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Abstract: In this paper we propose an infrastructure access tariff in a cost
allocation problem arising from the reorganization of the railway sector in
Europe. To that aim we introduce the class of infrastructure cost games. A
game in this class is a sum of airport games and what we call maintenance
cost games, and models the infrastructure costs (building and maintenance)
produced when a set of different types of trains belonging to several agents
makes use of a certain infrastructure. We study some properties of infras-
tructure cost games and provide a formula for the Shapley value of a game
in this class. The access tariff we propose is based on the Shapley value of
infrastructure cost games.
Key-words: Railway Transport, Cost Allocation, Shapley Value.

1The financial support of the EuROPE-TRIP (European Railways Optimisation Planning
Environment-Transportation Railways Integrated Planning) research project is gratefully
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1 Introduction

In this paper we deal with a cost allocation problem arising from the reor-
ganization of the railway sector in Europe, after the application of the EEC
directive 440/91 and the EC directives 18/95 and 19/95, which involve the sep-
aration between infrastructure management and transport operations. In this
situation two main economic problems arise. One is to allocate the track ca-
pacity among the various operators. This issue has been treated, for instance,
in Nilsson (1995), Brewer and Plott (1996) and Bassanini and Nastasi (1997).
The second problem is to determine the access tariff that the railway transport
operators must pay to the firm in charge of the infrastructure management for
a particular journey. This tariff should take into account several aspects such
as the a priori profitability and social utility of the journey, congestion issues,
the number of passengers and/or goods transported, the services required by
the operator, infrastructure costs, etc. The tariff is conceived in an additive
way, i.e. as the sum of various tariffs corresponding to the various aspects to
be considered.

The main motivation of this paper is a practical one. We were approached
by Ferrovie dello Stato2 (the italian national railway company) to study how
the infrastructure costs should be allocated to the operators through a fair
infrastructure access tariff (i.e. we were asked to define one part of the additive
access tariff: that corresponding to the infrastructure costs). In this work we
treat this problem from a game theoretical point of view, making use of the
Shapley value. The Shapley value is a very important solution concept for
TU-games, which has excellent properties and has been applied successfully in
cost allocation problems (see Shapley (1953), Tijs and Driessen (1986), Young
(1994) and Moulin and Shenker (1996)). Moreover, in our particular problem,
it is especially appropriate because of the following two reasons.

1. It is well-known that the Shapley value is an additive solution. This
feature fits well with the “additive nature” of the access tariff, as com-
mented above.

2. In this paper we will show that the infrastructure access tariff based
on the Shapley value can be computed very easily (using, once more,
the additivity of the Shapley value). In a practical environment this
is certainly an important property. Take into account that a very big

2Ferrovie dello Stato is the coordinator of the EuROPE-TRIP research project, sponsored
by the European Community. Formally, our research has been requested and financed by
the European Community.
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amount of fees will have to be computed by the infrastructure manager
every new season, so computational issues become highly relevant.

Let us now describe informally the problem we are facing. Consider a
railway path (for instance, Milano-Roma), that is used by different types of
trains belonging to several operators, and consider the problem of dividing
among these trains the infrastructure costs. Clearly it is a problem of joint
cost allocation. To settle the question, one can see the infrastructure as con-
sisting of some kinds of “facilities” (track, signalling system, stations, etc.).
Different groups of trains need these facilities at different levels: for example,
fast trains need a more sophisticated track and signalling system, compared to
local trains, for which instead station services are more important (particularly
in small stations).

So, a straightforward approach can be that of viewing the infrastructure as
a “sum” of different facilities, each of them required by the trains at a different
level of cost.

Furthermore, infrastructure costs can be seen as the sum of “building”
costs and “maintenance” costs (for a better understanding of the distinction
between these two types of costs, we refer to the example in section 4). If
we consider only building costs, especially in the case of a single facility, we
are facing a problem similar to the so-called “airport game” (see, for instance,
Littlechild and Owen (1973) and Dubey (1982)). For what concerns mainte-
nance costs, it seems to be a reasonable first order approximation to assume
that they are proportional both to the building costs and to the number of
trains that use the facility.

Similar considerations extend to related problems: for example the costs
for a bridge, to be used by small and big cars. There are building costs, that
are different in the case of a bridge for small or big cars, and maintenance
costs, that can be assumed to be proportional to the number of vehicles using
the bridge, and to the kind of bridge needed.

In this paper we analyze these infrastructure cost games (sums for various
facilities of a building cost game and a maintenance cost game) from the point
of view of the Shapley value. In section 2 we introduce and briefly study the
infrastructure cost games. In section 3 we provide a simple expression of the
Shapley value for this class of games. In section 4 we elaborate an example
where we apply the models and results presented in sections 2 and 3.
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2 Infrastructure Cost Games

For simplicity, we concentrate first on infrastructure cost games when we are
dealing with the building and maintenance of one facility. To begin with, we
recall the definition of an “airport game”.

Definition 2.1 Suppose we are given k groups of players g1, . . . , gk with
n1, . . . , nk players respectively and k non-negative numbers b1, . . . , bk. The air-
port game corresponding to g1, . . . , gk and b1, . . . , bk is the cooperative (cost)
game < N, c > with N = ∪k

i=1gi and cost function c defined by

c(S) = b1 + · · ·+ bj(S)

for every S ⊆ N , where j(S) = max{j : S ∩ gj 6= ∅}.

Airport games are cost games for the building of one facility (for instance, a
landing strip) where the wishes of the coalitions are linearly ordered. Coali-
tions desiring a more sophisticated facility (a larger landing strip) have to pay
at least as much as coalitions desiring a less sophisticated facility (a smaller
landing strip). Every bi represents the extra building cost that should be made
in order that a facility that can be used by players in groups g1, ...gi−1 can
also be used by the more sophisticated players in group gi. Airport games are
known to be concave. Consequently, the Shapley value of such a game provides
a core element. Sometimes we will refer to an airport game as a building cost
game. Denote by B(g1, ..., gk) the set of all building cost games with groups
of players g1, ..., gk.

In airport games costs for the building of one facility are modeled. Now
we consider the maintenance costs of this facility, which lead to the class of
“maintenance cost games”. Basic assumptions are that maintenance costs are
increasing with the degree of sophistication of the facility and that mainte-
nance costs are proportional to the number of users.

Definition 2.2 Suppose we are given k groups of players g1, . . . , gk with
n1, . . . , nk players respectively and k(k + 1)/2 non-negative numbers
{αij}i,j∈{1,...,k},j≥i. The maintenance cost game corresponding to g1, . . . , gk

and {αij}i,j∈{1,...,k},j≥i is the cooperative (cost) game < N, c > with N =
∪k

i=1gi and cost function c defined by

c(S) =
j(S)∑
i=1

|S ∩ gi|Aij(S)(1)

for every S ⊆ N , where Aij = αii + ... + αij for all i, j ∈ {1, ..., k} with j ≥ i.
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The interpretation of the numbers αij and Aij is the following. Suppose that
one player in gi has used the facility. In order to restore the facility up to level
i (the level of sophistication desired by this player) the maintenance costs are
Aii = αii. If, however, the facility is going to be restored up to level i+1, then
extra maintenance costs αii+1 will be made. So, in order to restore the facility
up to level j (with j ≥ i) the maintenance costs are Aij = αii+αii+1+....+αij .
Hence, c(S) represents the maintenance costs corresponding to the facility up
to the level j(S) (so that all the players in S can use it), after all players in S
have used it. Observe that, for every i ≤ j, the more sophisticated the facility
is (the larger j is), the higher the maintenance costs produced by a player in gi

are. In Section 4 we provide an example which illustrates the above definition
of a maintenance cost game.

We denote by M(g1, ..., gk) the set of all maintenance cost games with
groups of players g1, ..., gk. Obviously, to characterize a game < N, c >∈
M(g1, ..., gk) it is equivalent to give either the set of parameters
{αij}i,j∈{1,...,k},j≥i or the set of parameters {Aij}i,j∈{1,...,k},j≥i.

The following decomposition of a maintenance cost game < N, c >∈
M(g1, ..., gk) will be useful. For every S ⊆ N ,

c(S) =
j(S)∑
i=1

|S ∩ gi|Aij(S) =

=
j(S)∑
i=1

|S ∩ gi|(αii + ... + αij(S)) =
k∑

i=1

k∑
j=i

αijc
ij(S),

where

cij(S) =

{
|S ∩ gi| if j ≤ j(S)

0 if j > j(S)

for all i, j ∈ {1, ..., k} with j ≥ i.
We know that building cost games are concave. The following result shows

that this is not true for maintenance cost games. Moreover, it shows that
maintenance cost games are essentially neither concave nor balanced.

Theorem 2.1 Let < N, c > be the maintenance cost game corresponding to
g1, . . . , gk and {αij}i,j∈{1,...,k},j≥i. Then the following four statements are
equivalent:

(1) < N, c > is concave

(2) < N, c > is balanced

5



(3)
∑

i∈N c(i) ≥ c(N)

(4) αij = 0 for every j > i.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are clear. For the implica-
tion (3) ⇒ (4) suppose that (3) holds. Then

k∑
i=1

k∑
j=i

αijni = c(N) ≤
∑
i∈N

c(i) =
k∑

i=1

αiini

which implies that αij = 0 for every j > i. For the implication (4) ⇒ (1) sup-
pose that (4) holds. Note that cii defined as above is an additive characteristic
function for every i ∈ {1, ..., k}. Hence, c can be expressed as a non-negative
combination of additive characteristic functions. Thus, < N, c > is concave.

Now we can introduce the class of infrastructure cost games.

Definition 2.3 A one facility infrastructure cost game with groups of players
g1, . . . , gk is the cooperative (cost) game < N, c > with N = ∪k

i=1gi and cost
function c = cb + cm such that < N, cb >∈ B(g1, . . . , gk) and < N, cm >∈
M(g1, . . . , gk). An infrastructure cost game with groups of players g1, . . . , gk

is the cooperative (cost) game < N, c > with N = ∪k
i=1gi and cost function

c = c1 + ... + cl such that, for every r ∈ {1, ..., l}, < N, cr > is a one facility
infrastructure cost game with groups of players gπr(1), . . . , gπr(k), where πr is
a permutation of {1, ..., k}.

From the definition above we see that a one facility infrastructure cost game is
the sum of a building cost game plus a maintenance cost game with the same
groups of players ordered in the same way. An infrastructure cost game is
the sum of a finite set of one facility infrastructure cost games with the same
groups of players but, perhaps, ordered in a different way. This means that
group i can require a higher level of sophistication than group j for facility
r, whereas group j requires a higher level of sophistication than group i for
facility s. Because of this reason, it is not true that every infrastructure cost
game is a one facility infrastructure cost game. An interesting consequence of
Theorem 2.1, the concavity of airport games and the additivity of the Shapley
value is the following. Since an infrastructure cost game is the sum of building
cost games and maintenance cost games, then its Shapley value is the sum of
allocations, which are moreover core allocations for those such games having
a non-empty core.
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The class of infrastructure cost games is the model we designed to solve
the practical problem which motivates this work: how to allocate in a fair way
the infrastructure costs to the users of a certain railway path. A game in our
class describes the infrastructure costs imputable to every possible collection
of users. Now we have to choose an allocation rule which allocates the total
cost to the users. As we announced in the introduction of this paper, we chose
the Shapley value because of the two reasons already discussed. The access
tariff we propose for a certain path in a certain time period is simply the
Shapley value of the infrastructure cost game corresponding to this path and
time period.

Note that an infrastructure cost game is the sum of a finite collection of
airport games and maintenance cost games. It is well known that there is a
simple expression of the Shapley value for airport games (see Littlechild and
Owen, 1973). In the next section we obtain a simple expression of the Shapley
value for maintenance cost games. Hence, since the Shapley value is additive,
we can compute easily the Shapley value of an infrastructure cost game even
when the number of players is large, which will be the case in practice: take
into account that the players here are the trains using the path in a certain
period. Thus, we are proposing an access tariff system which is at the same
time reasonable (based on a general theory of fairness) and computable in an
efficient way.

3 The Shapley Value of a Maintenance Cost Game

This section contains a theorem providing a simple expression of the Shapley
value of a maintenance cost game.

Theorem 3.1 Let < N, c > be the maintenance cost game corresponding to
the groups g1, ..., gk (with n1, ..., nk players respectively) and to
{αlm}l,m∈{1,...,k},m≥l. Then, for every i ∈ N ,

ϕi(c) = αj(i)j(i) +
k∑

m=j(i)+1

αj(i)m
nm + ... + nk

nm + ... + nk + 1

+
j(i)∑
m=2

m−1∑
l=1

αlm
nl

(nm + ... + nk)(nm + ... + nk + 1)
,

where ϕi(c) denotes the i-th component of the Shapley value of the game
< N, c > and j(i) is the group to which i belongs (i.e. i ∈ gj(i)).
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Proof. Recall that c =
∑k

l=1

∑k
m=l αlmclm where

clm(S) =

{
|S ∩ gl| if m ≤ j(S)

0 if m > j(S).

Then, since the Shapley value is linear,

ϕi(c) =
k∑

l=1

k∑
m=l

αlmϕi(clm)

for all i ∈ N . It is clear that, for every l ∈ {1, ..., k}, cll is an additive
characteristic function and that

ϕi(cll) =

{
1 if i ∈ gl

0 in any other case.
(2)

Suppose now that l < m. In this case only players in gl∪(∪k
r=mgr) are not null

players. By symmetry we may put ϕi(clm) = a for every i ∈ gl and ϕi(clm) = b
for every i ∈ ∪k

r=mgr. In order to compute a take i ∈ gl and note that for
every S ⊆ N\{i} we have

clm(S ∪ {i})− clm(S) =

{
0 if j(S) < m
1 else.

So, if the players of N are ordered at random, a is the probability that player
i has at least one predecessor in ∪k

r=mgr. Equivalently, if the players of N are
ordered at random, a is the probability that player i is not the first player of
the players in {i} ∪ (∪k

r=mgr). Consequently,

a =
nm + ... + nk

nm + ... + nk + 1
.(3)

Thus, by symmetry and efficiency,

b =
nl − nla

nm + ... + nk
=

nl

(nm + ... + nk)(nm + ... + nk + 1)
.(4)

Now, in view of (2), (3) and (4) the proof is concluded.

As we mentioned above, the Shapley value of the corresponding infrastruc-
ture game is our proposal to share railways infrastructure costs. It is clear
that, using Theorem 3.1 and the formula for the Shapley value of an airport
game, the computations that should be made are not difficult; however, the
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potentially very large amount of data that will have to be handled to compute
a very large collection of fees makes necessary to have a good computer pro-
gram to do it. For this purpose, we have prepared a software package that will
be delivered to Ferrovie dello Stato, the coordinator of EuROPE-TRIP. The
name of this package is ShRInC (Sharing Railways Infrastructure Costs). It
has been created with the collaboration of Luisa Carpente and Claudia Viale.

Obviously, from a game theoretical point of view, there are many interest-
ing questions concerning infrastructure cost games that have not been treated
here. The main motivation of this paper is to report the practical solution we
proposed for the real problem of allocating railways infrastructure costs. In
Norde et al (1999), we study other game theoretical properties of infrastructure
cost games.

4 An Example

In this section we illustrate our solution with an example. We shall elaborate
it on data taken from Baumgartner (1997). The aim of that paper is to provide
“order of magnitude” of costs concerning the railway system: we shall exploit
it to analyze a rough but realistic example. In practical models, making a
realistic example uses to be an enlightening exercise. Here, for instance, the
example we are proposing shows that our building or maintenance cost games
do not necessarily correspond to real building or maintenance costs. Actually,
the costs for one facility can be decomposed into:

• a fixed part (in the sense that it does not depend on the number of
players), that corresponds to the building cost game associated with
this facility, and

• a variable part (in the sense that it is proportional to the number of
players), that corresponds to the maintenance cost game part.

For simplicity, we shall concentrate on a single element (the track), even
if Baumgartner (1997) provides data also for other elements (line, catenary,
signalling and security system, etc.), that can be analyzed in a similar fashion.
If we consider one kilometer of track, from Baumgartner (1997) we get two
kind of costs3, that depend on the type of train (slow/fast) and on the number
of trains running. More precisely, we have both renewal costs and repairing
costs. According to this division of costs we will divide the track into two
facilities: “track renewal” and “track repairing”.

3We assumed the weight of 50Kg for a meter of rail and made a linear approximation of
the costs given in table 2 of Baumgartner (1997).
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Renewal costs can be approximated by the following formula:

RWC = 0.001125X + 11, 250

where RWC are the renewal costs per kilometer and per year (expressed in
swiss francs) and X measures the “number” of trains, expressed in yearly
TGCK (TGCK means Tons Gross and Complete per Kilometer).

So, if we assume for ease of exposition that all of the trains running are
of the same weight, the facility “track renewal” has a fixed component (to be
included in our building costs), and a part which is proportional to the number
of trains running (to be included in our maintenance costs). If the assumption
of equal weight cannot be sustained, our model still fits: simply divide trains
into groups of similar weight. In such a case each group will have different
unitary maintenance costs.

Similarly, for the facility “track repairing”, costs can be given by analogous
formulas:

RPCs = 0.001X + 10, 000

RPCf = 0.00125X + 12, 500.

RPCs denotes the repairing costs (in swiss francs) per kilometer and per year
of a track prepared only for slow trains, whereas RPCf denotes the repairing
costs (in swiss francs) per kilometer and per year of a track prepared for all
trains. X denotes the same as before.

So, consider one kilometer of line, which will be used this year by a total
weight of 107 TGCK (corresponding to 20,000 trains, assuming a weight per
train of approximately 500 tons). Assume that 5,000 trains are fast and that
the remaining are slow. The infrastructure cost game that can be used to
allocate the costs is < N, c > given by:

• N = g1 ∪ g2, g1 being the set of slow trains (n1 = 15,000) and g2 being
the set of fast trains (n2 = 5,000).

• c = c1 + c2, c1 and c2 being one facility infrastructure cost games both
having the same groups of players and ordered in the same way: g1, g2.

Now, c1 and c2 are characterized by the following parameters.

• c1 : b1
1 = 11, 250; b1

2 = 0; α1
11 = 0.5625; α1

12 = 0; α1
22 = 0.5625.

• c2 : b2
1 = 10, 000; b2

2 = 2, 500; α2
11 = 0.5; α2

12 = 0.125; α2
22 = 0.625.

Hence, making use of Theorem 3.1 and the formula for the Shapley value of an
airport game, it is easy to check that, if ϕs(c) and ϕf (c) denote the Shapley
value of a slow and a fast train respectively, then:
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• ϕs(c) = b11
n1+n2

+ α1
11 + b21

n1+n2
+ α2

11 + α2
12

n2
n2+1 = 2.25

• ϕf (c) = b11
n1+n2

+ α1
22 + b21

n1+n2
+ b22

n2
+ α2

22 + α2
12

n1
n2(n2+1) = 2.75.

These are the fees, in swiss francs, that every slow and fast train (respectively)
should pay per kilometer of track used, according to our solution. Clearly, in
front of a specific allocation problem regarding a specific line, with specific
transport operators and trains, appropriate data should be collected. Here,
we only presented an illustrative approximation to a real example.
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