as follows:{
A((sh, uh), (th, vh)) +B((th, vh),σh) = F (th, vh) ,

B((sh, uh), τh) = G(τh) .
(15)

We remark that if f = 0, that is, in the absence of convection, this formulation
reduces to the one proposed in [9].

5. Numerical experiments

In this section, we consider d = 2 and show some numerical results for the
steady-state compressible Reynolds lubrication equation modified for slip flow.

We solve problem (3) with Dirichlet boundary conditions using the method
described in the previous sections. To this end, we first rewrite the problem
following the notations of Section 3. We define

f1(u) = H u , f2(u) = 0 , A(u) = (α+ β H u)H2 I

where u now denotes the pressure P and I ∈M2×2 is the identity matrix.
We consider four tests. The first one consists of a problem with a known

solution and is used to study the convergence properties of different schemes.
After this study, we consider three tests where we solve the modified compress-
ible Reynolds equation for slip flow with different air gap thicknesses.

Let us consider the function h in L∞(E) related to the local meshsize as
follows:

h :=

{
min(hT , hT ′) if x ∈ int(∂T ∩ ∂T ′) ,

hT if x ∈ int(∂T ∩ Γ) ,
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where hT denotes the diameter of an element T ∈ Th. Then, in all numerical
experiments we chose

δ =
1

h
and ζ =

(
1
1

)
.

Along this section, we denote by ‖·‖ the L2(Ω) or [L2(Ω)]2-norm. Moreover,
we consider the usual energy norm |||·|||h, given by

|||v|||h =
(
‖∇hv‖2 + ‖δ1/2[v]‖2[L2(EI)]2 + ‖δ1/2v‖2L2(E∂)

)1/2

which is well defined for functions in the space V kh +H1(Ω).
Since problem (3) is the adimensional form of (1), adimensional (X1, X2)

variables are used in the presentation of the computational problems, while real
(x1, x2) variables are used in the graphical representation of results.

For the implementation of the algorithms, we have used the FEniCS finite
element package [21]. In some cases, we have improved the numerical algorithm
with a simple a priori refinement strategy. More precisely, we have just refined
the triangles in which the solution or its gradient is expected to be large.

Test 1: Numerical convergence study

We let Ω = (0, 1) × (0, 1), the thickness H(X1, X2) = 2 − X1, α = 0.003,
β = 0.0007 and the exact solution

u(X1, X2) = 1.0 + sin(0.5πX1) cos(0.5πX2) , (X1, X2) ∈ Ω .

Given two consecutive meshes of mesh sizes h1 and h2, the rate of conver-
gence for a given variable ξ, r(ξ), is computed as

r(ξ) =
ln
‖ξ−ξh1

‖
‖ξ−ξh2

‖

ln(h1

h2
)

,

where ξhi
is the approximation of ξ obtained with the mesh of size hi (i = 1, 2).

Analogously, we define the rate of convergence for variable u in the energy norm
as:

rh(u) =

ln
|||u−uh1 |||h
|||u−uh2 |||h
ln(h1

h2
)

.

The total error, etotal, is computed as follows:

etotal :=
(
|||u− uh|||2h + ‖s− sh‖2 + ‖σ − σh‖2

)1/2

.

In Tables 1-5 we show the errors for the unknowns u, s and σ in the corre-
sponding norms, and the associated rates of convergence as well as the global
rate of convergence r for the different meshes and degrees of approximation. We
use polynomials of degree k = 1, 2, 3 for the pressure u and l = k − 1 or k to
approximate the pressure gradient s and the total flux σ.
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We use uniform meshes of triangles with n = 1/h elements on each side of
Ω. The nonlinear system of equations is solved using a Newton-Krylov method.
The algorithms do 3 or 4 Newton iterations with a mixed stopping criterion on
both the absolute tolerance and the relative tolerance of 10−10.

In Tables 1 and 2 we can observe that the global rate of convergence of the
algorithm is around one.

For k = 2 and l = 1, we observe quadratic convergence in the pressure both
in the L2-norm and in the energy norm. However, the method stagnates in the
remaining variables (see Table 3). In Table 4 (k = l = 2) we observe convergence
of order 2 in all variables.

Finally, in Table 5 we see that the method converges with order 3 in all
variables for k = 3 and l = 2.

Test 2: Compressible Reynolds lubrication equation

We let Ω = (0, 1) × (0, 1), α = β = 0.003 and P = 1 on Γ. We follow [6, p.
757] and solve the compressible Reynolds lubrication equation with

H(X1, X2) = 2−X1 , (X1, X2) ∈ Ω .

Figure 1 shows the final mesh and the P1-approximation of the pressure. We
have performed six refinement steps, which provide a better approximation of
the solution in the region where a boundary layer is present. The numerical
solution is in accordance with the results obtained in [4].

Test 3: Compressible Reynolds lubrication equation with a cylindrical head

We let Ω = (0, 1)× (0, 1), α = 0.1 and β = 0.03 and P = 1 on Γ. We solve
the compressible Reynolds lubrication equation with a cylindrical head, which
gives rise to the following gap function:

H(X1, X2) := 1 + (X1 − 0.5)2 , (X1, X2) ∈ Ω .

In Figure 2 we show the grid and the P1-approximation of the pressure
obtained with the algorithm. In this case the grid has been refined near the line
X1 = 1

2 , where the highest pressure is expected, and near X1 = 1, where a drop
of pressure is appreciated due to the fact that the gap becomes larger.

Test 4: Compressible Reynolds lubrication equation in the presence of discon-
tinuous gaps

With the aim of improving the read/write process, designers and manufac-
turers introduce one or several slots in the reading head. Thus, the gap function
becomes discontinuous.

Let us consider the same domain, Ω, parameters α and β and boundary
condition of the previous test, and a gap function given by:

H(X1, X2) :=


1.2 if (X1, X2) ∈ (0.2, 0.4)× (0.475, 0.525)

1.2 if (X1, X2) ∈ (0.6, 0.8)× (0.475, 0.525)

1 + (X1 − 0.5)2 otherwise .
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Figure 3 shows the computational mesh and the P1-approximation of the pres-
sure obtained with the implemented algorithm. The mesh presents an a priori
refinement around the slots. We can appreciate the effect of the slots, mainly
in the drop of pressure around the line X2 = 0.5.

The numerical pressure is qualitatively different to the one presented in [4].
There, a characteristics method combined with duality methods were applied.
A discontinuous Galerkin method like the one described in the present work
seems more adequate to this kind of problems due to the discontinuities of the
gap function H.

Let us remark that the numerical approximation of the pressure is very
similar when using a more realistic value of the coefficient of the nonlinear
diffusion term, as β = 7×10−4. Just a slight drop of the pressure is appreciated
in the mid region of the device, over the slots.

6. Conclusions

We proposed a new discontinuous Galerkin method to solve stationary non-
linear convection-diffusion problems based on the introduction of the gradient
s and the total flux σ as additional unknowns. This method can be viewed as
an extension of the method proposed in [9] for nonlinear diffusion problems.

We applied the new method to the numerical solution of the compressible
Reynolds lubrication equation modified for slip flow. We developed a numerical
convergence study where we found that the method converges with order 1 when
all unknowns are approximated by piecewise linear polynomials and also when
the pressure is approximated by a piecewise linear polynomial and the gradient
and the total flux are approximated by piecewise constants. The method con-
verges with order 2 when all unknowns are approximated by piecewise quadratic
polynomials. However, it stagnates in the gradient and the total flux when the
pressure is approximated by piecewise quadratic polynomials and s and σ are
approximated by piecewise linear polynomials. Finally, the method converges
with order 3 when the pressure is approximated by piecewise cubic polynomials
and piecewise quadratic polynomials are used to approximate the gradient and
the total flux.

We also solved the equation under different configurations; in particular,
one of the experiments include a realistic discontinuous gap function. This
kind of problems are the practical reason for introducing discontinuous Galerkin
methods.
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h ‖u− uh‖ r(u) |||u− uh|||h rh(u) ‖s− sh‖ r(s) ‖σ − σh‖ r(σ) etotal r
1
5 1.45E-02 – 1.97E-01 – 1.58E-01 – 1.58E-03 – 2.52E-01 –

1
10 5.20E-03 1.49 1.03E-01 0.94 8.77E-02 0.85 8.06E-04 0.97 1.35E-01 0.90

1
20 1.94E-03 1.42 4.95E-02 1.05 4.43E-02 0.99 3.91E-04 1.04 6.64E-02 1.02

1
40 8.44E-04 1.20 2.40E-02 1.04 2.20E-02 1.01 1.94E-04 1.01 3.26E-02 1.03

1
80 3.93E-04 1.10 1.17E-02 1.03 1.08E-02 1.02 9.69E-05 1.00 1.60E-02 1.03

1
160 1.89E-04 1.05 5.79E-03 1.02 5.37E-03 1.02 4.84E-05 1.00 7.89E-03 1.02

Table 1: Test 1: Errors and rates of convergence for k = 1 and l = 0

15



h ‖u− uh‖ r(u) |||u− uh|||h rh(u) ‖s− sh‖ r(s) ‖σ − σh‖ r(σ) etotal r

1
5 1.12E-02 – 2.22E-01 – 1.82E-02 – 1.92E-03 – 2.84E-01 –

1
10 3.73E-03 1.59 1.10E-01 0.99 9.36E-02 0.96 9.64E-04 0.99 1.44E-01 0.98

1
20 1.33E-03 1.49 5.35E-02 1.04 4.68E-02 1.00 4.38E-04 1.00 7.11E-02 1.02

1
40 5.64E-04 1.24 2.63E-02 1.02 2.34E-02 1.00 2.43E-04 0.99 3.52E-02 1.01

1
80 3.73E-04 1.12 1.30E-02 1.02 1.17E-02 1.00 1.22E-04 0.99 1.75E-02 1.01

Table 2: Test 1: Errors and rates of convergence for k = 1 and l = 1
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h ‖u− uh‖ r(u) |||u− uh|||h rh(u) ‖s− sh‖ r(s) ‖σ − σh‖ r(σ) etotal r
1
5 4.07E-04 – 2.02E-02 – 1.15E+00 – 1.31E-02 – 1.15E+00 –

1
10 7.67E-05 2.41 5.06E-03 2.00 1.18E+00 0.04 1.34E-02 0.03 1.18E+00 -0.04

1
20 1.27E-05 2.59 1.20E-03 2.07 1.19E+00 0.01 1.35E-02 0.01 1.19E+00 -0.01

1
40 2.39E-06 2.41 2.89E-04 2.05 1.20E+00 0.01 1.36E-02 0.01 1.20E+00 -0.01

1
80 5.02E-07 2.25 7.13E-05 2.02 1.20E+00 0.00 1.36E-02 0.00 1.20E+00 -0.00

Table 3: Test 1: Errors and rates of convergence for k = 2 and l = 1
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h ‖u− uh‖ r(u) |||u− uh|||h rh(u) ‖s− sh‖ r(s) ‖σ − σh‖ r(σ) etotal r
1
5 3.33E-04 – 1.07E-02 – 8.93E-03 – 9.27E-05 – 1.39E-02 –

1
10 6.23E-05 2.44 2.77E-03 1.95 2.31E-03 1.95 2.42E-05 1.94 3.60E-03 1.95

1
20 1.18E-05 2.41 6.34E-04 2.12 5.46E-04 2.08 5.61E-06 2.11 8.37E-04 2.11

1
40 2.54E-06 2.21 1.44E-04 2.14 1.28E-04 2.09 1.32E-06 2.08 1.93E-04 2.12

Table 4: Test 1: Errors and rates of convergence for k = 2 and l = 2
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h ‖u− uh‖ r(u) |||u− uh|||h rh(u) ‖s− sh‖ r(s) ‖σ − σh‖ r(σ) etotal r
1
5 2.79E-05 – 1.02E-03 – 8.29E-04 – 8.21E-06 – 1.31E-03 –

1
10 2.89E-06 3.27 1.19E-04 3.10 1.03E-04 3.02 9.96E-07 3.04 1.57E-04 3.07

1
20 3.31E-07 3.12 1.42E-05 3.06 1.26E-05 3.03 1.22E-07 3.03 1.90E-05 3.05

1
40 3.86E-08 3.10 1.69E-06 3.07 1.53E-06 3.04 1.50E-08 3.03 2.28E-06 3.05

Table 5: Test 1: Errors and rates of convergence for k = 3 and l = 2
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Figure 1: Test 2: Mesh with 337 302 dof and P1 approximation of the pressure for k = 1 and
l = 0

20



Figure 2: Test 3: Mesh with 648 711 dof and P1 approximation of the pressure for k = 1 and
l = 0
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Figure 3: Test 4: Mesh with 756 399 dof and P1 approximation of the pressure for k = 1 and
l = 0
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