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Abstract

The mechanical behavior of magnetic reading devices is mainly governed by compressible Reynolds
equations when the air bearing modeling approximation is considered. First, the convection
dominated feature motivates the use of a characteristics scheme adapted to steady state prob-
lems. Secondly, a duality method to treat the particular nonlinear diffusion term is applied. A
piecewise linear finite element for spatial discretization has been chosen. Moreover, in certain
conditions and devices, strong air pressure gradients arise locally, either due to a strongly con-
vection dominated regime or to the presence of slots in the storage device, for example. In the
present work we improve the previous numerical methods proposed to cope with this new set-
ting. Thus, mainly adaptive mesh refinement algorithms based on pressure gradient indicators
and appropriate multigrid techniques to solve the linear systems arising at each iteration of the
duality method are proposed. Finally, several examples illustrate the performance of the set of
numerical techniques.

Key words: Magnetic storage devices, hydrodynamic lubrication, nonlinear Reynolds
equation, finite elements, duality methods, multigrid

1. Introduction

In magnetic reading devices, the gap between the reading head and the disk (or tape) where
the information is stored has a determining effect on the quality of the stored/received signal.
Figure 1 shows the scheme of a general device in which a tape moves over the reading head,
both of them separated by a thin air layer. In the case of flexible storage devices, there exists a
coupling between the air bearing pressure and the transverse deflection of the tape, thus leading
to the formulation of a highly nonlinear elastohydrodynamic coupled problem.

Nevertheless, when the storage device can be assumed to be rigid, such as for example in the
case of a computer hard disk, the mechanical problem can be framed into hydrodynamic lubri-
cation theory [7]. In this case, air lubrication between the rotating disk and the slider results
to be critical to maintain the optimal gap. In this setting, the adequate mathematical modeling
and numerical simulation techniques of the mechanics that are involved in the process provide
a very useful tool to evaluate different alternative designs of the devices, preventing from the
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costs associated to build them.

Concerning the mathematical modeling, different modified Reynolds equations have been
proposed in the literature, the departure point being the consideration that the gap size is
smaller than the molecular free path, so that the usual continuum theory is no longer valid and
rarefaction effects have to be taken into account. Among the different alternatives of compress-
ible Reynolds equations corresponding to different situations, in [8] the so called first order slip
correction model we consider in the present paper was first proposed. The mathematical anal-
ysis of different compressible Reynolds equations in two spatial variables for L∞ gap functions
has been addressed in [9]. Previously, in [11, 12] the case of one spatial variable the analysis of
flexible device where the first order compressible Reynolds equation is coupled with an elastic
model. More precisely, in [11] a case with regular gap functions is treated and in [12] the pres-
ence of head slots leads to discontinuous gap functions.

Concerning the numerical methods, in the case of smooth gap functions different strategies
have been proposed in the literature. For example, in [18] a finite differences scheme for a coupled
model is proposed, in [16] a LPDEM discretization scheme combined with a Newton-Raphson
technique for the discretization of compressible Reynolds equation is applied. More recently,
in [2] a duality method based on maximal monotone operators for the nonlinear diffusive term
arising in compressible Reynolds equation is considered. Moreover, this method is combined
with a characteristics scheme adapted to steady state problems to treat the convection domi-
nating feature of the equation in real devices and piecewise linear Lagrange finite elements for
spatial discretization are used. Despite the theoretical analysis developed in [1] in one spatial
dimension, this joint strategy has shown a good behavior in the case of smooth gap functions
(even in case that they are highly oscillating functions due to the presence of periodic roughness
in the surfaces in contact) and in two spatial dimensions when coupled with elastic models in
flexible read devices (see [2]).

Nevertheless, the assumption of smooth gap sometimes results to be very restrictive. In
many devices some slots are introduced to reduce the air pressure and improve the reading
conditions [10]. The mathematical analysis of models including discontinuous gap functions has
been developed in [12] and some numerical experiences are shown in [23]. More particularly, in
the case of hard disk drives, the etching technique in the manufacturing process produces a steep
narrow wall gap region along the rail boundaries (see [22], for example). The discontinuous or
rapid changing gap geometry leads to very large pressure gradients either near the slots or near
the large gap function gradients. In this setting, in order to obtain sufficiently accurate results
in the computed magnitudes during simulation, the use of appropriate numerical schemes and
meshing techniques is required. In [22] an adaptive technique is applied to a numerical method
based on an upwind finite volume scheme for the convection term combined with a Galerkin
weighed integral for the diffusion term, the resulting nonlinear discretized problem being solved
by an explicit treatment of the pressure in the nonlinear term (that is, a kind of fixed point
iteration termed as lagging technique in [22]). Moreover, a multigrid technique for the linear
discretized problem is proposed and an imposed load problem to obtain the unknown gap co-
efficients is posed. More recently, in [14] an adaptive finite element strategy is proposed for a
hard disk drive simulation, the mesh refinement criteria being based on the size of the pressure
and gap gradients.

In the present work, we propose an adaptive refinement technique to apply the numerical
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Figure 1: Schematic example of a magnetic recording device.

methods proposed in [2] when slots or large gradients in the gap appear in the simulated devices.
Moreover, we propose a multigrid scheme to solve the linear systems that arise at each iteration
of the duality algorithm in the solution of the discrete problem. Thus, the plan of the paper is
as follows. In section 2 the mathematical model is presented. In Section 3 the main numerical
methods and algorithms are described. Section 4 explains the adaptive refinement technique and
the multigrid strategy for the linear system solver. In Section 5 several numerical examples to
illustrate the performance of the numerical methods. Finally, Section 6 contains the conclusions.

2. Mathematical model

In the first order slip-flow correction model, the behavior of the air pressure p in the thin
layer is governed by the following compressible Reynolds equation:

∇ ·
(
h3p

η(p)

)
= 6

∂

∂x1
(V ph) in Ω = (`1, `2)×(0, `2 − `1) , (1)

where h represents the gap between the reading head and the information storage device, V is
the constant velocity of the moving head, η denotes the effective viscosity of the air and `1 and
`2 are related to the physical dimensions of the device (see Fig. 1). Equation (1) is completed
with the appropriate Dirichlet boundary condition

p = pa on ∂Ω, (2)

where pa denotes the ambient pressure.

Compressible Reynolds equations are classically used when modeling air bearing lubrication
processes such as those appearing in magnetic storage devices. These equations can be deduced
either from Navier–Stokes or Stokes ones under some assumptions. More precisely, in order
to state Equation (1) a constant velocity of the device is considered, the effects of the surface
stresses are neglected and the air behavior as a perfect gas is assumed, so that the density is
proportional to pressure. Moreover, as in other thin layer settings, we also assume that the
air layer width is much smaller than the other dimensions, Also, we neglect the inertial forces
compared to the viscosity forces. Under previous assumptions, recently in [19] a rigorous deriva-
tion of a compressible Reynolds equation from the compressible Navier-Stokes system by using
asymptotic analysis techniques is obtained. The analogous derivation of linear Reynolds equa-
tion is contained in the classical paper [3] and a recent review on the state of art in mathematical
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modeling and numerical methods in lubrication appears in [4].

In (1) the effective viscosity of the air can be expressed as [7]:

η(p) =
ηa

1 + γ/(ph)
, (3)

where ηa denotes the constant viscosity at ambient conditions and γ = 6aMpahm, a being a
surface correction coefficient, M = λ/hm the Knudsen number at ambient pressure, λ the local
mean free path and hm the reference film thickness. Thus, replacing expression (3) in equation
(1) we get

∇ ·
(
(γh2 + h3p)∇p

)
= 6V ηa

∂

∂x1
(ph) . (4)

Under certain hypotheses [9], existence and uniqueness of solution to problem (4) can be ob-
tained, as well as upper and lower L∞ bounds. More precisely, the following result can be
obtained.

Theorem 1 If h ∈ L∞(Ω) and 0 < hmin ≤ h ≤ hmax < ∞, then equation (4) jointly with
boundary condition (2) admits a unique solution p ∈ Va such that

0 ≤ p ≤ R0 ,

where R0 = max
{

2pa , 2h−3
min(2K |Ω|hmax − γh2

min)
}

, K = 0.5 ‖Ω‖1/2 s∗ 21/(s∗−2) and s∗ = 2 +
log(2) +

√
4 ln(2) + (ln(2))2.

The proof of Theorem 1 can be easily obtained from the results stated in [9] and it also has been
recently extended to an elastohydrodynamic model for flexible devices in [2].

Next, as a previous step to identify the orders of the different terms involved in equation (4),
i.e. advection and nonlinear diffusion, and select the more appropriate numerical methods, we
introduce the following scaling in the geometric coordinates and magnitudes [10]:

X1 =
x1

`
, X2 =

x2

`
, P =

p

pa
, H =

h

hm
,

where ` denotes the order of magnitude of the spatial domain. Then, the dimensionless domain
is defined by

ΩH = (L1, L2)× (0, L2 − L1) , where Li = `i/`, i = 1, 2,

and Equation (4) can be written in the equivalent dimensionless form in the domain ΩH :

∂(PH)
∂X1

−∇ ·
(
(αH2 + βH3 P )∇P

)
= 0 . (5)

In real applications the diffusion coefficients α and β are of a much smaller order than the
advection one, so that we are dealing with a convection dominated advection-diffusion equation.
Moreover, when β 6= 0 equation (5) contains a nonlinear diffusive term.
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3. Main numerical methods.

In order to overcome the difficulty related to the advection dominated feature, in [2] we
propose a characteristics method adapted to steady state problems. For this purpose, we first
introduce an artificial dependence on t in the functions P and H, by defining the new functions
P̄ and H̄ as follows:

P̄ (t, (X1, X2)) = P (X1, X2), H̄(t, (X1, X2)) = H(X1, X2),

and we consider the artificial velocity field ~v(X1, X2) = (1, 0) associated to the particular ex-
pression of the convection term in (5). Then, the convection term can be written as

∂(PH)
∂X1

=
D(P̄ H̄)
Dt

,

where
D(P̄ H̄)
Dt

=
∂(P̄ H̄)
∂t

+ v · ∇(P̄ H̄)

denotes the material derivative of function P̄ H̄. Next, we introduce the characteristic curve
associated to the velocity field ~v through the point (X1, X2) at time t, which is parameterized
in the time variable τ as

τ −→ χ((X1, X2), t; τ).

Notice that the function χ((X1, X2), t; ·) is the solution of the following first order ODE Cauchy
problem: 

dχ

dτ
((X1, X2), t; τ) = v(χ((X1, X2), t; τ)) ,

χ((X1, X2), t; t) = (X1, X2) .

Next, we introduce an artificial time step k and we approximate the material derivative at the
point (t, (X1, X2)) by the upwinded quotient:

D(P̄ H̄)
Dt

(t, (X1, X2)) ≈ (P̄ H̄)(t, (X1, X2))− (P̄ H̄)(χ((X1, X2), t; t− k)
k

=
(PH)(X1, X2)− (PH)(t, χk(X1, X2))

k
. (6)

For the particular velocity field ~v we have that χk(X1, X2) = χ((X1, X2), t; t−k) = (X1−k,X2).
Thus, after introducing the approximation (6) in (5), the algorithm of the characteristic method
for the steady state can be posed. More precisely, starting from P0, for a given Pm at step m,
we obtain Pm+1, such that:

Pm+1H − k∇ ·
(
αH2∇Pm+1

)
− k∇ ·

(
βH3Pm+1∇Pm+1

)
= (PmH) ◦ χk . (7)

Notice that the elliptic equation (7) still contains a nonlinear diffusive term. Following the
ideas in [2] we treat this nonlinearity by using a duality method. For this purpose, let us
introduce the maximal monotone operator f , defined by

f(P ) =

{
0 , if P < 0,
P 2 , if P ≥ 0,

so that
Pm+1∇Pm+1 =

1
2
∇ (f(Pm+1)) .
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Therefore, a variational formulation associated to (7) can be written in the form:

Find Pm+1 ∈ Va, such that:∫
ΩH

Pm+1H ϕ+ kα

∫
ΩH

H2∇Pm+1∇ϕ+

+
kβ

2

∫
ΩH

H3∇ (f(Pm+1))∇ϕ =
∫

ΩH

(
(PmH) ◦ χk

)
ϕ , ∀ϕ ∈ V0 (8)

where the involved functional and set spaces are

Va =
{
ϕ ∈ H1(Ω) /ϕ = pa on ∂Ω

}
,

V0 =
{
ϕ ∈ H1(Ω) /ϕ = 0 on ∂Ω

}
.

Following the duality technique introduced in [6], in terms of the constant parameter ω > 0
we introduce the new additional unknown θm+1, defined by

θm+1 = (f − ωI)(Pm+1),

where I denotes the identity operator. Thus, we get

f(Pm+1) = θm+1 + ωPm+1, ∇ (f(Pm+1)) = ∇θm+1 + ω∇Pm+1.

Then, the couple (Pm+1, θm+1) is the solution of the nonlinear problem:

(Pm)



∫
ΩH

Pm+1H ϕ+ kα

∫
ΩH

H2∇Pm+1∇ϕ+ k
βω

2

∫
ΩH

H3∇Pm+1∇ϕ =

=
∫

ΩH

(
(PmH) ◦ χk

)
ϕ− kβ

2

∫
ΩH

H3∇θm+1∇ϕ , ∀ϕ ∈ V0,

θm+1 = f(Pm+1)− ωPm+1,

which is equivalent to (8). Next, by using the Bermúdez–Moreno lemma stated in [6], we have
the equivalence

θm+1 = f(Pm+1)− ωPm+1 ⇐⇒ θm+1 = fωλ (Pm+1 + λθm+1) ,

where fωλ denotes the Yosida approximation of f − ωI. For convergence purposes, in the choice
of the parameters λ and ω we impose the relation 2λω = 1. Under this constraint, the Yosida
approximation can be analytically computed and is given by

fω1
2ω

(
P +

θ

2ω

)
=


−θ − 2ωP , if P +

θ

2ω
≤ 0,

θ + 2ωP + ω2 − ω
√

4θ + 8ωP + ω2 , if P +
θ

2ω
≥ 0.

By taking into account the previous results, at each step of the characteristic algorithm the
following fixed–point algorithm to approximate the solution of problem (Pm) for m = 0, 1, . . .
can be applied:

• Let P0 be a given initial pressure
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• For m = 0, 1, 2, . . .

– We obtain the term (PmH) ◦ χk

– For j = 1, 2, . . .

For a given θjm+1 we obtain P j+1
m+1 ∈ Va by solving∫

ΩH

P j+1
m+1Hϕ+ k

∫
ΩH

(
αH2 +

βωH3

2

)
∇P j+1

m+1∇ϕ =

=
∫

ΩH

(
(PmH) ◦ χk

)
ϕ− kβ

2

∫
ΩH

H3∇θjm+1∇ϕ , ∀ϕ ∈ V0 (9)

We update θjm+1 by using the identity

θj+1
m+1 = fω1/2ω

(
P j+1
m+1 +

1
2ω
θjm+1

)
– We check the stopping test in the duality algorithm

• We check the stopping test in the characteristics algorithm.

For the spatial discretization of the linear problem (9), piecewise linear Lagrange finite
elements on a triangular mesh have been applied. Moreover, appropriate Gauss formulae for
numerical quadrature to compute the different integral terms have been used.

4. Adaptive refinement and linear system solver

As indicated in previous sections, many magnetic storage processes give rise to advection
dominated problems, so that very large pressure gradients appear in different regions. In these
situations, very fine meshes are necessary in order to attain a good approximation of the pres-
sure values. Moreover, other real devices involve rapidly changing gap functions, even sometimes
discontinuous ones as a consequence of the presence of trenches dug into the head. The pres-
ence of these slots also produces very high pressure gradients located at irregularly distributed
regions, thus requiring again the use of fine enough grids. Although in the present problem
the location of gap discontinuities are a priori known, the precise regions with large pressure
gradients are unknown. By these reasons, we propose the use of a convenient adaptive technique.

In classical adaptive methods, an error estimator is computed on each element of the finite
element mesh. The adaptive meshing algorithm we propose uses the pressure gradient as the
metric for the refinement procedure. Thus, after computing the approximated pressure gradient
for each element, we just refine the elements where the pressure gradient is larger. More precisely,
we compute a norm of the gradient of the pressure, ηe =| ∇Pe |, over all the triangular elements
e of the mesh and we just refine the elements that satisfy the condition

ηe > ηmin + ρ(ηmax − ηmin) ,

where ρ ∈ [0, 1). This strategy results to be a cheap way to get a better approximation in
some specific regions of the domain. As it is also important to refine the mesh locally along the
edges of the slots where there is an abrupt change of the gap function which produces very large
changes in pressure distribution near those points, another refinement criterium related to the
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fact that the element is located near the slot or gap discontinuity is jointly considered.

Once the elements to be refined have been identified according to the previous criterium, each
triangle is divided into four subtriangles, the mid-point of the longest side being connected with
the opposite vertex and the other two sides mid-points. Next, in order to ensure the conformity
of the new mesh, an additional refining step (by subdivision into two or three subtriangles) has
to be performed.

At each refinement level we propose a double loop iterative algorithm: at each iteration of
the inner (duality) loop, we must solve a system of linear equations. As the global technique
sometimes results to be too expensive, we propose to combine the previous adaptive refinement
technique with a geometric multigrid method to solve the linear system of equations associated
to (9). In this sense, we have been inspired by [15], where a similar technique for a duality
method in the frame of obstacle problems is proposed.

Notice that in multigrid algorithms, the intermediate approximations, residuals and correc-
tions have to be transferred between the meshes of different levels. For example, we recall the
steps in the classical two grid V–cycle: given an initial approximation ū`h of the solution of the
linear system A`huh` = b`h, we smooth it by means of ν1 iterations of a relaxation method, which
provides an approximation û`h. Next, we restrict the residual on the previous coarser mesh (`−1)
and solve (exactly) the error equation

A`−1
h w`−1

h = R
(
b`h −A`hû`h

)
.

Then, we interpolate the error vector w`−1
h on the actual finer mesh (`) and correct the previous

approximation by using
ˆ̂u`−1
h = û`h + P

(
w`−1
h

)
.

Finally, we smooth again the approximation (by means of ν2 iterations of a relaxation method)
to get u`h. So, we can summarize the previous procedure by writing one multigrid iteration step
in the form

u`h = Sν2
(
û`h + P

(
[A`−1

h ]−1R
(
b`h −A`hSν1(ū`h)

)))
,

where S, P and R denote the smoothing, interpolation (prolongation) and restriction operators,
respectively.

Notice that in the multigrid V–cycle, the previous algorithm is used instead of the exact
solution of the system in level (` − 1), so that levels ` − 1, ` − 2, . . . , ` − k are involved.
Efficiency of these methods has been shown for a wide class of problems [13, 20, 5], including
other hydrodynamic lubrication problems [21]. In the present paper we use this scheme to solve
equation (9) at each refinement level. The elements of our multigrid method are a lexicographical
Gauss–Seidel iteration as smoother and a linear interpolation operator, while the restriction is
just an injection from the fine to the coarse mesh.

5. Numerical results

In this Section some numerical tests are shown, in order to show the good behavior of the
previous numerical techniques for the simulation of different head–tape recording systems. The
first one is a very simple academic test, while the other ones are more realistic. In all test
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examples the equations are written in dimensionless form. Having in view the more realistic
cases, all the figures are shown in real values corresponding to the scaling parameters ` = 0.015m,
pa = 84100Pa and hm = 10−8m.

Test 1
In this first test, we use the previously described techniques to approximate the function P

that satisfies the equation

∂

∂X1
(PH)− α∇ ·

(
H2∇P

)
− β∇ · (H3P∇P ) = F in ΩH = (0, 1)×(0, 1)

jointly with the boundary condition

P = 1 on ∂ΩH .

The function H is given by H(X1, X2) = 2−X1 and the constant parameters α = β = 3× 10−3

have been taken. Moreover, the function F is chosen so that the solution of the problem is
P (X1, X2) = 1 +X1X2(1−X1)(1−X2).

For the numerical solution, the time discretization step k = 0.01∆X has been taken, where
∆X denotes minimum diameter of the elements in the finite element mesh. Moreover, the
parameter of the duality method ω = 2 has been chosen. The tolerance for the convergence of
the characteristics scheme to the steady state solution and for the convergence of the duality
method are both taken equal to 10−5. Moreover, starting from an initial very coarse mesh with
2 triangular elements and 5 nodes, Table 1 shows the number of nodes, the number of elements
and the relative quadratic error at the different refinement levels when the parameter ρ = 0.34
in the gradient pressure indicator is used.

Level NN NE Error
1 9 8 2.213566× 10−2

2 25 32 1.157669× 10−2

3 67 108 5.921858× 10−3

4 196 254 4.781937× 10−3

Table 1: Number of nodes (NN), number of elements (NE) and relative quadratic error (Error) for different levels
of refinement in Test1.

Test 2
In this test we consider the compressible Reynolds equation obtained by just replacing F = 0

in the previous equation, that is

∂

∂X1
(PH)− α∇ ·

(
H2∇P

)
− β∇ · (H3P∇P ) = 0

Moreover, we consider a domain Ω = (0, 1)× (0, 1) and the same values of α, β, function H and
boundary condition that in Test 1. Notice that in this case the solution cannot be computed
analytically. Moreover, we refine the mesh in the region where the pressure gradient is larger
according to parameter ρ = 0.34, the other parameters of the numerical methods being also
the same as in Test 1. Table 2 shows the evolution of the number of nodes and elements of
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Figure 2: Final mesh after six refinement levels in Test 2.

the meshes obtained during the refinement process. Figure 2 shows the achieved mesh after six
refinement levels and Figure 3 shows the computed pressure distribution for this mesh. From
both figures we can verify that the mesh is refined where the pressure gradients are larger, this
region being located at the right hand side of the domain.

Level NN NE
1 9 8
2 25 32
3 59 92
4 125 212
5 240 422
6 387 688

Table 2: Number of nodes (NN) and number of elements (NE) for different levels of refinement in Test2.

Test 3
In this test we introduce the slots on a flat decreasing gap. More precisely, the gap function

is now given by the following discontinuous function defined on ΩH = (0, 1)× (0, 1):

H(X1, X2) =


1.9 if (X1, X2) ∈ (0.2, 0.4)×(0.475, 0.525)
1.6 if (X1, X2) ∈ (0.5, 0.7)×(0.475, 0.525)
2−X1 elsewhere.

Figure 4 shows the gap given by the previous function. The equation is the same as in Test 2 with
the same parameters and the refinement criterium involves the pressure and height gradients
with the parameter ρ = 0.34, the other parameters of the numerical methods being also the
same as in Test 1. Table 3 shows the evolution of mesh data along the refinement procedure.

Figure 5 shows the mesh obtained after eight refinement levels. Notice the mesh is mainly
refined near the slots and at the regions with large pressure gradients as it can be verified by
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Figure 3: Computed pressure distribution after six refinement levels in Test 2.

Figure 4: Gap function in Test 3.
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Figure 5: Final mesh after 8 refinement levels in Test 3.

Figure 6: Computed pressure distribution after 8 refinement levels in Test 3.
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Level NN NE
1 9 8
2 25 32
3 80 92
4 162 126
5 337 278
6 592 608
7 1197 1090
8 2284 4298

Table 3: Number of nodes (NN) and number of elements (NE) for different levels of refinement in Test3.

comparing with Figure 6. The pressure value starts to increase from the left boundary as soon
as the gap decreases. Then, the left border of the first slot implies a sudden jump in the gap
to a large value along the slot, so that the pressure decreases until the new jump at the end of
the slot leads to a sudden increase of the pressure until reaching the next slot that repeats the
pressure pattern. At the right hand side a large pressure gradient appears until reaching the
ambient pressure at the right boundary.

Test 4
Last test corresponds with a device that includes a cylindrical head with two slots. Numerical

examples for this kind of head geometries appear in [23], for example. More precisely, in this
test the gap between the head and the tape is defined by the following function in the same
domain as Test 3:

H(X1, X2) =


1.2 if (X1, X2) ∈ (0.2, 0.4)×(0.475, 0.525)
1.2 if (X1, X2) ∈ (0.6, 0.8)×(0.475, 0.525)
1 + (X1 − 0.5)2 elsewhere.

Figure 7 represents the gap function, this function being the only difference with respect to Test
3, in which a flat surface instead a cylindrical one is considered outside the slots region. In Table
4 the mesh data evolution with refinement are presented.

Level NN NE
1 9 8
2 25 32
3 77 122
4 243 426
5 499 920
6 865 1618
7 1544 2928
8 2457 4748
9 4293 8408

Table 4: Number of nodes (NN) and number of elements (NE) for different levels of refinement in Test 4.



14

Figure 7: Gap function in Test 4.

Figure 8: Final mesh after 9 refinement levels in Test 4.
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Figure 9: Computed pressure distribution after 9 refinement levels in Test 4.

Figure 8 shows the mesh obtained after nine refinement levels. Notice the mesh is mainly
refined near the slots and at larger pressure gradient regions as it can be verified comparing with
Figure 6. The qualitative behavior is very close to the one of Test 3, although some specific
features arise from the presence of a cylindrical head outside the slots region.

6. Conclusions

In this paper a combination of numerical techniques to simulate the mechanical behavior
of magnetic storage device is introduced, mainly focused to the case where the head presents
some slots in order to improve the quality of the reading/writing process. More precisely, first
the characteristics scheme combined with a duality method and piecewise linear Lagrange finite
elements to approximate the solution of the compressible nonlinear Reynolds equation is used.
The convection dominated feature jointly with the presence of slots leading to discontinuous
functional coefficients give rise to regions with large pressure gradients. Thus, further specific
techniques to accurately recover the pressure profile are required. In this paper, an adaptive
mesh refinement algorithm to capture the specific aspects of the gap related to the presence of
slots, and also the regions of large pressure gradients. The adaptive technique is combined with
a multigrid strategy. A first academic test with analytical solution illustrates the convergence
of the proposed algorithm. Next, the methods are applied to different devices without and with
slots. In the presence of slots, a flat and a cylindrical reading head have been considered.

This methodology can be extended in the future to other rigid devices, such as real hard
disks in computers. Moreover, the set of techniques can be applied in the setting of flexible
devices previously treated by the authors in the case without slots. Also the hydrodynamic or
elastohydrodynamic problem with imposed load can be addressed. In this case, some unknown
parameters appearing in the gap function are identified by imposing a prescribed load to the
device.
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[6] A. Bermúdez, C. Moreno, Duality methods for solving variational inequalities, Comput.
Math. Appl., 7 (1981) 43–58.

[7] B. Bhushan, Tribology and Mechanics of Magnetic Storage Devices, Springer, New York,
1996.

[8] A. Burgdorfer, The influence of the molecular mean free path on the performance of hydro-
dynamic gas lubricated bearings, ASME Journal of Basic Engineering, 81 (1959) 94–100.

[9] G. Buscaglia, S. Ciuperca, M. Jai, Existence and uniqueness for several nonlinear elliptic
problems arising in lubrication theory, J. Differ. Eq., 218 (2005) 187–215.

[10] A. Friedman, Mathematics in Industrial Problems, 7, Springer, New York, 1995.

[11] A. Friedman, B. Hu, Head–media interaction in magnetic recording, Arch. Rational Mech.
Anal., 140 (1997) 79–101.

[12] A. Friedman, J. I. Tello, Head–media interaction in magnetic recording, J. Differ. Eq., 171
(2001) 443–461.

[13] W. Hackbusch, Multigrid Methods and Applications, Springer, 1985.
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