n<-100 m1<-1000 p<-matrix(0,nrow=n,ncol=n) p[1,12]<-1 p[2,13]<-1 p[3,14]<-1 p[4,15]<-1 p[5,16]<-1 p[6,17]<-1 p[7,18]<-1 p[8,19]<-1 p[9,20]<-1 p[9,21]<-1 p[10,22]<-1 p[11,23]<-1 p[12,24]<-1 p[13,24]<-1 p[13,25]<-1 p[14,26]<-1 p[15,26]<-1 p[16,27]<-1 p[17,34]<-1 p[18,28]<-1 p[19,28]<-1 p[20,28]<-1 p[21,29]<-1 p[22,29]<-1 p[23,30]<-1 p[24,31]<-1 p[25,32]<-1 p[26,33]<-1 p[27,34]<-1 p[28,48]<-1 p[28,47]<-1 p[29,45]<-1 p[30,45]<-1 p[31,35]<-1 p[32,35]<-1 p[33,58]<-1 p[33,49]<-1 p[34,58]<-1 p[34,49]<-1 p[35,58]<-1 p[35,49]<-1 p[36,37]<-1 p[36,38]<-1 p[36,39]<-1 p[37,40]<-1 p[38,41]<-1 p[39,42]<-1 p[39,52]<-1 p[40,44]<-1 p[41,43]<-1 p[41,51]<-1 p[42,51]<-1 p[42,43]<-1 p[43,44]<-1 p[44,46]<-1 p[45,55]<-1 p[46,55]<-1 p[47,55]<-1 p[48,50]<-1 p[49,50]<-1 p[50,67]<-1 p[51,54]<-1 p[52,53]<-1 p[52,99]<-1 p[53,54]<-1 p[54,57]<-1 p[54,56]<-1 p[55,56]<-1 p[56,68]<-1 p[56,69]<-1 p[57,70]<-1 p[57,71]<-1 p[57,72]<-1 p[58,59]<-1 p[58,60]<-1 p[58,61]<-1 p[59,64]<-1 p[60,63]<-1 p[61,62]<-1 p[62,66]<-1 p[63,65]<-1 p[64,65]<-1 p[65,84]<-1 p[65,73]<-1 p[66,84]<-1 p[66,73]<-1 p[67,84]<-1 p[67,73]<-1 p[68,74]<-1 p[68,75]<-1 p[69,76]<-1 p[70,76]<-1 p[71,79]<-1 p[72,80]<-1 p[73,83]<-1 p[74,83]<-1 p[75,77]<-1 p[75,78]<-1 p[76,78]<-1 p[77,90]<-1 p[78,82]<-1 p[79,82]<-1 p[79,91]<-1 p[80,81]<-1 p[80,98]<-1 p[81,82]<-1 p[81,91]<-1 p[82,90]<-1 p[83,86]<-1 p[84,87]<-1 p[84,85]<-1 p[85,86]<-1 p[86,89]<-1 p[87,88]<-1 p[88,95]<-1 p[89,95]<-1 p[90,92]<-1 p[90,93]<-1 p[91,94]<-1 p[92,96]<-1 p[93,97]<-1 p[94,97]<-1 p[95,100]<-1 p[96,100]<-1 p[97,100]<-1 p[98,100]<-1 p[99,100]<-1 duration<-matrix(0,nrow=m1,ncol=n) for(i in 1:m1){ duration[i,]<-rnorm(n,50,10) } set.seed(1) actual.duration<-rnorm(n,50,10)+rnorm(n,10,3) time<-862.619