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Abstract In this work the authors propose efficient numerical methods to solve math-
ematical models for different optimal investment problems with irreversible envi-
ronmental effects. A relevant point is that both the benefits of the environment and
the alternative project are uncertain. The cases with instantaneous and progressive
transformation of the environment are addressed. In the first case, an Augmented La-
grangian Active Set (ALAS) algorithm combined with finite element methods are
proposed as a more efficient technique for the numerical solution of the obstacle
problem associated to a degenerated elliptic PDE. In the second case, the mathemat-
ical model can be split into two subsequent steps: first we solve numerically a set
of parameter dependent boundary value problems (the parameter being the level of
progressive transformation) and secondly an evolutive nonstandard obstacle problem
is discretized, thus leading to an obstacle problem at each time step. Also ALAS
algorithm is proposed at each time step. Numerical solutions are validated through
qualitative properties theoretically proven in the literature for different examples.

Keywords Investment under uncertainty · obstacle problems · finite elements ·
augmented lagrangian algorithm

1 Introduction

Physiocrats economic school understood the Earth as the main source of health, so
that Economics should focus on getting the most benefit from unlimited renewable
Earth resources. Later, most economic schools separated the environment from the

This work is partially supported by MICINN (MTM2010-21135-C02-01) and by Xunta de Galicia (Ayuda
CN2011/004 cofinanced with FEDER funds).

I. Arregui, C. Vázquez (Corresponding author)
Department of Mathematics, Faculty of Informatics, Campus Elviña s/n, 15071-A Coruña (Spain)
Tel.: +34-981167000
Fax: +34-981167160
E-mail: {arregui, carlosv}@udc.es



2 I. Arregui, C. Vázquez

economic development, thus environmental resources being understood as an ex-
ogenous factor in the economy. More recently, the discipline of Environmental Eco-
nomics incorporates classical tools from Economics to the analysis of environmental
problems in order to focus economic activity to minimize negative effects on the
Earth planet. Clearly, the tools of Applied Mathematics can be used for the model-
ing and solution of problems arising both in Economics and Environmental Sciences,
and therefore in Environmental Economics. The present article can be framed in this
general setting. More precisely, we focus on a problem arising in the economics of
environmental management involving uncertain and irreversible effects.

Since the earlier civilizations, human action has changed planet Earth. Jointly
with water, wind and vegetation, human action has become one of the main external
agents acting on the environment. Traditionally, the effect of these agents are incor-
porated in the modeling of different geophysical phenomena [12]. In more recent
times, the extremely quick advance of technology makes the human effect specially
relevant. The building of new cities and the expansion of human habitat into pre-
viously unoccupied areas has also contributed to it, resulting in the construction of
buildings, communications routes (roads, airports, railways, etc.) or infrastructures
for the exploitation of natural resources (dams, ports, mines, terraces, etc.). Thus, in
order to asses environmental policies, the impact of human actions in the different
geophysical processes needs to be analyzed, mathematically modeled and numeri-
cally simulated.

In order to decide when and how best to invest in infrastructure or industrial
projects it is important to consider not only the financial aspects but also the environ-
mental impact of the investment. Also, an important aspect to consider is that their
benefits will mainly occur in the future and future uncertain factors may be involved.
The irreversibility of some actions on the environment represents also an important
factor to be considered when starting investment projects.

In this work, we deal with the numerical solution of some models related to the
opportunity of starting an industrial project that provides some uncertain benefits but
also involves some irreversible effects on the environment. In the case of instanta-
neous irreversible effects, the implicit uncertain profit associated to the environment
stops once the project is initiated. When both the environment and the industrial
project benefits are uncertain and governed by stochastic processes, an important
problem is to determine if the project should be started and which will be the joint
utility if started at an optimal instant. In the case of a progressive transformation of
the environment, the utility also depends on the evolution of the fraction of the en-
vironment that is being transformed. In [10] this kind of problems are studied and
some analogies are established between them and those ones related to financial op-
tions pricing.

In [21], a first approach to the rigorous mathematical modeling of these kind of
optimization problems is performed, its departure point being the one period exam-
ple treated in [2] to discuss the so called quasi-option value. More precisely, in [21]
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it is proved that the optimal utility function is the unique viscosity solution to the
associated Hamilton–Jacobi–Bellman equation. Moreover, this optimal utility value
function depends on the fraction of the environment that has been converted for the
alternative project and from the initial profits associated to the environment and the
alternative industrial project. More recently, in [8] a suitable change of variable allows
to formulate the same problem in terms of two sequential PDE problems. The first one
is associated to an elliptic degenerate PDE depending on a time parameter. The sec-
ond can be formulated as an evolutive problem involving a multivalued operator. The
model is mathematically analyzed by means of L∞-accretive operators techniques.
Although in [21] some analytical solutions are discussed for particular expressions of
the utility function (additive HARA utility functions), numerical methods are clearly
required for the general case. In the present paper, taking advantage of the equivalent
formulation in [8], we propose some suitable numerical techniques to solve the gen-
eral problem.

Moreover, in [9] the case of instantaneous irreversible effects on the environment
is addressed. This case corresponds to a particular choice of the utility function. so
that an obstacle problem associated to a second-order elliptic operator which is not in
divergence form is posed. Under certain not too much restrictive hypotheses, by using
the specific structure of the differential operator and the unbounded spatial domain,
an appropriate change of variable is chosen in [9] to prove the existence and unique-
ness of solution. Some regularity results and qualitative properties of the solution are
also stated for specific choices of the data. As these properties cannot be stated for
the general case, some numerical methods to compute approximated solutions have
been proposed in [1]. More precisely, projected Gauss-Seidel [13] and Lions-Mercier
[19] type algorithms for the discretized finite elements problem are applied. In the
second case, the method is combined with a multigrid and adaptive refinement [14].
The numerical methods are validated by means of examples whose solutions exhibit
proved qualitative properties in [9]. However, some of the techniques can be replaced
for the more efficient ones we propose in the present paper.

In the present work, we propose different numerical techniques to solve the math-
ematical models analyzed in [8] and [9], proposed for the case of progressive and
instantaneous effects on the environment, respectively. For this purpose, we consider
a finite element discretization of the equivalent PDE problem posed on a suitable
bounded domain, thus avoiding the required domain truncation of the original un-
bounded domain [15]. Moreover, in the case of instantaneous effects, we propose
an augmented Lagrangian active set method as a more efficient alternative to those
ones proposed in [1]. We also validate the qualitative properties of the solution of this
problem in different particular cases. The same numerical techniques are adapted for
the obstacle problems appearing in the PDE model for progressive transformation of
the environment.

The outline of the paper is the following. In Section 2 we describe the mathemat-
ical models of the optimal investment problem in the case of progressive and instan-
taneous effects on the environment. In Section 3 we describe the proposed numerical
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methods, mainly based on finite elements discretization and augmented Lagrangian
active set method for the discretized obstacle problems. Section 4 is devoted to the
numerical tests illustrating the good performance of the numerical methods and the
qualitative properties of the numerical solutions. Finally, some conclusions are pre-
sented in Section 5.

2 Mathematical model

Let us consider a certain aspect related to the environment (a natural site, like a lake,
a beach, a river or a mountain, for example) which can be developed into an alterna-
tive use (industrial plant, hotel, building, bridge, port, mine, tunnel, etc), the effects
of which on the environment are irreversible. We assume that the benefits (per unit)
of the original environment aspect and the alternative project are random. More pre-
cisely, we assume that the benefits (per unit) of the environmental aspect (by means
of tourism, for example), at time t ≥ 0 are given by the stochastic process Xt. Also,
let us consider that the random benefits (per unit) associated to the alternative project
(by means of transport facilities, mine resources, additional business companies, for
example) are given by the stochastic process Yt. The dynamics of both stochastic
processes is governed by the following differential equations:{

dXt = µ1(Xt) dt+
√

2σ1(Xt) dB1t , X0 = x ∈ IR
dYt = µ2(Yt) dt+

√
2σ2(Yt) dB2t , Y0 = y ∈ IR ,

(1)

where {Bit}t≥0 are Brownian motions defined in a certain probability space, µ1 and
µ2 represent the drift functions of processesXt and Yt, and σ1 and σ2 are the standard
deviation functions. Although we can assume that for i = 1, 2 the functions µi and
σi are Lipschitz continuous and vanishing at the origin as in [21,8], for simplicity we
will consider them as constants, so that:

µi(z) = µi, σi(z) = σi, i = 1, 2.

We also consider a constant correlation coefficient ρ so that dXtdYt = ρdt. In more
practical applications, these and other model parameters need to be calibrated from
real data. For example, those ones concerning to environmental benefits could incor-
porate the output of some geophysical models related to the underlying particular
environmental aspects that are involved.

As we consider a general case where only a part of the environment has been
transformed into the industrial project, we denote by θt ∈ [0, 1] the transformed
fraction of the environment at time t. We assume that

θt = θ +Mt ∈ [0, 1], (2)

where Mt is a process describing the nonnegative and nondecreasing cumulative de-
velopment starting with M0 = 0. Notice that the initial data X0 = x, Y0 = y and
θ0 = θ ∈ [0, 1] are given.
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In order to pose the optimization problem we need to consider a utility function
U depending on two arguments. In the general case, we impose that U is concave and
non-decreasing in their arguments and that U(0, 0) = 0. As indicated in [21], cases
where U(0, 0) is not finite require further developments in the theory (and also in
numerics). As only a fraction of the environment is transformed into the alternative
industrial project, the joint utility at time t is given by U((1− θt)Xt, θtYt). In terms
of this utility, the expected cumulative utility functional is defined by the expression

J(x, y, θ) = E
[∫ +∞

0

e−αs U((1− θs)Xs, θsYs) ds
]
, (3)

where E represents the expected value, α denotes the constant continuous discount
rate, Xt and Yt follow equations (1) and θt satisfies condition (2). Moreover, let Aθ
denote the domain for Mt such that condition (2) holds.

Next, we pose the problem of determining the value function, v, associated to the
utility functional (3) as

v(x, y, θ) = max
Aθ

J(x, y, θ)) . (4)

Notice that the utility function depends on the initial benefits of the environment (x)
and the alternative project (y), which are assumed to be nonnegative, and also on the
initial fraction of the environment (θ) that is transformed.

Additionally, in [21] for the case of constant µi and σi the authors focus on addi-
tive HARA utility functions in the form:

U(x, y) =
(x+ y)p

p
, (5)

where 1 − p represents the constant relative risk aversion parameter (so that p = 1
corresponds to risk-neutrality). In this case, U has homogeneity of degree p and the
linearity of the state equations for Xt and Yt implies the homogeneity of the value
function and a possibility to reduce the dimension of the equation. Notice that the
limit case p → 0 corresponds to logarithmic utility that fails out of the hypothesis
U(0, 0) = 0 (or even U(0, 0) finite), thus requiring further research. In the numerical
results sections we mainly address examples with the utility function defined by (5).

In the next section, we recall the PDE models corresponding to two situations:
first, when a fraction of the environment is progressively transformed [8] and, sec-
ondly, when the environment is instantaneously transformed [9] into the alternative
industrial problem.

2.1 PDE model with progressive transformation of the environment

By using the theory of viscosity solutions [7] or the arguments in [8], the following
Hamilton-Jacobi-Bellman (HJB) equation can be obtained:

min[−Lv + αv − U((1− θ)x, θy),−vθ] = 0, in Ω, (6)



6 I. Arregui, C. Vázquez

where Ω = (0,+∞) × (0,+∞) and L is the second order differential operator
defined by:

Lv = σ2
1x

2vxx + σ2
2y

2vyy + 2σ1σ2ρxyvxy + µ1xvx + µ2yvy . (7)

Actually, by introducing the matrix A and the vector b given by:

A(x, y) =
(

σ2
1x

2 σ1σ2ρxy
σ1σ2ρxy σ2

2y
2

)
, b(x, y) =

(
(µ1 − 2σ2

1 − σ1σ2ρ)x
(µ2 − 2σ2

2 − σ1σ2ρ)y

)
,

we can write (7) in the following divergence form:

Lv = div (A∇v) + b · ∇v .

Notice that at the boundaries x = 0 and y = 0, the operator (7) degenerates and ho-
mogeneous Neumann-like boundary conditions are implicit. Moreover, we introduce
the function

Û(x, y, θ) = U((1− θ)x, θy)

and notice that when we reach θ = 1 all the environment has been transformed into
the alternative problem so that we have:

v(x, y, 1) = E
[∫ +∞

0

e−αs U((0, Y (s)) ds
]
.

So, the HJB equation (6) jointly with homogeneous Neumann boundary condition
and the value with θ = 1 can be written in the form:

min[−Lv + αv − Û ,−vθ] = 0, in Ω × (0, 1),
A∇v · ν = 0, in ∂Ω × (0, 1),

v(x, y, 1) = E
[∫ +∞

0

e−αs U(0, Y (s)) ds
]
, in Ω,

(8)

where ν denotes the unit normal vector to ∂Ω.
Moreover, in [8] the change of variable t = 1− θ and the function

U(x, y, t) = Û(x, y, 1− t) = U(tx, (1− t)y)

are introduced, so that the following auxiliary problem is considered:{
−Lf + αf = U(·, ·, t), in Ω × (0, 1),
A∇f · ν = 0, in ∂Ω × (0, 1).

(9)

By using the solution of (9) to introduce the new unknown

u(x, y, t) = v(x, y, 1− t)− f(x, y, t), (10)

then problem (8) can be written as the following evolutive problem


min[ut + ft,−Lv + αv − Û ] = 0, in Ω × (0, 1),
A∇u · ν = 0, in ∂Ω × (0, 1),

u(x, y, 0) = E
[∫ +∞

0

e−αs U(0, Y (s)) ds
]
− f(x, y, 0), in Ω.

(11)
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In [8] a suitable multivalued operator is introduced to pose an equivalent formulation
to (11) with an homogeneous initial condition so that existence of solutions is ob-
tained by using L∞ accretive operators theory.

In the section of numerical methods we propose a strategy to solve problem (6)
by sequentially solving problems (9) and (11).

2.2 PDE model with instantaneous transformation of the environment

In this section we assume instantaneous irreversible effects on the environment. If the
project is developed at time T then the expected cumulative utility functional is given
by

J(x, y;T ) = E

[∫ T

0

e−αsX(s) ds+
∫ +∞

T

e−αsY (s) ds

]
=

= E
[∫ +∞

0

(
I[0,T ]e

−αsX(s) + I[T,+∞)e
−αsY (s)

)
ds

]
,

where IC represents the characteristic function of set C. In order to model more
general problems, we can consider the following utility function:

J(x, y;T ) = E
[∫ +∞

0

e−αs
(
I[0,T ]f(X(s)) + I[T,+∞]Y (s)

)
ds

]
(12)

for a given function f .

Thus, analogously to the general case we pose the problem of determining the
value, v, which is obtained when the alternative project is started at the optimal in-
stant, T , that is:

v(x, y) = max
T

J(x, y;T ) .

Notice that the value function depends on the initial benefits of the environment (x)
and the alternative project (y), which are assumed to be nonnegative.

Next, using Bensoussan–Lions [3] techniques, it is easy to prove that function v
is the solution of the following linear complementarity problem, posed on the domain
Ω = (0,+∞)×(0,+∞):

−Lv + αv ≥ f, v ≥ h, (−Lv + αv − f)(v − h) = 0, (13)

where L is given by (7) and the lower obstacle, h, is the obtained utility when the
project is started at time T = 0 (i.e., h(x, y) = J(x, y, 0)). Thus, the analytical
expression of function h is given by:

h(x, y) = E
[∫ +∞

0

e−αsY (s) ds
]

=
y

(λ− 1)(σ2
2λ+ µ2)

, (14)
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with

λ =
1
2

[(
1− µ2

σ2

)
−

√(
1− µ2

σ2

)
+

4α
σ2

2

]
. (15)

On the other hand, if we introduce a new unknown u = v−h, the equivalent problem
to obtain u can be written as:

−Lu+ αu ≥ G, u ≥ 0, (−Lu+ αu−G)u = 0 , (16)

which is still posed on the unbounded domain Ω. Notice that G = f +Lh− αh and
the associated obstacle function is identically zero. Moreover, due to the expression
of matrix A, the homogeneous Neumann boundary condition (A∇u) ·ν = 0 is again
naturally obtained on the boundaries x = 0 and y = 0.

In order to overcome the difficulty due to the unboundness of Ω, we use the
following change of variable proposed in [9]:

θ = arctanx β = arctan y , (17)

that maps the domainΩ intoF(Ω) = (0, π/2)×(0, π/2), whereF(x, y) = (θ(x, y), β(x, y)).
Thus, the equivalent complementarity problem consists on finding û, defined by
û = u ◦ F−1, such that:

−L(θ,β)û+ αû ≥ Ĝ, û ≥ 0, (−L(θ,β)û+ αû− Ĝ)û = 0 , (18)

where:

L(θ,β)û = div (θ,β)(S∇(θ,β)û) + p · ∇(θ,β)û , Ĝ = G ◦ F−1 ,

and the subindex in the differential operators refers to the involved spatial variables.
Moreover, matrix S and vector p are given by:

S =

 σ2
1
4 sin2 2θ σ1σ2ρ

4 sin 2θ sin 2β

σ1σ2ρ
4 sin 2θ sin 2β σ2

2
4 sin2 2β

 ,

p =


sin 2θ

2
(µ1 − 2σ2

1 cos2 θ − σ1σ2ρ cos 2β)

sin 2β
2

(µ2 − 2σ2
2 cos2 β − σ1σ2ρ cos 2θ)

 .

Following [9], we assume that there exist some parameters m1 > 1 and m2 > 1
such that:

ω1/2G = (1 + x2)−m1/2(1 + y2)−m2/2G ∈ L2(Ω) , (19)

which is equivalent to assume that ω̂1/2Ĝ ∈ L2(F(Ω)), with ω̂ = ω ◦ F−1.
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Next, we consider the weighted Sobolev spaces:

L2
ω(F(Ω)) =

{
ϕ : ω̂1/2ϕ ∈ L2(F(Ω))

}
H1
ω(F(Ω), S) =

{
ϕ ∈ L2

ω(F(Ω)) : (sin 2θ)ϕθ ∈ L2
ω(F(Ω)), (sin 2β)ϕβ ∈ L2

ω(F(Ω))
}

and the convex set:

K̂ =
{
ϕ ∈ H1

ω(F(Ω), S) : ϕ ≥ 0
}
.

Thus, the problem (18) admits the following variational inequality formulation:

Find u ∈ K̂, such that:

a(û, ϕ− û) ≥ L(ϕ− û) , ∀ϕ ∈ K̂, (20)

where the bilinear form a and linear operator L are given by:

a(û, ϕ) =
∫
F(Ω)

ω̂

{
∇ϕ · S∇û+

[(
1
ω̂
∇ω̂ · S − p·

)
∇û
]
ϕ+ αûϕ

}
dθ dβ

L(ϕ) =
∫
F(Ω)

(ω̂ Ĝ ϕ) dθ dβ .

The existence and uniqueness of solution for (20) are proven in [9] for the case µ1 =
µ2 = 0 and in [11] without this assumption.

By using formulation (20), in [1] a set of numerical techniques to solve this prob-
lem have been proposed. In next section, we propose new ones which improve the
efficiency in the numerical solution and can also be used for the model with progres-
sive transformation of the environment.

3 Numerical methods

3.1 Numerical solution of the model for instantaneous transformation

First, in order to discretize the continuous problem (20), let us consider a family of
finite element triangular meshes (τh) of F(Ω) for h > 0. Each mesh is formed by
elements of diameter less than or equal to h and we denote its set of nodes by

Σh = ∪
T∈τh

ΣT = ∪
T∈τh

{ai | 1 ≤ i ≤ N} ,

where ΣT denotes the set of nodes in the mesh triangle T . Next, we define the space
of piecewise linear Lagrange finite elements:

Vh =
{
ϕh ∈ C0(Ω) : ϕh|T ∈ P1 , ∀T ∈ τh

}
,

where P1 denotes the space of polinomials of degree less or equal than one, and the
convex set:

Kh = {ϕh ∈ Vh : vh(ai) ≥ 0,∀ai ∈ Σh} . (21)
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Next, we pose the following discretized variational inequality problem:

Find ûh ∈ Kh such that:

a(ûh, ϕh − ûh) ≥ L(ϕh − ûh) , ∀ϕh ∈ Kh . (22)

In order to introduce a matrix formulation of problem (22), we can choose the finite
element space basis:

B = {ψi ∈ Vh , ψi(aj) = δij , 1 ≤ i, j ≤ N} .

So, every function ϕh ∈ Vh can be uniquely expressed in terms of the basis elements
as:

ϕh =
N∑
i=1

ϕh(ai)ψi .

Moreover, we introduce the vector of node values, ϕ̄h, defined by (ϕ̄h)i = ϕh(ai),
1 ≤ i ≤ N and the finite element discretization matrix and vector

Aij = a(ψj , ψi), bi = L(ψi), 1 ≤ i, j ≤ N.

Thus, problem (22) can be written in the form

Ahūh ≥ bh, ūh ≥ 0, (Ahūh − bh)ūh = 0 , (23)

with the vector and matrix notations Ah = (Aij) and bh = (bi), respectively.

Different classical techniques exist for the numerical solution of discretized ellip-
tic variational inequalities with unilateral constraints (see [13], for example). Among
them, projected relaxation methods applied to the discretized problem can be chosen,
having in mind that the convergence of these methods highly depends on the value of
the relaxation parameter. In [1], we analyzed a comparison between projected Gauss-
Seidel and Lions-Mercier [19], this last one combined with a multigrid technique
and adaptive refinement. In the present paper, to solve problem (23) we propose the
use of the more recent augmented Lagrangian active set (ALAS) algorithm [16]. The
method has been previously used for several models from quantitative finance (see
[4] or [6], for example).

More precisely, after the finite element discretization the discrete problem can be
written in the form:

Ahūh + Ph = bh, (24)

with the discrete complementarity conditions

ūh ≥ 0, Ph ≤ 0, ūhPh = 0, (25)

where Ph denotes the vector of the multiplier values associated to the inequality
constraint.

The basic iteration of the ALAS algorithm consists of two steps. In the first one
the domain is decomposed into active and inactive parts (depending on whether the
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constraints are active or not), and in the second step, a reduced linear system associ-
ated to the inactive part is solved. Thus, we use the algorithm for unilateral problems,
which are based on the augmented Lagrangian formulation.

First, for any decomposition N = I ∪ J , where N := {1, 2, . . . Ndof}, let us
denote by [Ah]II the principal minor of matrix Ah and by [Ah]IJ the co-diagonal
block indexed by I and J . Thus, the ALAS algorithm computes not only ūh and Ph
but also a decomposition N = J ∪ I such that

Ahūh + Ph = bh,

[Ph]j + β [ūh]j ≤ 0, ∀j ∈ J ,
[Ph]i = 0, ∀i ∈ I,

(26)

for a given positive parameter β. In the above equations, I and J are the inactive and
the active sets, respectively. More precisely, the iterative algorithm builds sequences
{ūmh }m , {P

m
h }m , {I

m}m and {Jm}m , converging to ūh, Ph, I and J , by means
of the following steps:

1. Initialize ū0
h = 0 and P 0

h = min{bh −Ahū0
h, 0} ≤ 0. Choose β > 0. Set m = 0.

2. Compute

Qmh = min {0, Pmh + β (ūmh − 0)} ,

Jm =
{
j ∈ N , [Qmh ]j < 0

}
,

Im = {i ∈ N , [Qmh ]i = 0}.

3. If m ≥ 1 and Jm = Jm−1 then convergence is achieved. Stop.
4. Let ū and P be the solution of the linear system:

Ahū+ P = bh,

P = 0 on Im and ū = 0 on Jm.
(27)

Set ūm+1
h = V , Pm+1

h = min{0, P}, m = m+ 1 and go to Step 2.

It is important to notice that, instead of solving the full linear system in (27), for
I = Im and J = Jm the following reduced one on the inactive set is solved:

[Ah]II [ū]I = [bh]I ,
[ū]J = 0J ,
P = b−Ahū.

(28)

In [16], the convergence of the algorithm in a finite number of steps is proved for
a Stieltjes matrix (i.e. a real symmetric positive definite matrix with negative off-
diagonal entries) and a suitable initialization (the same we consider in this paper).
They also prove that Im ⊂ Im+1. A Stieltjes matrix is obtained for linear elements.

Also we have implemented a refinement criterium that selects the elements where

uh(ai) > 0 and uh(aj) = 0 , for i 6= j in {1, 2, 3} ,
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ai being the vertices of the triangle. So, elements close to the free boundary are
refined. Once one element has been selected for refinement, we implement the refine-
ment technique proposed in [20].

In Section 4.1. some examples illustrate the performance of the described numer-
ical strategy for the case of instantaneous transformation of the environment. Also the
method is compared with projected Gauss-Seidel, specially in terms of computational
time.

3.2 Numerical solution of the model for progressive transformation

In order to numerically solve problem (11), we start writing the first equation in (11)
in the following equivalent form:

ut + ft ≥ 0, −Lu+ αu ≥ 0, (ut + ft) (−Lu+ αu) = 0. in Ω × (0, 1)
(29)

In order to discretize in variable t the previous equation, we consider a natural
number N > 0, the stepsize ∆t = 1/(N + 1) and the discrete values tn = n∆t, for
t = 0, 1, . . . , N + 1. Moreover, we introduce the functional notation hn = h(·, t =
tn)) for all functions depending on (x, y) ∈ Ω and t ∈ [0, 1] and propose the follow-
ing approximation:

(ut + ft)(·, tn) =
un − un−1

∆t
+
fn − fn−1

∆t
. (30)

Thus, by introducing approximation (30) in equations (29), after initializing u0 =
u(·, 0) we sequentially compute un as the solution of the complementarity problem

un ≥ ψn, −Lun + αun ≥ 0, (un − ψn) (−Lun + αun) = 0, in Ω, (31)

jointly with homogeneous Neumann boundary conditions, where

ψn = un−1 − fn + fn−1 (32)

represents the obstacle function at each step of variable t.

Notice that for each step n, problem (31) is analogous to problem (16) appearing
in the instantaneous transformation case, although with a nonzero obstacle function
ψn and a null second member of the equation instead of G.

The terms fn are previously computed by solving problem (9) for the different
values t = tn. For the numerical solution of problem (9) we use the same finite ele-
ment discretization as in the instantaneous transformation case, so that the discretized
problem takes the form:

Ahf̄
n
h = bnh,

where bnh denotes the second member associated to the function U(·, tn) appearing
in (9). The linear systems are solved by means of a classical LU factorization direct
method.
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For the numerical solution of (31), after the change of variable (17) to work in a
bounded computational domain, we also propose the same finite elements discretiza-
tion as in the other problems. Thus, the mixed formulation of the discretized problem
can be written in the form:

Ahū
n
h + Pnh = 0, (33)

with the discrete complementarity conditions

ūnh ≥ ψ
n

h , Pnh ≤ 0,
(
ūnh − ψ

n

h

)
Pnh = 0, (34)

where Pnh denotes the vector of the multiplier values and ψ
n

h denotes the vector of
the nodal values defined by function ψn.

We apply the ALAS algorithm for solving formulation (34). More precisely, for
each value tn, the ALAS algorithm computes not only ūnh and Pnh but also a decom-
position N = J n ∪ In such that

Ahū
n
h + Pnh = 0,

[Pnh ]j + β
[
ūnh − ψ

]
j
≤ 0, ∀j ∈ J n,

[Pnh ]i = 0, ∀i ∈ In,
(35)

for a given positive parameter β. In the above equations, In and J n are the inactive
and the active sets at tn, respectively. More precisely, the iterative algorithm builds
sequences

{
ūnh,m

}
m
,
{
Pnh,m

}
m
, {Inm}m and {J nm}m , converging to ūnh , Pnh , In

and J n, by means of the following steps:

1. Initialize ūnh,0 = ψ
n

h and Pnh,0 = min{bnh − AhV nh,0, 0} ≤ 0. Choose β > 0. Set
m = 0.

2. Compute

Qnh,m = min
{

0, Pnh,m + β
(
ūnh,m − ψ

n

h,m

)}
,

J nm =
{
j ∈ N ,

[
Qnh,m

]
j
< 0
}
,

Inm = {i ∈ N ,
[
Qnh,m

]
i

= 0}.
3. If m ≥ 1 and J nm = J nm−1 then convergence is achieved. Stop.
4. Let ū and P be the solution of the linear system

Ahū+ P = 0,

P = 0 on Inm and ū = ψ
n

h,m on J nm.
(36)

Set ūnh,m+1 = ū, Pnh,m+1 = min{0, P}, m = m+ 1 and go to Step 2.

As in the instantaneous transformation case, instead of solving the full linear system
in (36), for I = Inm and J = J nm the following reduced one on the inactive set is
solved:

[Ah]II [ū]I = − [Ah]IJ
[
ψ
]
J ,

[ū]J =
[
ψ
]
J ,

P = −Ahū.

(37)
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4 Numerical results

4.1 Examples with instantaneous transformation

As in [1], in the present paper we first validate the proposed numerical methods by
solving one example with known analytical solution. Next, we consider an example
for which theoretically stated qualitative properties have been proved in [9] and [11].
The third example corresponds to a more realistic function h given by (14) in terms
of the financial data.

Example 1:

In this example we choose f(x) = x and h(x, y) = c/α, c being a constant,
so that G(x, y) = x − c. So, we assume a linear behaviour of the utility associated
to environment with respect to the benefit (per unit) of the environment and that the
utility of the alternative project is constant. Table 1 shows the set of model parameters.
With these parameters, the exact solution (which only depends on x) is given by:

v(x, y) =


c1−γ

α(1− γ)1−γ |γ|γ
xγ +

x

α
if x ≥ xf

c

α
if x ≤ xf ,

with

γ =
1
2

(
1−

√
1 +

4α
σ2

1

)
, xf =

γ

γ − 1
c .

Notice that the free boundary that separates the region where v > h from the one
with v = h is the straight line x = xf .

σ1 σ2 µ1 µ2 ρ α c
0.18 0.0 0.0 0.0 0.0 1.0 1.0

Table 1 Financial data set for Example 1

Table 2 summarizes the numerical results for up to five refinement levels start-
ing from a uniform initial mesh with 289 nodes and 512 triangular elements. For
both projected Gauss–Seidel and ALAS algorithms the stopping test in the relative
quadratic error between two iterations is set to 10−5, while for ALAS the parameter
β = 10000 is chosen. In Table 2 we can observe that the relative error (e) with re-
spect to the analytical solution is very close in both algorithms, the ALAS algorithm
reports much shorter computational time (t) and less iterations (I).

Figure 1 shows the meshes of the domain F(Ω) after five refinement levels
(L = 5). Notice that the one corresponding to ALAS seems to better follow the
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ALAS Projected Gauss–Seidel
L NE NN tA IA eA NE NN tGS IGS eGS

1 512 289 4.39 2 6.92× 10−3 512 289 45.20 56 6.41× 10−3

2 704 386 7.10 4 6.03× 10−3 714 391 90.55 62 5.68× 10−3

3 1136 605 14.94 6 6.07× 10−3 1130 601 234.66 69 4.91× 10−3

4 2096 1087 40.51 7 4.80× 10−3 2153 1115 1819.61 160 4.58× 10−3

5 3840 1982 100.86 10 3.61× 10−3 4070 2076 8064.63 218 3.79× 10−3

Table 2 Mesh refinement, computational time, iterations and errors obtained for Example 1.L,NE,NN ,
t, I and e represent the level of refinement, number of elements, number of nodes, computational time in
seconds, number of iterations and relative error, respectively. When appearing, subindexA refers to ALAS
algorithm and GS to projected Gauss-Seidel

Fig. 1 Adaptive meshes of the domain F(Ω) for ALAS (left) and projected Gauss-Seidel (right), after 5
refinement steps for Example 1

free-boundary of the problem. However, the error in both approximations is of the
same order.

Example 2:

We choose f(x) = x and h(x, y) = y/α so that G(x, y) = x − y and utilities
associated to environment and alternative project linearly depend on their respective
benefits (per unit). The chosen parameters are shown in Table 3. Notice that in this
example both volatilities and the correlation coefficient are different from zero.

σ1 σ2 µ1 µ2 ρ α c
0.18 0.40 0.0 0.0 0.20 1.0 1.0

Table 3 Financial data set for Example 2



16 I. Arregui, C. Vázquez

Although we cannot obtain the expression of the exact solution, for the case µ1 =
µ2 = 0 and c > 0 the following upper bound for the solution is stated in [9]:

ū(x, y) =



y

α
, if (x, y) ∈ Ω1

(δ − 1)δ−1

αcδ−1δδ
yδ +

c

α
, if (x, y) ∈ Ω2

c1−γ

α(1− γ)1−γ | γ |γ
xγ +

x

α
+

(δ − 1)δ−1

αcδ−1δδ
yδ , if (x, y) ∈ Ω3

c1−γ

α(1− γ)1−γ | γ |γ
xγ +

x

α
+
y − c
α

, if (x, y) ∈ Ω4

where

Ω1 =
{

(x, y) ∈ Ω : x ≤ γ

γ − 1
c and y ≥ δ

δ − 1
c

}
Ω2 =

{
(x, y) ∈ Ω : x ≤ γ

γ − 1
c and y ≤ δ

δ − 1
c

}
Ω3 =

{
(x, y) ∈ Ω : x ≥ γ

γ − 1
c and y ≤ δ

δ − 1
c

}
Ω4 =

{
(x, y) ∈ Ω : x ≥ γ

γ − 1
c and y ≥ δ

δ − 1
c

}
.

Morover, as stated in [11], we can identify the following subset, SC , of the coin-
cidence set characterized by the condition:

SC = {(x, y) ∈ Ω , y ≥ γx} ⊂ {(x, y) ∈ Ω , u(x, y) = h(x, y)}

with

γ =

(
1 +

√
1 + 4α

σ2
1

)(
1 +

√
1 + 4α

σ2
2

)
(√

1 + 4α
σ2
1
− 1
)(√

1 + 4α
σ2
2
− 1
) .

Both theoretically stated qualitative properties, supersolution and coincidence
subset, have been verified by the numerical tests.

Table 4 summarizes the numerical results for five refinement levels from a uni-
form initial mesh with 289 nodes and 512 triangular elements. Moreover, the same
stopping test in the relative quadratic error between two iterations and the same pa-
rameter β as in Example 1 have been chosen. As the exact solution cannot be com-
puted, errors cannot be reported. We can observe that the ALAS algorithm exhibits
much shorter computational time (t) and less iterations (I).
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ALAS Projected Gauss–Seidel
L NE NN tA IA NE NN tGS IGS

1 512 289 5.21 3 512 289 68.38 86
2 732 401 8.63 4 732 401 130.13 86
3 1275 675 19.41 6 1288 682 463.04 108
4 2367 1224 52.41 9 2445 1263 2743.57 190
5 4466 2277 133.67 11 4766 2428 14419.40 271

Table 4 Mesh refinement, computational time, iterations and errors obtained for Example 2. L, NE,
NN , t and I represent the level of refinement, number of elements, number of nodes, computational time
in seconds and number of iterations, respectively. When appearing, subindex A refers to ALAS algorithm
and GS refers to projected Gauss-Seidel

Fig. 2 Adaptive meshes of the domain F(Ω) for ALAS (left) and projected Gauss-Seidel (right), after 5
refinement steps for Example 2

Figure 2 shows the meshes after five refinement levels. As in Example 1 the one
corresponding to ALAS seems to follow a bit better the free-boundary (optimal in-
vestment boundary) of the problem. Notice that the region above and at the left of the
free boundary corresponds to the part of the domain where v = h, while the region
located below and at the right of the free boundary corresponds to v > h. Thus, for
each value of the benefit (per unit) of the environment there exists a different critical
value of the benefit (per unit) of the industrial project above which the optimal utility
is equal to the one obtained if we start the investment at the initial time.

The associated numerical solutions at this refinement level with both numerical
methods are shown in Figure 3 and are very close each other. The plane in black
behind the solution represents the obstacle function h.

Example 3:

In this last example of the instantaneous irreversible case, the function h is given
by (14), so that for the choice f(x) = x the function G is

G(x, y) = x− (α− µ2)y
(λ− 1)(σ2

2λ+ µ2)
,
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Fig. 3 Numerical solution for ALAS (left) and projected Gauss-Seidel (right), after 5 refinement steps for
Example 2

with λ being given by (15). The financial parameters are shown in Table 5 so that an
optimal investment boundary appears.

σ1 σ2 µ1 µ2 ρ α
0.18 0.40 0.08 0.15 0.20 0.25

Table 5 Financial data set for Example 3

ALAS Projected Gauss–Seidel
L NE NN tA IA NE NN tGS IGS

1 512 289 5.19 3 512 289 114.93 150
2 745 409 8.75 6 745 409 327.24 214
3 1296 688 19.66 9 1299 689 1506.50 350
4 2379 1231 52.97 12 2488 1287 7582.44 511
5 4583 2321 139.81 15 4686 2390 36982.91 725

Table 6 Mesh refinement, computational time, iterations and errors obtained for Example 3.L,NE,NN ,
t and I represent the level of refinement, number of elements, number of nodes, computational time en
seconds and number of iterations, respectively. When appearing, subindex A refers to ALAS algorithm
and GS refers to projected Gauss-Seidel

Table 6 summarizes the numerical results for five refinement levels from a uni-
form initial mesh with 289 nodes and 512 triangular elements. Moreover, the same
stopping test in the relative quadratic error between two iterations and the same pa-
rameter β as in Example 1 are chosen. Again the ALAS algorithm exhibits much
shorter computational time (t) and less iterations (I).

Figure 4 shows the meshes after five refinement levels. As in previous examples
the one corresponding to ALAS seems to better follow the free-boundary of the prob-
lem. The associated numerical solutions at this refinement level are shown in Figure
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Fig. 4 Adaptive meshes of the domain F(Ω) for ALAS (left) and projected Gauss-Seidel (right), after 5
refinement steps for Example 3

5. As in the previous examples, the mesh corresponds to the bounded domain (F(Ω)),
while the solution is presented, jointly with the obstacle, over a bounded subdomain
of the unbounded original domain Ω. In this case, the only theoretically stated qual-
itative properties are the bounds indicated in [11,1], which have been verified by the
computed numerical solutions.

Fig. 5 Numerical solution for ALAS (left) and projected Gauss-Seidel (right), after 5 refinement steps for
Example 3

4.2 Examples with progressive transformation

In this section we consider several examples in which the effect on the environment is
not instantaneous. Following [21], we consider the additive HARA utility functions
U given by expression (5) for different values of the p, where 1−p represents constant
relative risk aversion parameter.

We consider the same parameters as in Example 2 in the instantaneous case (see
Table 3). In this setting, we first consider the case p = 1, which corresponds to risk-
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neutrality and a linear utility function. For this case, Figure 6 shows the computed
numerical solution v for the values θ = 0.25 and 0.75, associated to different initial
transformed fractions of the environment. For each value of θ the corresponding re-
gions vθ = 0 (blue) and vθ < 0 (red) are shown in Figure 7, with the free boundary
separating both regions. Actually, we obtain these regions by considering t = 1 − θ
and representing the regions where u(·, t) = ψ(·, t) (blue) and u(·, t) > ψ(·, t) (red).

The results have been obtained for a discretization time step ∆t = 0.025 and a
uniform mesh with 4, 225 nodes and 8, 192 triangular element. The parameters for
the ALAS algorithm are the same as in the case of instantaneous effects.

Fig. 6 Numerical solution for θ = 0.25 (left) and θ = 0.75 (right) with p = 1 in the progressive
transformation case

Fig. 7 Free boundary for θ = 0.25 (left) and θ = 0.75 (right) with p = 1 in the progressive transforma-
tion case

Next, Figures 8 and 9 show the analogous computed results for the case p = 0.3,
thus corresponding to a nonlinear HARA utility function and the presence of risk
aversion.
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Fig. 8 Numerical solution for θ = 0.25 (left) and θ = 0.75 (right) with p = 0.3 in the progressive
transformation case

Fig. 9 Free boundary for θ = 0.25 (left) and θ = 0.75 (right) with p = 0.3 in the progressive transfor-
mation case

On the other hand, as indicated in [21], the homogeneity of degree p of U im-
plies the same homogeneity for the value function v. Thus, for utilities given by (5)
this homogeneity allows to reduce the dimension of the problem and analyze some
qualitative properties of the function

w(y, θ) = v(1, y, θ) (38)

We have used some of them to validate the here proposed numerical techniques. In
particular, the free boundary that separates the region where where wθ < 0 from the
region where wθ = 0 can be parameterized by a curve y = g(θ). The first region is
characterized by y ≤ g(θ) and no action should be taken in the associated singular
control problem, while the second region corresponds to y > g(θ) and the optimal
policy is to jump to the θ0 such that y = g(θ0). Moreover, the authors prove that

w(y, θ) = w(y, 1), y ∈ [g(1),+∞), (39)

for all θ ∈ (0, 1). This means that for all values of θ the functions w(., θ) meat at
the point y = g(1) and take the same value after this point, as it is clearly illustrated
in Figure 10 for p = 1. Moreover, the observed results are in agreement with the
estimated value of g(1) = 1.4945 in [21]. In the region where y > g(1) the optimal
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policy leads to full conversion of the environment. On the other hand, when y < g(0)
the alternative project should not start until their benefits do not exceed those ones of
the environment by a certain amount. For the risk-neutrality case (p = 1) the identity
g(0) = g(1) holds.

0.0 0.5 1.0 1.5 2.0
y

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

w

θ=0.00

θ=0.25

θ=0.50

θ=0.75

θ=1.00

Fig. 10 Solution w(·, θ) = v(1, ·, θ) for different θ with p = 1 in the progressive transformation case

5 Conclusions

In this paper we address the numerical solution of investment problems with instan-
taneous and progressive irreversible effects on the environment. In the instantaneous
case an obstacle problem associated to a degenerated elliptic equation is numerically
solved. As illustrated by the numerical tests, more efficient methods than in the pre-
vious work of the authors [1] are proposed. More precisely, the computational time
of the ALAS algorithm is much shorter than the projected Gauss Seidel. In the pro-
gressive case, following the formulation proposed in [8] the problem is formulated
in terms of the subsequent solution of parameter dependent elliptic boundary value
problems and an evolutive obstacle problem. After the time discretization, at each
time step an obstacle problem associated to an degenerate elliptic equation is posed
and solved with the same numerical techniques than in the instantaneous case. Nu-
merical examples are partially validated with the qualitative properties obtained in
[21] for the case of additive HARA utility functions. These properties are mainly
based on a certain homogeneity property. Notice that the proposed numerical tech-
niques can be applied to more general cases. However, the limit case p → 0 corre-
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sponding to unbounded utility at the origin will require further treatment from the
theoretical and numerical point of view.
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