n<-300 m1<-1000 p<-matrix(0,nrow=n,ncol=n) for(i in 1:19){ p[i,i+1]<-1 } for(i in 21:39){ p[i,i+1]<-1 } for(i in 41:59){ p[i,i+1]<-1 } for(i in 61:79){ p[i,i+1]<-1 } for(i in 81:99){ p[i,i+1]<-1 } for(i in 101:119){ p[i,i+1]<-1 } p[20,121]<-1 p[40,121]<-1 for(i in 121:149){ p[i,i+1]<-1 } p[60,151]<-1 p[80,151]<-1 for(i in 151:179){ p[i,i+1]<-1 } p[100,181]<-1 p[120,181]<-1 for(i in 181:209){ p[i,i+1]<-1 } p[40,282]<-1 p[282,211]<-1 for(i in 211:214){ p[i,i+1]<-1 } p[80,283]<-1 p[283,216]<-1 for(i in 216:219){ p[i,i+1]<-1 } p[120,284]<-1 p[284,221]<-1 for(i in 221:224){ p[i,i+1]<-1 } p[215,226]<-1 for(i in 226:234){ p[i,i+1]<-1 } p[220,236]<-1 for(i in 236:244){ p[i,i+1]<-1 } p[225,246]<-1 for(i in 246:254){ p[i,i+1]<-1 } p[235,256]<-1 for(i in 256:262){ p[i,i+1]<-1 } p[245,264]<-1 for(i in 264:271){ p[i,i+1]<-1 } p[255,273]<-1 for(i in 273:279){ p[i,i+1]<-1 } p[263,281]<-1 p[272,281]<-1 p[280,281]<-1 p[215,285]<-1 p[285,250]<-1 p[220,286]<-1 p[286,264]<-1 p[225,287]<-1 p[287,273]<-1 p[288,289]<-1 p[288,290]<-1 p[289,291]<-1 p[289,292]<-1 p[290,293]<-1 p[290,294]<-1 p[291,295]<-1 p[292,296]<-1 p[293,297]<-1 p[294,298]<-1 p[295,299]<-1 p[296,299]<-1 p[297,300]<-1 p[298,300]<-1 duration<-matrix(0,nrow=m1,ncol=n) for(i in 1:m1){ duration[i,]<-rnorm(n,50,10) } set.seed(1) actual.duration<-rnorm(n,50,10)+rnorm(n,7,3) time<-2591.448