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Abstract

This paper deals with the acoustical behavior of a rigid porous material. A finite element method to

compute both the response to an harmonic excitation and the free vibrations of a three-dimensional finite

multilayer system consisting of a free fluid and a rigid porous material is considered. The finite element

used is the lowest order face element introduced by Raviart and Thomas, that eliminates the spurious or

circulation modes with no physical meaning. For the porous medium a Darcy’s like model and the Allard-

Champoux model are taken into account. The numerical results show that the finite element method

allows us to compute the response curve for the coupled system and the complex eigenfrequencies. Some

of them have a small imaginary part but there are also overdamped modes.
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1 INTRODUCTION

Porous materials are widely used in several noise control applications. These materials are known for their
ability to dissipate acoustic waves propagating along them. Extensive work has been done to characterize
the acoustical behavior of such materials. By porous material we mean a material consisting of a solid matrix
which is completely saturated by a fluid. The acoustical behavior of the porous medium depends not only
on the fluid but also on the rigidity of the skeleton.

In the past, simplified models where absorptive materials are characterized by normal wave impedance
have been used to study wave propagation in rigid lined ducted systems. More recently, when the solid
skeleton is rigid the porous material has been considered as an equivalent fluid with equivalent density and
bulk modulus. These parameters can be obtained through empirical or experimental laws. A first model by
Delany and Bazley [16] was presented for the first time in 1970; it has been widely used to describe sound
propagation in fibrous materials. Subsequently, this model was improved in works by Morse and Ingard [25],
Johnson et al [22], Attenborough [6], Allard et al [4], Champoux and Stinson [14] or Allard and Champoux
[3], among others.

For the more realistic case when the elastic deformation of the skeleton is taken into account, the the-
oretical basis for the mechanical behavior was mainly established by Biot [11]. His theory describes the
propagation of elastic waves in fluid-saturated porous media. Adaption of this theory to acoustics was made,
for example, in works by Allard et al [2] and Shiau [29] (see also in the complete reference by Allard [1]).

Another way to derive models simulating a slow fluid flow through porous media, rigorously from a
mathematical point of view, is by using the theory of homogenization. When a rigid porous medium is
considered, the model obtained is named Darcy’s model. Ene and Sanchez-Palencia [18] seem to be the first
to give a derivation of it from the Stokes system using a formal multiscale method. This derivation was made
rigorous in the case of 2D periodic rigid porous media by Tartar (see appendix in [28]) and subsequently
generalized among others by Mikelić (see [24] and references therein). This methodology allows us not
only to obtain the homogenized model but also the mathematical expression of the coefficients appearing
in it. For instance, in the case of rigid porous media, the most important coefficient in Darcy’s law is
permeability, which can be computed by solving a boundary-value problem in a unit cell of the periodic
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porous medium. For poroelastic media, generalized Biot models were also derived from the first principles
by using homogenization techniques (see Gilbert and Mikelić [20], by Clopeau et al [15] or Ferŕın and Mikelić
[19]).

Concerning the numerical solution of both cases, the rigid and the elastic solid skeleton, an increasing
number of papers can be found. Because of its easy implementation and its effectiveness in handling complex
geometries, the finite element method has become popular to solve such problems. Some examples of the
finite element method applied to sound propagation in poroelastic media are papers by Easwaran et al [17],
Panneton and Atalla [26], Göransson [21] or Atalla et al [5]. All of them, take Biot’s general theory as the
starting point. Other kind of problems concerning porous materials, related to vibration modes, were solved
by Bermúdez et al [9].

In this paper, only the case of rigid frame porous material will be considered. Two models will be taken
into account: the above mentioned sort of Darcy’s model and the Allard-Champoux model (see Allard and
Champoux [3]). The main difference between them lies in the frequency dependence of the coefficients,
namely, density and stiffness. A finite element method introduced by Raviart and Thomas [27] will be
used to solve numerically the two models which are formulated in displacements. It has been proven in
Bermúdez et al [10] (see also [8] and references therein) that these finite elements do not produce spurious
modes. In the Allard-Champoux model both the mass and the stiffness matrices are frequency-dependent,
forcing us to calculate them for each frequency. Numerical experiments using both models will be presented
over different three-dimensional examples. More precisely, we solve the source problem associated with an
external harmonic excitation which allows us to know the response of the porous material. We also solve
the nonlinear spectral problem associated with it.

The outline of this paper is as follows. In section 2 we present the two models associated with the
problem consisting of a finite two-layer system with rigid porous materials. They will be stated in the
frequency domain leading to the response problem and to a nonlinear eigenvalue problem. In section 3 the
free vibration problem associated with a nonlinear eigenvalue problem is analyzed in order to obtain a deeper
insight of the overdamped vibration frequencies. In section 4 the weak formulations for both problems are
presented and an analysis of overdamped vibration frequencies is made. In section 5 the finite element method
is introduced, whereas in section 6 the corresponding matricial description is shown. Finally, in section 7,
numerical results for some 3D examples are given for both the response and the spectral problems.

2 MODELS FOR FLUID-POROUS VIBRATIONS

Let us consider a coupled system consisting of an acoustic fluid (i.e. compressible barotropic inviscid) and
a porous medium contained in a three-dimensional cavity. Let ΩF and ΩA be the domains occupied by the
fluid and the porous medium, respectively (see figure 1). The boundary of ΩF ∪ ΩA, denoted by Γ, is the
union of two parts, ΓD and ΓN. ΓD denotes the rigid walls of the cavity. Let ν the outward unit normal
vector to Γ. We assume the interface between the fluid and the porous media, denoted by ΓI, is the union
of surfaces, Γ0,Γ1, . . . ,ΓJ . Let n be the unit normal vector to this interface pointing outwards ΩA. Figure
1 shows a vertical cut of the domain for a better understanding of the notation.

For studying the response of the coupled system (fluid-porous medium), subject to harmonic forces acting
on ΓN, we consider two different models for the vibrations in the porous medium: Darcy’s like model and
Allard-Champoux model. Both models assume the skeleton of the porous media is rigid.

Firstly, the governing equations for free small amplitude motions of an acoustic fluid filling ΩF are given
in terms of displacement and pressure fields by

ρF
∂2UF

∂t2
+ grad PF = 0 in ΩF, (1)

PF = −ρFc
2div UF in ΩF, (2)

where PF is the pressure, UF the displacement field, ρF the density and c the acoustic speed in the fluid.
Moreover, in the porous medium, the Darcy’s like model only has slight differences with the above fluid

model. One of them consists of an additional damping term, named Darcy’s term (see [1]). Moreover, the
interstitial fluid flow is supposed to be isothermal, a standard assumption in porous media acoustics. If UA
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Figure 1: 3D domain and vertical cut.

is the displacement field and PA is the pressure in the porous medium, the Darcy’s like model is described
by the following equations,

ρF
∂2UA

∂t2
+ grad PA + σ

∂UA

∂t
= 0 in ΩA, (3)

PA = −
ρFc

2

φγ
div UA in ΩA, (4)

where σ is the flow resistivity tensor, φ is the porosity, γ is the ratio of specific heats of fluid and, again,
ρF is the density and c the acoustic speed of the fluid filling the porous medium. The flow resistivity σ is
related to the permeability tensor through σ = µφR−1, where µ is the viscosity coefficient of the fluid. For
periodic porous media, the permeability tensor can be obtained using homogenization methods by solving
partial differential equations in the unit cell (see Tartar[28] or Mikelić [24]).

Since we neglect viscosity in the fluid and shear stresses in the porous media, only the normal component
of the displacement vanishes on the part ΓD of the cavity boundary,

UF · ν = 0 on ΓD ∩ ∂ΩF, (5)

UA · ν = 0 on ΓD ∩ ∂ΩA. (6)

Similarly, on the interface ΓI between the fluid and the porous medium we consider the usual kinematic and
kinetic interface conditions, i.e., UF · n = UA · n and PF = PA.

If a displacement F is applied on ΓN, the equations describing the motion of the coupled system can be
written, when we use the above model, as follows (see [1]):

ρF
∂2UF

∂t2
+ grad PF = 0 in ΩF, (7)

ρF
∂2UA

∂t2
+ grad PA + σ

∂UA

∂t
= 0 in ΩA, (8)

PF = −ρFc
2div UF in ΩF, (9)

PA = −
ρFc

2

φγ
div UA in ΩA, (10)

PF = PA on ΓI, (11)

UF · n = UA · n on ΓI, (12)

UF · ν = 0 on ΓD ∩ ∂ΩF, (13)

UA · ν = 0 on ΓD ∩ ∂ΩA, (14)

UF · ν = F on ΓN. (15)
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We are interested in harmonic vibrations. Thus, we suppose the displacement is of the form,

F (x, y, z, t) = Re
(

eiωtf(x, y, z)
)

. (16)

Then, all fields are harmonic, i.e.,

UF(x, y, z, t) = Re
(

eiωtuF(x, y, z)
)

, (17)

UA(x, y, z, t) = Re
(

eiωtuA(x, y, z)
)

, (18)

PF(x, y, z, t) = Re
(

eiωtpF(x, y, z)
)

, (19)

PA(x, y, z, t) = Re
(

eiωtpA(x, y, z)
)

. (20)

By replacing these expressions into the above equations, we can define an harmonic source problem associated
with the evolutionary source problem (7)-(15), namely,

−ω2ρFuF + grad pF = 0 in ΩF, (21)

−ω2ρF

(

1 +
σ

iωρF

)

uA + grad pA = 0 in ΩA, (22)

pF = −ρFc
2div uF in ΩF, (23)

pA = −
ρFc

2

φγ
div uA in ΩA, (24)

pF = pA on ΓI, (25)

uF · n = uA · n on ΓI, (26)

uF · ν = 0 on ΓD ∩ ∂ΩF, (27)

uA · ν = 0 on ΓD ∩ ∂ΩA, (28)

uF · ν = f on ΓN. (29)

In this context, looking for harmonic motions, we can also consider the Allard-Champoux model (see [3])
for rigid frame fibrous materials (a particular case of porous medium with rigid solid part). In this case, not
only the Darcy’s term is included in a new generalized form but also the thermal exchange between the air
and the fibers of the porous medium is considered in the model. The new equations replacing (22) and (24)
are

−ω2
ρ(ω)uA + grad pA = 0 in ΩA, (30)

pA = −div (K(ω)uA) in ΩA, (31)

where ρ(ω) andK(ω) are the so called dynamic density tensor and dynamic bulk modulus tensor, respectively.
If the porous medium is isotropic these tensors are multiple of the identity, i.e. K(ω) = K(ω)I, ρ(ω) = ρ(ω)I,
where (see [3]),

ρ(ω) = ρF

(

1− i

(

σ

ρFω

)

G1

(ρFω

σ

)

)

, (32)

K(ω) = γP0

(

γ −
γ − 1

1− ( i
4Npr

)( σ
ρFω

)G2(
ρFω
σ

)

)

−1

. (33)

In the above empirical equations P0 is the fluid equilibrium pressure, γ is the ratio of specific heats of fluid,
Npr is the Prandtl number and σ is the flow resistivity. Finally, functions G1 and G2 are given by

G1

(ρFω

σ

)

=

√

1 +
i

2

(ρFω

σ

)

, (34)

G2

(ρFω

σ

)

= G1

(

4Npr

(ρFω

σ

))

. (35)
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Because of the expressions of G1 and G2, both the dynamic density and the bulk modulus are functions of

the quotient ρFω
σ

. Then, if we assume that ρFω ≪ σ, by neglecting the terms involving
(

ρFω
σ

)2
, we obtain

the following approximations

ρ(ω) ≃ ρF +
σ

iω
and K(ω) ≃ P0 ≃

ρFc
2

φγ
, (36)

which show that the Darcy’s like model and Allard-Champoux model are equivalent for low frequencies when
the porosity is nearly unity.

Drawing an analogy with the harmonic source problem (21)-(29), we can establish a similar one using
the Allard-Champoux model (30)-(35):

−ω2ρFuF + grad pF = 0 in ΩF, (37)

−ω2
ρ(ω)uA + grad pA = 0 in ΩA, (38)

pF = −ρFc
2div uF in ΩF, (39)

pA = −div (K(ω)uA) in ΩA, (40)

pF = pA on ΓI, (41)

uF · n = uA · n on ΓI, (42)

uF · ν = 0 on ΓD ∩ ∂ΩF, (43)

uA · ν = 0 on ΓD ∩ ∂ΩA, (44)

uF · ν = f on ΓN. (45)

3 ASSOCIATED NONLINEAR EIGENVALUE PROBLEMS

We can define a nonlinear eigenvalue problem, associated with the above source problem (37)-(45), which
corresponds to determining the free vibrations of the fluid-porous system. More precisely, if we assume that
f = 0 in the system (37)-(45), we can define the following problem:

Find a complex angular frequency ω and complex amplitudes of pressure and displacement fields (pF, pA)
and (uF,uA), respectively, not all identically zero, satisfying

−ω2ρFuF + grad pF = 0 in ΩF, (46)

−ω2
ρ(ω)uA + grad pA = 0 in ΩA, (47)

pF = −ρFc
2div uF in ΩF, (48)

pA = −div (K(ω)uA) in ΩA, (49)

pF = pA on ΓI, (50)

uF · n = uA · n on ΓI, (51)

uF · ν = 0 on Γ ∩ ∂ΩF, (52)

uA · ν = 0 on Γ ∩ ∂ΩA. (53)

On the other hand, if we used the Darcy’s like model (7)-(15), we still obtain the above eigenvalue problem but
the expressions for the dynamic density and the bulk modulus change. In this case, they are ρ(ω) = ρFI+

σ

iω

and K(ω) = ρFc
2

φγ
I.

The solutions ω of this nonlinear eigenvalue problem (46)-(53) are expected to be complex numbers with
non-null real and imaginary parts due to the dissipative terms. The real part corresponds to the angular
frequency of the damped vibration mode, whereas the imaginary part corresponds to its decay rate and
should be strictly positive. However, as the example below shows, overdamped modes corresponding to
purely imaginary positive values of ω also exist.

To gain a deeper insight into these overdamped modes, let us introduce a simpler model problem for
which these eigenvalues can be computed analytically. Let us take ΩF = (−aF, 0) × (0, b) × (0, d), ΩA =
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Figure 2: Fluid and rigid porous medium in a cavity with rigid walls.

(0, aA)×(0, b)×(0, d), ΓD = Γ and ΓN = ∅ (see figure 2). If we consider the Darcy’s like model, the eigenvalue
problem can be solved by separation of variables.

For this purpose, it is convenient to write the problem in terms of pressure. This can be done by
eliminating uF and uA in equations (46)-(47) by using (48) and (49). Thus we obtain:

ω2pF + c2∆pF = 0 in ΩF, (54)

ω2

(

1 +
σ

iωρF

)

pA +
c2

φγ
∆pA = 0 in ΩA, (55)

pF = pA on ΓI, (56)

1

ρF

∂pF

∂n
=

1

ρF + σ
iω

∂pA

∂n
on ΓI, (57)

∂pF

∂ν
= 0 on ΓD ∩ ∂ΩF, (58)

∂pA

∂ν
= 0 on ΓD ∩ ∂ΩA. (59)

If we look for non-trivial solutions of this problem of the form

pF(x, y, z) = XF(x)YF(y)ZF(z),

pA(x, y, z) = XA(x)YA(y)ZA(z),

standard calculations show that:

YF(y) = cos
jπy

b
, YA(y) = cos

jπy

b
, j = 0,±1,±2, . . . (60)

ZF(z) = cos
kπz

d
, ZA(z) = cos

kπz

d
, k = 0,±1,±2, . . . (61)

Furthermore, for any pair of integers j and k, we must have

X ′′

F = µ2

FXF, −aF < x < 0, (62)

X ′′

A = µ2

AXA, 0 < x < aA, (63)

XF(0) = XA(0), (64)

1

ρF
X ′

F(0) =
1

ρF + σ
iω

X ′

A(0), (65)

X ′

F(−aF) = 0, (66)

X ′

F(aA) = 0, (67)
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with

µ2

F +
ω2

c2
=

π2

b2
j2 +

π2

d2
k2, (68)

µ2

A + ω2
φγ

c2

(

1 +
σ

iρFω

)

=
π2

b2
j2 +

π2

d2
k2. (69)

The general solutions of (62) and (63) areXF(x) = CF,1e
µFx+CF,2e

−µFx andXA(x) = CA,1e
µAx+CA,2e

−µAx.
By replacing these expressions in (64)-(67) and after some calculations, we obtain the following dispersion
relation:

µF

(

ρF +
σ

iω

)

cosh(aAµA) sinh(aFµF) + µAρF sinh(aAµA) cosh(aFµF) = 0. (70)

For any pair of integers j and k, this equation together with (68) and (69) constitute a nonlinear system
which has complex solutions (ω, µF) ∈ C2 if we consider µA as an expression that depends on ω and µF via

µA =

√

µ2
F
+

iω

c2
φγσ

ρ
−

ω2

c2
(1 − φγ), (71)

which is obtained from (68) and (69).
As we show below, for some of these solutions ω is a purely imaginary positive number. To see this,

we plot in figures 3 and 4 the curves obtained from equations (68)-(70) for positive real values of µF and
λ = −iω (i.e., purely imaginary positive values of ω = iλ).

λ=−iω

µ
F

 µ
F
(ρ

F
+σ/iω) cosh(a

A
µ

A
)sin(a

F
µ

F
)+µ

A
ρ

F
sin(a

A
µ

A
)cos(a

F
µ

F
)=0

j=0,k=0 

j=1,k=0 

j=2,k=0 
j=1,k=2 

j=3,k=2 
j=3,k=3 

j=1,k=1 

Figure 3: Curves (68) and (70) for real values of µF and λ = −iω; case aA < π ρc
σ
.

If we assume that aF > aA, it can be seen that the resulting curves intersect differently in case of

aA < π ρFc
σ

√

1

3−φγ
or aA > π ρFc

σ

√

1

3−φγ
. More precisely, the following alternative holds:

• If aA < π ρFc
σ

√

1

3−φγ
, then for any pair of integers j, k = 0, 1, 2, . . ., there exists a solution (ωjk, µF,jk)

of (68)-(70), with ωjk = iλjk satisfying

σ

2ρF
< λjk ≤ max

{

σ

ρF
,

σ

ρFφγ

}

and λjk →
σ

2ρF
as

j2

b2
+

k2

d2
→ ∞. (72)
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Figure 4: Curves (68) and (70) for real values of µF and λ = −iω; case aA > π ρc
σ
.

• If aA > π ρFc
σ

√

1

3−φγ
, then for any pair of integers j, k = 0, 1, 2, . . ., there exists a solution (ωjk, µF,jk)

of (68)-(70), with ωjk = iλjk satisfying

0 < λjk ≤ max

{

σ

ρF
,

σ

ρFφγ

}

and λjk →
σ

2ρF
as

j2

b2
+

k2

d2
→ ∞. (73)

Each of these solutions (ωjk, µF,jk) yields an eigenmode of (54)-(59) with

pF,jk(x, y, z) = cos
jπy

a
cos

kπz

d

(

CF,1e
µF,jkx + CF,2e

−µF,jkx
)

, −aF < x < 0, (74)

pA,jk(x, y, z) = cos
jπy

a
cos

kπz

d

(

CA,1e
µA,jkx + CA,2e

−µA,jkx
)

, 0 < x < aA, (75)

where

µA,jk =

√

µ2

F,jk −
λjk

c2
φγσ

ρ
+

λ2

jk

c2
(φγ − 1). (76)

For real porous-fluid configuration, the thickness of porous layer typically satisfies aA < π ρFc
σ

√

1

3−φγ
and,

in this case, the overdamped eigenvalues are always between σ
2ρF

and σ
ρF

.

4 STATEMENT OF THE WEAK FORMULATION

For the sake of simplicity, we restrict our attention to the case where the porous medium is isotropic. Let
us define the set V of kinematically admissible virtual displacements,

V = {(vF,vA) ∈ H : vF · n = vA · n on ΓI} ,
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where

H = {(vF,vA) ∈ H(div,ΩF)×H(div,ΩA) : vF · ν = 0 on Γ ∩ ∂ΩF ,

vA · ν = 0 on Γ ∩ ∂ΩA} ,

and

H(div,Ω) =
{

v ∈ (L2(Ω))3 : div v ∈ L2(Ω)
}

, (77)

where L2(Ω) denotes the space of square integrable functions. To get a weak formulation of the eigenvalue
problem (46)-(53), equation (46) is multiplied by the conjugate of a virtual fluid displacement v̄F satisfying
the Dirichlet condition (52) and then integrated in ΩF. By using a Green’s formula integration by parts and
equation (48), we obtain

∫

ΩF

ρFc
2div uF div v̄F −

∫

ΓI

pFv̄F · n = ω2

∫

ΩF

ρFuF · v̄F. (78)

In an analogous way, equations (47), (49) and (53) yield
∫

ΩA

K(ω)div uA div v̄A +

∫

ΓI

pAv̄A · n = ω2

∫

ΩA

ρ(ω)uA · v̄A. (79)

Now, by adding both equations and using the kinetic constraint (51), we can write the following pure
displacement eigenvalue problem:

Find a complex angular frequency ω and a pair of displacements (uF,uA) ∈ V, with uF and uA not both
identically zero, satisfying

∫

ΩF

ρFc
2div uF div v̄F +

∫

ΩA

K(ω)div uAdiv v̄A =

ω2

(
∫

ΩF

ρFuF · v̄F +

∫

ΩA

ρ(ω)uA · v̄A

)

, (80)

for all (vF,vA) ∈ V.
As it is typical in displacement formulations (see [10]), ω = 0 is an eigenfrequency of this problem in

both the Darcy’s like model and the Allard-Champoux model, with an infinite-dimensional eigenspace given
by

Z = {(uF,uA) ∈ V : div uF = 0 in ΩF, div uA = 0 in ΩA} .

This eigenspace consists of pure rotational fluid motions inducing neither variations of pressure in the fluid
nor in the porous medium. They are mathematical solutions of the eigenvalue problem with no physical
entity because they do not correspond to vibration modes of the coupled system. They arise because no
irrotational constraint is imposed to the fluid and porous displacements (see [10]).

5 FINITE ELEMENT DISCRETIZATION

Fluid and porous displacements belong to the same class of spaces, H(div,ΩF) and H(div,ΩA), respectively;
hence the same type of finite elements should be used for each of them to discretize the variational problem
(80).

Let Th be a regular tetrahedral partition of ΩF ∪ΩA such that every tetrahedra is completely contained
either in ΩF or in ΩA. We also assume that the faces of tetrahedra lying on ΓD∪ΓN are completely contained
either in ΓD or in ΓN.

To approximate the fluid and porous displacements, the lowest order Raviart-Thomas elements (see [27])
are used to avoid spurious modes typical of displacement formulations (see [23]). They consist of vector
valued functions which, when restricted to each tetrahedron, are incomplete linear polynomials of the form

uh(x, y, z) = (a+ dx, b + dy, c+ dz), a, b, c, d ∈ C.
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These vector fields have constant normal components on each of the four faces of a tetrahedron (figure 5)
which define a unique polynomial function of this type. Moreover, the global discrete displacement field
uh is allowed to have discontinuous tangential components on the faces of the tetrahedra of the partition
Th. Instead, its constant normal components must be continuous through these faces (these constant values
being the degrees of freedom defining uh). Because of this, div uh is globally well defined in the domain,
ΩF ∪ ΩA.

Figure 5: Raviart-Thomas finite element.

Then, for fluid displacements we use the Raviart-Thomas space (see [27])

Rh (ΩF) := {u ∈ H(div,ΩF) : u|T ∈ R0(T ), ∀T ∈ Th, T ⊂ ΩF} ,

and an analogous space for porous medium displacements:

Rh (ΩA) := {u ∈ H(div,ΩA) : u|T ∈ R0(T ), ∀T ∈ Th, T ⊂ ΩA} ,

where
R0(T ) :=

{

u ∈ P1(T )
3 : u(x, y, z) = (a+ dx, b+ dy, c+ dz), a, b, c, d ∈ C

}

.

Then, the discrete analogue of V is

Vh := {(uF,uA) ∈ Rh (ΩF)×Rh (ΩA) : uF · n = uA · n for each face on ΓI,

uF · ν = 0 on Γ ∩ ∂ΩF, uA · ν = 0 on Γ ∩ ∂ΩA} .

With this finite element space we define an approximate problem to (80):
Find a complex number ωh and a pair of displacements (uh

F
,uh

A
) ∈ Vh not both identically zero, such that

∫

ΩF

ρFc
2div uh

F div v̄h
F +

∫

ΩA

K(ωh)div uh
A div v̄h

A =

ω2

h

(
∫

ΩF

ρFu
h
F · v̄h

F +

∫

ΩA

ρ(ωh)u
h
A · v̄h

A

)

, (81)

for all (vh
F
,vh

A
) ∈ Vh.

6 MATRICIAL DESCRIPTION

In the previous section, a discrete formulation of our eigenvalue problem has been stated. Now a matricial
description is given and it is shown that it is a well posed symmetric nonlinear generalized eigenvalue problem
involving sparse matrices.
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Let uh
F
and vh

F
denote the column vectors of components of uh

F
and vh

F
, respectively, in the standard finite

element basis associated with Rh(ΩF). Similarly, let uh
A
and vh

A
denote the column vectors of components

of uh
A
and vh

A
, respectively, in the standard finite element basis associated with Rh(ΩA). Then the problem

(81) can be written in matrix form as

(

RF 0
0 RA(ωh)

)(

uh
F

uh
A

)

= ω2

h

(

MF 0
0 MA(ωh)

)(

uh
F

uh
A

)

, (82)

where

vhF
∗

RFu
h
F =

∫

ΩF

ρFc
2div uh

F div v̄h
F, (83)

vhA
∗

RA(ωh)u
h
A =

∫

ΩA

K(ωh)div uh
A div v̄h

A, (84)

vhF
∗

MFu
h
F =

∫

ΩF

ρFu
h
F · v̄h

F, (85)

vhA
∗

MA(ωh)u
h
A =

∫

ΩA

ρ(ωh)u
h
A · v̄h

A. (86)

RF and MF are the standard stiffness and mass matrices of the fluid, respectively, while RA(ωh) and MA(ωh)
are the corresponding ones for the porous medium. Notice that every matrix is highly sparse because only
a maximum of seven entries per row can be different from zero (this corresponds to the number of faces of
two adjacent tetrahedra).

Both matrices in the eigenvalue problem (82) are singular; however, by performing a translation in the
eigenvalues, it can be written in an equivalent more convenient way:

(

RF +MF 0
0 RA(ωh) +MA(ωh)

)(

uh
F

uh
A

)

= (ω2

h + 1)

(

MF 0
0 MA(ωh)

)(

uh
F

uh
A

)

. (87)

Now, matrix RF +MF is clearly positive definite, hence non-singular and symmetric. However, the matrix
RA(ωh)+MA(ωh) is singular if there exists ωh such that ρ(ωh) or K(ωh) are null. When we use the Darcy’s
like model, the dynamic density is null only if ωh = i σ

ρF
(which is an eigenvalue associated to null divergence

displacements in the porous medium) while the bulk modulus is positive. In the case of Allard-Champoux
model, there exists a frequency ωh such that K(ωh) is null but this is not true for ρ(ωh).

Thus, except for this special case, the matrix on the left hand side is non-singular and, consequently, it
can be used to build a well posed generalized eigenvalue problem to help us to solve the non-linear eigenvalue
problem (82). With this aim, we can define a function S : C → C such that S(ωh) = λh, where λh is the
least modulus eigenvalue of the following problem,

(

RF +MF 0
0 RA(ωh) +MA(ωh)

)(

uh
F

uh
A

)

= λh

(

MF 0
0 MA(ωh)

)(

uh
F

uh
A

)

. (88)

The function S is well defined because the generalized eigenvalue problem is well posed. Furthermore,
both matrices of this problem are symmetric and highly sparse and, hence, convenient for computational
purposes. Finally, calculation of the eigenvalues of the problem (82) is equivalent to find the roots ωh of the
nonlinear equation,

S(ωh)− (ω2

h + 1) = 0. (89)

A similar problem arising from finite element analysis of dissipative acoustic models can be found in [9].

7 NUMERICAL RESULTS

In this section we present some numerical results obtained with a computer code implementing the numerical
method given in this paper. This code allows us to compute the response diagram of enclosures as those
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in figures 1 and 2, consisting of several layers of fluids and porous media, and also to solve the nonlinear
eigenvalue problem (80) by means of a secant method combined with an inverse power method. This type
of method has been already used in other works devoted to solve nonlinear eigenvalues problems (see [9]).

In order to validate our method, we have considered the following data: fluid is air with density ρF =
1.225 kg/m

3
, c = 343 m/s whereas properties of the porous material are summarized in σ = 104 kg/(m

3
s),

φ = 0.71, γ = 1.4, Npr = 0.702 and P0 = 101320 Pa. Concerning dimensions of enclosures shown in figures
1 and 2, they are as follows: length and width are 4 m whereas height is 2 m for the first layer of free fluid,
0.05 m for the second layer of porous material and 0.1 m for the third layer of free fluid in the case of the
enclosure in figure 1.

Figure 6: Mesh 2 corresponding to the enclosure shown in figure 2

These two enclosures have been decomposed in tetrahedra (see figure 6). Depending on which one is
considered and on the degree of mesh refinement (parameter n refers to the number of divisions introduced
for each layer of the enclosure in figure 6), the meshes are denoted as it is shown in table 1.

Mesh 0 Mesh 1 Mesh 2 Mesh 3 Mesh 4

Sample Figure 1 Figure 1 Figure 2 Figure 2 Figure 2
n 2 4 6 8 10

Degrees of freedom 1072 8128 21600 50688 98400

Table 1: Name and degrees of freedom for the different meshes.

Mode Mesh 2 Mesh 3 Mesh 4 Extrapolated Exact

ωF

100
265.791+0.382 i 265.891+0.287 i 265.961+0.242 i 266.708+0.162 i 266.026+0.164 i

ωF

110
375.722+0.786 i 375.894+0.593 i 375.977+0.502 i 376.144+0.338 i 376.132+0.342 i

ωF

001
523.913+1.943 i 524.685+1.284 i 525.038+0.965 i 525.644+0.332 i 525.656+0.389 i

ωF

200
531.251+1.704 i 531.418+1.284 i 531.506+1.087 i 531.733+0.772 i 531.680+0.737 i

ω
F

020
528.894+1.684 i 530.052+1.273 i 530.622+1.081 i 531.807+0.730 i 531.680+0.737 i

Table 2: Rigid porous medium and air. Darcy’s like model.

Firstly we consider the enclosure in figure 2. In table 2 we show the first complex eigenfrequencies (in Hz)
for three different meshes: mesh 2, mesh 3 and mesh 4. One could see that they have a small imaginary part
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and a real part “close” to the response peaks. We also include the extrapolated complex eigenfrequencies
computed by the least square method, and the exact ones corresponding to both Darcy’s like model and
Allard-Champoux model, obtained by solving their respective nonlinear system of equations, for any pair of
integers j and k, namely,

µ2

F +
ω2

c2
=

π2

b2
j2 +

π2

d2
k2, (90)

µ2

A +
ω2ρ(ω)

K(ω)
=

π2

b2
j2 +

π2

d2
k2, (91)

µFρ(ω) cosh(aAµA) sinh(aFµF) = −µAρF sinh(aAµA) cosh(aFµF). (92)

An excellent agreement can be observed between exact and computed values, even for the coarser mesh.
This shows the effectiveness of the method. From this table we have calculated the order of convergence of
the method and found that it is approximately O(h2), h being a parameter associated with the mesh size,
which is optimal for the lowest order Raviart-Thomas finite elements we have used.

Mode Mesh 2 Mesh 3 Mesh 4 Extrapolated Exact

ω
F

00
8163.265 i 8163.265 i 8163.265 i 8163.265 i 8163.265 i

ω
F

10
8156.630 i 8157.003 i 8157.277 i 8163.163 i 8158.435 i

ωF

11
8149.990 i 8150.735 i 8151.285 i 8163.382 i 8153.605 i

Table 3: Rigid porous medium and air. Darcy’s like model. Overdamped modes.

On the other hand, according to the analysis in section 3, there exist overdamped modes. In spite of the
fact that these overdamped modes are not the magnitudes of interest, from the numerical point of view it is
important to know if they are well approximated by the finite element method. Otherwise they could be a
source of spectral pollution. Table 3 includes the computed and exact purely imaginary eigenfrequencies of
higher modulus for the same three meshes described above.

When the Allard-Champoux model is used we obtain similar results to those previously obtained for the
Darcy’s like model. They are shown in tables 4 and 5.

Mode Mesh 2 Mesh 3 Mesh 4 Extrapolated Exact

ω
F

100
264.498+0.768 i 264.545+0.582 i 264.570+0.495 i 264.641+0.336 i 264.622+0.340 i

ω
F

110
373.830+1.586 i 373.915+1.212 i 373.968+1.033 i 374.195+0.692 i 374.082+0.712 i

ωF

001
519.622+4.457 i 519.968+3.274 i 520.166+2.687 i 520.829+1.440 i 520.584+1.606 i

ωF

200
528.662+3.436 i 528.559+2.652 i 528.550+2.266 i 528.535+1.461 i 528.598+1.561 i

ωF

020
526.277+3.395 i 527.194+2.630 i 527.670+2.254 i 528.816+1.475 i 528.598+1.561 i

Table 4: Rigid porous medium and air. Allard-Champoux model.

Mode Mesh 2 Mesh 3 Mesh 4 Exact

ω
F

100
4983.698 i 4439.175 i 4439.603 i 4438.380 i

ω
F

110
4979.907 i 4436.174 i 4436.828 i

ω
F

001
4976.004 i 4435.718 i 4435.633 i 4435.279 i

Table 5: Rigid porous medium and air. Allard-Champoux model. Overdamped modes.

Nevertheless, when calculating overdamped modes with the Allard-Champoux model some difficulties
appear due to the highly oscillating eigenfunction associated with it. This means that a very refined mesh
might be used in order to get a suitable approximation. In fact, only with mesh 4 good accuracy has been
achieved. Figure 7 shows the oscillation in the eigenvector in a plane near the interface between the fluid
and the porous material.
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Figure 7: Eigenvector for an overdamped mode with Allard-Champoux model

Finally, we consider the enclosure shown in figure 1. The response curves are drawn in figure 8 when the
model is solved with mesh 0 and mesh 1. In these curves log10 ||p||L2 is plotted for angular frequencies ω

ranging from 50 to 1000 Hz.
Several response peaks can be observed in these curves depending on the refinement of the mesh. We

notice that the finer the mesh, the smaller the number of peaks in the response diagram. Moreover, table 6
shows the computed (complex) resonance frequencies for the damped coupled system shown in figure 1 and
the (real) eigenfrequencies of a similar undamped enclosure where the porous material has been replaced
with air. As one can see, all are quite similar.

Undamped peaks Complex eigenfrequencies Damped peaks Damped peaks

Mesh 0 Mesh 1

269.392 266.189+1.495 i 250.5 250.5

588.840 594.737+8.535 i 572.5 581.0

751.297 751.811+1.506 i 720.5 748.0

808.175 797.242+1.750 i 785.5 -

924.519 936.395+5.309 i 921.0 -

Table 6: Resonance vibration frequencies and complex eigenfrequencies

8 CONCLUSIONS

In this paper a three-dimensional finite element method has been implemented to solve the system of equa-
tions modelling the macroscopic behavior of a porous material with rigid solid frame. It allows us to compute
both the response to an harmonic excitation and the free vibrations of a three-dimensional multilayer system
consisting of different layers composed of free fluids and rigid porous media. The finite element used is the
lowest order face element introduced by Raviart and Thomas, with the advantage of eliminating the spurious
modes.

For rigid porous media we have considered two models: a Darcy’s like model and the Allard-Champoux
model. These two models are equivalent when frequency is much lower than resistivity.
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Figure 8: Response curve with Mesh 0 and Mesh 1

When solving the problem of free vibrations, the computer program predicts very well the exact complex
eigenfrequencies for the Darcy’s like model in the case of a test example. This is true even for the overdamped
modes. On the other hand, when using the Allard-Champoux model, the eigenfrequencies with non-null real
part are well approximated whereas calculation of overdamped modes is much more complicated due to the
highly oscillating eigenfunction associated with them, as observed in figure 7. This forces us to use very fine
meshes.
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