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Abstract

The Helmholtz equation is widely used as the reference model in time-harmonic acoustic
propagation problems. At middle and high frequency regime, its numerical approximation,
computed by a nodal Finite Element Method (FEM), differs significantly from the exact
solution due to the so-called “pollution” effect [1]. So, the accuracy and reliability of Helmholtz
numerical approximations are based on pollution-free discrete methods, which should have
a robust behavior with respect to the wavenumber. The Partition of Unity Finite Element
Method (PUFEM) [4] has been considered among these pollution-free methods. Computational
advantages and implementation drawbacks of the PUFEM discretization have been studied
numerically in [5]. Error estimates for Finite Element solutions of the one-dimensional
Helmholtz equation have been already studied by Babǔska and Ihlenburg in [3]. In this work,
a priori error estimates are derived for PUFEM, where plane waves are used to enrich the
discretization space. The approximability of the exact solution in such discrete space is deduced
from some interpolation estimates involving only exponential-type basis functions. Error-
estimates for PUFEM are obtained in terms of the wavenumber on the Helmholtz equation,
the mesh size and an additional perturbation parameter introduced in the wavenumbers of the
basis functions of the discrete PUFEM space.

1. Introduction
Boundary-value problems for the Helmholtz equation Δu + k2u = 0 arise in a number of
physical applications, in particular in problems of wave scattering in Acoustics, Optics
and Electromagnetism. It is well known (see, for instance, [2]) that the mesh size h for
finite element and finite difference computations should depend on the wavenumber k,
usually following a “rule of the thumb” which ensures a minimum number of nodes per
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wavelength. In problems where the typical size of the computational domain has the
same order of magnitude as the wavelength of the harmonic motion, this criterion leads to
accurate results. However, the quality of the numerical approximation deteriorates if the
computational domain or the wavenumber are large enough. Under certain assumptions on
the magnitude hk, it has been shown in [3] that the H1-relative error of the FEM solution
efe can be bounded by

efe ≤ C1kh + C2k3h2, (1)

where the second term on the right-hand side is the so-called numerical pollution error.
In [4], the Partition of the Unity Finite Element Method was proposed with the aim
of mitigating the pollution effect of standard FEM approximations. The computational
advantages of this method have been illustrated by a variety of numerical results (see e.g.
[5]). In this work, a PUFEM discretization based on a plane wave enrichment is applied
to the one-dimensional Helmholtz equation. Once the stability of the discrete problem is
assumed, an non-optimal error estimate is shown without any restriction on the mesh size
and the wavenumber values. The one-dimensional Helmholtz boundary-value problem with
Dirichlet and Robin boundary conditions is described in Section 2. Then, its variational
formulation and the associated inf-sup condition are stated in Section 3. The remainder of
this paper in organized as follows: FEM and PUFEM discretizations are discussed in detail
in Section 4, where an approximation result of the weak solution is shown for the PUFEM
discrete spaces. Then, assuming a discrete inf-sup condition, the existence and uniqueness
of the discrete solution and its stability with respect to the boundary data are obtained.
A non-optimal error estimate for the PUFEM is also included in this section. Finally,
some numerical results are presented in Section 5, showing that the order of accuracy of
the PUFEM is not limited to any restricted range of the mesh size. In particular, it is
illustrated that the pollution effect suffered by the FEM discretization is avoided with the
PUFEM approximation.
Notation: Through the rest of the paper, standard notations about functional Sobolev
spaces are used without explicit definition. For instance, � · �0 and | · |1 denote, respectively,
the L2-norm and the H1-seminorm.

2. Model Problem

Let the boundary-value problem be




u�� + k2u = 0 in (0, 1),

u(0) = u0,

u�(1) − iku(1) = u1,

(2)

being u0, u1 ∈ C and k > 0 constant. From an acoustic point of view, u could be understood
as the harmonic vibration of the pressure field in a compressible fluid at a fixed wavenumber
k. At x = 0, a Dirichlet boundary condition (prescribed pressure) is given, and a Robin
condition is imposed at x = 1 (with an analogous left hand side to the one-dimensional
Sommerfeld radiation condition at x → +∞).
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It is easy to check that problem (2) has a unique analytic solution given by

u(x) = u0eikx +
�

i

2k
u1eik

� �
e−ikx − eikx

�
, (3)

satisfying the estimate
�u�0 ≤ |u0| + k−1|u1|. (4)

3. Variational formulation and weak solution
Considering the subspace V =

�
v ∈ H1(0, 1) ; v(0) = 0

�
, the variational formulation of

problem (2) is described as follows:




Find u ∈ H1(0, 1); u(0) = u0,

B(u, v) = u1v̄(1) ∀v ∈ V,
(5)

where B(u, v) =
� 1

0

�
u�(x)v̄�(x) − k2u(x)v̄(x)

�
dx − iku(1)v̄(1) ∀u, v ∈ H1(0, 1).

Following [3], the inf-sup condition of the sesquilinear form B is obtained.

Theorem 3.1 Let B : V × V → C be as defined above. Then the Ladyzhenskaya-Babǔska-
Brezzi (LBB) constant,

γ = inf
u∈V

sup
v∈V

|B(u, v)|
|u|1|v|1

> 0,

is of order k−1. More precisely, there exist positive constants C1, C2 not depending on k
such that

C1
k

≤ γ ≤ C2
k

. (6)

Applying the LBB estimate (6), a trace inequality and a translation of the solution in (5),
the stability of the weak problem is derived, |u|1 ≤ Ck(|u0| + |u1|). Straightforwardly from
the estimate stated above, problem (5) has a unique solution in H1(0, 1) and it coincides
with (3).

4. Discrete problem and error estimates
Consider {xj = h(j − 1); j = 1, . . . , n + 1} a uniform mesh of n + 1 nodes in (0, 1), where
the mesh size is h = 1/n.

4.1. Finite Element Method
Let �Xh be the standard Lagrange P1 (piecewise linear) finite element space,

�Xh = {v ∈ C0(0, 1) ; v|[xj ,xj+1] ∈ P1 , j = 1, ..., n} ⊂ H1(0, 1),

and let �Vh be the finite space of functions in �Xh satisfying a homogeneous Dirichlet
condition at x = 0, �Vh = {v ∈ �Xh ; v(0) = 0} ⊂ V . Since �Xh and �Vh are finite-dimensional
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spaces, it holds �Xh = �{ϕ1, . . . , ϕn+1}� and �Vh = �{ϕ2, . . . , ϕn+1}�, where the piecewise
linear basis functions ϕj satisfy ϕj(xl) = δjl for j, l = 1, . . . , n + 1, being δjl the Kronecker
delta. Hence, the FEM approximation ufe of the exact solution of problem (5) is defined
as the solution of the following linear problem: Find ufe ∈ �Xh such that ufe(0) = u0 and

B(ufe, v) = u1v̄(1) ∀v ∈ �Vh.

To avoid the pollution effect derived from the numerical FEM solution ufe, a PUFEM
discretization is applied by enriching the FEM space with plane wave functions.

4.2. Partiton of the Unity Finite Element Method
Babǔska and Melenk [4] proposed a new Galerkin method which mitigates the FEM
pollution effects in the discretization of the Helmholtz equation. In that work, the standard
finite element spaces were enriched with plane waves of the form eλx, being λ a root of the
characteristic polynomial of the Helmholtz equation, i.e., λ = ±ik. In the present work, an
additional perturbation parameter δ > 0 is introduced on these roots, and so, the PUFEM
space involves plane waves eλx, where λ = ±i(k + δ). Consequently, the a priori estimates
derived in this section will depend also on δ. The trial and test PUFEM spaces are given,
respectively, by Xh = �ψ1, . . . , ψ3n+3� and Vh = {v ∈ Xh ; v(0) = 0}, where ψ3j−2(x) =
ϕj(x), ψ3j−1(x) = ϕj(x)e−i(k+δ)x and ψ3j(x) = ϕj(x)ei(k+δ)x for j = 1, . . . , n + 1.
Then, the discrete PUFEM solution upu is defined as the solution of the following linear
problem: Find upu ∈ Xh such that upu(0) = u0 and

B(upu, v) = u1v̄(1) ∀v ∈ Vh. (7)

The first step to analyze the error in the PUFEM discretization consists in the derivation
of an approximability result in Xh.

Lemma 4.1 Let u ∈ H1(0, 1) the solution of the variational problem (5) and k0 a fixed
positive value. Then, if k ≥ k0 > 2, there exists uI ∈ Xh such that

inf
vh∈Xh

�u − vh�0 ≤ �u − uI�0 ≤ C3δ2h2�u�0, (8)

inf
vh∈Xh

|u − vh|1 ≤ |u − uI |1 ≤
�
C4δ2h + C5δ2h2k

�
�u�0, (9)

where C3, C4, C5 > 0 do not depend on h, δ and k.

Proof. To ensure uI ∈ Xh, any restriction of uI to the interval [xj , xj+1] should be
written as a linear combination of basis functions in Xh, i.e., for j = 1, . . . , n,

uI(x) = αj
1ϕj(x)ei(k+δ)x + αj

2ϕj+1(x)ei(k+δ)x + αj
3ϕj(x)e−i(k+δ)x

+ αj
4ϕj+1(x)e−i(k+δ)x + αj

5ϕj(x) + αj
6ϕj+1(x), x ∈ [xj , xj+1].

Since the exact solution for the homogeneous Helmholtz equation is given by u(x) =
Aeikx + Be−ikx, its expression can be split in two terms, u = u+ + u−, with u+(x) = Aeikx

and u−(x) = Be−ikx, being A and B complex-valued constants. Using the same splitting
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procedure and neglecting the terms in uI coming from the original FEM basis, that is,
αj

5 = αj
6 = 0, it holds uI = u+

I +u−
I , where u+

I (x) = αj
1ϕj(x)ei(k+δ)x+αj

2ϕj+1(x)ei(k+δ)x and
u−

I (x) = αj
3ϕj(x)e−i(k+δ)x + αj

4ϕj+1(x)e−i(k+δ)x for x ∈ [xj , xj+1]. If the other coefficients
are computed by interpolation, u+

I (xj) = u+(xj), u+
I (xj+1) = u+(xj+1), u−

I (xj) = u−(xj)
and u−

I (xj+1) = u−(xj+1), it is easy to check that αj
1 = Ae−iδxj , αj

2 = Ae−iδxj+1 , αj
3 =

Beiδxj and αj
4 = Beiδxj+1 for j = 1, . . . , n, and it holds

�u − uI�2
0 ≤ |A|2

n�

j=1

� xj+1

xj

|eikx − e−iδxj ϕj(x)ei(k+δ)x − e−iδxj+1ϕj+1(x)ei(k+δ)x|2dx

+ |B|2
n�

j=1

� xj+1

xj

|e−ikx − eiδxj ϕj(x)e−i(k+δ)x − eiδxj+1ϕj+1(x)e−i(k+δ)x|2dx.

If the integrals are computed analytically and a Taylor expansion is applied for the
exponential expressions, inequality (8) is obtained as follows:

�u − uI�2
0 ≤ |A|2

n�

j=1

�C1δ4h5 + |B|2
n�

j=1

�C2δ4h5 ≤ C2
3δ4h4�u�2

0,

where C3 > 0 is a constant independent of h, δ and k.
Now, using an analogous procedure to estimate the H1-seminorm of u − uI , it holds

|u − uI |21 ≤ |A|2
n�

j=1
( �C3δ4h3 + �C4δ4h5k2 + �C5δ5h5k)

+ |B|2
n�

j=1
( �C6δ4h3 + �C7δ4h5k2 + �C8δ5h5k) ≤ (C2

4δ4h2 + C2
5δ4h4k2)�u�2

0,

and so, estimate (9) is obtained, with positive constants C4 and C5 independent of h, δ and k.
Notice that in the estimates stated above, it has been used (|A|2+|B|2) ≤ C0k0/(k0−2)�u�2

0,
with C0 > 0 independent of k. �
Combining (4) and (9), the H1-approximability of the PUFEM discrete space for the
Helmholtz problem is immediately obtained.

Theorem 4.2 Let u ∈ H1(0, 1) be the solution of problem (5), k0 a fixed positive value
and uI ∈ Xh its interpolated function as it has been defined on Lemma 1. If k ≥ k0 > 2
then, there exist positive constants C4 and C5 independent of h, δ and k such that

|u − uI |1 ≤ (C4δ2h + C5δ2h2k)(|u0| + k−1|u1|).

Assumption 1 If δ > 0 is small enough, it is assumed that there exists a positive discrete
inf-sup constant for the PUFEM discretization. More precisely, the LBB discrete condition,
with

γh = inf
u∈Vh

sup
v∈Vh

|B(u, v)|
|u|1|v|1

> 0,

holds, and there exist positive constants C6 and C7 not depending on k, δ and h such that
C6
k

≤ γh ≤ C7
k

. (10)
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Applying the LBB discrete estimate (10), a trace inequality and a translation of the solution
in (7), the stability of the discrete problem is obtained,

|upu|1 ≤ �Ck((δ2 + 2kδ + δ)|u0| + |u1|), (11)

where �C > 0 is independent of k, δ and h. Straightforwardly from (11), the discrete
problem has a unique solution.

Theorem 4.3 Let u ∈ H1(0, 1) be the exact solution of the variational problem (5), k0 a
fixed positive value and let upu be the solution of the PUFEM discrete problem defined in
(7). If k ≥ k0 > 2 then, it holds

|u − upu|1
|u|1

≤ �C1δ2hk−1 + �C2δ2h2 + �C3δ2h2k2, (12)

where �C1, �C2 and �C3 are positive constants not depending on h, δ and k.

Proof. Let uI ∈ Xh be the interpolant of u defined in Lemma 1. Following analogous
arguments to those presented in [3, Theorem 5], define z = upu − uI ∈ Vh. Due to the B-
orthogonality of the error in Vh and the linearity of the form B, it holds B(u−uI , v) = B(z, v)
for all v ∈ Vh.
It is easy to check by partial integration that

�
(u − uI)�, v�� = 0 if v ∈ Vh, and therefore,

B(u − uI , v) = k2(u − uI , v) ∀v ∈ Vh.

Hence, z is the solution of B(z, v) = k2(u − uI , v) for all v ∈ Vh. Using the assumed LBB
discrete condition, it is satisfied |z|1 ≤ �Ck3�u − uI�−1. Then, using a triangular inequality,

|u − upu|1 ≤ |u − uI |1 + |z|1 ≤ |u − uI |1 + �Ck3�u − uI�−1,

taking into account the estimates (8) and (9) in Lemma 1 and considering the continuous
embedding of L2(0, 1) in H−1(0, 1), it holds

|u − upu|1 ≤ (C4δ2h + C5δ2h2k)�u�0 + �CC3δ2h2k3�u�0

≤ ( �C1δ2hk−1 + �C2δ2h2 + �C3δ2h2k2)|u|1,

where it has been used that for the plane wave solution, �u�0 ≤ �C4k0/(k0 − 2)|u|1 for
k ≥ k0, being �C4 > 0 independent of k. �

5. Numerical Results
In this section, some numerical results are shown for FEM and PUFEM discrete appro-
ximations of the solution of the boundary-value problem (2) with non homogeneous
boundary conditions. The boundary data is chosen to obtain u(x) = eikx + 2e−ikx as the
exact solution.
Let efe be the relative error for the FEM discretization and epu the relative error for
the PUFEM discretization, defined as follows: efe = |u − ufe|1,h/|u|1,h and epu = |u −
upu|1,h/|u|1,h, where

|v|21,h =
n�

j=1
|v�(yj)|2,
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being yj the midpoint of [xj , xj+1] for j = 1, . . . , n. The behavior of efe in the left plot of
Figure 1 illustrates the second order of accuracy of the FEM approximation with respect
to the mesh size, when the term O(hk) is negligible with respect to the pollution term in
(1). In the right plot of Figure 1, second-order accuracy of the PUFEM approximation
is checked and it confirms the error estimate (12) for high wavenumbers, i.e., once k is
several orders of magnitude larger than 1/h. Notice that 10−12 ≤ epu ≤ 10−5 even with
high wavenumbers, while the lowest error for FEM is of order 10−2, achieved only for low
wavenumber k.
In Figure 2, the dependence of FEM and PUFEM relative errors on the wavenumber k
is observed. In the left plot, the behavior of efe is goberned by the pollution term in (1),
whereas in the right plot it can be checked that the PUFEM relative error does not depend
on the wavenumber values. The convergent second-order behavior of the perturbation
parameter δ that holds in (12) for the PUFEM discretization can be checked in Figure 3.
The independent behavior of the PUFEM relative error of the wavenumber k, illustrated
on the right plot of Figure 2, has not been obtained in the error estimate of Theorem 3
(see last term in (12)). Consequently, further work has to be done to obtain optimal error
estimates.
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Figure 1: Relative error of the FEM (left) and PUFEM (right) discretization, plotted
(using δ = 10−2) with respect to the mesh size

6. Conclusions

In this work, a non-optimal error estimate for a PUFEM discretization of a one-dimensional
Helmholtz problem is deduced. For middle and high frequency regimes, such estimate
ensures that the PUFEM H1-relative error is bounded by a term of order O(δ2h2k2).
Despite the independence of the relative error with respect to the wavenumber has not been
obtained theoretically, the error estimate (12) involves only a term of order k2, showing
the potential advantages of the PUFEM approximation with respect to the FEM pollution
term, given by O(k3). In addition, the order of accuracy of the PUFEM approximation is
not limited to any restricted range of the mesh size h, the perturbation parameter δ or the
wavenumber k.
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Figure 2: Relative error of the FEM (left) and PUFEM (right) discretization, plotted
(using δ = 10−2) with respect to the wavenumber
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Figure 3: Relative error of the FEM (left) and PUFEM (right) discretization, plotted
(using h = 1/10) with respect to the additional perturbation parameter

Acknowledgements
Second and third authors have been supported by “Ayuda CN 2011/004”, cofunded with
European Regional Development Funds (ERDF).

Bibliography
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