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Abstract

Seismic oceanography techniques are able to provide oceanographic properties of the water 

masses by processing seismic reflection data. These techniques have reported reflected waves

due to the fine structure in the ocean, whose order of magnitude is as weak as -80 dB. Thus, if 

we focus our attention on numerical simulation of this kind of oceanography experiments, the 

numerical performance of the method should allow obtaining accurate results, where the 

spurious reflections from the artificial boundaries of the computational grid are, at least, one 

order of magnitude smaller than the physical phenomena. This can be achieved by 

introducing Perfectly Matched Layers (PML) which simulates non-reflecting boundaries. The 

aim of this work is to propose a numerical underwater propagation method, which combines 

a second-order finite-difference scheme in the physical region of interest with a first-order 

pressure/velocity discretization in the PML domain. This numerical method provides a low 

cost computational algorithm with an accuracy which allows recovering the reflected 

phenomena from the ocean fine structure, and moreover, with a spurious error of order -100 

dB from the PML domain.

Keywords: seismic oceanography, perfectly matched layers, finite difference schemes.
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1. Introduction

Most of the regions of the ocean contain water masses with different temperature and 

salinity characteristics, which produce a relative motion among them. In fact, there exists a

thermohaline fine-scale structure and thermohaline intrusions in the interfaces between these 

water masses. Both structures are important manifestations of mixing processes in the ocean 

[1]. These mechanisms, which transport heat from the equator toward the poles, cooling the 

tropics and warming higher latitudes, conform the climate machine of the ocean [2].

Fine structure in the ocean can be mapped by oceanographic probes that measure 

depth profiles of temperature and salinity. Such techniques have practical limitations for 

achieving an accurate lateral resolution due to the small ocean volume that can be imaged. 

Holbrook et al. [1] presented evidence that the oceanic fine structure can be mapped with 

high lateral resolution using standard seismic reflection techniques. Typically, marine seismic 

sources have a spectral content below 110 Hz. Thus, acoustic waves propagated in the water 

mass have a vertical resolving power of several meters. Long streamers of hydrophones of 

several kilometres are capable of mapping large ocean regions, with lateral resolution of 

order of the acoustic wavelength (typically 20-30 m). Holbrook and Fer [3] suggested the 

term seismic oceanography for the seismic reflection techniques applied to retrieve 

oceanographic properties of the water masses in the ocean.

The contact surface between distinct water masses produces acoustic impedance 

contrasts. Although the reflected wave phenomena in such regions are weak, the large 

amount of energy raised by a seismic source can generate measurable reflected energy in the 

hydrophones. Holbrook et al. [1] measured scattered waves, whose magnitude was as weak 

as -80 dB. These measures corresponded to sound speed changes of 0.3 m/s (temperature 
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variation of 0.1 ºC), in a marine seismic reflection cruise across the oceanographic front 

between the Labrador Current and the North Atlantic Current. 

Seismic oceanography experiments can be simulated numerically by using standard 

underwater acoustic propagation algorithms (see, for instance, [4]) and considering physical

data for the boundary conditions at the surface and bottom oceanic interfaces. However, since 

the ocean is unbounded along the lateral spatial coordinate, then artificial boundaries must be 

introduced at both lateral sides of the physical domain of interest. This truncation allows to 

bound the computational domain in the numerical simulations but, at the same time, it should

not introduce numerical spurious reflections in the physical region. Among other methods, 

two kinds of numerical techniques can be used to truncate the unbounded physical domain of 

wave propagation: the absorbing boundary conditions (ABC) and the Perfectly Matched 

Layers (PML). Local ABCs were introduced by Engquist and Majda [5] and subsequently 

improved from a computational point of view by different authors [6]. More recently, 

Berenger [7] introduced an alternative approach to deal with the truncation of unbounded 

domains based on simulating an absorbing layer of anisotropic material which matches 

perfectly with the physical domain of interests, and thus, avoids spurious reflections from the 

lateral boundaries. Although the PML method was introduced originally for electromagnetic 

waves, it has been further extended to model elastic [8] and acoustic waves [9]. More 

specifically, Liu and Tao [10] used the PML method with underwater acoustic propagation 

models.

In conclusion, if we focus our attention on the numerical simulation of the seismic 

oceanography experiments with an oceanic fine-structure, then the magnitude of the reflected 

waves at the truncating lateral boundaries play a more relevant role than in other physical 

wave propagation problems. Since the fine-structure yields weak reflected waves, spurious 

numerical reflections at the lateral PML boundaries must be at least one order smaller than 
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the magnitude of the physical phenomena of interest. The main goal of this work is to 

describe an accurate and low-cost numerical method, which combines the PML technique 

with two different coupled finite difference schemes, in the framework of oceanography 

experiments with a fine-structure.

The outline of this paper is as follows. In Section 2 we describe the proposed 

numerical algorithm. For the sake of completeness in the exposition, in Subsection 2.1 we 

derive briefly the wave equation in the physical region. The two finite difference schemes

used for the physical and PML domain are explained in Subsections 2.2 and 2.3, respectively. 

The combination of the chosen finite difference schemes and the PML technique with 

singular coefficients leads to a reduction of the time computation and memory storage, and 

increases the global precision of the numerical simulations for seismic oceanography 

experiments. The numerical accuracy of the proposed method is illustrated in Section 3 by 

comparing the traces received at three depths with reference traces and with those provided 

by the first-order method proposed by Liu and Tao [10]. The reference traces are obtained by 

doubling the dimensions of the physical region, so that no reflected waves in the PML reach 

the receivers. Moreover, we show some numerical results that illustrate the performance of 

the proposed algorithm with a realistic sound-speed profile. 

2. Description of the propagation algorithm

In this Section we present a combined algorithm where an explicit second-order finite 

difference scheme for the physical domain is matched with an explicit first-order 

pressure/velocity discretization in the PML region.

2.1. Statement of the model
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In this Subsection, we describe the equations involved in the model of the underwater

wave propagation in the Lagrangian description [11].

Firstly, in the framework of the standard assumptions in linear acoustic where the 

thermodynamic process in isentropic, i.e., if we assume that the entropy is preserved constant 

respect to the time, the energy and motion equation of an isentropic compressible fluid can be 

written in terms of the pressure fluctuation p and the velocity v, which satisfies the governing 

equations

p
t



v ,                                                                    (1)

vdivc
t

p 2



,                                                               (2)

being ρ and c respectively the mass density and the sound speed of the fluid in an initial state 

at rest. Now, deriving respect to the time in (2), we have
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which is the so-called Pekeris' equation. Let us remark that both fields  and c are not 

assumed constant in the previous equation. Obviously, if the mass density is constant then the 

above equation is reduced to the wave equation,

  02
2

2





pdivc
t

p
.                                                            (6)

Let us remark that assuming  constant does not mean to neglect completely small density 

variations along the water column. Smooth changes of the mass density can be still included 

in the sound velocity profile through 


K

c  ,                                                                       (7)

where K is the compression modulus of the fluid [12]. Therefore, in the following we will 

assume that the simpler Eq. (6) govern the wave propagation in the physical domain. This, in 

turn, allows us to take advantage of the Laplacian discretization which is second-order in 

space.

2.2. Finite difference scheme in the physical region

As mentioned above, the main difficulty of simulating numerically the seismic 

oceanography experiments consists of the high accuracy required for computing the weak 

reflections coming from the oceanic fine-structure. In this context, despite of the explicit 
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first-order finite difference schemes which discretize the system of equations (1)-(2) are low-

cost computationally, they provide a precision of order O(t) in the pressure field due to the 

computation only of its first time derivative. Hence, to compute an accurate acoustic scattered 

field, it would be necessary to decrease the time step and consequently, to increase the 

computational cost of the algorithm.

However, since we only focus our attention on the spurious reflection from the PML 

region and not on computing an accurate pressure field inside the PML region, we can 

combine a second-order propagation algorithm, to take advantage of the O(t2) precision in 

the propagating medium, and use only a explicit first-order finite difference scheme in the 

PML region for the standard first-order PML formulation in terms of the pressure and 

velocity field.

In the following we describe briefly the propagation algorithm in the physical region 

for the wave equation, which consist of a finite difference scheme implemented on a uniform 

grid with the same size  in the x and z axis. For a given discrete field , we denote by n


the nodal value of the field at the grid point ( and at time step nt. Therefore, the 

classical explicit second-order finite difference scheme for Eq. (6) provides
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2.3. PML model

For the sake of completeness in the exposition, the derivation of the Berenger PML 

model using the splitting rule is detailed in the following. Let us start with the Fourier 
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transform of the motion and mass conservation equations expressed in terms of the velocity 

and pressure fields. Following Chew and Weedon [13], a complex coordinate stretching is 

introduced by defining a new variable,̂ , for each spatial variable zx,

'ˆ

0
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i  ,                                                             (9)

where   is the so-called absorbing function in the -direction. Now, formally replacing the 

derivatives of  by the derivatives of the new complex variablê , it yields
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where V is the Fourier transform of the component of the particle velocity. Following the 

original idea developed by Berenger [7], the next step consists of introducing the split 

pressure variables in Eq. (10). It affords the coupled first-order PML equations in the 

frequency domain
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where P() are the Fourier transforms of the split pressure variables. The inverse Fourier 

transform of Eq. (11) can be solved numerically with the following first-order finite-

difference scheme
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where nx
ijp ),(  and nz

ijp ),(  are the nodal values of the split pressure field )(xp  and )(zp , 

respectively. 

The final step in the construction of the propagation algorithm consists of introducing 

the combination between the finite difference schemes for the physical and PML domain. To 

match adequately the discrete equations in the physical and PML domain, we impose the 

continuity of the pressure field. Moreover, the velocity field on the interface between both 

regions must be re-computed by using Eqs. (12)-(13) with the nodal pressure values close the 

interface between the physical and the PML domains.
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Let us remark that, instead of the previous first-order PML Berenger formulation, 

other authors have used already second-order formulations with the split pressure variables. 

Some of them demonstrated the efficiency of the PML formulation for solving underwater 

problems in the frequency domain [14-16]. Komatitch et al. [17] presented a second-order 

algorithm in time domain for elastic propagation but it results more expensive in terms of 

memory storage. However, to the author’s knowledge, there does not exist a second-order 

formulation that directly solves the acoustical time-domain problem with a PML system in 

the Berenger formulation with a unique pressure field. Instead of these alternative 

formulations, our numerical approach provides a second-order algorithm in time for the 

pressure field in the propagation domain, which enhances the exactitude of the solution 

without increasing appreciably the computational cost and the memory storage. As an 

example, Table 1 compares the computation times of our mixed algorithm with the first-order 

splitted algorithm proposed by Liu and Tao [10], in  (200×200) and (400×400) grids for 1500 

iterations (computation carried out with a 64bit AMD processor and 2 Go ram). The time 

computation is decreased by a 15 % in both cases.

3. Numerical results

This Section presents two numerical simulations of underwater acoustic propagation 

using the propagation algorithm described in Section 2.

3.1. PML efficiency analysis

In this first numerical simulation, we focus our attention on comparing the numerical 

performance of this method with two different implementations and with two different 
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profiles for the absorbing function in the PML domain: the classical PML implementation of 

Liu and Tao [10] and our propagation algorithm with the exact PML approach proposed by 

Bermudez et al. [18]. 

In this numerical example, we consider a non-dissipative isotropic medium with 

constant density set to 1000 kg/m3 and constant sound velocity equal to 1500 m/s. The PML 

thickness is set to 100 m, and the source is a spatial monopole multiplied by a Ricker wavelet 

    20
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221)( ttfettfth   ,                                    (16)

where f0 is the central frequency (60 Hz in this example) and t0 is the time shift of the 

wavelet. The grid size is set to 1 m to avoid numerical dispersion, and the time step is set to 

0.4 ms, unless specified.

Figure 1 shows a sketch of the medium where the numerical implementation above 

described will be compared with that of Liu and Tao [10]. The source is placed at mid-range, 

5 m deep. The region is 400 m deep and 400 m long. There are two PML zones, on the lateral 

sides of the physical region. The receivers are located vertically at 25 m from the left

medium/PML interface. The σ function is the non-integrable hyperbolic one, similar to those 

proposed by Bermudez et al. [18]
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where 
0 T is the thickness of the PML layers. This σ function presents some advantages 

as compared to the classical quadratic one. First, from a theoretical point of view, it is 

possible to prove that, if mass density and the sound speed are constant, then the solution of 



13

13

the original wave propagation problem is exactly recovered by using the PML technique. And 

second, from a computational point of view, we achieve a better numerical performance than 

in the case of the bounded absorbing functions. Moreover, in the frequency domain, optimal 

numerical results are obtained independently of the grid size and the data of the problem [18].

Figure 2 shows the synthetic traces provided by the mixed and first-order [10] 

formulations, as compared to the reference trace, at the receivers located at depths 5, 50 and 

100 m. The reference solution is obtained by doubling the medium dimensions, such that 

there are no reflected waves on the synthetic trace. All the traces are normalized by the 

maximum of the reference one. Figure 2(a) shows the results for the first-order (Liu)

formulation and Figure 2(b) for the mixed formulation. At the resolution of the figure, no 

differences can be seen between both traces.

Figure 3 shows the error between the reference and the traces provided by the Liu and

mixed formulations. Due to the above described normalization procedure, the error represents

the amplitude of the reflected wave at the receiver location. It is clear that the mixed 

formulation provides less error than the first-order formulation. For instance, at the receiver 

100 m deep, the error for the first-order PML is twice that of the mixed formulation. Note 

that the reflections from the mixed formulation are smaller than 0.0001 (-80 dB), as expected. 

In order to compare the numerical performance of different absorbing functions,

let us consider the signals recorded at four receivers on the line depicted in Fig. 4. Two 

functions are considered; one is the non-integrable function defined by Eq. (18), and the 

other one is the classical quadratic function 
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In both cases, we use the propagation algorithm described in Section 2 and the PML thickness 

is set to four wavelengths of the Ricker wavelet. The source is located at the centre of the 

physical medium. Figure 5 shows the signal recorded at four different ranges. As it can bee 

seen, when the absorbing function is non-integrable, we observe a reflected wave with smaller 

amplitude. For instance, for an angle of incidence of 45º, the amplitude of the reflected wave

with the quadratic absorbing function is approximately twice larger than the amplitude 

computed in the non-integrable case.

3.2 Seismic oceanography experiment

The experiment simulated in Fig. 6 consists of a source and a 2000 m long streamer,

both located close to the surface, in a medium with range 2000 m and depth 1000 m. In this 

numerical simulation the source and the streamer are submerged at 15 m and 20 m, 

respectively, under the sea surface. Three PML regions are placed at both lateral sides and the 

bottom. The sound speed field depends on depth only, without lateral variation. The sound 

speed profile, which is shown in Fig. 7, is representative of the mixing of Mediterranean and 

Atlantic water masses in the Gulf of Cadiz (Spain). As we have mentioned in Section 2, small 

variations on the mass density are unimportant in the physical domain and hence, we assume 

a constant value of 1000 kg/m3 in the PML regions. The source is again a spatial monopole

multiplied by a Ricker wavelet with central frequency of 60 Hz. Since we want to observe the 

numerical reflections on the exterior boundaries of the PML region and, also, on the interface 

between the physical and PML domain, the total time of simulation is set to 3 seconds.

Figure 8(a) shows the shot gather obtained with the above described data. At the 

resolution of the Figure, no reflected waves can be seen coming from the right and left PML

lateral regions. However, the reflection from the bottom PML can be observed at time 1.5 s 
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approximately (marked on the figure). Figure 8(b) consists of a zoom of the shot gather

between 0 and 1.6 s. Again, we only observe the reflections which are coming from the 

bottom PML region.

In Figure 9, we plot the trace of the signal recorded in a receiver at 50 m from the 

source. According to the real-life seismic experiment, the weak scattering due to the small 

variations of the velocity profile is observed in the trace. Moreover, the amplitude of these 

weak reflected waves is of order 10-4, as it can be checked more clearly in the zoom around 

1.5 s of the entire trace (see Fig. 9(b)). A reflected wave from the bottom PML region at time 

1.5 s is also observed in Fig. 9(b). Notice that its amplitude is smaller than those of the

scattered waves from the fine structure of the sound speed profile. A closer zoom of the trace 

at time larger than 1.5 s is showed in Figure 9(c). We observe signal amplitudes of order 10-7

which corresponds to numerical errors from the finite difference schemes.

4. Conclusion

We have proposed a numerical algorithm which is able to simulate wave propagation 

phenomena in seismic oceanography experiments with a weak fine structure. The algorithm 

uses the Perfectly Matched Layers technique and a combination of low order finite difference 

schemes, for computing seismic signals generated by reflections from very low impedance 

contrast structures in the water column. Because of the low acoustic impedance contrast 

between typical water column structures, highly accurate techniques for simulating 

unbounded domains are very relevant. With this purpose, the proposed model includes two 

lateral PML domains in order to simulate unbounded lateral sides of the physical medium. 

The propagation algorithm combines a first-order algorithm, based on the PML Berenger

formulation with a non-integrable absorbing function, and an explicit second-order finite 
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difference scheme in the propagation domain. This numerical approach leads to reflections on

the interface between the physical medium and the PML of order 10-5. It has been shown that 

this mixed formulation improves previous results using classical first-order schemes. 
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Table 1. Computation times of the first-order and mixed algorithms for 1500 iterations in a 

grid with (200x200) and (400x400) points

Computation time (s)

Algorithm (200×200)  (400×400)  

First-order [10] 75 225

 Mixed 63 193
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Figure Captions

Figure 1. Sketch of the medium/PML domain with the positions of the source and the 

receivers. 

Figure 2. Traces comparison between the reference solution and this provided by the 

(a) Liu and (b) mixed formulations at three depths.

Figure 3. Comparison of numerical errors between the reference trace and this provided 

by the Liu and mixed formulations at three depths.

Figure 4. Sketch of the medium/PML domain for the comparison between the 

functions.

Figure 5. Zoom on the recorded signals at four ranges along the receivers line (a) 0 m

(b) 54 m (c) 116 m (d) 200 m.

Figure 6. Sketch of the medium/PML domain for the seismic oceanography experiment 

simulation.

Figure 7. Sound speed profile representative of the Mediterranean/Atlantic water 

mixing in the Gulf of Cadiz.

Figure 8. (a) Synthetic shot gather for the medium/PML sketched in Fig. 6 with the 

velocity profile of Fig. 7, and (b) a zoom between t=0 s and t=1.6 s.

Figure 9. (a) Synthetic trace at range 50 m, (b) a zoom around the bottom PML 

reflection (t=1.5 s), and (c) a closer zoom between t=1.5 s and t=1.95 s.  
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