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Abstract
In this work we propose a numerical technique to compute the total value adjust-
ment (XVA) for the pricing of American options when considering counterparty risk.
Several linear and nonlinear mathematical models, associated to different choices of
the mark-to-market value at default, are deduced and numerically solved, thus lead-
ing to approximations of the option price with counterparty risk. The methodology
is based on Monte Carlo simulations combined with a dynamic programming strat-
egy. At each time step, an optimal stopping criterion is applied and the decision
on either exercising or not the option is taken. We present some numerical tests to
illustrate the behavior of the proposed method.
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1. Introduction

The financial crisis that mainly started in 2007 motivated that financial agents began
to focus on the concept of counterparty risk, i.e. the risk associated to the possibility
of one of the counterparties (or both) to default. Thus, different adjustments related
to counterparty risk started to be taken into account when valuing financial products
—such as credit value adjustment (CVA), funding value adjustment (FVA) or debit
value adjustment (DVA), for example—, which are now included in the final price
of derivative products [8]. The increasing number of adjustments leads to include all
of them under the generic name of total value adjustment or XVA. The more recent
adjusments like capital value adjustment (KVA) and margin value adjustment (MVA)
are out of the scope of the present article and maybe taken into account in future
works.

It is well known that European and American options are among the most popular
derivative products on assets. In both contracts, the holder has the right (but not the
obligation) to buy or sell an asset at a price that has been agreed with the counter-
party. While European options can only be exercised by the holder at the end of the
maturity period, the holder of an American option can exercise it at any moment along
this period. In the case without counterparty risk, classical pricing methodologies are
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available since a long time in the literature. However, the consideration of counterparty
risk makes the valuation more complex, even for these vanilla options.

As we focus on counterparty risk, when this risk is not taken into account we will
refer to the derivative as risk-free derivative (i.e. free of counterparty risk), while we
will use term risky derivative when counterparty risk is considered.

Three kinds of methodologies are mainly used to price derivative products with
counterparty risk. The first one involves Monte Carlo methods as the XVA is expressed
in terms of expectations [3, 11] and it is the most used by banks and financial entities.
The second one is based on the solution of backwards stochastic differential equations
(BSDEs) [5, 6], while the last one involves the solution of partial differential equations
(PDEs) [4, 13]. All of them need the use of numerical methods to approximate the
final value of the XVA. The present article focuses on the first approach, although the
numerical results will be compared to those ones obtained from the third approach.

In a previous work [1] we have proposed different models based on PDEs for pricing
European and American options with one stochastic factor. More precisely, depending
on the choice of the mark-to-market value, in the case of European options two possible
kinds of models are deduced: linear and nonlinear. In the case of American options,
the analogous models are posed in terms of linear and nonlinear complementarity
problems. A set of numerical methods (semilagrangian discretization, finite element
method, augmented Lagrangian active set method and fixed point techniques) are also
proposed so that the XVA and thd price of the risky derivative can be computed in
different cases. More recently, if we consider stochastic spreads instead of constant
ones as in [1], then PDE models for European options with counterparty risk and two
stochastic factors are analyzed and numerically solved in [2].

The goal of the present work is to price American options with counterparty risk by
means of Monte Carlo methods. Thus, we mainly follow Longstaff and Schwartz [10]
and Glasserman [7] in order to obtain the approximation of the riskless option price
and the risky option price. In this way, we finally compute the total value adjustment as
the difference between both prices. A dynamic programming technique is implemented:
at each time step an optimal stopping problem is solved, an optimal exercise criterion
is stated and the expected discounted payoff of the option price under this criterion is
computed.

In Section 2, we present the mathematical model and deduce two complementarity
problems for the risky options, depending on the chosen mark-to-market value. Also,
we recall the complementarity problem associated to the classical Black-Scholes equa-
tion for the American option price in the case without counterparty risk, as this one is
also involved in the solution of the risky option. Section 3 is devoted to the description
of the numerical algorithms implemented to compute the value of the risky option in
the linear case, while Section 4 presents their adaption to numerically solve the anal-
ogous nonlinear complementarity problem. In Section 5 we present some numerical
results. Finally, we pose some conclusions in Section 6.

2. A total value adjustment model for American style options

In this section, we take into account the total value adjustment (XVA) in the pric-
ing of American options with counterparty risk and we present the complementarity
problems modelling the derivative value. A more detailed deduction can be found in
[1].
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Thus, we consider a derivative trade between two defaultable counterparties, the
issuer B and the buyer C. From the point of view of the seller, the risky derivative
value at time t is denoted by V̂t = V̂ (t, St, J

B
t , J

C
t ), where St represents the price

of the underlying asset while JBt and JCt are two independent jump processes that
change from 0 to 1 on default of B and C, respectively. The counterparty risk-free
American option price is denoted by Vt = V (t, St), which can be computed using the
classical Black-Scholes complementarity problem for American options (see [15, 16],
for example).

Assume that St follows a general geometric Brownian motion, thus satisfying:

dSt = rRSt dt+ σSt dWt , (1)

where rR is the rate paid for the underlying asset in a repurchase agreement, σ is its
volatility and Wt is a Wiener process.

Let A be the operator defined by:

AV =
1

2
σ2S2∂

2V

∂S2
+ rRS

∂V

∂S
.

Applying classical hedging arguments to a self-financing portfolio, and using Ito’s
lemma for jump diffusions, we can deduce the inequality that models the price, V̂ , of
the American option including counterparty risk (see [1] for details):

∂V̂

∂t
+AV̂ − rV̂ ≤ (λB + λC)V̂ + sFM

+ − λB(M+ +RBM
−)− λC(M− +RCM

+) ,

where r is the risk-free interest rate, RB, RC ∈ [0, 1] represent the recovery rates on
the derivatives position of parties B and C, respectively, λB and λC are the default
intensities of B and C, respectively, sF is the funding cost of the entity, and M
represents the close-out mark-to-market value.

Depending on the choice of the mark-to-market value, two different models are
deduced for the risky derivative.

• If M = V , the model is governed by a linear complementarity problem:

L(V̂ ) ≡ ∂tV̂ +AV̂ − (r + λB + λC)V̂

+(RBλB − λC)V − + (RCλC + λB)V + − sFV + ≤ 0

V̂ (t, S) ≥ H(S)

L(V̂ ) (V̂ −H) = 0

V̂ (T, S) = H(S) .

(2)

• If M = V̂ , the model involves a nonlinear complementarity problem:

N (V̂ ) ≡ ∂tV̂ +AV̂ − rV̂
−(1−RB)λBV̂

− − (1−RC)λC V̂
+ − sF V̂ + ≤ 0

V̂ (t, S) ≥ H(S)

N (V̂ ) (V̂ −H) = 0

V̂ (T, S) = H(S) .

(3)
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Moreover, note that the risk-less value of the American option, V , enters in the for-
mulation of problem (2). The function V is the solution of the linear complementarity
problem associated to the classical Black-Scholes operator:

L̃(V ) ≡ ∂tV +AV − rV ≤ 0

V (t, S) ≥ H(S)

L̃(V ) (V −H) = 0

V (T, S) = H(S) .

(4)

Note that the complementarity problems (2), (3) and (4) can be solved by numer-
ical methods. In [1], we combine characteristic methods for time discretization, finite
elements for spatial discretization, fixed point methods to overcome the nonlinearities
and duality methods for solving the discrete linear complementarity problems. Finally,
the total value adjustment U can be computed as U = V̂ − V .

3. Numerical methods. The case M = V

In this section we address the XVA computation when the mark-to-market value is
equal to the option value without counterparty risk.

Unlike the European option, which can only be exercised at maturity time T , an
American option can be exercised at any time t ∈ (0, T ]. We denote its exercise value
at any time t ∈ (0, T ] as

h∗(t, St) = H(St) , (5)

where H(St) represents the payoff of the option. Note that the price process St is
Markovian.

In a first step, we consider problem (2). Let g be the function defined by:

g(V ) = (RBλB − λC)V − + (RCλC + λB)V + − sFV + .

Following [12] we can deduce that, in terms of expectations, the risky derivative value
at time t = 0 for the underlying value S0 is given by:

V̂0(S0) = sup
τ∈T0

E0

[
e−r0τh∗(τ, Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u))) du

]
,

where r0 = r + λB + λC and Tt is the set of admissible stopping instants in [t, T ]. In
our numerical approach, the value of V solving (4) will be estimated by a classical
Monte Carlo technique for American options without counterparty risk.

In order to price the option, we first discretize the time interval by introducing a
finite and increasing set of instants, 0 = t0 < t1 < t2 < . . . < tM = T ⊂ [0, T ].

We will assume that the option can be only exercised in ti (i = 0, 1, . . . ,M). In
this way, we are approaching the American option by a Bermudan one. Taking into
account the fixed instant times, we denote by Si = S(ti), i = 1, 2, . . . ,M , the asset
price at the i-th exercise opportunity. We approximate those values, solution of the
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stochastic differential equation (1), by the Euler-Maruyama scheme:

Si = Si−1 + rRSi−1∆t+ σSi−1∆Wi, i = 1, 2, . . . ,M , (6)

where ∆t = ti − ti−1 is the size of the time interval and ∆Wi = Wi −Wi−1 is the
independent Brownian increment, which follows a normal distribution N (0,

√
∆t).

3.1. A dynamic programming formulation

Considering the previous time discretization for the asset price evolution, the Amer-
ican option with counterparty risk can be priced through a dynamic programming
approach. Thus, in a particular time instant t = ti, the risky derivative value is given
by

V̂ ∗i (s) = sup
τ∈Tti

Eti

[
e−r0(τ−ti)h∗(τ, Sτ ) +

∫ τ

ti

e−r0(u−ti)g(V (u, S(u))) du
∣∣∣ Si = s

]
.

If we compute V̂ ∗i (s) for i = M, . . . , 1, 0 (thus, from t = T to t = 0), we define a
strategy for pricing American options.

We know the option value at maturity (tM = T ):

V̂ ∗M (s) = h∗(T, s)

for a given underlying value s. At time t = tM−1, an investor will choose to exercise the
option if and only if the payoff at this instant is greater than the discounted expected
value to be received if the investor decides not to exercise. From this consideration,
we have:

V̂ ∗M−1(s) = max

{
h∗(tM−1, s),

EtM−1

[
DM−1,M V̂

∗
M (SM ) +

∫ tM

tM−1

e−r0(u−tM−1)g(V (u, S(u))) du
∣∣∣ SM−1 = s

]}
,

where the discount factor is defined by Di−1,i = e−r0(ti−ti−1). Thus, the recursive
formula is given by:

V̂ ∗M (s) = h∗(T, s) , SM = s ,

V̂ ∗i−1(s) = max

{
h∗(ti−1, s),

Eti−1

[
Di−1,iV̂

∗
i (Si) +

∫ ti

ti−1

e−r0(u−ti−1)g(V (u, S(u))) du
∣∣∣ Si−1 = s

]}
, (7)

for i = M,M − 1, . . . , 1.
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Note that we are interested in obtaining the discounted values at t0 = 0, so we
consider

hi(s) = D0,ih
∗(ti, s) , V̂i(s) = D0,iV̂

∗
i (s) (i = 0, . . . ,M) .

Taking into account that V̂0(s) = V̂ ∗0 (s) and the recursive expression given in (7), we
obtain:

V̂M (s) = hM (s)

V̂i−1(s) = D0,i−1V̂
∗
i−1(s)

= D0,i−1 max

{
h∗(ti−1, s), Eti−1

[
Di−1,iV̂

∗
i (Si)+∫ ti

ti−1

e−r0(u−ti−1)g(V (u, S(u))) du
∣∣∣ Si−1 = s

]}

= max

{
hi−1(s), Eti−1

[
D0,i−1Di−1,iV̂

∗
i (Si)+∫ ti

ti−1

D0,i−1e
−r0(u−ti−1)g(V (u, S(u))) du

∣∣∣ Si−1 = s

]}

= max

{
hi−1(s), Eti−1

[
D0,iV̂

∗
i (Si) +

∫ ti

ti−1

e−r0ug(V (u, S(u))) du
∣∣∣ Si−1 = s

]}
,

for i = M,M − 1, . . . , 1. Introducing the discount factor in the payoff and in the
functions, the previous expressions can be simplified:

V̂M (s) = h(T, s) , SM = s

V̂i−1(s) = max

{
hi−1(s),Eti−1

[
V̂i(Si) +

∫ ti

ti−1

e−r0ug(V (u, S(u))) du
∣∣∣ Si−1 = s

]}
,

(8)

for i = M,M − 1, . . . , 1.

3.2. Optimal stopping rule and continuation value

In the previous section we have approximated the option value in a recursive way.
However, it is also important to price the option through stopping rules and exercise
region. In that sense, any stopping time τ determines the sub-optimal value

V̂ τ
0 (S0) = E0

[
hτ (Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u))) du

]
.

Our aim is to choose the optimal stopping time, which will be determined by

τ∗ = min
{
τi ∈ {t1, . . . , tM} : hi(Si) ≥ V̂i(Si)

}
, (9)
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so that the exercise region associated to V̂i at the i-th exercise date is the set{
s : hi(s) = V̂i(s)

}
.

After defining the optimal stopping rule we introduce the continuation value, which
is the value of holding instead of exercising the option. This continuation value can be
computed in a recursive way as:

CM (s) = 0,

Ci(s) = Eti

[
V̂i+1(Si+1) +

∫ ti+1

ti

e−r0ug(V (u, S(u))) du
∣∣∣ Si = s

]
,

for i = M − 1, . . . , 0, where V̂i is obtained as the solution of the recursive dynamic
programming problem. Moreover, according to (8) the option value is given in terms
of the continuation and exercise values as follows:

V̂i(s) = max{hi, Ci} , i = 1, . . . ,M .

Thus, the optimal stopping rule can be rewritten as

τ∗ = min
{
τi ∈ {t1, . . . , tM} : hi(Si) ≥ Ci(Si)

}
. (10)

In terms of the optimal stopping time, the option value is determined by

V̂ τ∗

0 (S0) = E0

[
hτ∗(Sτ∗) +

∫ τ∗

0
e−r0ug(V (u, S(u))) du

]
.

3.3. Lower bounds estimator using least-squares regressions

We now introduce the approximations, κi(s), of the continuation values, Ci(s). Several
authors, cf. Longstaff and Schwartz [10] for example, have proposed a least-squares
regression to estimate these values from the simulated paths. In this way, the value
Ci(s) can be obtained as the regression of

V̂i+1(Si+1) +

∫ ti+1

ti

e−r0ug(V (u, S(u))) du

on the current state of the asset price s. Thus, Ci is approximated by a linear com-
bination of known functions of the current state using a least-squares regression that
leads to coefficients κi.

Following this idea, we introduce how to approximate the continuation values con-
sidering counterparty risk. We will write the continuation value as a linear combination
of basis functions as follows:

Ci(s) = Eti

[
V̂i+1(Si+1) +

∫ ti+1

ti

e−r0ug(V (u, S(u))) du
∣∣∣ Si = s

]
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=

J∑
j=1

bijψj(s) = bTi ψ(s) , (11)

where bi = (bi1, . . . , biJ)T are the regression coefficients at time ti and ψ(s) =
(ψ1(s), . . . , ψJ(s))T is the vector of basis functions.

Different bases can be used to approximate the continuation value. We focus on the
weighted Laguerre polynomials:

ψj(x) = e−x/2Lj−1(x) , j = 1, 2, . . .

where Lj is the j−th Laguerre polynomial.
Next, we determine the expression of the regression coefficients bi using a least-

squares optimization technique. Let ϕ the function to minimize:

ϕ(bi) = Eti

[(
ψ(Si)

T bi − Eti

[
V̂i+1(Si+1) +

∫ ti+1

ti

e−r0ug(V (u, S(u))) du
∣∣∣ Si = s

])2]
.

In order to minimize, we vanish the derivatives with respect to bi, so that we get:

Eti

[
ψ(Si)

(
ψ(Si)

T bi − Eti

[
V̂i+1(Si+1) +

∫ ti+1

ti

e−r0ug(V (u, S(u))) du
∣∣∣ Si = s

])]
= 0

or equivalently,

Eti [ψ(Si)ψ(Si)
T ] bi = Eti

[
ψ(Si)Eti

[
V̂i+1(Si+1)

∣∣∣ Si]]
+ Eti

[
ψ(Si)Eti

[∫ ti+1

ti

e−r0ug(V (u, S(u))) du
∣∣∣ Si = s

]]

= Eti
[
ψ(Si) V̂i+1(Si+1)

]
+ Eti

[
ψ(Si)Eti

[∫ ti+1

ti

e−r0ug(V (u, S(u))) du
∣∣∣ Si = s

]]
.

Thus, the expression of bi is approximated by βi, which satisfies the linear system:

Aψi βi = dψi ,

where Aψi and dψi can be easily estimated by Monte Carlo simulations. For this purpose,
let us consider independent paths (Sj,1, Sj,2, . . . , Sj,M ) (j = 1, 2, . . . , N), that can be

deduced by (6), and assume that the value Vi+1(Sj,i+1) is known at time ti. Then, Aψi
is a M ×M matrix with coefficients:

(Aψi )l,k =
1

N

N∑
j=1

ψl(Sj,i)ψk(Sj,i)

8



and dψi is the M -array with the k-th element given by

(dψi )k =
1

N

N∑
j=1

ψk(Sj,i) Ŵi+1(Sj,i+1) +
1

N

N∑
j=1

ψk(Sj,i)

∫ ti+1

ti

e−r0ug(W (u, S(u))) du ,

where Sj,i and Sj,i+1 correspond to the same trajectory. Moreover, W denotes the

risk-free value estimated by the classical Longstaff-Schwartz algorithm while Ŵi+1 is
the estimation of the risky value in the previous time step.

Thus, the continuation value Ci can be approximated by:

κi = βTi ψ(Si) (12)

and the risky derivative value can be replaced by its estimated value

Ŵi+1 = max {hi+1(Si+1), κi+1} .

Algorithm 1 Regression coefficients βi (without interpolation)

(1) Simulate N independent paths {Sj,1, Sj,2, . . . , Sj,M} of the asset prices process.

(2) At maturity time tM , ŴM (Sj,M ) = hM (Sj,M ).
(3) Apply backward induction for i = M − 1, . . . , 1.

• Compute the classical Longstaff-Schwartz approximation with S0 = Sj,i for
the time interval [ti, T ] to obtain Wj,i.

• Given the estimated value Ŵj,i+1 and Wj,i (j = 1, . . . , N), compute βi as

the solution of the linear system Aψi βi = dψi .
• Estimate the continuation value κi(Sj,i) = βTi ψ(Sj,i) (j = 1, . . . , N).

• Compute Ŵ k+1
j,i = max{hi(Sj,i), κi(Sj,i)}.

(4) Save the regression coefficients βi to compute the risky derivative value.

Let us remark that in the previous algorithm (sketched as Algorithm 1) we have
to apply an inner Monte Carlo method at each step of time and for each asset price
path, what makes this solution very expensive from the computational point of view.

With the aim of reducing this computational cost, we introduce a second alternative
to solve the same problem (Algorithm 2). In this alternative, we propose to compute
the risk-free derivative value, W , for a set of asset prices at each instant time of
the discretization used to obtain the risky derivative value. The classical Longstaff-
Schwartz algorithm is employed. Then, in each integral, the risk-free derivative value
has to be evaluated in the state of the asset price at instant ti. Instead of the exact
value, we propose the use of the interpolated value computed from the set of fixed
values previously obtained for different asset prices.

3.4. Low-biased estimator using optimal stopping rule

After obtaining the regression coefficients, we compute the value of the American
option with counterparty risk, by simulating a new set of paths independent from the
previously used prices. Then, the optimal stopping strategy is determined with the
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Algorithm 2 Regression coefficients βi (with interpolation)

(1) Simulate N independent paths {Sj,1, Sj,2, . . . , Sj,M} of the asset prices process.
(2) Apply forward induction for i = 0, 1, . . . ,M−1. Compute the risk-free derivative

value for different asset values in the time interval [ti, T ].

(3) At maturity time tM , ŴM (Sj,M ) = hM (Sj,M ).
(4) Apply backward induction for i = M − 1, . . . , 1.

• Interpolate the risk-free derivative value for the asset price Sj,i at time ti.

• Given the estimated values Ŵj,i+1 and Wj,i (j = 1, . . . , N), compute βi as

the solution of the linear system Aψi βi = dψi .
• Estimate the continuation value κi(Sj,i) = βTi ψ(Sj,i) (j = 1, . . . , N).

• Compute Ŵ k+1
j,i = max{hi(Sj,i), κi(Sj,i)}.

(5) Save the regression coefficients βi to compute the risky derivative value.

previous algorithm, given the state of the asset price Si. Thus,

τ̂ = min
{
τi ∈ {t1, . . . , tM} : hi(Si) ≥ κi(Si)

}
.

By using this stopping strategy, with the second set of paths, the risky American
option value is estimated as

Ŵ0(S0) = E0

[
hτ̂ (Sτ̂ ) +

∫ τ̂

0
e−r0u

[
(RBλB − λC)W (u, S(u))−

+(RCλC + λB)W (u, S(u))+ − sFW (u, S(u))+
]
du

]
. (13)

Taking into account the expression of the risky derivative value V̂0(S0), given by

V̂0(S0) = sup
τ∈T0

E0

[
h(τ, Sτ ) +

∫ τ

0
e−r0u

[
(RBλB − λC)V (u, S(u))−

+(RCλC + λB)V (u, S(u))+ − sFV (u, S(u))+
]
du

]

≥ E0

[
hτ̂ (Sτ̂ ) +

∫ τ̂

0
e−r0u

[
(RBλB − λC)W (u, S(u))−

+(RCλC + λB)W (u, S(u))+ − sFW (u, S(u))+
]
du

]
= Ŵ0(S0) ,

we deduce that the estimator defined in (13) is a low-biased estimator which provides
a lower bound of the theoretical value. The algorithm that provides the low estimator
is shown as Algorithm 3.
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Algorithm 3 Derivative value estimation

(1) Load regression coefficients βi (i = 1, . . . ,M).
(2) Simulate N independent paths {Sj,1, Sj,2, . . . , Sj,M} of the asset prices process

from the first one used.
(3) Apply forward induction for i = 1, . . . ,M − 1 and j = 1, . . . , N .

• Compute the continuation value κi(Sj,i) = βTi ψ(Sj,i) (j = 1, . . . , N).
• Compute the payoff functions hi(Sj,i).

(4) At maturity time tM , ŴM (Sj,M ) = hM (Sj,M ) and CM (Sj,M ) = 0.

(5) Compute Ŵj,0(S0) = hi∗(Sj,i∗) (i∗ = min{i ∈ {1, . . . ,M} : hi(Sj,i) ≥ κi(Sj,i)}).
(6) Calculate the estimated value of the option: Ŵ0(S0) = 1

N

∑N
j=1 Ŵj,0.

3.5. Duality. Upper bounds estimator using martingales

As we have seen in Section 3.4, the estimator of the American option, obtained us-
ing least square regression, was a lower estimator on the real American value. In this
section an upper estimator using martingales is considered. For this purpose, we fol-
low the works of Haugh and Kogan [9] and Rogers [14]. Both have established dual
formulations which represent the price of an American option through a suitable min-
imization problem. The duality technique minimizes over a class of supermartingales
or martingales and leads to a high-biased approximation, therefore obtaining upper
bounds on prices.

As we have seen in (8), the discounted value V̂i(Si) satisfies the recursive formulation

V̂M (s) = h(T, s) , SM = s

V̂i−1(s) = max

{
hi−1(s),Eti−1

[
V̂i(Si) +

∫ ti

ti−1

e−r0u
[
(RBλB − λC)V (u, S(u))−

+(RCλC + λB)V (u, S(u))+ − sFV (u, S(u))+
]
du
∣∣∣ Si−1 = s

]}
,

for i = M,M − 1, . . . , 1. From the previous recursive formula, the following inequality
is obtained:

V̂i(Si) ≥ Eti

[
V̂i+1(Si+1) +

∫ ti+1

ti

e−r0u
[
(RBλB − λC)V (u, S(u))−

+(RCλC + λB)V (u, S(u))+ − sFV (u, S(u))+
]
du
∣∣∣ Si]

≥ Eti
[
V̂i+1(Si+1)

∣∣∣ Si] ,
for i = 0, . . . ,M − 1. Thus, we can conclude that V̂i is a supermartingale [12].

On the other hand, the American option price satisfies:

V̂i(Si) ≥ hi(Si), i = 0, . . . ,M .

11



Thus, the value function process V̂i(Si) (i = 0, . . .M) is the minimal supermartingale
dominating hi(Si) at each exercise time ti.

Let M = {Mi, i = 0, . . . ,M} be a martingale, with M0 = 0. By the optimal
stopping theorem of martingales, the expected value of a martingale at a stopping
time is equal to the expected value of its initial value. Then, for any stopping time
τ ∈ {t1, t2, . . . , tM}, we have E[Mτ ] =M0 = 0 and we can deduce:

E0

[
hτ (Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u))) du

]
= E0

[
hτ (Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u))) du−Mτ

]

≤ E0

[
max

i=1,...,M

(
hi(Si) +

∫ ti

0
e−r0ug(V (u, S(u))) du−Mi

)]
. (14)

Moreover, in terms of the infimum over martingales M with initial valueM0 = 0, we
obtain

E0

[
hτ (Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u))) du

]

≤ inf
M

E0

[
max

i=1,...,M

(
hi(Si) +

∫ ti

0
e−r0ug(V (u, S(u))) du−Mi

)]
, (15)

which holds for any stopping time τ . Thus, the American option price written in terms
of the supremum over τ leads to the following inequality:

V̂0(S0) = sup
τ

E0

[
hτ (Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u))) du

]

≤ inf
M

E0

[
max

i=1,...,M

(
hi(Si) +

∫ ti

0
e−r0ug(V (u, S(u))) du−Mi

)]
(16)

for every martingale M. The minimization problem on the right hand side is known
as dual problem.

Next, let us consider the stochastic process defined by:

M0 = 0 , Mi =

i∑
k=1

∆k , i = 1, . . . ,M , (17)

where ∆k = V̂k(Sk)− Etk−1
[V̂k(Sk) | Sk−1]. We can easily prove that this process is a

martingale, so that it satisfies (16). Furthermore, we can also prove [7]:

V̂0(S0) = E0

[
max

i=1,...,M

{
hi(Si) +

∫ ti

0
e−r0ug(V (u, S(u))) du−Mi

}]
. (18)

Thus, inequality (16) in the Appendix holds for our particular choice of martingale.

12



In the Appendix we detail the computation of an estimated martingale, M̂, close
to the optimal one, M, in order to obtain the following estimated value of V̂0:

Ŵ0(S0) = E0

[
max

i=1,...,M

{
hi(Si) +

∫ ti

0
e−r0ug(W (u, S(u))) du− M̂i

}]
, (19)

which is the so called duality estimator. Algorithm 4 sketches the computation of this
dual estimator.

Algorithm 4 Dual estimator using martingales

(1) Load regression coefficients βi, i = 1, . . . ,M given by Algorithms 1 or 2
(2) Simulate N independent paths {Sj,1, Sj,2, . . . , Sj,M} of the asset prices process.

(3) Set the initial martingale M̂0 = 0
(4) For each j = 1, . . . , N , apply forward induction for i = 1, . . . ,M .

• Compute the continuation values κi.
• Estimate the American option price, Ŵi(Sj,i) = max{hi(Sj,i), κi(Sj,i)} .
• Simulate NS subpaths {S1,i, S2,i, . . . , SNS ,i} starting from Sj,i−1.

• Compute the estimation of the martingale differential ∆̂i

• Obtain the martingales M̂i = M̂i−1 + ∆̂i

(5) Set Ŵ0,j(S0) = max
i=1,...,M

(
hi(Sj,i) +

∫ ti

0
e−r0ug(V (u, S(u)))du− M̂j,i

)
.

(6) Compute the dual estimated value as Ŵ0(S0) = 1
N

∑N
j=1 Ŵ0,j(S0).

3.6. Confidence intervals

We take into account the lower and upper estimators developed in the previous sections
to propose confidence intervals that contain the American option price.

We denote by V and V the lower and upper estimators, respectively, both computed
with N paths. Then, the (1− α) confidence interval is given by(

V − zα/2
sV (N)√

N
, V + zα/2

sV (N)√
N

)
,

where sV (N) and sV (N) denote the respective sample standard deviations and zα/2
represents the (1− α/2) quantile of the normal distribution.

4. The nonlinear problem (M = V̂ )

In the previous section we have deduced how to price the American option value con-
sidering counterparty risk, when the mark-to-market is equal to the risk-free deriva-
tive value. Two alternative algorithms have been proposed, transforming the classical
Longstaff-Schwartz scheme. More precisely, Algorithm 1 consists of two nested Monte
Carlo methods while Algorithm 2 combines a Monte Carlo method with an interpola-
tion technique.

13



Now, when the mark-to-market value is equal to the price of the derivative with
conterparty risk (M = V̂ ), in the corresponding complementarity problem (3) we

identify a nonlinear dependence on the solution V̂ . In this case, Feynman-Kac theorem
[12] provides the risky American option value at time t = 0, which satisfies:

V̂0(S0) = sup
τ∈T0

E0

[
e−rτh∗(τ, Sτ ) +

∫ τ

0
e−ruf(V̂ (u, S(u))) du

]
,

where function f is defined by:

f(V̂ ) = −(1−RB)λBV̂
− − (1−RC)λC V̂

+ − sF V̂ + .

Recall that the asset prices follow the geometric Brownian motion process defined
in (1). Once again, to simulate a continuously exercisable American option the period
of time is discretized in M + 1 time steps. Thus, the asset price value at each time
step is approximated by Euler-Maruyama scheme like in (6).

Now, using dynamic programming formulation, the American option value can be
written in a recursive formula

V̂M (s) = h(T, s) , SM = s

V̂i−1(s) = max

{
hi−1(s),Eti−1

[
D0,iV̂

∗
i (Si) +

∫ ti

ti−1

e−ruf(V̂ (u, S(u))) du
∣∣∣ Si−1 = s

]}
,

for i = M,M − 1, . . . , 1, the discount factor being defined as

Di−1,i = e−r(ti−ti−1).

Introducing the discount factor in each term, the recursive formula becomes:

V̂M (s) = h(T, s) , SM = s

V̂i−1(s) = max

{
hi−1(s),Eti−1

[
V̂i(Si) +

∫ ti

ti−1

e−ruf(V̂ (u, S(u))) du
∣∣∣ Si−1 = s

]}
,

for i = 1, . . . ,M .
Next, we write the continuation value, which is also approximated by a regression

function, as follows:

Ci(s) = Eti

[
V̂i+1(Si+1) +

∫ ti+1

ti

e−ruf(V̂ (u, S(u))) du
∣∣∣ Si = s

]

=

J∑
j=1

bijψj(s) = bTi ψ(s) . (20)

Let us remark that the main difference with respect to the case where the mark-to-
market is equal to the risk-free derivative value arises in the continuation value, which

leads to a different expression of dψi . Furthermore, the continuation value at time ti
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is defined in terms of the risky derivative value in the previous time step, which has
been previously computed, and the risky derivative value at the same instant of time.

In order to deal with the nonlinear feature of this problem, we propose a fixed point
algorithm to compute coefficients βi as the estimators of bi.

Algorithm 5 Regression coefficients βi with fixed point iteration

(1) Simulate N independent paths {Sj,1, Sj,2, . . . , Sj,M} of the asset prices process.

(2) At maturity time tM , ŴM (Sj,M ) = hM (Sj,M ).
(3) Set the tolerance ε.
(4) For i = M − 1, . . . , 1, perform a fixed point algorithm:

• Initialize ` = 0 and set Ŵ 0
j,i = Ŵj,i+1.

• Given the estimated value Ŵj,i+1 (j = 1, . . . , N), compute Aψ.
• Iterate the following steps while e > ε

◦ Compute dψ,`i in terms of Ŵ `
j,i.

◦ Compute βi as the solution of the linear system Aψi β
`
i = dψ,`i .

◦ Estimate the continuation value κi(Sj,i) = βTi ψ(Sj,i) for j = 1, . . . , N .

◦ Compute Ŵ `+1
j,i = max{hi(Sj,i), κi(Sj,i)}.

◦ e = ‖Ŵ `+1
j,i − Ŵ `

j,i‖ and set ` = `+ 1

(5) Save the regression coefficients βi to compute the risky derivative value.

Therefore, to obtain the lower estimator of the risky derivative value at time t = 0
we apply Algorithm 3, using the β coefficients obtained with Algorithm 5.

Using a similar procedure that in the linear complementarity problem, when M =
V , an upper estimator of the derivative value can be obtained. In this case, after
computing the regression coefficients βi by Algorithm 5, we apply Algorithm 4 to
obtain the estimator of the American option value. Remark that function g(V ) in

Algorithm 4 is replaced by function f(V̂ ). Again the confidence intervals are obtained
like in Section 3.6.

5. Numerical results

In this section, some numerical results are presented. Our aim is to compare the Monte
Carlo algorithms here proposed with the numerical methods previously applied in [1]
to the corresponding PDE formulations.

In all examples, the initially chosen financial parameters are: K = 15, r = 0.04,
rR = 0.06, σ = 0.25, RB = RC = 0.3, λB = λC = 0.04, sF = (1−RB)λB and T = 0.5.
We will also show the sensitivity of the option price with respect to parameters λB,
λC , RB and RC by shifting these initial values.

For the numerical simulation with Monte Carlo techniques, we have used 500 paths
and 1000 time steps. In particular, for Algorithm 1 we have additionally considered
8 inner paths, while for Algorithm 4 we use NS = 50. Moreover, we consider a basis
consisting of three Laguerre polynomials in the regression formula (11).

For solving the PDE formulations, we consider a combination of characteristics
method for time discretization, finite elements for spatial discretization, a fixed point
technique for the nonlinearity and ALAS algorithm for the solution of the resulting
obstacle problem [1]. For this purpose, we use a spatial mesh with 601 asset nodes and
200 time steps.
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5.1. Example with mark-to-market M = V

Table 1 presents some numerical results obtained when the mark-to-market is M = V .
More precisely, for different underlying prices, the numerical solution of the linear
complementarity problem (2), the lower (13) and upper (19) estimators and the 99%
confidence interval are shown jointly with the excercise value.

The numerical solution of (2) is computed with the techinques described in [1]. We
can appreciate that it lies in the confidence interval, except in the first critical case
for S = 0 where Monte Carlo approximation is very close to the exercise value. For
the larger underlying prices (S ≥ 25), all values become naturally close to zero, as
expected.

Table 1. American option value considering counterparty risk and M = V (Algorithms 1 and 4).

Complementarity
problem Lower Upper Confidence

S Pay-off approximation estimator estimator interval

0.0 15.0 15.00000000 14.99910003 14.99919002 (14.99910003 , 14.99919002)
2.5 12.5 12.50000000 12.49809274 12.50113807 (12.49633159 , 12.50151772)
5.0 10.0 10.00000000 10.00054706 10.00902565 ( 9.99385387 , 10.01043362)
7.5 7.5 7.50000000 7.49881347 7.52529594 ( 7.49403593 , 7.52565934)

10.0 5.0 5.00000000 5.00256029 5.05869954 ( 4.99576292 , 5.05925524)
12.5 2.5 2.51600182 2.44617335 2.67576415 ( 2.41916259 , 2.67817891)
15.0 0.0 0.87745370 0.85460499 1.06069986 ( 0.84971491 , 1.06301242)
17.5 0.0 0.22907711 0.18793087 0.49197404 ( 0.17322978 , 0.49335142)
20.0 0.0 0.04701583 0.04818037 0.31265812 ( 0.04221081 , 0.31332163)
22.5 0.0 0.00810599 0.00652163 0.15992887 ( 0.00431714 , 0.16022584)
25.0 0.0 0.00124366 0.00057994 0.01382764 (-0.00003049 , 0.01403672)
27.5 0.0 0.00017746 0.00002964 0.00015364 (-0.00001945 , 0.00159181)
30.0 0.0 0.00002432 0.00001639 0.00003384 (-0.00002584 , 0.00009372)

A similar behavior is observed with Algorithm 2, where the risk-free price V is
interpolated from the values previously obtained in a thin mesh for the asset, instead
of being computed by an inner Monte Carlo algorithm (see Table 2).

Table 2. American option value considering counterparty risk and M = V (Algorithms 2 and 4).

Complementarity
problem Lower Upper Confidence

S Pay-off approximation estimator estimator interval

0.0 15.0 15.00000000 14.99910003 14.99919002 (14.99910003 , 14.99919002 )
2.5 12.5 12.50000000 12.49878788 12.50074403 (12.49701990 , 12.50109953 )
5.0 10.0 10.00000000 9.99825352 10.00895521 ( 9.99516292 , 10.01031047 )
7.5 7.5 7.50000000 7.49814808 7.52543188 ( 7.48526493 , 7.52874533 )

10.0 5.0 5.00000000 5.00220584 5.05834509 ( 4.98403716 , 5.06774399 )
12.5 2.5 2.51600182 2.46371870 2.67394114 ( 2.30502657 , 2.68898177 )
15.0 0.0 0.87745370 0.84859226 1.06127342 ( 0.70565317 , 1.08186773 )
17.5 0.0 0.22907711 0.20054059 0.49115613 ( 0.13612061 , 0.51495675 )
20.0 0.0 0.04701583 0.03959987 0.31201452 ( 0.01426014 , 0.32890688 )
22.5 0.0 0.00810599 0.00823601 0.16045927 ( -0.00358441 , 0.16930795 )
25.0 0.0 0.00124366 0.00052809 0.01281424 ( -0.00048394 , 0.01380686 )
27.5 0.0 0.00017746 0.00000000 0.00003246 ( 0.00000000 , 0.00003439 )
30.0 0.0 0.00002432 0.00000000 0.00000442 ( 0.00000000 , 0.00000468 )

In order to compare the efficency of algorithms 1 and 2, we have measured the
ellapsed CPU time in both cases. In all examples, tests have been performed by using
Matlab on an Intel(R) Xeon(R) CPU E3-1241 3.50 GHz computer. Algorithm 1 takes
55134 seconds for lower estimator and 37390 for upper estimator. However, Algorithm
2 needs 5.4863 seconds to obtain the regression coefficients. Note that when using
Algorithm 2, a high computational time is employed to obtain the risk-free derivative
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Table 3. American option value considering counterparty risk and M = V̂ (Algorithms 5 and 4).

Complementarity
problem Lower Upper Confidence

S Pay-off approximation estimator estimator interval

0.0 15.0 15.00000000 14.99970000 14.99979001 (14.99970000 , 14.99979001)
2.5 12.5 12.50000000 12.49987807 12.50229450 (12.49825098 , 12.50281445)
5.0 10.0 10.00000000 9.99848975 10.01481249 ( 9.99246462 , 10.01684125)
7.5 7.5 7.50000000 7.50417414 7.53459612 ( 7.49600267 , 7.53920122)

10.0 5.0 5.00000000 4.96081214 5.07280533 ( 4.90694567 , 5.08156060)
12.5 2.5 2.52410327 2.32223198 2.69563668 ( 2.15396736 , 2.71232058)
15.0 0.0 0.89012915 0.81039447 1.08655935 ( 0.66794198 , 1.10885981)
17.5 0.0 0.23345859 0.23289102 0.50408124 ( 0.15736865 , 0.52928497)
20.0 0.0 0.04802108 0.04619341 0.31320212 ( 0.01305985 , 0.32997245)
22.5 0.0 0.00828968 0.01042668 0.14064556 (-0.00236734 , 0.14839822)
25.0 0.0 0.00127290 0.00036507 0.02547380 (-0.00037522 , 0.02682979)
27.5 0.0 0.00018174 0.00000000 0.00000000 ( 0.00000000 , 0.00000000)
30.0 0.0 0.00002492 0.00000000 0.00000000 ( 0.00000000 , 0.00000000)

value on the thin mesh used to interpolate. More precisely, it takes 215250 seconds to
obtain the lower and upper estimators of the risk-free derivative price for the whole
set of asset nodes. Furthermore, Algorithms 3 and 4 take 0.0759 and 2.1875 seconds,
respectively, for the computation of the risky American option price.

All these computational times correspond to the approximation of the option price
for just one asset price. We can observe that the interpolation of the risk-less option
values implies a larger time in obtaining the lower and upper estimators for a unique
initial asset price. Nevertheless, once the values of the riskless derivative on the fine
mesh are available, the computation of the option price for several asset prices by
Algorithm 2 (interpolation) is much more efficient than Algorithm 1 (inner Longstaff-
Schwartz scheme). Indeed, only 6 additional seconds per asset price are required in
Algorithm 2.

Alternatively, the numerical solution of the complementarity problem (2) results
clearly more efficient, as only 6.89 seconds are needed to approximate the solution on
a mesh of 601 nodes (each node represents an initial asset price) and 200 time steps.

5.2. Example with mark-to-market M = V̂

Table 3 shows the results obtained in the example with mark-to-market M = V̂ , which
corresponds to PDE formulation (3). The associated Monte Carlo technique has been
described in Section 4. In this example, Algorithm 5 takes 6.2608 seconds, while the
numerical methods [1] employed to approximate the solution of the nonlinear comple-
mentarity problem take 270 seconds with a 601 nodes mesh and 200 time steps. We
point out the good agreement between the values computed from the PDE formulation
and the confidence intervals obtained with the proposed Monte Carlo technique.

We can also analyze the influence of different parameters on the value of the option.
Table 4 shows, for an initial price S=20, the numerical solution of the complementarity
problem, the Monte Carlo lower and upper estimators, and the confidence intervals
computed for different values of the intensity of default λB. As expected, we appreciate
that for increasing values of this parameter both estimators decrease. We have observed
the same effect when we have fixed λB and taken different increasing values for the
intensity of default λC .

A similar behavior, in the opposite sense, is observed when we increase the recovery
rates RB or RC . Tables 5 and 6 show the obtained results for S0 = 20.
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Table 4. American option value considering counterparty risk and M = V̂ (Algo-

rithms 5 and 4). Effect of the intensity of default. S0 = 20, λC = 0.04, RB = RC = 0.30.

Complementarity
problem Lower Upper Confidence

λB approximation estimator estimator interval

0.04 0.04802108 0.04942329 0.31842569 ( 0.01289458 , 0.33546431)
0.10 0.04715281 0.04930002 0.31715650 ( 0.01287656 , 0.33380921)
0.30 0.04439205 0.04895565 0.30504576 ( 0.01282437 , 0.32139431)

Table 5. American option value considering counterparty risk and M = V̂ (Algo-

rithms 5 and 4). Effect of the recovery rate. S0 = 20, λB = λC = 0.30, RC = 0.30.

Complementarity
problem Lower Upper Confidence

RB approximation estimator estimator interval

0.10 0.04005223 0.04732412 0.29536326 ( 0.01512059 , 0.31200451)
0.30 0.04107955 0.04766287 0.30351023 ( 0.01513649 , 0.32043366)
0.90 0.04435412 0.04790897 0.31169431 ( 0.01514366 , 0.32841816)

Table 6. American option value considering counterparty risk and M = V̂ (Algo-

rithms 5 and 4). Effect of the recovery rate. S0 = 20, λB = λC = 0.30, RB = 0.30.

Complementarity
problem Lower Upper Confidence

RC approximation estimator estimator interval

0.10 0.04005223 0.04732412 0.29615655 ( 0.01512059 , 0.31268850)
0.30 0.04107955 0.04766287 0.30497545 ( 0.01513649 , 0.32197302)
0.90 0.04435412 0.04790897 0.31058947 ( 0.01514366 , 0.32782823)

6. Conclusions

In this work we have addressed the computation of American option prices, when
counterparty risk is taken into account. More precisely, for the most usual couple of
choices of the mark-to-market value of the American option at default, we express the
option price in terms of expectations involving the optimal stopping times. Moreover,
when the mark-to-market is equal to the option price without counterparty risk we
propose two algorithms: a first one requiring two nested Monte Carlo loops, and a
second one considering a suitable interpolation technique for the risk-free option price.
When the mark-to-market value at default is equal to the risky option price, a fixed
point iteration is considered. The proposed techniques involve the computation of
lower and upper estimators to build up a confidence interval for the American option
price. These estimators are obtained by extending some previous results from [10] and
[7].

Although we have only considered constant spreads, we note that the proposed
methodology can be extended to a nonconstant spreads setting, as well as to other
financial products with early exercise feature such as callable bonds or Bermudan swap-
tions, for example. Moreover, from the computational perspective the use of parallel
computing techniques (like those ones related to multi-CPUs or GPUs) would allow a
high speed up of the involved algorithms. These parallel computing tools result very
efficient for the here considered Monte Carlo based techniques.
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[6] S. Crépey, Bilateral counterparty risk under funding constraints-part ii: CVA,
Mathematical Finance 25 (2015), pp. 23–50.

[7] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, 2003.
[8] J. Gregory, Counterparty credit risk and credit value adjustment, Wiley Finance,

2012.
[9] M.B. Haugh and L. Kogan, Pricing american options: a duality approach, Oper-

ations Research 52 (2004), pp. 258–270.
[10] F.A. Longstaff and E.S. Schwartz, Valuing American options by simulation: A

simple least-squares approach, Rev. Financ. Stud. 14 (2001), pp. 113–147.
[11] A. Pallavicini, D. Perini, and D. Brigo, Funding, collateral and hedging: A consis-

tent framework included CVA, DVA, collateral, netting rules and re-hypotecation,
SSRN Electronic Journal (2011), pp. 18–24.

[12] A. Pascucci, PDE and Martingale Methods in Option Pricing, Springer, 2011.
[13] V. Piterbarg, Funding beyond discounting: collateral agreements and derivatives

pricing, Risk Magazine 23 (2010), pp. 97–102.
[14] L.C.G. Rogers, Monte Carlo valuation of American options, Mathematical Fi-

nance 12 (2002), pp. 271–286.
[15] P. Wilmott, S. Howison, and J. Dewynne, The mathematics of financial deriva-

tives. A students introduction, Cambridge University Press, Cambridge, 1996.
[16] P. Wilmott, S. Howison, and J. Dewynne, Option pricing: Mathematical models

and computation, Oxford Financial Press, Oxford, 1996.

19



Appendix: Duality, upper bounds estimator using martingales

As indicated in Section 3.4, by using least square regression, a lower estimator of the
American option price with counterparty risk can be obtained. In this Appendix we
detail the statement of an upper estimator using martingales, by following Haugh and
Kogan [9] and Rogers [14], where dual formulations which represent the American
option price without counterparty risk through a minimization problem are obtained.
The duality minimizes over a class of supermartingales or martingales and leads to a
upper-biased estimator, thus obtaining upper bounds on prices.

As we have seen, the discounted value V̂i(Si) satisfies the recursive formulation (8).
From this recursive formula, the following inequality is obtained:

V̂i(Si) ≥ Eti
[
V̂i+1(Si+1) +

∫ ti+1

ti

e−r0u
[
(RBλB − λC)V (u, S(u))−

+(RCλC + λB)V (u, S(u))+ − sFV (u, S(u))+
]
du | Si

]
i = 0, . . . ,M − 1,

which indicates that V̂i(Si) is a supermartingale. On other hand, we also have

V̂i(Si) ≥ hi(Si), i = 0, . . . ,M.

So, the value function process V̂i(Si), i = 0, . . .M is the minimal supermartingale
dominating hi(Si) at each exercise time ti.

Let M = {Mi, i = 0, . . . ,M} be a martingale, with M0 = 0. By the optional
stopping times theorem of martingales, the expected value of a martingale at a stopping
time is equal to the expected value of its initial value. Then, for any stopping time
τ ∈ {t1, t2, . . . , tM}, E[Mτ ] =M0 = 0, and we have

E0

[
hτ (Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u)))du

]
= E0

[
hτ (Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u))) du−Mτ

]

≤ E0

[
max

i=1,...,M

(
hi(Si) +

∫ ti

0
e−r0ug(V (u, S(u))) du−Mi

)]
. (21)

Moreover, in terms of the infimum over the martingalesM with initial valueM0 =
0, we obtain

E0

[
hτ (Sτ ) +

∫ τ

0
e−r0ug(V (u, S(u))) du

]

≤ inf
M

E0

[
max

i=1,...,M

(
hi(Si) +

∫ ti

0
e−r0ug(V (u, S(u))) du−Mi

)]
, (22)

which remains true for any stopping time τ . So, the American option price written in
terms of the supremum over τ leads to (16). The minimization problem on the right
hand side of (16) is known as the dual problem.
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Next, we prove the equality for the particular martingale defined as follows:

M0 = 0, Mi =

i∑
k=1

∆k, i = 1, . . . ,M, (23)

where ∆k = V̂k(Sk)− Etk−1
[V̂k(Sk) | Sk−1].

In a first step, we prove that the previously defined M satisfies the martingale
property. Thus, taking into account the definition of ∆k, we have

Eti−1
[∆i | Si−1] = Eti−1

[
V̂i(Si)− Eti−1

[V̂i(Si) | Si−1] | Si−1

]
= 0.

For this purpose, first we have

Eti−1
[Mi | Si−1] = Eti−1

[ i∑
k=1

∆k | Si−1

]
=

i−1∑
k=1

∆k =Mi−1, (24)

which shows that M satisfies the martingale property.
Next, we use backward induction to prove that

V̂i(Si) = Eti

[
max

{
hi(Si) +

∫ ti

ti

e−r0ug(V (u, S(u)))du,

hi+1(Si+1) +

∫ ti+1

ti

e−r0ug(V (u, S(u)))du−∆i+1,

hi+2(Si+2) +

∫ ti+2

ti

e−r0ug(V (u, S(u)))du−∆i+2 −∆i+1, . . . ,

hM +

∫ tM

ti

e−r0ug(V (u, S(u)))du−∆M − . . .−∆i+1

} ∣∣∣ Si] (25)

For the maturity time tM , we have V̂M (SM ) = hM (SM ) = E[hM (SM ) | SM ]. So, the
equality (25) is satisfied.

Next, we assume that (25) is satisfied at time ti. Next, we obtain

V̂i−1(Si−1) = max

{
hi−1(Si−1),Eti

[
V̂i(Si) +

∫ ti

ti−1

e−r0ug(V (u, S(u)))du
∣∣∣ Si−1

]}

= Eti−1

[
max

{
hi−1(Si−1),Eti

[
V̂i(Si) +

∫ ti

ti−1

e−r0ug(V (u, S(u)))du
∣∣∣ Si−1

]} ∣∣∣ Si−1

]

= Eti−1

[
max

{
hi−1(Si−1), V̂i(Si) +

∫ ti

ti−1

e−r0ug(V (u, S(u)))du−∆i}
∣∣∣ Si−1

]

= Eti−1

[
max

{
hi−1(Si−1), hi(Si) +

∫ ti

ti−1

e−r0ug(V (u, S(u)))du−∆i, . . . ,

hi+1(Si+1) +

∫ ti+1

ti

e−r0ug(V (u, S(u)))du−∆i+1 −∆i, . . . ,
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hM (SM ) +

∫ tM

tM−1

e−r0ug(V (u, S(u)))du−∆M − . . .−∆i

} ∣∣∣ Si−1

]
,

so that (25) also holds for ti−1. Finally, at t = t0 the American option value is given
by

V̂0(S0) = E0

[
V̂1(S1) +

∫ t1

0
e−r0ug(V (u, S(u))) du

∣∣∣ S0

]

= V̂1(S1) +

∫ t1

0
e−r0ug(V (u, S(u)))du−∆1. (26)

Moreover, according to (25)

V̂1(S1) = Et1

[
max

{
h1(S1) +

∫ t1

t1

e−r0ug(V (u, S(u))) du,

h2(S2) +

∫ t2

t1

e−r0ug(V (u, S(u))) du−∆2,

h3(S3) +

∫ t3

t1

e−r0ug(V (u, S(u))) du−∆3 −∆2, . . . ,

hM (SM ) +

∫ tM

t1

e−r0ug(V (u, S(u))) du−∆M − . . .−∆2

} ∣∣∣ S1

]
.

(27)

Then, we have

V̂0(S0) = Et1

[
max

{
h1(S1) +

∫ t1

0
e−r0ug(V (u, S(u))) du−∆1,

h2(S2) +

∫ t2

0
e−r0ug(V (u, S(u))) du−∆2 −∆1,

h3(S3) +

∫ t3

0
e−r0ug(V (u, S(u))) du−∆3 −∆2 −∆1, . . . ,

hM (SM ) +

∫ tM

0
e−r0ug(V (u, S(u))) du−∆M − . . .−∆2

} ∣∣∣ S1

]
.

(28)

Finally, we get

V̂0(S0) = E0

[
max

i=1,...,M

{
hi(Si) +

∫ ti

0
e−r0ug(V (u, S(u))) du−Mi

}]
, (29)

which proves the inequality (16) for the martingale defined by (23).
Moreover, by (29) we have obtained an upper estimator for the American options

price with counterparty risk.
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Next, for practical purposes, the goal is to find a computable estimated martingale
M̂ close to the optimal martingaleM, to obtain an estimated value of V̂0 in the form

Ŵ0(S0) = E0

[
max

i=1,...,M

{
hi(Si) +

∫ ti

0
e−r0ug(W (u, S(u)))du− M̂i

}]
, (30)

which is the so called duality estimator.
Next, we construct the martingale M̂i. Thus, we follow the definition given in (23)

to find the suitable martingale.

M̂0 = 0 , M̂i =

i∑
k=1

∆̂k, i = 1, . . . ,M, (31)

where ∆̂k is given by ∆̂i = Ŵi(Si)−Eti−1
[Ŵi(Si) | Si−1]. Then, M̂ satisfies the general

martingale property.
Note that ∆̂k is now expressed in terms of the estimated value of the American

options, which was given by

Ŵ0 = max{hi(Si), κi(Si)}. (32)

where κi was defined in (12). In (12) the vector βi and the function bases ψ are the
same as for least square method.

Next, we explain how to estimate the martingale value. For this purpose, we assume
that we have simulated the main Monte Carlo paths {Sj,i, j = 1, . . . , N}. Then, for each

Si−1 we simulate NS successors {S̃i,k, k = 1, . . . , NS}, and estimate the conditional

expectation Eti−1
[Ŵi(Si) | Si−1] by

Eti−1
[Ŵi(Si) | Si−1] =

1

NS

NS∑
k=1

Ŵi(S̃k,i), (33)

where Ŵi(S̃k,i) is calculated as in (32). Then, the estimated value ∆̂i is given by

∆̂i = Ŵi(Si)−
1

M

M∑
k=1

Ŵi(S̃k,i) (34)

which gives the upper-biased estimator.
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