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RESUMEN: Este trabajo se enfrenta con la resolución numérica del comportamiento acústico de materiales  
porosos con matriz sólida elástica. Suponiendo una estructura periódica, usamos nuevos modelos poroelásticos 
obtenidos mediante técnicas de homogeneización. Con el objetivo de calcular los coeficientes en estos nuevos 
modelos, se resuelven problemas de contorno en la celda elemental del medio poroso. Finalmente, centramos  
nuestra atención en los materiales poroelásticos no disipativos con poros abiertos y proponemos un método de 
elementos  finitos  para  calcular  la  respuesta  a  una  excitación  harmónica  de  una  cavidad  tridimensional  que 
contiene un fluido y un material poroelástico. El elemento finito usado para el fluido es el elemento de orden 
más bajo de la familia introducida por Raviart y Thomas que evita los modos espúreos mientras que, para el 
campo de desplazamientos en el medio poroso, se usa el “mini elemento” con el objetivo de obtener un método 
estable. 

ABSTRACT: This communication deals with the numerical solution of the acoustical behavior of elastic porous 
materials.  Assuming  a  periodic  structure,  we  use  new  poroelastic  models  obtained  by  homogenization 
techniques. In order to compute the coefficients in these new models, we solve boundary-value problems in the  
unitary cell. Finally, we focus our attention on non-dissipative poroelastic materials with open pore and propose 
a  finite  element  method in order  to  compute  the  response  to  a  harmonic  excitation  of  a  three-dimensional 
enclosure containing a free fluid and a poroelastic material. The finite element used for the fluid is the lowest  
order face element introduced by Raviart and Thomas that avoids the spurious modes whereas, for displacements 
in porous medium, the “mini element” is used in order to achieve stability of the method.

1. INTRODUCTION 

Theory for mechanical behavior of poroelastic materials was established by Biot [5], when the 
porous elastic solid is saturated by a viscous fluid. However, when analyzing Biot's model, 
coefficients are not properly defined and, in general, their determination is not clear although 
several experimental procedures have been provided, as it can be seen in Biot and Willis [6]. 
Derivation of macroscopic models for poroelastic materials depends strongly on connectivity 
of  the  fluid  part.  Fundamental  references  are  papers  by  Gilbert  and  Mikelić  [9]  and  by 
Clopeau et al [7] where the classical dissipative Biot's model was derived by homogenization 
using two-scale convergence methods. They also contain a number of references to papers on 
dissipative Biot's law. Moreover, the same procedure has been applied, for the first time, in 
Ferrín and Mikelić [8] to derive macroscopic models for non-dissipative poroelastic material 
with open or closed pore.
Concerning numerical simulation, an increasing number of papers can be found for the two 
cases of rigid and elastic skeleton. The lowest order finite method introduced by Raviart and 
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Thomas  has  been applied  in  Bermúdez  et  al [3]  to  the  case  of  porous  media  with  rigid 
skeleton to solve, in particular, the response problem when using both a Darcy's like model 
and the  Allard-Champoux model.  With  respect  to  the  case  of  elastic  skeleton,  papers  by 
Panneton and Atalla [10], or Atalla  et al [2], among others, are examples of application of 
finite element methods to sound propagation in poroelastic media by using Biot's model.
We only consider the case of elastic frame porous material. The non-dissipative model that we 
shall take into account has been derived in Ferrín and Mikelić [8] for open and closed pores. 
The advantages exhibited by this model with respect to classical Biot's model lies in that we 
know mathematical expressions allowing us to compute their coefficients.

2. STATEMENT OF THE PROBLEM

In the rest of the paper we consider a coupled system consisting of an acoustic fluid (i.e. 
inviscid compressible barotropic) in contact with an elastic porous medium. Both are enclosed 
in a three-dimensional cavity with rigid walls except one on which a harmonic excitation is 
applied.  Let  FΩ  and  AΩ  be the domains  occupied  by the fluid and the porous medium, 
respectively (see Figure 1).

Figure 1 – 3D domain and vertical cut.

The boundary of F AΩ ∪ Ω , denoted by Γ , is the union of two parts, WΓ  and EΓ , where WΓ  
denotes the rigid walls  of the cavity.  Let  ν be the outward unit  normal vector to  Γ .  The 
interface between the fluid and the porous medium is denoted by IΓ  and n is the unit normal 

vector to this interface pointing outwards  AΩ . In order to study the response of the fluid-

porous coupled system subject to an harmonic excitation acting on EΓ , we consider the model 
for open pore non-dissipative poroelastic media. Firstly, we recall that governing equations 
for  free  small  amplitude  motions  of  an  acoustic  fluid  filling  FΩ  are  given,  in  terms  of 
displacement and pressure fields, by

2
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grad 0 in ,P
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ρ ∂ + = Ω
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(1)
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2
F F F Fdiv  in ,P cρ= − ΩU (2)

where FP  is  pressure, FU  is displacement field, Fρ  is density and c is acoustic speed.

Secondly, if we denote by AU  and AP  the macroscopic displacement and pressure fields in 
the porous medium, the equations describing small motions are,

( ) ( )( ) ( )
2

A
F A A A2

div grad 0 in ,H HA A D A B P
t

ρ ρ φ∂− − − − − = Ω  ∂
U

I U I (3)

( ) ( )
2 2

A A
A A2 2

F

1
ˆ div grad div  in ,HP
c A P A B

t t
φ

ρ
 ∂ ∂+ = − + − Ω ÷∂ ∂ 

U
I (4)

where ( ) ( )1
grad grad

2
tD =U U + U  and coefficient ĉ , tensors ,  HA B  and linear operator HA  

depend  on  geometry  of  cells  composing  the  poroelastic  material  and  also  on  physical 
properties of its solid and fluid parts. In fact, one can check that  HB   is a symmetric linear 

operator and tensor HA , such that [ ]( )H
klij ijkl

A D A D= , satisfies
H H H
klij lkij lkjiA A A= = .

Since  the  fluid  is  supposed  to  be  inviscid,  only  the  normal  component  of  displacements 
vanishes  on  WΓ ,  namely,  F W F0 on ,× = Γ ∩ ∂ΩU ν  whereas  for  boundary  displacement  of 

porous medium we suppose  A W A on .= Γ ∩ ∂ΩU 0  Similarly, on interface  IΓ  between fluid 
and porous medium we consider the usual interface conditions of continuity of forces and 
normal displacements, that is,

( ) ( )F A ,H
AP A D P A B φ− = + −  n U n + I n  F A I on .× = × ΓU n U n (5)

If a normal displacement 0U  is imposed on EΓ , the above equations describing the motion of 

coupled  system  (1)-(5)  must  be  completed  with  boundary  condition  F 0 E on .Uν× ΓU =  
Finally, in order to close the model (see [2]), we are going to assume that

A A
W A I on ,   on . 

P P
A A

ν ν
∂ ∂= Γ ∩ ∂Ω = Γ
∂ ∂

0 0 (7)

We are interested in harmonic vibrations so let us suppose excitation 0U  to be harmonic, i.e., 

( ) ( )( )0 0, , , Re , ,i tU x y z t e u x y zω= ;  then  all  fields  are  also  harmonic.  By  replacing  these 

expressions in equations (1)-(7), we can define a harmonic source problem associated with the 
unsteady source problem, namely,

2
F F F Fgrad 0 in ,pω ρ− + = Ωu (8)
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F F F Fdiv  in ,p cρ= − Ωu (9)

( ) ( )( ) ( )2
F A A A Adiv grad 0 in ,H HA A D A B pω ρ ρ φ− − − − − − = Ω  I u u I (10)

( ) ( )( )2 2
A A A A

F

1
ˆ div grad div  in ,Hcp A p A Bω ω φ

ρ
− + = + − ΩI u (11)

( ) ( )F A I on ,H
Ap A D p A B φ− = + − Γ  n u n + I n (12)

F A I on ,× = × Γu n u n (13)

F 0,× =u ν A W A on .= Γ ∩ ∂Ωu 0 (14)

F 0 E on .Uν× Γu = (15)

A
W A on , 

p
A

∂ = Γ ∩ ∂Ω
∂

0
ν

A
I on . 

p
A

∂ = Γ
∂

0
ν

(16)

3. WEAK FORMUALTION

In order to use finite element methods for numerical solution of (8)-(16), we write a weak 
formulation. For this purpose, we first introduce appropriate functional spaces. Let V  be the 
Hilbert space 2 1 3 1

F I A AH(div ) L ( ) H ( ) H ( )= ,Ω × Γ × Ω × ΩV  and 0V  its closed subspace:

{ }0 F F A A F W E F A W A( ) 0 on ( ) 0 onq q ν= , , , ∈ : × = Γ ∪ Γ ∩ ∂Ω , = Γ ∩ ∂Ω .V v v V v v (17)

Kinematic constraint in (13) is weakly imposed on the interface between the fluid and the 
porous medium by integrating this equation multiplied by a test function Fq  defined on IΓ . In 
conclusion, we can write the following source hybrid problem: 
For  fixed  angular  frequency  ω ,  find F F A A( )p p, , , ∈u u V  satisfying  (14),  (15)  and 
furthermore, 

( )

( )
F F A

A A A

A A I

2 2 2
F F AF F F F F A

A AA A A A

F AA A FA A2
F

div div

ˆ[ ( )] ( ) div ( )

1
grad grad div ( ) ( ),

H H t

H

c A

A D D A B p cp q

A p A B pq q

ρ ω ρ ω ρ ρ

φ

φ
ρ ω

Ω Ω Ω

Ω Ω Ω

 
 ÷ Ω Ω Γ

− × − − × +

: + + − + +

× + + − = × − ×

∫ ∫ ∫
∫ ∫ ∫

∫ ∫ ∫

u u I uv v v

u Iv v

I u n nv v

(17)

I
A FF( ) 0q

Γ
× − × = ,∫ u n u n (18)

for all F F F A 0( )q q, , , ∈v v V . 

4. FINITE ELEMENT DISCRETIZATION 
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Fluid and porous displacement fields belong to different functional spaces,  FH(div ),Ω  and 
1 3

AH ( )Ω , respectively, hence different types of finite elements should be used for each of 

them in order to discretize weak problem (17)-(18). Let hT  be a regular family of tetrahedral 

partitions of F AΩ ∪ Ω  compatible with the different domains and boundaries.
To approximate fluid displacements, the lowest order Raviart-Thomas finite element (see [4]) 
is used in order to avoid spurious modes typical of displacement formulations when they are 
discretized by standard Lagrange finite elements. 
They  consist  of  vector  valued  functions  which,  when  restricted  to  each  tetrahedron,  are 
incomplete  linear  polynomials  of  the  form  ( ) ( )h x y z a dx b dy c dz a b c d, , = + , + , + , , , , ∈u £ . 
These  vector  fields  have  constant  normal  components  on  each  of  the  four  faces  of  a 
tetrahedron which define a unique polynomial  function of this type.  Moreover, the global 
discrete displacement field hu  is allowed to have discontinuous tangential components on the 

faces  of  tetrahedra  of  partition  hT .  Instead,  its  constant  normal  components  must  be 
continuous through these faces (these constant values being the degrees of freedom defining

hu ). Because of this, div hu  is globally well defined in FΩ . Thus, for fluid displacements we 
use the Raviart-Thomas space 

( ) { }F F 0 FH(div ) ( )h T hR T T T TΩ := ∈ ,Ω : | ∈ ,∀ ∈ , ⊂ Ω ,R u u (19)

where { }2
0 1( ) ( ) ( ) ( )R T P T x y z a dx b dy c dz a b c d:= ∈ : , , = + , + , + , , , , ∈ .u u £

To approximate displacements in the porous medium, we use the so called “MINI element” in 
order  to  achieve  stability  in  the  discrete  problem  (see  [1]).  We  recall  definition  of  the 
corresponding discrete space by first defining bubble functions. For fixed hT T∈ , we denote 

by 1 4
T T…λ λ, ,  barycentric coordinates in tetrahedron  T . Then bubble function  α , associated 

with T , is defined by the product 1 2 3 4256 T T T Tα λ λ λ λ= .  This bubble function is a polynomial of 
degree four, null on surface of tetrahedron T  and taking value one at barycenter of T . The 
approximating space associated with the MINI element consists of continuous vector valued 
functions whose components, restricted to each tetrahedron, are sum of a bubble function and 
a  polynomial  of  degree one,  i.e.,   ( ) ( )h

i Tx y z ax by cz d e x y z a b c d eα, , | = + + + + , , , , , , , ∈u £ . 
The degrees of freedom for functions in this space are the values of the vector field at vertices 
and barycenters of tetrahedra. Then, for porous displacements, we use the MINI space 

( ) 1 3 3
A A 1 AH ( ) ( ( ) ( ))b

h T hP T P T T T T 
 
 

Ω := ∈ Ω : | ∈ ⊕ ,∀ ∈ , ⊂ Ω ,M u u (20)

where ( ) { }bP T a aα= : ∈ .£  
To approximate  porous  medium pressure,  continuous  piecewise  linear  finite  elements  are 
used. They consist of scalar valued functions which, when restricted to each tetrahedron, are 
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polynomials  of  the  form  ( )h
Tp x y z ax by cz d a b c d, , | = + + + , , , , ∈ .£  Thus,  porous  medium 

pressure is approximated in the finite-dimensional space, 

( ) 1
A A 1 AH ( ) ( )h T hp p P T T T T 

 
 

Ω := ∈ Ω : | ∈ ,∀ ∈ , ⊂ Ω .L (21)

We recall that the degrees of freedom defining hp  are its values at vertices of tetrahedra. 
Finally, in order to approximate the interface pressure we use piecewise constant functions on 
the triangles of the mesh lying on the interface IΓ . In other words, for interface pressure we 
use the space 

( ) { }2
I I 0 IL ( ) ( )h T hp p P T T T T∂Γ := ∈ Γ : | ∈ ∂ ,∀ ∈ ,∂ ∩ Γ ≠ ∅ .C (22)

The degrees of freedom of this finite element space are the (constant) values on triangles in 

IΓ . Consequently, the discrete analogue to V  is ( ) ( ) ( ) ( )F A A Ih h h h h= Ω × Ω × Ω × ΓV R M L C

while the corresponding to 0V  is 

{ }0 F F A A F D N F A D A( ) 0 on ( ) 0 onh hq q ν= , , , ∈ : × = Γ ∪ Γ ∩ ∂Ω , = Γ ∩ ∂Ω .V v v V v v (23)

With  these  finite  element  spaces  we  can  define  the  approximate  problem  to  (17)-(18) 
searching the discrete solution F F A A( )h h h h

hp p, , , ∈u u V .

5. NUMERICAL RESULTS

In order to validate our method, we are going to build a simple example which can be reduced 
to a one-dimensional problem and then solved exactly. If we assume that every linear operator 

is a multiple of identity operator, we can find a solution of the form  ( )A A, , ( ),p x y z p z=

( )A A 3, , ( ) ,x y z u z=u e  and  rewrite  the  above  three-dimensional  problem  as  an  one-

dimensional  problem where  the  prime  denotes  derivative  with  respect  to  z and  we have 

supposed that ( )A 3 A 3
HA D su′=  u e e , A a= I , HB b= I . Let us assume a similar assumption 

for fluid displacement and interface pressure, i.e., F F 3( , , ) ( )x y z u z=u e  and F F( , , ) ( )p x y z p z= . 

We also suppose that ( ) ( ) ( )F F0, 0, ,0b d aΩ = × × −  and ( ) ( ) ( )A A0, 0, 0,b d aΩ = × × . We have 

considered that fluid is air with Fρ = 1.225 3kg/m  and 343c = m/s, whereas properties of the 

porous material are summarized in 10 29.18633 10 N/ms = × , 0.95φ = ,  a=0.67857,  b=-0.05,  ĉ=
6 26.59172 10 ms / kg−− ×  and  2 31.26163 10 kg/mρ = × .  With  respect  to  dimensions  of  the 

enclosure, length and width are 1m while height is 1m for the first layer of free fluid and 1 m 
for the second layer of porous material whereas the normal displacement on EΓ  is 0 60u = .
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Figure 1 – Curves of convergence for fluid and porous fields.

We have computed the solution to this problem with three different uniform meshes, named 
mesh 1, mesh 2 and mesh 3 of 2548, 8140 and 18788 degrees of freedom, respectively. In 
Figure 1 we show the 2L -norm of the relative errors for fluid and porous displacement and 
pressure,  against  mesh-size,  h.  As it  can be seen,  convergence of order 2 is  achieved for 
poroelastic fields and interface pressure. In addition, convergence of order 1 is achieved for 
fluid displacement. 

6. CONCLUSION

We  have  considered  a  mathematical  model  for  acoustic  propagation in  periodic  non-
dissipative porous media with elastic solid frame and open pore. Parameters of this model 
have been computed by solving some partial differential equations in the unit cell obtained by 
homogenization methods. Then a three-dimensional finite element method has been proposed 
and implemented for numerical solution of the coupling between a fluid and the above porous 
medium. In order to validate the proposed methodology and to assess convergence properties, 
the computer code has been used for a test example having analytical solution.
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