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Abstract. We introduce an optimal bounded Perfectly Matched Layer (PML)
technique based on a particular absorbing function with unbounded integral. This
technique allows us to avoid spurious reflections, even though the thickness of the
layer is finite. Moreover, it is easy to implement in a finite-element method and
overcomes the dependency of parameters for the discrete problem. The efficiency
and accuracy of this approach is illustrated with some numerical tests.
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1 INTRODUCTION

The first problem to be tackled for the numerical solution of any scattering prob-
lem in an unbounded domain is to truncate the computational domain without
perturbing too much the solution of the original problem. In an ideal framework,
the method should satisfy, at least, three properties: efficiency, easiness of imple-
mentation, and robustness.

Several numerical techniques have been developed with this purpose: boundary
element methods, infinite element methods, Dirichlet-to-Neumann operators based
on truncating Fourier expansions, absorbing boundary conditions, etc. The potential
advantages of each of them have been widely studied in the literature

2,16,23,28
.

We focus our attention on the last mentioned technique: local absorbing bound-
ary conditions (ABCs) can be used to preserve the computational efficiency of the

numerical method. Those of Bayliss and Turkel
5
, Engquist and Majda

17
, and Feng

18

are among the most widely used. However, in spite of the simple implementation
of lowest order ABCs, good accuracy is only achieved for higher order ones

30
, be-

cause these conditions are not fully non-reflecting on the truncated boundary of the
computational domain. As a consequence, high accuracy using ABCs leads to a sub-
stantial computational cost and increases the difficulty of implementation. Recently,
a promising way has been open: high order ABCs not involving high derivatives

19,24
.

An alternative approach to deal with the truncation of unbounded domains is
the so called Perfectly Matched Layer (PML) method, which was introduced by

Berenger
8,9,10

. It is based on simulating an absorbing layer of damping material
surrounding the domain of interest, like a thin sponge which absorbs the scattered
field radiated to the exterior of this domain. This method is known as ‘perfectly
matched’ because the interface between the physical domain and the absorbing layer
does not produce spurious reflections inside the domain of interest.

This method has been applied to different problems. It was initially settled
for Maxwell’s equations in electromagnetism

7,8
and subsequently used for the scalar

Helmholtz equation
20,29,32

, advective acoustics
1,6,22

, elasticity
4,15

, poroelastic media
33

,

shallow water waves
27

, other hyperbolic problems
26

, etc. We focus our attention on
wave propagation time-harmonic scattering problems in linear acoustics, i.e., on the
scalar Helmholtz equation.

In practice, since the PML has to be truncated at a finite distance of the domain
of interest, its external boundary produces artificial reflections. Theoretically, these
reflections are of minor importance because of the exponential decay of the acoustic
waves inside the PML. In fact, for Helmholtz-type scattering problems, Lassas and
Somersalo

25
proved, using boundary integral equation techniques, that the approx-

imate solution obtained by the PML method converges exponentially to the exact
solution in the computational domain as the thickness of the layer goes to infinity.
This result was generalized by Hohage et al.

21
using techniques based on the pole

condition. Similarly, Bécache et al.
6

proved an analogous result for the convected
Helmholtz equation.

Once the problem is discretized, the approximation error typically becomes larger.
Increasing the thickness of the PML may be a remedy, but not always available
because of computational cost. An alternative usual choice to achieve low error levels
is to take larger values for the absorption coefficients in the layer. However, Collino
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and Monk
14

showed that this methodology may produce an increasing error in the
discretized problem. Consequently, an optimization problem arises: given a data
set and a mesh, to choose an optimal absorbing function (i.e., a variable absorption

coefficient) to minimize the error. In this framework, Asvadurov et al.
3

proposed a
pure imaginary stretching to optimize the error of the PML method. They recovered
exponential error estimates using finite-difference grid optimization. However, to the
best of the authors’ knowledge, the optimization problem is still open in that there
is no optimal criterion to choose the absorbing function independently of data and
meshes.

We have proposed
11

an alternative procedure to avoid this drawback: to use an
absorbing function with unbounded integral on the PML. We have shown that this
leads to a theoretically exact bounded PML. More precisely, this kind of absorbing
functions on a circular annular layer allows recovering the exact solution of the time-
harmonic scattering problem in the domain of interest, up to discretization errors,
even though the thickness of the layer is finite.

In this paper, we consider Cartesian perfectly matched layers. We choose a
particularly convenient non-integrable absorbing function

12
, which only depends on

the sound speed of the fluid. We have shown that this choice leads to a robust PML
method, easy to implement in a finite-element code and significantly more efficient
than standard PML techniques based on classical bounded absorbing functions.

The outline of this paper is as follows. In Section 2 we recall the classical two-
dimensional scattering problem with Cartesian perfectly matched layers. A finite-
element method to solve this problem is introduced in Section 3. We also compare
in this section the proposed strategy with other classical PML methods. Finally, in
Section 4, we report the numerical results obtained with our PML technique applied
to a realistic wave propagation problem.

2 A PERFECTLY MATCHED LAYER METHOD

We deal with the time-harmonic acoustic scattering problem in an unbounded
exterior domain. Let Ω be a bounded domain of R

2 occupied by an obstacle to the
propagation of acoustic waves as shown in Fig. 1.

n

Γ
Ω

R
2 \ Ω

Figure 1: Two-dimensional unbounded domain.
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Our goal is to solve the following exterior Helmholtz problem:






















∆p + k2p = 0 in R
2 \ Ω,

∂p

∂n

= g on Γ,

lim
r→∞

√
r

(

∂p

∂r
− ikp

)

= 0.

(1)

In these equations, p is the unknown amplitude of the pressure wave and k = ω/c is
the wave number, with ω being the angular frequency of the waves and c the sound
speed of the fluid in the exterior domain.

We introduce perfectly matched layers (PML) on the x and y directions to trun-
cate the unbounded domain, as shown in Fig. 2. The inner rectangle contains the
obstacle Ω as well as the physical domain ΩF, i.e., the subdomain occupied by the
fluid surrounding the obstacle where we are interested in computing the solution of
problem (1).
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Figure 2: Cartesian PML on a two-dimensional domain.

We consider variable absorption coefficients in the PML, σx and σy, acting on the
vertical and horizontal layers, respectively; both absorption coefficients act in the
corner layers, as well. These coefficients, σx and σy, are allowed to be functions of
x and y, respectively.

The PML approximate solution of problem (1) is the solution p̃ of the following

equations
13

:


















































∆p̃ + k2p̃ = 0 in ΩF,

1
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)
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1
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∂
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1
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)

+ k2p̃ = 0 in ΩA,
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∂n

= g on Γ,

p̃ and
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1

γx

∂p̃

∂νx

+
1

γy
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∂νy

)

continuous on ΓI,

p̃ = 0 on ΓD,

(2)
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where

γx(x) =

{

1, if |x| < a,

1 +
i

ω
σx (|x|) , if a ≤ |x| < a∗,

and

γy(y) =

{

1, if |y| < b,

1 +
i

ω
σy (|y|) , if b ≤ |y| < b∗.

Although constant, linear or quadratic functions are the typical choices for σx

and σy, we have shown
11

that a convenient choice consists of unbounded functions
σx and σy such that

∫ a∗

a

σx(s) ds = +∞ and

∫ b∗

b

σy(s) ds = +∞.

In some cases, this choice allows recovering the exact solution in the physical domain.
In particular we are going to use the absorbing functions

σx(x) =
c

a∗ − x
, σy(y) =

c

b∗ − y
, (3)

which, we have shown to be an optimal choice
12

.

3 FINITE ELEMENT DISCRETIZATION

Next, we introduce a convenient finite-element method for the numerical solution
of problem (2) such that the resulting discrete problem is well posed.

Consider a partition in triangles of the physical domain ΩF and a partition in
rectangles of the absorbing layer ΩA, matching on the common interface ΓI as shown
in Fig. 3. The reason to use such hybrid meshes is that triangles are more adequate
to fit the boundary of the obstacle, whereas rectangles allow us to compute explicitly
the integrals involving the singular absorbing functions that appear in the elements
in the layer.

ΓD

ΓI

ΩA

ΩF

Figure 3: Hybrid mesh on PML and physical domain.

We compute an approximation p̃h of the pressure amplitude by using linear trian-
gular finite elements in the physical domain and bilinear rectangular finite elements
in the absorbing layer. The degrees of freedom defining the finite-element solution
in both cases are the values of p̃h at the vertices of the elements.
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Moreover, we impose the vanishing Dirichlet boundary condition on the finite-
element solution. Hence, p̃h does not have degrees of freedom on the outer boundary.
This fact is essential for the resulting discrete problem to be well posed.

Standard arguments in this finite-element framework lead to the following discrete
problem from the weak formulation of problem (2):

∫

ΩF

(

∇p̃h · ∇q̄h dx dy − k2p̃hq̄h dx dy
)

+

∫

ΩA

(

γy

γx

∂p̃h

∂x

∂q̄h

∂x
dx dy +

γx

γy

∂p̃h

∂y

∂q̄h

∂y
dx dy − k2γxγyp̃hq̄h dx dy

)

=

∫

Γ

gq̄h ds,

for all functions qh in this finite-element space.
Once the discrete problem is written in matrix form, it yields a system of linear

equations whose unknowns are the nodal values of p̃h. The entries of the system
matrix are computed by assembling the element matrices; in particular, the following
ones involve the unbounded absorbing functions:

∫

K

γy

γx

∂Ni

∂x

∂Nj

∂x
dx dy,

∫

K

γx

γy

∂Ni

∂y

∂Nj

∂y
dx dy, and

∫

K

k2γxγyNiNj dx dy,

with K being a rectangular element in ΩA and Ni the nodal finite-element basis
functions of this element.

For the discrete problem to be well posed, it is necessary that all the integrals
above be finite, what is not trivial since they involve singular functions whenever K
is a rectangle with an edge lying on the outer boundary ΓD. However, it has been
shown that all these integrals are finite for the absorbing functions defined by (3)

12
.

On the other hand, the performance of these absorbing functions is significantly
better than that of one of the most competitive classical alternatives: quadratic
absorbing functions of the form

σx(x) = σ∗(x − a)2 and σy(y) = σ∗(y − b)2, (4)

where σ∗ is a parameter to be fixed.
When these quadratic absorbing functions are used, the standard procedure to

minimize the spurious reflections produced at the outer boundary of the PML con-
sists of taking large values for σ∗. However, larger values of σ∗ lead to larger dis-
cretization errors. Therefore, σ∗ cannot be chosen arbitrarily large because, other-
wise, the discretization errors would be dominant, deteriorating the overall accuracy
of the method.

For a given problem and a given mesh there is an optimal value of σ∗ leading
to minimal errors

14
. Unfortunately, such optimal value depends strongly on the

problem data as well as on the particular mesh. Thus, in practice, it is necessary
to find in advance a reasonable value of σ∗. No theoretical procedure to tune this
parameter is known to date. Some efforts have been done

31
, but the dependency of

σ∗ with respect to the mesh has not been avoided.
To appreciate the advantageous performance of the PML strategy we propose,

we have solved problem (1) with the obstacle Ω being the unit circle centered at the
origin and the data g such that the exact solution of the problem is

p(x, y) =
i

4
H

(1)
0

(

k
√

(x − 0.5)2 + y2
)

.
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In the expression above, H
(1)
0 is the Hankel function of order zero and first kind, and

k = ω/c, with c = 340 m/s and different values of the frequency ω.
In Table 1 we compare the errors of the PML method with the unbounded ab-

sorbing functions (3) and with the quadratic absorbing functions (4). For the latter,
we have used the optimal value of σ∗, which is also reported in the table. We also
include in the table the condition number κ of the system matrix for each discrete
problem.

Unbounded (3) Quadratic (4)
ω(rad/s) d.o.f. Error(%) κ σ∗ Error(%) κ

464 0.763 6.7e+02 22.28 c 11.644 4.7e+02
250 1720 0.131 5.1e+03 29.57 c 3.675 5.0e+03

6768 0.029 4.1e+04 38.37 c 1.134 4.6e+04
464 1.700 1.1e+02 27.67 c 7.602 1.1e+02

750 1720 0.447 7.0e+02 35.52 c 2.291 9.4e+02
6768 0.109 5.6e+03 43.49 c 0.698 8.2e+03

Table 1: Comparison of PML methods with unbounded and quadratic absorbing functions.

A clear advantage of the PML method based on the proposed unbounded absorb-
ing functions (3) can be clearly appreciated from this table. The errors with the
quadratic absorbing functions are much larger in all cases, even though the optimal
value of σ∗ has been used. On the other hand, in spite of the singular character of
the unbounded functions, the condition numbers of the resulting system matrices
are essentially of the same order as those of the quadratic functions.

Let us emphasize that an additional benefit of choosing the absorbing functions
(3) is that they are free of parameters to be fitted.

4 NUMERICAL TESTS

In this section we solve a real-life scattering problem by using the proposed finite-
element/PML method with the non integrable absorbing function (3).

The obstacle is the diapason shown in Figure 4. Its thickness is 0.2 m, its interior
aperture 1 m, and its length 4.1 m.

First, we have computed the waves scattered by the diapason generated by a
plane wave advancing in the positive x-direction. We have used two meshes, which
are refinements of that shown in Figure 4. The coarser mesh has 9140 triangles in
the fluid domain and 3120 rectangles in the PML, whereas the finer mesh has 36610
triangles and 12480 rectangles.

In Figures 5 and 6 we show the results obtained with the coarser mesh for a wave
number k = 2π m−1.

Figures 7 and 8 show the results obtained for a higher wave number: k = 10π m−1.
In this case we have used the finer mesh.

In the second numerical experiment we have used the same geometry and meshes
as above, but with a monopole (i.e., a Dirac’s delta) acting inside the arc of the
diapason as source term. In Figures 9 to 12 we show the reflected pressure waves
generated by the monopole for the wave numbers k = 2π m−1 (with the coarser
mesh) and k = 10π m−1 (with the finer mesh).
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Figure 4: Mesh of the fluid domain and PML surrounding the diapason.

5 Conclusions

We have introduced a PML method based on a non-integrable absorbing function
for the numerical solution of time-harmonic problems in unbounded domains. The
proposed method leads to significantly smaller errors than the classical ones based
on bounded absorbing functions. To assess the efficiency of our approach, we have
applied it to solve some realistic problems, obtaining very good results even with
thin absorbing layers close to the obstacles.

Many subjects of further research remain open. In particular, a detailed analysis
of the proposed PML technique including error estimates for its numerical solution
and its application to time domain problems.
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fectly matched layers for time-harmonic acoustic scattering problems (submit-
ted).

[13] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates,
SIAM J. Sci. Comput., 19, 2061-2090 (1998).

[14] F. Collino and P. Monk, Optimizing the perfectly matched layer, Comput. Meth-

ods Appl. Mech. Eng., 164, 157-171 (1998).

[15] F. Collino and C. Tsogka, Application of the PML absorbing layer model to the
linear elastodynamic problem in anisotropic heterogeneous media, Geophysics,
66, 294-307 (2001)
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