
Acoustic characterization of rigid porous materials by
using non-parametric fluid-equivalent models

J. Carbajoa, A. Prietob,∗, J. Ramisc, L. Ŕıo-Mart́ınb
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Abstract

The acoustic characterization of porous materials with rigid solid frame plays a

key role in the prediction of the acoustic behaviour of any dynamic system that

incorporates them. In order to obtain an accurate prediction of its frequency-

dependent response, a suitable choice of the parametric models for each material

is essential. However, such models could be inadequate for a given material or

only valid in a specific frequency range. In this work, a novel non-parametric

methodology is proposed for the characterization of the acoustic properties of

rigid porous materials. This technique is based on the solution of a sequence

of frequency-by-frequency well-posed inverse problems. Once a reduced number

of experimental measurements are available, the proposed method avoids the a

priori choice of a parametric model.
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1. Introduction

Rigid porous materials are widely used for noise mitigation in a large num-

ber of engineering applications in building and environmental acoustics. In this

∗Corresponding author

Email addresses: jesus.carbajo@ua.es (J. Carbajo), andres.prieto@udc.es (A. Prieto),
jramis@ua.es (J. Ramis), laura.rmartin@udc.es (L. Rı́o-Mart́ın)

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/
licenses/by-nc-nd/4.0/. Preprint version of: J. Carbajo, A. Prieto, J. Ramis, L. Río-Martín, A non-parametric fluid-
equivalent approach for the acoustic characterization of rigid porous materials, Applied Mathematical Modelling, 
Volume 76, 2019,Pages 330-347, https://doi.org/10.1016/j.apm.2019.05.046.

https://doi.org/10.1016/j.apm.2019.05.046


context, it is of great interest to predict the acoustic properties of these mate-

rials when they are being part of noise control devices (e.g. noise barriers [1],

isolation walls [2]...). Usually, the porous material is modelled in a macroscopic

scale as an equivalent fluid having frequency-dependent complex acoustic prop-

erties, namely, characteristic impedance and wave number [3]. These acoustic

properties can be easily determined using a parametric prediction model (e. g.

[4, 5]) from the intrinsic physical properties of the material (e.g. flow resistivity,

porosity...), these latter being measured following laboratory procedures.

In general, these parametric models are based on the asymptotic behaviour

at low and high frequencies of rigid porous media [4, 5] or make use of empiri-

cal relations [6] to describe the sound propagation through the material. In any

case, it is necessary to determine one or several of its intrinsic physical properties

prior to deriving its acoustic properties. While there exist several experimen-

tal methods and techniques [7] that let determine these physical parameters, a

common alternative to these procedures consists in using a derivative-free opti-

mization procedure [8] to fit the values of these properties. In brief, an inverse

methodology can be employed to minimize the difference between the measured

acoustic properties and those calculated using a prediction model whose pa-

rameters need to be fitted. In most cases, and so as to simplify the fitting

procedure, a wide-band frequency spectrum of the surface impedance or the

sound absorption coefficient are used for this adjustment [9–11]. Both the sur-

face impedance and the sound absorption coefficient can be obtained for a given

material when it is used as a sound absorber (i.e.layer of porous material backed

by a rigid wall). The main drawback of this parametric methodology is that

these minimization procedures require using multiple frequency values for the

adjustment, which may constrain the solution of the inverse problem given by

a specific parametric model. Moreover, the chosen parametric model could be

not suitable for a particular material (e.g., the use of a single-parameter model

[6] may not be accurate enough to properly describe the acoustic behaviour of

a rigid porous material). In fact, although many parametric models exist in the

literature [3–6, 12], the incessant development of new materials poses the need
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for alternative predictive tools and fitting methods.

In this work, a novel non-parametric methodology for the characterization of

rigid porous materials is proposed. Unlike the above approaches, the proposed

procedure avoids any parametric assumption or the need to determine intrin-

sic physical parameters using sophisticated laboratory equipment. Instead, this

non-parametric methodology uses traditional two-microphone impedance tube

setup [13] data to solve a fixed-frequency propagation problem and thus esti-

mate the acoustic properties of the material under study. Even though there

exist other methods based on impedance tube arrangements for measuring the

acoustic properties of porous materials [14–16], most of them require comple-

mentary appliances or more complex equipment configurations. On one hand,

since the proposed non-parametric methodology does not depend on the phys-

ical nature of the material itself, it is expected to be more generic than the

traditional predictive parametric approaches and may be applied to any type of

porous material (i.e., fibrous, granular,...).

On the other hand, the use of multilayered or stratified media is great inter-

est in real-life engineering applications (from a thermal [17] and an acoustic [18]

point of view). So, the proposed methodology was found to be extensible to

the analysis of multilayered systems containing light porous layers, which is of

great interest because of the laboratory difficulties associated with the accu-

rate characterization of the latter alone using an impedance tube. In order to

validate the proposed non-parametric approach, different sets of experimental

data based on single and multilayer configurations were compared with respect

to the numerically fitted results, a good agreement being found in both cases.

Therefore, this novel numerical methodology may be regarded as a simple and

straightforward alternative for the characterization of rigid porous materials, to

be used in the design stage thereof. In addition, in order to write the acoustic

propagation problems using an uniform approach valid for different multilayer

configurations, the inverse problems stated throughtout this work have been

stated in terms of the surface admittance values (instead using the classical

surface impedance values [2, 3, 14]).
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This paper is organized as follows: Section 2 describes the acoustic quanti-

ties used to characterize rigid porous materials as well as the experimental setup

used to measure these, along with the mathematical statement of the inherent

propagation problem. In Section 3, the inverse problem methodology used to

obtain the acoustic properties of a rigidly backed single porous layer is described

in detail. Four different strategies are outlined, each of them successively over-

coming the limitations of the traditional fitting procedures used for the same

purpose. Section 4 presents an extension of that methodology but for the case

of a double porous layer configuration. In Section 5, the numerical procedure

followed to solve the well-posed inverse problems is described. Section 6 presents

the numerical results obtained, both for the single and double layer configura-

tions, showing a good agreement when compared to measured data. Finally,

Section 7 summarizes the main conclusions of this work.

Remark 1.1. Throughout this manuscript, time-harmonic dependence for the

acoustic pressure and displacement fields will be assumed. In this manner, it has

been settled formally that π(x, t) = Re(Π(x)ejωt), being π the time-dependent

acoustic pressure field, Π the complex-valued time-harmonic acoustic pressure

field, ω the angular frequency, t the time variable, x the Cartesian coordinates

of the spatial position, Re(·) the real part function of a complex number, and

j =
√
−1 the imaginary unit.

2. Harmonic response of a rigid porous material

2.1. Macroscopic description

Linear theory regarding the propagation of sound in air-saturated rigid

porous media has been extensively studied in the last decades (see, for instance,

[3]). Basically, rigid porous materials attenuate sound mainly due to viscous

friction and thermal conductivity in their pore network. If the pore size is small

compared to the wavelength of an impinging sound wave, the air inside a layer

of porous material with rigid solid frame (i.e., motionless skeleton) can be mod-

eled accurately on a macroscopic scale as an equivalent compressible fluid. The
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acoustical behavior of the material is then fully characterized by the complex-

valued and frequency-dependent dynamic coefficient pair: dynamic mass density

ρP(ω) and dynamic bulk modulus KP(ω). Alternatively, the acoustic response

of this fluid-equivalent model can be determined from the coefficient pair: dy-

namic characteristic impedance, ZP(ω), and wave number, kP(ω), which are

so-called intrinsic acoustic properties, these being related to the previous ones

by

ZP(ω) =
√
ρP(ω)KP(ω), (1)

kP(ω) = ω
√
ρP(ω)/KP(ω). (2)

2.2. Experimental characterization

Experimental methods frequently used for the acoustic characterization of

porous materials use an impedance tube arrangement [14–16]. Particularly,

Utsuno et al. [14] proposed the experimental setup shown in Figure 1 to estimate

the acoustic properties of a single porous layer configuration. In brief, a source

(typically an audio speaker) generates plane waves that impinge on the porous

material positioned on the other end of the tube. The characteristic impedance

(1) and the wave number (2) of the material under test are determined by using

the pressure data from a pair of microphones flush mounted in the tube for two

porous sample configurations: rigid-backed and air-cavity backed.
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Figure 1: Impedance tube setup proposed by Utsuno et al. [14] to determine the characteristic

impedance and wave number of porous materials in a single layer configuration.

Once the acoustic properties that characterize a rigid porous material and

the experimental method used to measure these were outlined, a description of
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the mathematical model that let us solve the associated inverse problem and

subsequently the inherent direct propagation problem is given.

2.3. Statement of the direct propagation problem

When the porous medium with rigid solid frame is assumed to be homoge-

neous and isotropic on a macroscopic scale, its intrinsic acoustic properties are

considered spatially constant, and so the classical Helmholtz and momentum

equations describing the acoustic wave propagation in such medium (written in

terms of the corresponding pair of coefficients ρP(ω) and kP(ω)) are given by

− k2
P(ω)ΠP −∆ΠP = 0, (3)

− ω2ρP(ω)UP −∇ΠP = 0, (4)

where ΠP andUP are the acoustic pressure and displacement fields in the porous

medium, respectively.

In order to model mathematically the acoustic wave propagation throughout

a rigid-backed porous layer placed inside an impedance tube, a multilayer planar

configuration formed by a porous layer surrounded by a compressible fluid in

the front face is considered. To write the strong differential formulation of the

coupled problem, both the compressible fluid model and the porous models

have been written in terms of the pressure field. Let ΩF and ΩP be the three-

dimensional domains occupied by the fluid and the porous layer, respectively

(see Figure 2). The fluid is placed in the interior of a tube with constant cross

section and the thickness of the porous sample is finite (denoted by d). The

coupled interface ΓI denotes the common boundary between the fluid and the

porous layer. The lateral rigid wall of the tube is denoted by ΓW. The boundary

ΓL is the location where the acoustic source (audio speaker) is placed. The back

boundary of the porous layer is denoted by ΓB For a better understanding of the

notation, Figure 2 shows a two-dimensional cut of the computational domain

where the boundaries and the fluid and porous subdomains are depicted.

Since the acoustic behavior of a rigid-frame porous material could be repre-

sented by an fluid-equivalent model (3)-(4), then the strong differential formu-
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Figure 2: Schematic two-dimensional cut of the impedance tube where the fluid and the porous

subdomains, ΩF and ΩP, are marked in white and dashed regions, respectively. Their boundaries

are highlighted with different colors: ΓI in red, ΓW in cyan, ΓL in magenta, and ΓB in blue.

lation for this coupled problem is given by: for a fixed angular frequency ω > 0,

a prescribed back surface admittance operator YB, and an acoustic loudspeaker

source G, find the fluid pressure and displacement fields, ΠF and UF, and the

porous pressure and displacement fields, ΠP and UF, such that

−k2
F(ω)ΠF −∆ΠF = 0 in ΩF,

−ω2ρFUF −∇ΠF = 0 in ΩF,

−k2
P(ω)ΠP −∆ΠP = 0 in ΩP,

−ω2ρP(ω)UP −∇ΠP = 0 in ΩP,

UF · n = UP · n on ΓI,

ΠF = ΠP on ΓI,

jωUP ·m = YBΠP on ΓB,

UF · η = 0 on ΓW ∩ ∂ΩF,

UP · η = 0 on ΓW ∩ ∂ΩP,

ΠF = G on ΓL,

where kF(ω) = ω/cF, being cF the sound velocity and ρF the mass density in

the fluid. Finally, n, m, and η are respectively the unit normal vectors on

boundaries ΓI, ΓB, and ΓW. These normal vectors are outward to the porous

domain (on those boundaries where it is applicable).

Equivalently, the coupled problem stated above can be reformulated only in
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terms of the fluid pressure field ΠF and the porous pressure field ΠP:

−k2
F(ω)ΠF −∆ΠF = 0 in ΩF,

−k2
P(ω)ΠP −∆ΠP = 0 in ΩP,

1

ρF

∂ΠF

∂n
=

1

ρP(ω)

∂ΠP

∂n
on ΓI,

ΠF = ΠP on ΓI,
1

jωρP(ω)

∂ΠP

∂m
= YBΠP on ΓB,

∂ΠF

∂η
= 0 on ΓW ∩ ∂ΩF,

∂ΠP

∂η
= 0 on ΓW ∩ ∂ΩP,

ΠF = G on ΓL.

(5)

Following standard arguments to model waveguides [19], it is assumed that

the transversal section S of the impedance tube remains constant along its

axis (in the x1-direction), the loudspeaker is placed on plane x1 = −l, and

the coupling interface and the back surface are placed on planes x1 = 0 and

x1 = d, respectively. Hence, ΩF = (−l, 0)×S and ΩP = (0, d)×S and then the

L2(S)-Hilbert basis {ϕn}n∈N of transverse modes associated to the impedance

tube [20] can be computed as the eigenmodes of the two-dimensional problem

on the x2 − x3 coordinate plane
−λ2

nϕn −
d2ϕn
dx2

2

− d2ϕn
dx2

3

= 0 in S,
∂ϕn
∂r

= 0 on ∂S,

where λn is the transverse eigenvalue associated to the n-th ϕn mode, and

r denotes the unit normal vector on boundary ∂S exterior to S. Since the

coupling boundary ΓI and the back surface ΓB are assumed planar and placed

on x1 = 0 and x1 = d, respectively, then the unit outward normal vectors are

given by n = −e1 and m = e1, being {e1, e2, e3} the canonical vector basis

of the Cartesian system. Hence, the solution of the pressure fields (written in
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Cartesian coordinates x = (x1, x2, x3)) are given by

ΠF(x) =

∞∑
n=0

(
anFe
−jβn

F(ω)x1 + bnFe
jβn

F(ω)x1

)
ϕn(x2, x3) for x ∈ ΩF, (6)

ΠP(x) =

∞∑
n=0

(
anPe
−jβn

P(ω)x1 + bnPe
jβn

P(ω)x1

)
ϕn(x2, x3) for x ∈ ΩP, (7)

where anF, bnF, anP, bnP are the modal coefficients associated to n-th mode for the

fluid and porous pressure, respectively; βnF(ω) =
√
k2

F(ω)− λ2
n and βnP(ω) =√

k2
P(ω)− λ2

n for n ∈ N (notice that the square root is computed with the

positive criterion Re(
√
z) ≥ 0).

In addition, the pressure induced by the active boundary of the loudspeaker,

ΓL, can be represented by G =
∑∞
n=0 gnϕn, and the action of the surface admit-

tance operator YB, which can be read as a Dirichlet-to-Neumann (DtN) operator

on ΓB associated to problem (5) (see for instance [21, 22]), can be expressed by

F =

∞∑
n=0

fnϕn 7→ YBF =

∞∑
n=0

Y nB (ω)fnϕn.

Consequently, problem (5) can be decoupled in terms of the transverse modes,

and hence the modal coefficients {anF, bnF, anP, bnP}n∈N are solution of the following

sequence of linear algebraic system of equations:

ρP(ω)βnF(ω)(−anF + bnF) = ρFβ
n
P(ω)(−anP + bnP),

anF + bnF = anP + bnP,

βnP(ω)

ωρP(ω)

(
−anPe−jβ

n
P(ω)d + bnPe

jβn
P(ω)d

)
= Y nB (ω)

(
anPe
−jβn

P(ω)d + bnPe
jβn

P(ω)d
)
,

anFe
jβn

F(ω)l + bnFe
−jβn

F (ω)l = gn,

for each n ∈ N.

Once the solution of the modal coefficients {anF(ω), bnF(ω), anP(ω), bnP(ω)}n∈N
have been computed, from (6)-(7), the surface impedance operator on boundary

ΓI can be defined as the trace of the pressure field associated to a prescribed

normal velocity on ΓI. This functional operator ZI is completely described by
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its action on the trace of each basis element ϕn as follows:

F =

∞∑
n=0

fnϕn 7→ ZIF =

∞∑
n=0

ZnI (ω)fnϕn with ZnI (ω) = ZF
anF(ω) + bnF(ω)

anF(ω)− bnF(ω)
,

(8)

where ZF is the characteristic impedance of the fluid medium. Analogously,

the sound absorption coefficient of a porous layer can be computed as a scalar

quantity associated to each transverse mode. So, for each mode n ∈ N, the n-th

modal sound absorption coefficient is given by

αn(ω) = 1−
∣∣∣∣ZnI (ω)− ZF

ZnI (ω) + ZF

∣∣∣∣2 = 1−
∣∣∣∣YF − Y nI (ω)

Y nI (ω) + YF

∣∣∣∣2 , (9)

where the modal admittance values are given by Y nI (ω) = 1/ZnI (ω) and the

characteristic admittance by YF = 1/ZF.

3. Acoustic characterization of a single porous layer using a fixed-

frequency inverse problem

The main concern for practitioners consists in ensuring an adequate choice of

the parametric porous model. The most accurate selection is not always possible

to be known a priori, since it depends on the acoustic nature of the material

samples. In fact, an inadequate model selection could ruins any parameter model

fitting. As a partial remedy of these drawbacks, in the present work the proposed

non-parametric methodology avoids the choice and the use of parametric models.

In fact, it is not required to impose any functional dependency on the acoustic

quantities used in (1)-(2) in terms of the frequency and it is only based on the

experimental measurements. Throughout the following sections, four different

strategies are described in detail, showing their drawbacks and the potential

applicability for the characterization of the porous material properties.

3.1. Characterization with absorption datasets

In this first characterization strategy, for a fixed frequency value ω, it is

assumed that the propagation problem (5) is solved with only a back admit-

tance operator, whose coefficients {Y nB (ω)}n∈N and the absorbing coefficients

10



{αn(ω)}n∈N are known. So, the characterization problem can be stated as fol-

lows.

Problem 3.1 (Inverse problem with a single absorption dataset). For a fixed

frequency value ω and a fixed transverse mode n0, find the complex-valued co-

efficients kP(ω) and ZP(ω) assuming only known the absorption value αn0
(ω)

obtained by solving problem (5) with the back admittance value Y n0

B (ω) on ΓB.

Lemma 3.2. Problem 3.1 is ill-posed in the sense that there exists an innu-

merable number of solutions due to the lack of observation data.

Proof. Firstly, despite αn0
(ω) only depends on the absolute value of a quotient

of complex-valued expressions involving the surface admittance values, let us

consider for simplicity the most favourable case where the surface admittance

YI is also known in phase and modulus in addition to the absorption quantity. In

this case, the pressure field ΠP, which is solution of the propagation problem (5),

satisfies the boundary conditions

1

jωρP(ω)

∂ΠP

∂n
= YIΠP on ΓI,

1

jωρP(ω)

∂ΠP

∂m
= YBΠP on ΓB.

Hence, the porous coefficients an0

P and bn0

P hold
− β

n0

P (ω)

ωρP(ω)
(−an0

P + bn0

P ) = Y n0

I (ω) (an0

P + bn0

P ) ,

βn0

P (ω)

ωρP(ω)

(
−an0

P e−jβ
n0
P (ω)d + bn0

P ejβ
n
P(ω)d

)
= Y n0

B (ω)
(
an0

P e−jβ
n0
P (ω)d + bn0

P ejβ
n0
P (ω)d

)
,

where Y n0

I (ω) = 1/Zn0

I (ω). From both equations, if the quotient bn0

P /an0

P is

solved for both equations, it holds

Y n0

B (ω) +A(ω)

Y n0

B (ω)−A(ω)B(ω)
=
A(ω) + Y n0

I (ω)

A(ω)− Y n0

I (ω)

with A(ω) = βn0

P (ω)/(ωρP(ω)) and B(ω) = e2jβ
n0
P (ω)d. Obviously, the equation

written above has uncountable solutions since, for each fixed arbitrary value

of B(ω), there are different solution values for A(ω). The same conclusion is

derived for the pair of coefficients (βn0

P (ω), ρP(ω)) and consequently also for
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(kP(ω), ZP(ω)) taking into account the definition of wave number βn0

P , this is,

kP(ω) =
√

(βn0

P (ω))2 + λ2
n0

and ZP(ω) = ρP(ω)kP(ω)/ω.

The ill-posedness of the inverse problem stated above could be tentatively

medicated adding new absorption observations with a second different back

admittance leading to the following second strategy:

Problem 3.3 (Inverse problem with two absorption datasets). For a fixed fre-

quency value ω and a fixed transverse mode n0, find the complex-valued coef-

ficients kP(ω) and ZP(ω) assuming known the absorption values αn0
(ω) and

α̃n0(ω) obtained respectively by solving problem (5) with two different back ad-

mittance values Y n0

B (ω) and Ỹ n0

B (ω) on ΓB.

However, even with an additional absorption dataset, the inverse problem

to be solved is still ill-posed.

Lemma 3.4. Problem 3.3 is ill-posed in the sense that there exists an uncount-

able number of solutions due to the lack of phase information on the observation

data.

Proof. Firstly, let us consider for simplicity the most favourable case where the

surface admittance YI and ỸI are known in phase and modulus in addition to the

absorption quantities αn0(ω) and α̃n0(ω), respectively. In this case, the pressure

fields ΠP and Π̃P, which are respectively solutions of propagation problem (5)

with admittance operators YB and ỸB, satisfy the boundary conditions

1

jωρP(ω)

∂ΠP

∂n
= YIΠP on ΓI,

1

jωρP(ω)

∂ΠP

∂m
= YBΠP on ΓB,

1

jωρP(ω)

∂Π̃P

∂n
= ỸIΠ̃P on ΓI,

1

jωρP(ω)

∂Π̃P

∂m
= ỸBΠ̃P on ΓB.

Hence, the modal coefficients an0

P and bn0

P associated to ΠP hold
− β

n0

P (ω)

ωρP(ω)
(−an0

P + bn0

P ) = Y n0

I (ω) (an0

P + bn0

P ) ,

βn0

P (ω)

ωρP(ω)

(
−an0

P e−jβ
n0
P (ω)d + bn0

P ejβ
n0
P (ω)d

)
= Y n0

B (ω)
(
an0

P e−jβ
n0
P (ω)d + bn0

P ejβ
n0
P (ω)d

)
,
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and analogously those modal coefficients ãn0

P and b̃n0

P associated to Π̃P hold
− β

n0

P (ω)

ωρP(ω)

(
−ãn0

P + b̃n0

P

)
= Ỹ n0

I (ω)
(
ãn0

P + b̃n0

P

)
,

βn0

P (ω)

ωρP(ω)

(
−ãn0

P e−jβ
n0
P (ω)d + b̃n0

P ejβ
n0
P (ω)d

)
= Ỹ n0

B (ω)
(
ãn0

P e−jβ
n0
P (ω)d + b̃n0

P ejβ
n0
P (ω)d

)
,

where Y n0

I (ω) = 1/Zn0

I (ω) and Ỹ n0

I (ω) = 1/Z̃n0

I (ω). Following straightforward

computations (analogous to those ones described, for instance, in [14] where

impedance-dependent expressions are used instead), it leads to

A(ω) =

√√√√√Y n0

I (ω)Ỹ n0

I (ω)
(
Ỹ n0

B (ω)− Y n0

B (ω)
)

+ Y n0

B (ω)Ỹ n0

B (ω)
(
Ỹ n0

I (ω)− Y n0

I (ω)
)

(
Ỹ n0

B (ω)− Y n0

B (ω)
)

+
(
Ỹ n0

I (ω)− Y n0

I (ω)
) ,

(10)

βn0

P (ω) =
1

2jd
ln

(
Y n0

I (ω)−A(ω)

Y n0

I (ω) +A(ω)

Y n0

B (ω)−A(ω)

Y n0

B (ω) +A(ω)

)
, ρP(ω) =

βn0

P (ω)

ωA(ω)
,

(11)

and consequently there exists a solution for kP(ω) and ZP(ω) (given by kP(ω) =√
(βn0

P (ω))2 + λ2
n0

and ZP(ω) = ρP(ω)kP(ω)/ω).

Now, coming back to the original absorption datasets of Problem 3.3, it is

easy to show that the inverse problem is ill-posed using the solution described

above: since αn0
(ω) (9) only depends on the absolute value of a complex-valued

expressions, if the value of Y n0

I (ω) in (9) is replaced by

YF
YF(eiγ − 1)− Y n0

I (ω)(eiγ + 1)

Y n0

I (ω)(eiγ − 1)− YF(eiγ + 1)
,

for any arbitrary value γ ∈ (−π, π], then the absorption values will be identical

for any arbitrary value of γ. The same argument can be applied to the ab-

sorption coefficient α̃n0(ω) replacing the values of Ỹ n0

I (ω) in (9). In conclusion,

the inverse problem based on absorption datasets have an infinity uncountable

number of solutions varying simply γ.

3.2. Characterization with surface impedance datasets

In this third characterization strategy, for a fixed frequency value ω, it is

assumed that only a propagation problem (5) is solved with only a back admit-

13



tance operator, whose coefficients are {Y nB (ω)}n∈N and the surface admittance

values {Y nI (ω)}n∈N are known. So, the characterization problem can be stated

as follows.

Problem 3.5 (Inverse problem with a single surface admittance dataset). For

a fixed frequency value ω and a fixed transverse mode n0, find the complex-valued

coefficients kP(ω) and ZP(ω) assuming only known the surface admittance value

Y n0

I (ω) on ΓI obtained by solving problem (5) with the back admittance value

Y n0

B (ω) on ΓB.

Lemma 3.6. Problem 3.5 is ill-posed in the sense that there exist innumerable

solutions due to the lack of observation data.

Proof. The same arguments described in the proof of Lemma 3.2 lead to the

conclusion that there exists an uncountable number of solutions.

The ill-posedness of the inverse problem stated above can be overcome

adding an additional surface admittance observation with a second different

back admittance leading to the fourth characterization approach:

Problem 3.7 (Inverse problem with two surface impedance datasets). For a

fixed frequency value ω and a fixed transverse mode n0, find the complex-valued

coefficients kP(ω) and ZP(ω) assuming known the surface admittance values

Y n0

I (ω) and Ỹ n0

I (ω) on ΓI obtained respectively by solving problem (5) with two

different back admittance values Y n0

B (ω) and Ỹ n0

B (ω) on ΓB.

However, even with an additional surface impedance dataset, the inverse

problem to be solved will have an infinity (but countable) number of solutions.

Lemma 3.8. Problem 3.7 is well-posed in the sense that there exists an infinite

(but countable) number of solutions due to the periodicity of the wave number

values.

Proof. Following identical arguments to those ones used in the proof of Lemma 3.4,

the existence of solution of the inverse problem is ensured from the expressions

14



of A(ω), βn0

P (ω) and ρP(ω) in (10)-(11). Uniqueness of solution for the ex-

pression A(ω) is straightforward taking into account that it is the root of a

quadratic polynomial, where only the solution with positive real part is consid-

ered. However, from (11), it is clear that due to the periodicity (with respect

to the imaginary axis) of the complex-valued exponential function, the wave

number admits the solutions

βn0

P (ω) =
1

2jd
ln

(
Y n0

I (ω)−A(ω)

Y n0

I (ω) +A(ω)

Y n0

B (ω)−A(ω)

Y n0

B (ω) +A(ω)

)
+
π`

d
for ` ∈ Z, (12)

which leads to an infinity (but countable) number of solutions for βn0

P (ω). The

same conclusions hold for ρP(ω) and ZP(ω).

Remark 3.9. To overcome the lack of uniqueness in the previous inverse prob-

lem, the value of the integer parameter ` should be fixed. In that case, the inverse

Problem 3.7 would be well-posed and it would have a unique solution. For this

purpose, two assumptions are considered: (i) the frequency response function

associated to βn0

P (ω) is continuous (so, no jumps are allowed in its frequency re-

sponse) and (ii) the value of parameter ` is assumed known at a given frequency

value.

Taking into account the strategy devised in Remark 3.9, to overcome the

lack of uniqueness of solution in (11), it is enough to know the low frequency

limit of the dynamic mass density, i.e., limω→0 ρP(ω) = ρP0 (see for instance, the

relevance of this low-frequency limits for rigid and limp frame porous materials

in [23, 24]).

4. Acoustic characterization of a double porous layer using a fixed-

frequency inverse problem

In most of the acoustic engineering applications, absorbing materials are

stratified and hence they are composed by a number of different porous layers.

The characterization strategy described in the previous section can be adapted

to deal with this multilayer configuration. For the sake of conciseness, a dou-

ble multilayer configuration composed with two different porous materials is
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presented in this section. However, analogous arguments could be applied to

stratified porous media with a higher number of layers.

4.1. Statement of the direct propagation problem

The mathematical model of the time-harmonic wave propagation problem is

analogous to (5) described in Section 2.3 for a single layer case. More precisely,

for a double layer configuration, let ΩF be three-dimensional domain occupied

by the fluid and ΩP and ΩQ be respectively the three-dimensional domains

occupied by two porous layers (see Figure 3 for a better understanding of the

notation). The coupling boundary between both porous layers is denoted by

ΓP, located on the plane x1 = h. Notation on the rest of exterior and coupling

boundaries and also on the unit normal vectors is identical to that one used in

Section 3.
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ΓW

ΓL

ΩF

ΓI m

n
ΓB

ΩP ΩQ

l

ΓP

h d− h

η

n

Figure 3: Schematic two-dimensional cut of the impedance tube where the fluid and the two porous

subdomains, ΩF, ΩP, and ΩQ, are marked with different patterns. The boundaries are highlighted

also with different colours: ΓI in red, ΓW in cyan, ΓL in magenta, ΓP in green, and ΓB in blue.

Hence, the strong differential formulation of the coupled problem with a dou-

ble porous layer is given by the following problem: for a fixed angular frequency

ω > 0, a prescribed back surface admittance operator YB, and an acoustic loud-

speaker source G, find the fluid pressure field ΠF and the porous pressure fields
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ΠP and ΠQ such that

−k2
F(ω)ΠF −∆ΠF = 0 in ΩF,

−k2
P(ω)ΠP −∆ΠP = 0 in ΩP,

−k2
Q(ω)ΠQ −∆ΠQ = 0 in ΩQ,

1

ρF

∂ΠF

∂n
=

1

ρP(ω)

∂ΠP

∂n
on ΓI,

ΠF = ΠP on ΓI,
1

ρP(ω)

∂ΠP

∂n
=

1

ρQ(ω)

∂ΠQ

∂n
on ΓP,

ΠP = ΠQ on ΓP,
1

jωρQ(ω)

∂ΠQ

∂m
= YBΠQ on ΓB,

∂ΠF

∂η
= 0 on ΓW ∩ ∂ΩF,

∂ΠP

∂η
= 0 on ΓW ∩ ∂ΩP,

∂ΠQ

∂η
= 0 on ΓW ∩ ∂ΩQ,

ΠF = G on ΓL,

(13)

where kF(ω) = ω/cF being ρF and cF the mass density and the sound veloc-

ity in the fluid, ρP(ω), ρQ(ω) and kP(ω), kQ(ω) are the frequency-dependent

equivalent dynamic mass density and the frequency-dependent wave number of

the porous materials located respectively in the layers ΩP and ΩQ. Vectors n,

m, and η are respectively the unitary and normal on boundaries ΓI ∪ ΓP, ΓB,

and ΓW, and outward to the porous layer ΩP (on the boundaries where it is

applicable).

The direct propagation problem (13) can be decoupled in terms of the trans-

verse modes (as it has been described in detail for a single layer in Section 3).

Consequently, the modal coefficients {anF, bnF, anP, bnP, anQ, bnQ}n∈N associated re-

spectively to the pressure fields ΠF, ΠP, and ΠQ are solution of the following
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sequence of linear algebraic system of equations: for each n ∈ N, it holds

ρP(ω)βnF(ω)(−anF + bnF) = ρFβ
n
P(ω)(−anP + bnP),

anF + bnF = anP + bnP,

ρQ(ω)βnP(ω)(−anPe−jβ
n
P(ω)h + bnPe

jβn
P(ω)h)

= ρP(ω)βnQ(ω)(−anQe−jβ
n
Q(ω)h + bnQe

jβn
Q(ω)h),

anPe
−jβn

P(ω)h + bnPe
jβn

P(ω)h = anQe
−jβn

Q(ω)h + bnQe
jβn

Q(ω)h,

βnQ(ω)

ωρQ(ω)

(
−anQe−jβ

n
Q(ω)d + bnQe

jβn
Q(ω)d

)
= Y nB (ω)

(
anQe

−jβn
Q(ω)d + bnQe

jβn
Q(ω)d

)
,

anFe
jβn

F(ω)l + bnFe
−jβn

F(ω)l = gn,

(14)

where the notation is analogous to that one used in problem (6)-(7), and βnQ(ω) =√
k2

Q(ω)− λ2
n for n ∈ N. Once these modal coefficients are computed solving

the above linear system for a fixed n ∈ N, the contribution of the n-th mode to

the surface impedance (8) on ΓI or the absorption coefficient (9) of the double

porous layer configuration can be computed straightforwardly.

4.2. Characterization with four surface admittance datasets

In the sections presented above, Problems 3.1, 3.3, 3.5, and 3.7 deal with

the characterization of a single porous layer. However, the numerical method-

ology proposed in this work can be applied to frameworks much more complex

where two porous materials can be characterized simultaneously. Obviously,

the datasets to be used in the inverse problem should be also doubled. Notice

also that the present strategy combined with a Transfer Matrix Method (TMM)

[3, Chapter 11] applied to each modal contribution could be used in a general

multilayer configuration but at the expense of increasing the number of datasets

used in the inverse characterization problem.

Consequently, for a multilayer formed by two layers of different porous ma-

terials with characteristic impedance and wave number pairs (ZP(ω), kP(ω))

and (ZQ(ω), kQ(ω)), respectively, the characterization problem can be stated as

follows.
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Problem 4.1 (Inverse problem with four surface impedance datasets). For a

fixed frequency value ω and a fixed transverse mode n0, find the complex-valued

coefficients of the characteristic impedance and the wave number (ZP(ω), kP(ω))

and (ZQ(ω), kQ(ω)), associated to the two porous layers assuming known:

(i) The surface admittance values Y n0

I (ω) on ΓI, obtained respectively by

solving a single layer configuration problem (5) with the porous material

(ZP(ω), kP(ω)) and the back admittance values Y n0

B (ω) on ΓB.

(ii) The surface admittance values Ỹ n0

I (ω) on ΓI, obtained respectively by

solving a single layer configuration problem (5) with the porous material

(ZQ(ω), kQ(ω)) and the back admittance values Ỹ n0

B (ω) on ΓB.

(iii) The surface admittance values Ŷ n0

I (ω) on ΓI, obtained respectively by

solving a double layer configuration problem (13), being (ZP(ω), kP(ω))

the coefficients of the first porous layer, the second one corresponding to

(ZQ(ω), kQ(ω)), and the back admittance value Ŷ n0

B (ω) on ΓB.

(iv) The surface admittance values Y̆ n0

I (ω) on ΓI, obtained respectively by solv-

ing a double layer configuration problem (13) with the double layer configu-

ration of dataset (iii) inverted, being (ZQ(ω), kQ(ω)) now the coefficients of

the first porous layer, the second one corresponding thus to (ZP(ω), kP(ω)),

and the back admittance value Y̆ n0

B (ω) on ΓB.

Remark 4.2. Other choices of surface admittance datasets could be considered

in definition of Problem 4.1 (for instance, datasets involving only double layer

configurations and two different back admittance conditions). In fact, since

single and double layer configurations are used in Problem 4.1, the same back

admittance operator could be considered in all the datasets i)-iv).

As it is expected from the results shown related to Problem 3.7, even with the

use of four surface impedance datasets, the inverse problem characterizing the

double layer configuration has an infinity (but countable) number of solutions.
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Lemma 4.3. Problem 4.1 is well-posed in the sense that there exists an infinite

(but countable) number of solutions due to the periodicity of the wave number

values.

Proof. Firstly, consider the datasets i) and iii) and assume that the complex-

valued properties (ZQ(ω), kQ(ω)) are known. For instance, from dataset iii) can

be understood as the surface admittance data coming from a single layer configu-

ration where the back admittance data can be computed as the input admittance

of the porous layer (ZP(ω), kP(ω)) backed with the admittance Ỹ n0

B (ω). More

precisely, the back surface admittance on ΓP associated to the front boundary

of a layer of porous material (ZQ(ω), kQ(ω)) of thickness d − h and supported

on its back-end boundary with admittance Ỹ n0

B (ω) is given by

˜̃Y n0

B (ω) =
1

YQ(ω)

YQ(ω) + Ỹ n0

B (ω) tanh(βn0

Q (ω)(d− h))

Ỹ n0

B (ω) + YQ(ω) tanh(βn0

Q (ω)(d− h)
, (15)

where YQ(ω) = 1/ZQ(ω). Hence, applying the arguments of the proof in

Lemma 3.8, the values (ZP(ω), kP(ω))) are uniquely determined except for the

phase changes in the wave number coefficient (see (12)). Analogous arguments

are also applicable to dataset i).

Once the phase of the wave number is fixed using a given criterion (see

Remark 3.9), the existence and uniqueness of solution of single layer Problem 3.7

with datasets i) and iii) ensures that the mapping X : (ZQ, kQ) 7→ (ZP, kP) is

well-defined and injective. In addition, since expressions involved in (10)-(11)

and (15) are continuous, this mapping is also continuous in C2. Analogous

arguments can be used to conclude that if (ZP, kP) are assumed known then the

complex-valued coefficients (ZQ, kQ) can be uniquely determined from datasets

ii) and iv) (except for the phase changes in the wave number coefficient). Hence,

the mapping Y : (ZP, kP) 7→ (ZQ, kQ) is well-defined, injective and continuous.

In addition, since the single layer problems which are involved in mappings X
and Y involves datasets iii) and iv) respectively, for an arbitrary complex disc

D ⊂ C2, it holds X (Y(D)) = D (otherwise, it would imply that one of the

datasets is not compatible with the rest of them).
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Consequently, the inverse Problem 4.1 can be formulated as a fixed point

problem: find (ZP(ω), kP(ω)) such that (ZP(ω), kP(ω)) = (X◦Y)(ZP(ω), kP(ω)).

Hence, the existence of solution is guaranteed from the classical Brouwer fixed-

point theorem [25] applied on a disc of sufficient large radius D in C2. Unique-

ness of this fixed point is clear from the injective character of X and Y. Once

(ZP(ω), kP(ω)) is determined, the values of (ZQ(ω), kQ(ω)) are computed straight-

forwardly by means of (ZQ(ω), kQ(ω) = Y(ZP(ω), kP(ω)). In conclusion, except

for a phase change in the wave numbers (which leads to a countable infinite num-

ber of solutions on kP(ω) and kQ(ω)), the inverse Problem 4.1 is well-posed.

Despite the proof of uniqueness and existence of Problem 4.1 relies on the use

of a fixed-point theorem, the numerical resolution of both inverse Problems 3.7

and 4.1, (with single and double layer configurations) involves the same numer-

ical method whose main characteristics are: the rewritten of the modal linear

system in terms of robust primal unknowns and the use of a TMM method com-

bined with a derivative-free optimization method to find the solution of each

inverse problem. This numerical procedure is described in detail in the following

section.

5. Numerical procedure to solve the inverse problems

The proposed approach for determining the characteristic impedance and

the wave number associated to a fluid-equivalent rigid porous model uses in-

tensively the numerical solution of sequence of inverse problems, which fits a

discrete set of frequency-dependent experimental measurements of the surface

admittance of a single or double layer configuration. With this aim, for a fixed

frequency value and a given modal contribution, the inverse problem is rewritten

as a minimization problem where the cost function is the relative error between

the experimental measurements and the surface admittance computed with the

direct propagation problem.

Since the fluid-equivalent equations can be written in terms of any pair

of the dynamic coefficients introduced in Section 2.3, there exists a variety of
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model coefficients which could be used as primal unknowns in the cost func-

tion used in the minimization problem to be solved numerically. For instance,

the surface admittance could be computed naively in terms of the real and

the imaginary part of the mass density ρP(ω) and the bulk modulus KP(ω) as

primal unknowns. In this case, despite the fitting relative error is almost negli-

gible, spurious oscillations distort the parameter frequency-response due to the

exponential dependency of the TMM matrix coefficients with respect to these

acoustic quantities (see [26] for details).

In order to mitigate this situation, instead of using the dynamic mass density

and the dynamic bulk modulus as primal unknowns, the minimization problem

has been rewritten replacing the real and imaginary part of the bulk modu-

lus by a novel pair of primal unknowns: δP(ω) = Re(βn0

P (ω))d and MP(ω) =

eIm(β
n0
P (ω))d, which involves the wave number βn0

P (ω) of the porous material

associated to the n0-th transverse mode and the thickness of the porous layer

d. Hence, since the acoustic quantity measurements chosen for fitting is the

surface admittance in Problem 3.7, the values of MP(ω), δP(ω), Re(ρP(ω)), and

Im(ρP(ω)) are computed as the solution of the minimization problem

(MP(ω), δP(ω),Re(ρP(ω)), Im(ρP(ω)))

= arg min
MP,δP>0
Re(ρP)>0
Im(ρP)<0

( |YI(ω)− Y TMM
I (ω, n0, Y

n0

B (ω),MP, δP,Re(ρP), Im(ρP))|2
|YI(ω)|2

+
|ỸI(ω)− Y TMM

I (ω, n0, Ỹ
n0

B (ω),MP, δP,Re(ρP), Im(ρP))|2
|ỸI(ω)|2

)
,

(16)

where Y TMM
I (ω, n0, Y

n0

B ,MP, δP,Re(ρP), Im(ρP)) is the surface admittance com-

puted by solving the linear problem (5) (single layer configuration) with back

admittance Y n0

B using the TMM method for the n0-th modal contribution. Sim-

ilarly, the minimization problem with a double multilayer configuration can be
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written as follows:

(MP(ω),MQ(ω), δP(ω), δQ(ω),Re(ρP(ω)),Re(ρQ(ω)), Im(ρP(ω)), Im(ρQ(ω)))

= arg min
MP,MQ,δP,δQ>0
Re(ρP),Re(ρQ)>0
Im(ρP),Im(ρQ)<0

( |YI(ω)− Y TMM
I (ω, n0, Y

n0

B (ω),MP, δP,Re(ρP), Im(ρP))|2
|YI(ω)|2

+
|ỸI(ω)− Y TMM

I (ω, n0, Ỹ
n0

B (ω),MQ, δQ,Re(ρQ), Im(ρQ))|2
|ỸI(ω)|2

+
|ŶI(ω)− Y TMM

I (ω, n0, Ŷ
n0

B (ω),MP,MQ, δP, δQ,Re(ρP),Re(ρQ), Im(ρP), Im(ρQ))|2
|ŶI(ω)|2

+
|Y̆I(ω)− Y TMM

I (ω, n0, Y̆
n0

B (ω),MP,MQ, δP, δQ,Re(ρP),Re(ρQ), Im(ρP), Im(ρQ))|2
|Y̆I(ω)|2

)
,

(17)

where δQ(ω) = Re(βn0

Q (ω))(d−h) and MQ(ω) = eIm(β
n0
Q (ω))(d−h) are the pair of

primal unknowns related to the second porous layer involving its wave number

βn0

Q and its thickness d − h and Y TMM
I denotes the surface admittance com-

puted by solving the linear problem (13) (double multilayer configuration) with

back admittance Ỹ n0

B using the TMM method [27] for the n0-th modal contri-

bution. Due to the reduced dimension of the minimization problem and to keep

the computational cost of this minimization procedure as low as possible, the

Nelder-Mead Simplex Method has been used [28]. Consequently, since this fit-

ting procedure is repeated in a frequency-by-frequency sweeping, the use of this

kind of derivative-free optimization algorithms guarantee the overall efficiency

of this methodology. Obviously, other optimization strategies could be used

for this purpose, such as genetic algorithms [29] or efficient global optimization

procedures [30].

As it has been highlighted in Remark 3.9, the inverse problem solved for

the characterization of porous materials has infinity (but countable) solutions

due to phase changes on the wave number values. Since, the primal unknowns

δP(ω) and δQ(ω) drive the complex phase of βn0

P (ω) and βn0

Q (ω), respectively,

the drawback of multiple solutions could lead to a discontinuous behavior with

respect to the frequency of this unknowns in the solution of the minimization
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problems (16) and (17). Consequently, to guarantee a continuous behavior of

the primal unknowns with respect to the frequency, five simultaneous strate-

gies have been utilized to complement the use of the Nelder-Mead method: (a)

for a given set of angular frequency values, problems (16) and (17) are solved

sequentially from the highest frequency to the lowest one; (b) the initial guess

in the minimization method for the highest frequency have been computed (see

Remark 5.1) by assuming that βn0

P ≈ βn0

F − 10j and ZP ≈ ZF − jRe(1/YI)

(analogous considerations are made for the initial guesses of quantities related

to the second porous layer in ΩQ); (c) the initial guess for subsequent frequen-

cies are given by the solution of the previous solution for a higher frequency;

(d) the low-frequency limit of the real part of the dynamic mass density is as-

sumed known (in order to fix the value of the wave number phase at lowest

frequencies), and (e) an unwrapping procedure is performed on the frequency

dependent values of βP(ω) and βQ(ω) to avoid possible jump discontinuities.

All these strategies have been used to obtain the numerical results presented in

the following section.

Remark 5.1. The initial guesses for the imaginary parts of the porous wave

number and the porous characteristic impedance have been derived from the ex-

pression of the input impedance of a porous layer of thickness d backed by a rigid

wall, this is,

ZI(ω) = ZP(ω)/ tanh(jβn0

P (ω)d). (18)

On one hand, assuming that the porous layer is highly absorbing at high frequen-

cies, then Im(βn0

P (ω))� 0 and so | tanh(jβn0

P (ω)d))| ≈ 1. Due to the exponen-

tial decreasing behavior of tanh, it is enough to assume Im(βn0

P (ω)) ≈ −10 to

obtain | tanh(jβn0

P (ω)d))| ≈ 1. On the other hand, at the frequency range of the

present work, Re(βn0

P (ω)d) � Im(βn0

P (ω)d). Hence, neglecting the imaginary

part of the wave number, tanh(jβn0

P (ω)d)) ≈ tanh(jRe(βn0

P (ω))d) whose real

part is null. So, Eq. (18) leads to ZI ≈ jZP| tanh(jRe(βn0

P (ω))d)| ≈ jZP and

hence the imaginary part of the porous characteristic impedance is estimated

from the real part of the input impedance ZI = 1/YI.
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6. Numerical results

In this section, the characterization results obtained with the proposed

methodology will be analysed taking into account experimental measurements

in single and double layer configurarions. Two different type of surface admit-

tance experimental data are considered. These experimental data have been

determined from measurements in an impedance tube (see Figure 4). Firstly,

the surface admittance data is measured using the impedance tube for a single

layer configuration. Second, the same measurements have been performed in

the case of a double layer configuration. In both cases, it has been considered

the frequency range in which the loudspeaker excites only the first transverse

mode of the tube.

Figure 4: Impedance tube used to obtain the surface admittance the experimental data. On the

left, it is shown the tube and the location of the microphones, along with the porous (multi)layer

sample holder and the movable piece that serves as rigid termination. On the right, it is shown a

detail of the movable rigid piece and the sample holder where the porous layers are placed.

Figure 5 shows the samples of porous materials used in the experimental

measurements in both single and double layer configurations.

6.1. Single layer configuration

The experimental data used are the surface admittance of a setup with the

single porous layer (see left picture in Figure 5) where the two datasets YI(ω)

and ỸI(ω) involve respectively a rigid backing, this is, Y 0
B = 0 and an air gap

of thickness s = 0.025 m between the porous layer and the rigid backing (so
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Figure 5: Samples of porous materials used in the experimental measurements. Sample marked with

number “1” is formed by a recycled foam, which has been used for the single layer configuration

(left). Sample marked with number “4” is made by a fibrous material. Both samples have been

used in the double layer configuration.

straightforward computations lead to Ỹ 0
B(ω) = YF(ω)/ tanh(jβ0

F(ω)s)) following

the two-cavity method [14].

The material measured in the impedance tube is a fibrous material with

thickness d = 0.03 m. The experimental data used in the fitting problem (16) are

the surface admittance of the setup with air gap and without air gap. Moreover,

the real part of the dynamic mass density at low frequency has been set such

that ` = 0 in (12). The relative errors resulting from this fitting are around

10−6%. Figure 6 shows the numerical values of different acoustic quantities, to

list: characteristic impedance and wave number; computed by using the optimal

values obtained with the fitting procedure. In these plots, they are compared

with those values obtained with the Utsuno closed form expressions analogous

to those ones given by (10)-(11).

The accurate agreement between the Utsuno closed-form expressions and

the solution computed with the minimization procedure described in Section 5

confirms the robustness and accuracy of the proposed general approach for the

analyzed case, where all the acoustic data is treated by an algorithm based on

frequency-by-frequency computations.
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Figure 6: Comparison of the characteristic impedance (left) and the wave number (right) of the

porous material in a single layer configuration computed by using the optimal values obtained in

the fitting problem (16) and the Utsuno expressions (10)-(11).

6.2. Double layer configuration

The multilayer problem under consideration is formed by two porous layers

with thickness h = 0.045 m and d−h = 0.032 m, respectively (the materials used

in this case are a fibrous material and a recycled foam shown in Figure 5). Since

the unknown parameters are the dynamic mass density and the wave number

of the two layers, i.e., Re(ρP), Im(ρP), MP, δP and Re(ρQ), Im(ρQ), MQ and

δQ, it is necessary to consider four surface admittance datasets for the solution

of the minimization problem (17). Therefore, the experimental data used in

the fitting problem are the surface admittance of each porous layer separately

with rigid back admittance (Y 0
B = 0 and Ỹ 0

B = 0 in the datasets i) and iii) of

the inverse Problem 4.1) and additionally the surface admittance data of two

different double multilayer configurations where the order of the porous layers

have been inverted (datasets ii) and iv) of the inverse Problem 4.1). In both of

them, the back admittance is assumed rigid, this is, Ŷ 0
B = 0 and Y̆ 0

B = 0. Once

the minimization problem (17) has been solved using these four datasets, the

frequency-dependent intrinsic coefficients can be identified.

Figure 7 shows the characteristic impedance ZP(ω) and the wave number

kP(ω) of the porous material in the first layer. Analogously, Figure 8 shows the

frequency-dependent responses for the acoustic quantities ZQ(ω) and kQ(ω),
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which determines the acoustic behavior of the second layer. It can be observed

that the responses of every acoustic quantity is continuous for middle and high

frequency regime. Notice that Figures 7 and 8 show spurious oscillations at low

frequencies due to the presence of errors in the experimental measurements of

the surface admittance in the same frequency range (see those oscillations at

low frequency regime in the data plotted in Figure 7).
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Figure 7: Real part (solid line) and imaginary part (dashed line) of the characteristic impedance

ZP(ω) (left) and wave number kP(ω) (right) associated to the porous material located in the first

layer computed from the solution of the minimization problem (17).
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Figure 8: Real part (solid line) and imaginary part (dashed line) of the characteristic impedance

ZQ(ω) (left) and wave number kQ(ω) (right) associated to the porous material located in the second

layer computed from the solution of the minimization problem (17).
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7. Conclusions

A non-parametric approach was has been proposed to predict the acoustical

properties of porous materials with rigid solid frame. The adopted procedure is

based on solving a sequence of frequency-by-frequency well-posed inverse prob-

lems, but without the requirement of using any theoretical parametric model.

This approach makes use of the experimental data obtained using only a two-

microphone impedance tube setup [13], thus avoiding the need for sophisticated

laboratory equipment. The well-posedness of the inverse problem has been an-

alyzed in detail showing that two surface admittance datasets with different

backings is the only requirement to identify accurately the acoustic properties

of a porous material in the case of single porous layer configurations. For dou-

ble porous layer configurations, it has been shown that four surface admittance

datasets are necessary to state a well-posed inverse problem. In both cases, the

proposed methodology produces fitting relative errors smaller than 10−6%. In

addition, this method has been compared with the closed-form analytical ex-

pressions proposed by Utsuno et al. [14] for single layer configurations, showing a

good agreement. In comparison, the proposed methodology not only avoids the

assumptions made by the former, but also allows a wider applicability to single

and multiple layer configurations. In this latter regard, the need for character-

ization procedures that let tackle with light porous layers is of great interest

because of the associated technical difficulties in the experimental measure-

ments, thus making this approach an interesting in the design stage of porous

materials. In conclusion, the present work shows that the acoustic properties of

porous materials can be accurately predicted by adopting this non-parametric

methodology.
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