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Abstract

The aim of this paper is to study the time-harmonic scattering problem

in a coupled fluid-porous medium system. We consider two different mod-

els for the treatment of porous materials: the Allard-Champoux equations

and an approximate model based on a wall impedance condition. Both

models are compared by computing analytically their respective solutions

for unbounded planar obstacles, considering successively plane and spher-

ical waves. A numerical method combining an optimal bounded PML

and finite elements is also introduced to compute the solutions of both

problems for more general axisymmetric geometries. This method is used

to compare the solutions for a spherical absorber.
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1 Introduction

One of the most used techniques in passive control of noise consists of covering
the reflecting surfaces with porous materials.

From a microscopic point of view, these materials consist of a solid skeleton,
rigid or elastic, completely saturated by an acoustic fluid. This kind of absorbing
materials are widely used because of its capability to dissipate acoustic waves,
specially at low range frequencies.
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There are several alternatives to derive models governing the vibrations of
porous media; an overview can be found in Allard’s book.[1]

If the solid skeleton is assumed to be rigid, the porous material can be consid-
ered as an equivalent fluid with dynamical density and bulk modulus coefficients
depending on the frequency. These parameters can be obtained by empirical
laws. In this setting, the equations introduced by Delany and Bazley[2] in 1970
have been widely used to describe sound propagation in fibrous materials. This
model was subsequently improved by Morse and Ingard,[3] Attenborough,[4]
and, more recently, by Allard and Champoux,[5] among others.

On the other hand, when the elastic deformation of the skeleton is taken
into account, the theoretical basis for the mechanical behavior of the porous
material was established by Biot.[6, 7] This theory describes the propagation of
elastic waves in fluid-saturated porous media. The adaptation of this theory to
acoustics can be found, for example, in the work of Allard et al.[8]

Furthermore, under the assumptions of rigid or elastic skeleton, it is also
possible to obtain models for the motion of porous materials from a rigorous
mathematical point of view by homogenization techniques.[9, 10]

The use of all these models can be inadequate when modeling the propa-
gation of sound in an enclosure including porous media, since the thickness of
the porous layer coating the reflecting surfaces is often much smaller than the
characteristic dimensions of the physical domain of interest. This difference in
size is typically a serious drawback to create a mesh of the domain in order to
compute the acoustic field with, for instance, a finite-element method.

If we assume that the porous layers are thin, this numerical difficulty can
be overcome by substituting the partial differential equations governing the
porous medium by a wall impedance condition on the coated boundaries. This
boundary condition involves frequency dependent coefficients which can be the-
oretically computed from the dynamic density and bulk modulus of the coating
porous material in the case of incident plane waves on a plane surface (see Sec-
tion 2.3 below). Let us remark that the two models do not necessarily lead to
the same solution for more general geometric conditions.

We compare in this paper a fluid-porous model with an approximation ob-
tained by replacing the porous media by a wall impedance condition. We study
the dependence of both models with respect to the thickness of the porous layer,
the frequency, the acoustic source and the geometry of the problem domain.
More precisely, we study the accuracy of the wall impedance model versus the
Allard-Champoux model for time-harmonic scattering problems in unbounded
three-dimensional domains. Many problems with practical interest fall in this
framework, as for instance the numerical simulation of real experiments involv-
ing absorbing materials in an anechoic or semi-anechoic room.[11]

The fluid-porous scattering problems can be solved analytically only for some
geometrically simple domains. However, in general, it is necessary to use nu-
merical techniques. Because of its easy implementation and its effectiveness in
handling complex geometries, the finite-element method has become popular
to solve such problems. Some examples of the finite element method applied
to sound propagation in porous media are the papers by Easwaran et al.,[12]
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Panneton and Atalla,[13] and Bermúdez et al.[14] All of them consider acoustic
propagation inside rigid cavities and, hence, the problems are posed in bounded
domains.

For problems posed on unbounded domains, finite-element methods require
first to truncate the computational domain without perturbing too much the
solution of the original problem. Several techniques are available to do this:
absorbing boundary conditions,[15] boundary elements,[16] infinite elements,[17]
etc. In the present paper, we will use the so called PML (Perfectly Matched
Layer) method, introduced by Berenger.[18]

The PML method is based on simulating an absorbing layer of damping
material surrounding the domain of interest, like a thin sponge which absorbs
the scattered field radiated to the exterior of this domain. This method is known
as ‘perfectly matched’ because the interface between the physical domain and
the absorbing layer does not produce spurious reflections.

In practice, since the PML has to be truncated at a finite distance of the
domain of interest, its external boundary produces artificial reflections. Theo-
retically, these reflections are of minor importance because of the exponential
decay of the acoustic waves inside the PML, but the approximation error typi-
cally becomes larger once the problem is discretized. Increasing the thickness of
the PML may be a remedy, although not always available because of its compu-
tational cost. An alternative usual choice to achieve low error levels is to take
larger values of the absorption coefficients in the layer. However, Collino and
Monk[19] showed that this methodology may produce an increasing error in the
discretized problem.

We will use an alternative procedure to avoid this numerical drawback, which
we have proposed and analyzed in a previous paper.[20] It consists of using an
absorbing function with unbounded integral on the PML. In such case, the
exact solution of the original time-harmonic scattering problem in the domain
of interest is recovered, even though the thickness of the layer is finite.

The outline of this paper is as follows: In Section 2 we state the scatter-
ing problems in a three-dimensional unbounded domain with a porous layer
surrounding a rigid obstacle. We introduce the Allard-Champoux equations,
governing the motion in the porous layer, and the wall impedance model. Then
we compute the frequency dependent impedance which yields the equivalence
between both models under the assumption of plane waves with normal inci-
dence. In Section 3, we study the particular case where the obstacle is planar
and unbounded. For this simple geometry we obtain the exact solution for
the scattering problem assuming plane waves of oblique incidence or spherical
waves. In both cases we compare the pressure fields computed from the two
models. In Section 4, under the hypothesis of spherical geometry, both models
are numerically solved by using an optimal bounded PML technique combined
with a finite-element method. Finally, we report the numerical results obtained
with this approach, when the obstacle is a sphere covered by a porous material.
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2 Statement of the problem. Mathematical mod-

eling

We consider in this section a time-harmonic scattering problem for a coupled
system formed by an acoustic fluid and a porous medium.

Let Ω be a domain (bounded or unbounded) occupied by an obstacle to
the propagation of acoustic waves, with a totally reflecting boundary Γ and
outward unit normal vector ν. We consider a set of coordinates with its origin
lying inside the obstacle.

Let ΩA be another domain surrounding the obstacle and occupied by a
porous material, with outer boundary ΓI and outward normal unit vector n.
The rest of the space, ΩF, is filled with an acoustic fluid (i.e., compressible,
barotropic and inviscid). Fig. 1 shows a two-dimensional section of the domains.

Γ
Ω

ΩA
ΓI

n

ν

ΩF

Figure 1: Two-dimensional vertical section of the domains.

In what follows we introduce the equations of the time-harmonic scattering
problem with two different models for the porous medium.

2.1 The Allard-Champoux model

The first model consists of using directly the Allard-Champoux equations gov-
erning the porous material. Consider a periodic acoustic source with angular
frequency ω and amplitude F acting inside ΩF. The amplitudes of the pressure
fields in ΩF and ΩA are, respectively, the solutions P1 and PA of the following
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equations:

1

ρF
∆P1 +

ω2

µF
P1 = F in ΩF, (1)

1

ρA
∆PA +

ω2

µA
PA = 0 in ΩA, (2)

P1 = PA on ΓI, (3)

1

ρF

∂P1

∂n
=

1

ρA

∂PA

∂n
on ΓI, (4)

1

ρA

∂PA

∂ν
= 0 on Γ, (5)

lim
r→+∞

r

(
1

ikF

∂P1

∂r
− P1

)
= 0 in ΩF, (6)

lim
r→+∞

r

(
1

ikA

∂PA

∂r
− PA

)
= 0 in ΩA. (7)

Eq. (1) is the standard Helmholtz equation for an acoustic fluid, where ρF
is the mass density of the fluid at rest and µF its bulk modulus which, for an
acoustic fluid, is given by µF = ρFc

2
F, with cF being the sound speed in the fluid.

Eq. (2) corresponds to the Allard-Champoux[5] model for the vibrations in
ΩA. This model assumes that the skeleton of the porous medium is rigid. In
fact, it considers that the medium consists of a fluid-saturated rigid fibrous
material. It also assumes that the thermal exchange between the fluid and the
fibers of the porous medium is not negligible. If the porous material is assumed
to be isotropic from a macroscopic point of view, then the pressure in the porous
medium satisfies Eq. (2), where ρA and µA are the so called dynamic density
and dynamic bulk modulus, respectively, which depend on the frequency. These
coefficients are given by the following expressions:

µA = µA(ω) = γP0


γ − γ − 1

1 +
i

4Pr

σ

ρFω
G2

(ρFω
σ

)




−1

,

ρA = ρA(ω) = ρF

[
1 + i

(
σ

ρFω

)
G1

(ρFω
σ

)]
.

In the above empirical equations, P0 is the fluid equilibrium pressure at rest, γ
the ratio of specific heats of the fluid, Pr the Prandtl number and σ the flow
resistivity. Finally, functions G1 and G2 are given by

G1

(ρFω
σ

)
=

√
1− i

2

ρFω

σ
and G2

(ρFω
σ

)
= G1

(
4Pr

ρFω

σ

)
.

Eq. (3) and (4) are the usual kinematic and kinetic interface conditions,
which preserve continuity of pressure and velocity fields, respectively, whereas

5



Eq. (5) is the standard reflecting condition on a rigid obstacle. Finally, Eq. (6)
and (7) are the radiation Sommerfeld conditions in fluid and porous domains,
with kF and kA being the respective wave numbers

kF = ω

√
ρF
µF

=
ω

cF
and kA = ω

√
ρA
µA

. (8)

Let us remark that Eq. (7) only holds if the porous medium domain is un-
bounded.

2.2 The wall impedance model

An alternative to model the effect of the porous medium, valid in principle when
the thickness of the porous layer is negligible, consists of replacing the equation
in ΩA by a complex-valued frequency-dependent wall impedance condition on
ΓI. This condition is defined as to recover the exact pressure field in prob-
lems involving plane waves with normal incidence, as will be shown in the next
subsection.

Consider again the notation shown in Fig. 1 and the same periodic acoustic
source as above. The amplitude of the pressure field in ΩF is now the solution
P2 of the following exterior Helmholtz problem:

1

ρF
∆P2 +

ω2

µF
P2 = F in ΩF, (9)

P2 −
Z

iωρF

∂P2

∂n
= 0 on ΓI, (10)

lim
r→+∞

r

(
1

ikF

∂P2

∂r
− P2

)
= 0 in ΩF. (11)

Eq. (10) is the wall impedance condition which models the layer of porous
material covering the obstacle and involves the frequency-dependent wall impedance
coefficient Z. Since the fluid is assumed to be inviscid, this condition only in-
volves the normal derivative of the pressure.

2.3 Computing the wall impedance

In what follows we compute the complex frequency-dependent wall impedance
coefficient Z, in such a way that the solutions P1 and P2 of problems (1)-(7) and
(9)-(11), respectively, coincide under the assumption of plane waves with normal
incidence. Let us recall that this is the standard assumption for a Kundt’s tube.

Consider fluid and porous medium domains, ΩF and ΩA, respectively, as in
Fig. 2. Assume that the source term is now a plane wave with normal incidence
to ΓI with amplitude Pinc. Assume also that this plane wave has a zero phase
on the plane x3 = a. We introduce this source in both problems through the
following boundary condition:

−1

2

(
1

ikF

∂Pj

∂x3
− Pj

)∣∣∣∣
x3=a

= Pinc, j = 1, 2.
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x2

x3

x1

d

a

ΓI

ΩA

ΩF

Γ

Figure 2: Unbounded obstacle with planar boundary. 3D domains.

It is clear that with this boundary condition and without any other source term
in the fluid domain, the solution is composed of different plane waves with
normal incidence.

Eq. (1)-(7) reduce in this case to the following one-dimensional problem:




1

ρF

d2P1

dx2
3

+
ω2

µF
P1 = 0, d < x3 < a,

1

ρA

d2PA

dx2
3

+
ω2

µA
PA = 0, 0 > x3 > d,

−1

2

(
1

ikF

dP1

dx3
− P1

)
= Pinc, x3 = a,

P1 = PA x3 = d,

1

ρF

dP1

dx3
=

1

ρA

dPA

dx3
, x3 = d,

1

ρA

dPA

dx3
= 0, x3 = 0.

(12)

Straightforward computations lead to

P1(x1, x2, x3) = Pinc

[
e−ikF(x3−a) +R1 e

ikF(x3+a)
]
,

where the reflection coefficient R1 is given by

R1 = e−2ikFd
ZA cos(kAd) + iZF sin(kAd)

ZA cos(kAd)− iZF sin(kAd)
,
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with
ZF =

ωρF
kF

= ρFcF and ZA =
ωρA
kA

being the characteristic impedances of the fluid and the porous medium, respec-
tively.

Analogously, Eq. (9)-(11) yield in this case the following one-dimensional
problem: 




1

ρF

d2P2

dx2
3

+
ω2

µF
P2 = 0, d < x3 < a,

−1

2

(
1

ikF

dP2

dx3
− P2

)
= Pinc, x3 = a,

P2 −
Z

iωρF

dP2

dx3
= 0, x3 = d.

(13)

In this case, it is simple to show that

P2(x1, x2, x3) = Pinc

[
e−ikF(x3−a) +R2 e

ikF(x3+a)
]
,

with

R2 = e−2ikFd
Z + ZF

Z − ZF
.

Thus, it is possible to define a particular complex-valued coefficient Z so that
its solution coincides with that of problem (12). Thus we obtain the following
result:

Proposition 2.1. Let P1 and P2 be the solutions of problems (12) and (13),
respectively. If

Z = ZA coth(ikAd), (14)

then P1(x1, x2, x3) = P2(x1, x2, x3), for d < x3 < a.

This is a classical result.[22] Eq. (14) is nothing but the well-known expres-
sion of the input impedance to a rigidly backed porous layer with thickness
d.

3 Planar unbounded wall

In this section we will deal with other particular problems in which the obstacle
and the absorbing layer are unbounded and have a planar boundary as in Fig. 2.
We will consider two simple source terms: plane waves with oblique incidence
and spherical waves. In both cases, we will deduce explicit formulas for the
solutions of problems (1)-(7) and (9)-(11), which will allow us to compare both
models.

In spite of the fact that the assumption of an unbounded absorbing layer is
not realistic, it allows us to avoid the diffraction effects due to the borders of the
porous sample. This assumption is usually made, even from an experimental
point of view, when the size of the sample is much larger than the length wave
of the acoustic source.
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3.1 Plane waves with oblique incidence

Consider now as a source term a plane wave of amplitude Pinc with oblique
incidence on the interface ΓI, the incidence angle being α. We assume again
that this plane wave has a zero phase with respect to the variable x3 on the
plane x3 = a, so that we introduce the source term by means of the following
boundary condition:

−1

2

(
1

ikF cosα

∂Pj

∂x3
− Pj

)∣∣∣∣
x3=a

= Pinc e
−ikFx2 sinα, j = 1, 2.

In this case, Eq. (1)-(7) reduce to the following two-dimensional problem:




1

ρF

∂2P1

∂x2
2

+
1

ρF

∂2P1

∂x2
3

+
ω2

µF
P1 = 0, d < x3 < a,

1

ρA

∂2PA

∂x2
2

+
1

ρA

∂2PA

∂x2
3

+
ω2

µA
PA = 0, 0 < x3 < d,

−1

2

(
1

ikF cosα

∂P1

∂x3
− P1

)
= Pinc e

−ikFx2 sinα, x3 = a,

P1 = PA, x3 = d,

1

ρF

∂P1

∂x3
=

1

ρA

∂PA

∂x3
, x3 = d,

1

ρA

∂PA

∂x3
= 0, x3 = 0.

(15)

Straightforward computations lead now to the following expression for P1:

P1(x1, x2, x3) = Pinc e
−ikFx2 sinα

[
e−ikF(x3−a) cosα +R1 e

ikF(x3+a) cosα
]
, (16)

where the reflection coefficient R1, which depends on the frequency and the
incidence angle, is given by

R1 = e−2ikFd cosα Z∗
A cosα cos(k∗Ad) + iZF sin(k∗Ad)

Z∗
A cosα cos(k∗Ad)− iZF sin(k∗Ad)

,

with

k∗A =
√

k2A − k2F sin2 α and Z∗
A = ωρA/k

∗
A,

whereas ZF = ωρF/kF = ρFcF, as above.
Analogously, under the assumption of plane waves with oblique incidence,

problem (9)-(11) can be written as follows:




1

ρF

∂2P2

∂x2
2

+
1

ρF

∂2P2

∂x2
3

+
ω2

µF
P2 = 0, d < x3 < a,

−1

2

(
1

ikF cosα

∂P2

∂x3
− P2

)
= Pinc e

−ikFx2 sinα, x3 = a,

P2 −
Z

iωρF

∂P2

∂x3
= 0, x3 = d.

(17)
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Proceeding as above, it is easy to show that the pressure field is given by

P2(x1, x2, x3) = Pinc e
−ikFx2 sinα

[
e−ikF(x3−a) cosα +R2 e

ikF(x3+a) cosα
]
, (18)

where the reflection coefficient is now

R2 = e−2ikFd cosα Z cosα+ ZF

Z cosα− ZF
.

The expression of the input impedance for plane waves with oblique inci-
dence in a multilayered media is also well known.[22] In principle, we could use
it to define Z so that we recover the equivalence between the solutions of prob-
lems (15) and (17). However, this value of Z would depend on the incidence
angle α.

Our aim is to characterize the behavior of a porous layer by a wall impedance
depending only on the thickness and the physical properties of the porous ma-
terial, but not on the particular acoustic source. Because of this, we propose to
use the wall impedance (14) computed for plane waves with normal incidence.
In what follows, we compare the solutions (16) and (18) of problems (15) and
(17), respectively, as a first validation of this proposal.

For the fluid parameters we have used ρF = 1.2 kg/m3 and cF = 343m/s,
whereas, for the porous layer, Pr = 0.702, γ = 1.4, σ = 20000 rays mks and
P0 = 101320N/m2, the thickness of the layer being d = 0.05m.

Fig. 3 shows the real and the imaginary parts of the wall impedance defined
in (14) for a range of frequencies f = ω/(2π) between 100 and 2000Hz.

We consider an incoming plane wave of oblique incidence with angle α =
π/3 rad, amplitude Pinc = 1N/m2 and null x3-phase on the plane x3 = 1m.

As a first test, we compute the solutions P1 and P2 provided by each model
at different observation points on the x3-axis that we call m1, m2, m3 and m4

(see Fig. 4), for a wide range of frequencies.
We show the real parts of the results in Fig. 5, where the agreement of both

models can be clearly appreciated. Indeed, the agreement is so good that, for
each of the observation points, the curves corresponding to each model almost
coincide, making it very hard to distinguish one from the other.

For plane waves, there is no need of comparing the solution provided by both
models at points with the same coordinate z, as m5, . . . ,m8 in Fig. 4. Indeed,
P1(mj), j = 4, . . . , 8, only differ in phase, and the same happens with P2(mj)
(see Eq. (16) and (18)). Clearly, this is not the case for more general waves as
will be shown in the next section.

Finally, we check the agreement between both models for different values of
the thickness of the porous material. In Fig. 6 we show the relative difference
between both solutions, |P1 − P2| / |Pinc|, at the points m1 and m4 (see Fig. 4),
for a couple of frequencies and a wide range of values of the thickness.

We observe that the agreement between both models is essentially indepen-
dent of the point where we compute the pressure field. Moreover, the relative
difference between both models does not increase with frequency. On the other
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Figure 3: Wall impedance Z as defined by Eq. (14) for different values of f =
ω/(2π).

x3 = 0.15m

x3 = 0.35m

x3 = 0.55m

a

x3 = 1m

x2

x2
=
−
0.
5
m
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=
−
0.
25
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=
−
0.
75
m

x2
=
−
1
m x3

d = 0.05m
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m5 m4

m3

m2

m1

Figure 4: Observation points for the pressure field.

hand, even for a thick porous layer and moderate values of the angle of inci-
dence (α = π/3 rad), the agreement does not degenerate. Indeed each curve
shows only one small error peak for very small values of the thickness d (≈ 12%
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Figure 5: Plane waves with oblique incidence. Real part of the pressure fields
at different points.

for 1000Hz and ≈ 6% for 500Hz).

3.2 Spherical waves

Next we consider a new source term: a monopole acting inside the fluid domain.
In this case, the technique to obtain the solutions of the scattering problems
is classical.[23] For completeness, we detail the computations for the Allard-
Champoux model.

For a monopole at the point a = (0, 0, a), with constant volume velocity
Q,[18] the acoustic source term in (1) is F = iωQδa, with δa being the Dirac’s
delta with support at a.

Since the source term depends neither on x1 nor on x2, and the interfaces
ΓI and Γ are orthogonal to the x3-axis, we take advantage of the symmetry of
the problem. We use the two-dimensional Fourier transform[24] in the space
variables x1 and x2:

P̂1(x̂1, x̂2, x3) =

∫ +∞

−∞

∫ +∞

−∞

P1(x1, x2, x3) e
−ix̂1x1 e−ix̂2x2 dx1 dx2.
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Figure 6: Plane waves with oblique incidence. |P1 − P2| / |Pinc| versus thickness
of the porous layer.

Taking Fourier transform of Eq. (1) and (2), we obtain:




1

ρF

[
−(x̂2

1 + x̂2
2)P̂1 +

∂2P̂1

∂x2
3

]
+ ω2 1

µF
P̂1 = iωQδ̂a in ΩF,

1

ρA

[
−(x̂2

1 + x̂2
2)P̂A +

∂2P̂A

∂x2
3

]
+ ω2 1

µA
P̂A = 0 in ΩA.

Notice that δ̂a coincides with the one-variable Dirac’s delta with support at
the point x3 = a. Hence, by using the Sommerfeld radiation conditions (6) and
(7), we obtain:

P̂1(x̂1, x̂2, x3) =
ωρFQ ei

√
k2

F
−r̂2 |x3−a|

2
√

k2F − r̂2
+ R̂1 e

i
√

k2

F
−r̂2 x3 , (19)

P̂A(x̂1, x̂2, x3) = TA e−i
√

k2

A
−r̂2 x3 +RA ei

√
k2

A
−r̂2 x3 , (20)

where r̂ =
√
x̂2
1 + x̂2

2, and kF and kA are the wave numbers in the fluid and in
the porous media, respectively, as defined in (8).

We introduce the following notation:

k̂F =
√
k2F − r̂2, k̂A =

√
k2A − r̂2, ẐF =

ωρF

k̂F
, ẐA =

ωρA

k̂A
.
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The interface conditions (3)-(5) lead to the following system of equations for

the coefficients RA, R̂1 and TA:





ẐFQ

2
eik̂F(d−a) + R̂1 e

ik̂Fd = TA e−ik̂Ad +RA eik̂Ad,

−Q

2
eik̂F(d−a) +

R̂1

ẐF

eik̂Fd = −TA

ẐA

e−ik̂Ad +
RA

ẐA

eik̂Ad,

−TA +RA = 0.

Notice that since k̂F and k̂A depend on x̂1 and x̂2 through r̂, so do RA, R̂1 and
TA.

By solving this linear system, we obtain

R̂1 = e−2ik̂Fd
ẐA cos(k̂Ad) + iẐF sin(k̂Ad)

ẐA cos(k̂Ad)− iẐF sin(k̂Ad)

ẐFQ

2
eik̂Fa.

Using now (19) and the inverse Fourier transform, we have

P1(x) =
iωρFQ

4π

eikF|x−a|

|x− a| + PR
1 (x),

where

PR
1 (x) =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

R̂1(x̂1, x̂2) e
ik̂Fx3 eix̂1x1 eix̂2x2 dx̂1 dx̂2.

Since R̂1 depends on x̂1 and x̂2 only through r̂, by using the Hankel transform[24]
we can rewrite the pressure field in ΩF as follows:

P1(x) =
iωρFQ

4π

eikF|x−a|

|x− a| +
1

2π

∫ +∞

0

R̂1(r̂) e
ik̂Fx3 J0

(
r̂
√
x2
1 + x2

2

)
r̂ dr̂, (21)

where J0 denotes the Bessel function of first kind and order zero.
The above integral can be computed exactly only if the geometry is very

simple. Otherwise, some quadrature rule has to be used. In such case, numerical
problems should be expected because the function R̂1(r̂) has a singularity at
r̂ = kF.

By applying similar techniques to the wall impedance model, we can also
write explicitly the solution of (9)-(11) as follows:

P2(x) =
iωρFQ

4π

eikF|x−a|

|x− a| +
1

2π

∫ +∞

0

R̂2(r̂) e
ik̂Fx3 J0

(
r̂
√
x2
1 + x2

2

)
r̂ dr̂, (22)

where R̂2 is given by

R̂2 = e−2ik̂Fd
Z + ẐF

Z − ẐF

ẐFQ

2
eik̂Fa.
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Our next goal is to compare the solutions (21) and (22) when the wall
impedance Z is taken according to (14).

We have used the same values for the physical and geometrical parameters
as in the previous test. The integrals in (21) and (22) have been computed by
using recursive adaptive Lobatto quadrature[25] with a tolerance error of 10−8

and truncating the integration domain at a distance 10−7 to the singular point
r̂ = kF.

We have computed P1 and P2 at the same points as in the previous test for
different frequencies. The real parts of the results are shown in Fig. 7, where
an excellent agreement between both models can be clearly observed again for
a wide range of frequencies. Once more, the agreement is so good that it is very
hard to distinguish the curves corresponding to each model.

100 500 1000 1500 2000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Frequency  f (Hz)

P
re

ss
ur

e 
(N

/m
2  )

Re( P
1
) at  m

1

Re( P
2
) at  m

1

Re( P
1
) at  m

2

Re( P
2
) at  m

2

Re( P
1
) at  m

3

Re( P
2
) at  m

3

Re( P
1
) at  m

4

Re( P
2
) at  m

4

Figure 7: Spherical waves. Real part of the pressure fields at different points
lying on the x3-axis.

We have also computed P1 and P2 at points m5, m6, m7 and m8, not lying
on the x3-axis (see Fig. 4) for different frequencies. The real parts of the results,
are shown in Fig. 8. Once more, for each of the observation points, the curves
corresponding to each model almost coincide because of the excellent agreement.

Finally, Fig. 9 shows the relative difference between both solutions, |P1 − P2| / |Pinc|,
at points m3, m4 and m8, for a couple of frequencies and a range of values of
the thickness. The incidence pressure Pinc is now the first term in the right
hand sides of Eq. (21) and (22), namely,

Pinc =
iωρFQ

4π

eikF|x−a|

|x− a| . (23)
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Figure 8: Spherical waves. Real part of the pressure fields at different points
lying on the line x3 = 0.55.
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Figure 9: Spherical waves. |P1 − P2| / |Pinc| versus thickness of the porous layer.
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It can be checked that the agreement between both models gets worse for
large values of d. Anyway, for rather thick porous media layers and moder-
ate values of the frequency, the agreement is excellent, the relative difference
remaining smaller than 3%.

4 Curved wall

In the previous section, we have solved analytically the Allard-Champoux and
the wall impedance models in two particular cases, taking advantage of the spe-
cial geometric configuration of the domains (planar interfaces and unbounded
fluid and porous media). However, in real problems, the obstacle and the porous
layer are bounded and have arbitrary shapes, usually with non-planar bound-
aries.

In this framework, we are going to focus our attention on the comparison
of both models in the case of non-planar geometries. Since in such case it is
not possible to compute the exact solutions using analytical techniques, it is
necessary to introduce a computational method. This is the aim of the rest of
the paper.

From a computational point of view, we have to deal with two main difficul-
ties:

• the fluid domain is unbounded,

• the thickness of the porous layer is much smaller than the other dimen-
sions.

We overcome the first difficulty by using the Perfectly Matched Layer technique[18]
with optimal choice of the absorbing function,[26] as described in Subsection 4.1
below.

The second difficulty becomes relevant when we try to solve numerically
problem (1)-(7) in three-dimensional domains by applying a finite-element method.
Indeed, because of the different scales in the dimensions of the porous layer, it
is necessary to use meshes with a large number of degrees of freedom to obtain a
good accuracy of the results, which in turn implies to solve large linear systems
of equations.

For simplicity, we restrict our analysis to axisymmetric problems. Let (r, θ, ϕ)
denote the standard spherical coordinates of a point x ∈ R

3 (see Fig. 10) and
{er, eθ, eϕ} the canonical basis associated to this system of coordinates. We
consider problems such that the porous and fluid domains as well as the exter-
nal source are independent of the azimuthal angle ϕ. In such case Eq. (1)-(7)
and (9)-(11) can be rewritten in terms of r and θ, and, hence, reduced to two
dimensions.

4.1 The Perfectly Matched Layer

We introduce a PML technique in spherical coordinates[27] to truncate the
unbounded fluid domain.
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x3 = r cos θ.

x2 = r sin θ sinϕ,

Figure 10: Spherical coordinates.

For this purpose, we surround the domain of interest (i.e., the part of
the domain where we want to compute the pressure field) with a spherical
PML. We consider a ball of radius R containing the domain of interest, the
porous layer and the scatterer. The PML occupies the annular domain Ω̃F =
{x ∈ ΩF : R < |x| < R⋆} and we denote by ΓM and ΓD the spherical surfaces of

radius R and R⋆, respectively, so that the boundary of Ω̃F is ΓM∪ΓD, as shown
in Fig. 11 (left). Notice that er is a unit normal vector for both surfaces.

From now on, we make an abuse of notation: we denote with the same names
the original three-dimensional domains and the corresponding two-dimensional
projections, namely,

ΩF = {(r, θ) : x = (r, θ, ϕ) ∈ ΩF}, ΓI = {(r, θ) : x = (r, θ, ϕ) ∈ ΓI}, etc.

See Fig. 11 for a better understanding of this notation.
Problems (1)-(7) and (9)-(11) are respectively written in this two-dimensional

spherical coordinates setting as follows, where P̃j (j = 1, 2) denote the pressure
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Figure 11: Original axisymmetric (cut) domains and spherical coordinates do-
mains.

fields in Ω̃F: 



1

ρF
div (∇P1) +

ω2

µF
P1 = F in ΩF,

1

ρA
div (∇PA) +

ω2

µA
PA = 0 in ΩA,

1

ρF
d̃iv
(
∇̃P̃1

)
+

ω2

µF
P̃1 = 0 in Ω̃F,

P1 = PA on ΓI,

1

ρF

∂P1

∂n
=

1

ρA

∂PA

∂n
on ΓI,

1

ρA

∂PA

∂ν
= 0 on Γ,

P1 = P̃1 on ΓM,
1

ρF

∂P1

∂r
=

1

ρF
∇̃P̃1 · er on ΓM,

P̃1 = 0 on ΓD.

(24)
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1

ρF
div (∇P2) +

ω2

µF
P2 = F in ΩF,

1

ρF
d̃iv
(
∇̃P̃2

)
+

ω2

µF
P̃2 = 0 in Ω̃F,

P2 −
Z

iωρF

∂P2

∂ν
= 0 on ΓI,

P2 = P̃2 on ΓM,
1

ρF

∂P2

∂r
=

1

ρF
∇̃P̃2 · er on ΓM,

P̃2 = 0 on ΓD.

(25)

In the previous systems, the differential operators div and ∇ are, respec-
tively, the divergence and gradient differential operators in spherical coordinates
for axisymmetric problems (i.e., with vanishing partial derivatives with respect
to ϕ):

∇Q =
∂Q

∂r
er +

1

r

∂Q

∂θ
eθ,

divw =
1

r2
∂

∂r
(r2wr) +

1

r sin θ

∂

∂θ
(sin θwθ),

where w = wrer + wθeθ. On the other hand, d̃iv and ∇̃ are the differential
operators associated to the specific complex change of coordinates typical of the
PML technique:[28]

∇̃Q =
1

γr

∂Q

∂r
er +

1

rγ̂r

∂Q

∂θ
eθ,

d̃ivw =
1

r2γrγ̂2
r

∂

∂r
(r2γ̂2

rwr) +
1

rγ̂r sin θ

∂

∂θ
(sin θwθ),

where

γr(r) = 1 +
i

ω
σr(r) and γ̂r(r) = 1 +

i

rω

∫ r

R

σr(s) ds, R < r < R⋆,

with σr being the variable absorption coefficient in the PML.
The typical choices for σr are constant, linear or parabolic functions.[18,

29] Instead, we use a non-integrable absorbing function σr, which allows us to
recover the exact solution of the original scattering problem in the domain of
interest.[26] In particular we use

σr(s) =
cF

R⋆ − s
, R < r < R⋆, (26)

which has been shown to be an optimal choice.[20]

4.2 Finite-element discretization

In this section we introduce a standard finite-element method to solve numeri-
cally the variational formulations of problems (24) and (25).
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Consider a quadrangular mesh of domains ΩA, ΩF and Ω̃F, matching on the
common interfaces, ΓI and ΓM, respectively (see Fig. 12).

Ω̃F

ΩF

ΩA

Figure 12: Quadrangular finite elements for the domains in spherical coordi-
nates.

Regarding problem (24), we will compute approximations PAh, P1h and P̃1h

of the pressure amplitude in ΩA, ΩF and Ω̃F, respectively, by using continuous
piecewise bilinear quadrangular finite elements. The degrees of freedom defining
the finite-element solution are the values of PAh, P1h and P̃1h at the vertices of
the elements. Notice that, because of the transmission conditions, PAh = P1h

on ΓI and P1h = P̃1h on ΓM, and, hence, the values of these functions must
coincide at the vertices on the interfaces. Moreover, because of the boundary
condition, P1h = 0 on ΓD.

Standard arguments lead to the following discrete problem from the varia-
tional formulation of problem (24):

∫

ΩF

(
∇P1h ·∇Qh − k2FP1hQh

)
dS +

∫

ΩA

(
∇PAh ·∇Qh − k2APAhQh

)
dS

+

∫

Ω̃F

(
γ̂2
r

γr

∂P̃1h

∂r

∂Qh

∂r
+

γr
r2

∂P̃1h

∂θ

∂Qh

∂θ
dS − k2Fγ̂

2
rγrP̃1hQh

)
dS =

∫

ΩF

ρFFQh dS,

for all discrete test pressure field Qh in the corresponding finite-element space.
Recall that the surface element dS = r sin θ dr dθ. Let us remark that the
integrals in the above problem are well defined, in spite of the non-integrable
character of the absorbing function (26).[20]

Analogously, the following is the discrete problem corresponding to (25):

∫

ΩF

(
∇P2h ·∇Qh − k2FP2hQh

)
dS −

∫

ΓI

iωρF
Z

P2hQh dL

+

∫

Ω̃F

(
γ̂2
r

γr

∂P̃2h

∂r

∂Qh

∂r
+

γr
r2

∂P̃2h

∂θ

∂Qh

∂θ
− k2Fγ̂

2
rγrP̃2hQh

)
dS =

∫

ΩF

ρFFQh dS,
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for all discrete test pressure field Qh in the corresponding finite-element space;
dL stands for the arc-length element. Notice that, once more, P2h = P̃2h on ΓM

and P2h = 0 on ΓD.

4.3 Verification of the numerical methods

In this section we verify the numerical methods that we have introduced in
Section 4.2; namely, the PML model with a singular absorbing function and
the finite element methods in spherical coordinates to approximate each model:
Allard-Champoux and wall impedance. With this purpose, we have solved two
simple problems, one for each model, both of them with known analytical solu-
tions.

4.3.1 Verification of the numerical method for the Allard-Champoux

model

In the first test, we check the accuracy of the numerical approximation of the
Allard-Champoux model. Let Ω be a sphere centered at the origin of coordinates
(see Fig. 13). We consider problem (1)-(7) with F = 0 and Eq. (5) substituted

by the following one:
∂PA

∂ν
= 1 on Γ. In this case, the solution is a superposition

of two spherical waves:

PA(x) = AA
eikAr

r
+BA

e−ikAr

r
,

P1(x) = A1
eikFr

r
+B1

e−ikFr

r
.

The pairs of complex constants AA, A1 and BA, B1 are, respectively, the am-
plitudes of the ingoing and outgoing spherical waves in the porous media and
the fluid. They are determined by the transmission and boundary conditions of
the problem.

We have taken an inner sphere of radius R0 = 0.5m, R = 1.6m and R⋆ =
1.8m. We have used the same values for the physical parameters as in Section 3:
ρF = 1.2 kg/m3, cF = 343m/s, Pr = 0.702, γ = 1.4, σ = 20000 rays mks,
P0 = 101320N/m2 and d = 0.05m.

We have used uniform refinements of the mesh shown in Fig. 15. The number
N of elements through the thickness of the PML is used to label each mesh.

We compare in Fig. 16 the exact and the computed solution of the Allard-
Champoux model along the x3-axis, for a frequency f = 1000Hz. The computed
solution was obtained with the mesh corresponding to N = 12, which has 5145
degrees of freedom. The solution is plotted in the physical domain and in the
PML.

To measure the accuracy of the numerical solution we have computed the
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Figure 13: Three-dimensional cut of the spherical geometry and spherical coor-
dinates domains.

relative error in L2-norm:
(∫

ΩF

|P1h − P1|2 dS

)1/2

(∫

ΩF

|P1|2 dS

)1/2
.

We report in Fig. 17 the error curves (log-log plot of errors versus degrees of
freedom) for a couple of frequencies. For instance, in the case of Fig. 16, the
relative error is 18.15%.

Fig. 17 allow us to asses the order of convergence of the method. It can be
seen that a quadratic order of convergence is achieved in all cases. Let us recall
that this is the optimal order for the finite elements we have used.

4.3.2 Verification of the numerical method for the wall impedance

model

In the second test, we check the accuracy of the numerical approximation of the
wall impedance model. We use the same values for the physical and geometrical
parameters as in the previous test. We consider now problem (9)-(11) with

F = 0 and the boundary condition P2 =
Z

iωρF

∂P2

∂n
+1 on ΓI, instead of Eq. (10).

The solution is a spherical wave

P2(x) = A2
eikFr

r
+B2

e−ikFr

r
,

whose complex coefficients, A2 and B2, can be explicitly determined from the
boundary conditions of the problem.
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Figure 14: Coarse mesh for Allard-Champoux
model in Cartesian coordinates (N = 3).
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Figure 15: Coarse mesh for Allard-Champoux
model in spherical coordinates (N = 3).

We have used the same meshes as in the previous test, excluding the elements
in ΩA.

We compare in Fig. 18 the exact and the computed solution of the wall
impedance model along the x3-axis, for a frequency f = 1000Hz. The computed
solution was obtained with the mesh corresponding to N = 12 (5145 degrees of
freedom).

Fig. 19 shows the error curves for a couple of frequencies. For instance, in
the case of Fig. 18, the relative error is 9.83%. The order of convergence is again
optimal (quadratic).
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Figure 16: Real part of the pressure field computed with Allard-Champoux
model. Mesh: N = 12 (5145 degrees of freedom); frequency: f = 1000Hz.
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Figure 17: Error curve for Allard-Champoux model.

4.4 Numerical validation of the wall impedance model for

non-planar geometries

In this section we validate the wall impedance model by means of a test involv-
ing non-planar geometries. With this purpose, we compare the results of this
model with those obtained with Allard-Champoux model. We will show that
the geometry and the data of the problem are essential factors which can affect
the agreement shown in Section 3.

We study the reflection of a spherical wave scattered by a non-concentric
spherical obstacle. The solution of this problem has been broadly studied in the
literature and an exact solution can be obtained via a series representation.[30,
31]

We have used the physical parameters and the geometry described in Sec-
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Figure 18: Real part of the pressure field computed with the wall impedance
model. Mesh: N = 12 (5145 degrees of freedom); frequency: f = 1000Hz.
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Figure 19: Error curves for wall impedance model.

tion 4.3. We have taken as external source a monopole with volume velocity
Q = 1m3/s acting at the point a = (0, 0, a), with a = 1.3m (see Figs. 14 and
15).

Figs. 20 and 21 show the real parts of the pressure fields computed with each
model on the mesh corresponding to N = 12, for a frequency f = 500Hz and a
thickness of the porous layer d = 0.05m. In all cases, the solution is plotted in
the physical domain and in the PML. The pressure field has not been plotted
around the monopole location to avoid scale distortions due to excessively large
pressure values arising from the singularity.

We have checked the agreement between both models by comparing the val-
ues of the pressure field computed with each model at three points in the fluid
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Figure 20: Real part of the pressure field com-
puted with Allard-Champoux model. Mesh:
N = 12; frequency: f = 500Hz; thickness
d = 0.05m.

Figure 21: Real part of the pressure field com-
puted with the wall impedance model. Mesh:
N = 12; frequency: f = 500Hz; thickness
d = 0.05m.

domain: M1 = (0, 0, b), M2 = (0, b, 0) and M3 = (0, 0,−b), with b = 0.85m
(see Figs. 14 and 15). For each of these points, we have plotted the relative dif-
ference between both models, |P1h − P2h| / |Pinc|, versus the frequency. In this
expression, P1h and P2h are the values computed with Allard-Champoux and
the wall impedance model, respectively, whereas Pinc is the incidence pressure
as given by Eq. (23), which is the standard for spherical waves. Figs. 22 and
23 shows these plots for two values of the thickness: d = 0.05m and d = 0.2m,
respectively.

We observe large differences between the solutions obtained with both mod-
els in many cases. For instance, the curves corresponding to points M1 and M2

27



100 500 1000 1500 2000
0

50

100

150

200

250

300

Frequency  f (Hz)

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

M1

M2

M3

Figure 22: |P1h − P2h| / |Pinc| versus fre-
quency. Mesh: N = 12; thickness: d =
0.05m.
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Figure 23: |P1h − P2h| / |Pinc| versus fre-
quency. Mesh: N = 12; thickness: d = 0.2m.

have peaks of around 100% at very low frequencies, although they show a rea-
sonable agreement in the middle frequencies range. This behavior is essentially
independent of the layer thickness.

Finally, we show in Figs. 24 and 25 the real parts of the pressure field com-
puted with each model for a larger frequency, f = 6000Hz, and a thickness
d = 0.05m. We have used in this case a very refined mesh corresponding to
N = 48 in order to preserve the six elements per wave-length rule. A much
better agreement can be observed in this case.
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Figure 24: Real part of the pressure field com-
puted with Allard-Champoux model. Mesh:
N = 48; frequency: f = 6000Hz; thickness:
d = 0.05m.

Figure 25: Real part of the pressure field com-
puted with the wall impedance model. Mesh:
N = 48; frequency: f = 6000Hz; thickness:
d = 0.05m.

5 Conclusions

We have studied the agreement between two models for porous media in acoustic
scattering problems: Allard-Champoux and a wall impedance model. We have
shown that both provide almost identical results in planar geometries, even in
the case of oblique incidence or spherical waves. This agreement holds for a
wide range of frequencies, even for a non negligible thickness.

To be able to deal with non-planar geometries, we have introduced a finite-
element method combined with an optimal bounded PML technique. We have
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applied this numerical strategy to compute the pressure field scattered by a
sphere. This numerical example has shown that the agreement between the
model for non-planar geometries may be very poor.

¿From these results, we conclude that the simplified wall impedance model
is suitable to model porous media in planar geometries, but not so reliable in
more general cases.
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