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cause of its ease of implementation and its design efficiency. An important drawback
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sign variance, under a nonparametric model for the population. The nonparametric

model is sufficiently flexible that it can be expected to hold at least approximately

for many practical situations. We prove the consistency of the estimator for both
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survey.
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1 Introduction

The Forest Inventory and Analysis (FIA) is a program within the US Department of

Agriculture Forest Service that conducts nationwide forest surveys (see e.g. Frayer and

Furnival 1999). Sampling for the FIA surveys has traditionally followed a stratified sys-

tematic design. In these surveys, the population quantities of interest are, for example,

total tree volume, growth and mortality, and area by forest type. Design-based estimates

of such quantities are produced on a regular basis. In this article, we are considering sur-

vey data collected during the 1990’s by the Forest Service within a 2.5 million ha ecological

province that includes the Wasatch and Uinta Mountain Ranges of northern Utah (Bailey

et al. 1994). Forest resource data are collected through field visits on sample plots located

on a regular spatial grid. These field-level data are supplemented by remotely sensed data

available on a much finer spatial grid. Figure 1 displays the study region and sample lo-

cations for the survey data and additional remote sensing data. The latter can be used as

auxiliary information to improve the precision of survey estimators, as previously done by

Opsomer et al. (2007) who explored nonparametric model-assisted estimation methods.

In the current article, we will use the auxiliary information to construct an estimator for

the variance of survey estimators.

[Figure 1 about here.]

A well-known issue in surveys that follow a systematic sampling design is the lack of

a theoretically justified, generally applicable design-based variance estimator. This issue

was also encountered in Opsomer et al. (2007). These authors used a synthetic approach,

in which a model was fit to the sample data and extrapolated to the population, and the

exact design-based variance of the proposed estimators was computed at the population

level based on the model-generated data. The resulting variance “estimator” was used

to evaluate the efficiency of a proposed nonparametric model-assisted estimator for the

FIA data. While this approach was effective in providing a way to gauge the relative

efficiency of different survey estimates, the resulting variance “estimates” are difficult

to interpret from a statistical perspective, because they clearly depend on the model

specification, estimation and extrapolation but these factors are not explicitly accounted
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for. We therefore revisit the issue of estimating the variance for systematic sampling

estimators. Unlike in Opsomer et al. (2007), the proposed estimator will be explicitly

model-based, which will allow us to obtain its statistical properties.

Variance estimation for systematic sampling is a long-standing issue in statistics. A

whole chapter of the recently reissued classic monograph by Wolter (2007) is devoted

to this issue, and a number of possible estimation approaches are evaluated there. In

particular, it considers a set of eight “model-free” estimators, some of which we will

discuss further below, and outlines a model-based estimation approach. For the set of

eight estimators, their statistical properties are evaluated for several model scenarios

and through simulation experiments. None of these estimators is best overall, and there

was a clear interaction between the behavior of the estimators and the underlying data

model. Despite this implicit model dependence, the two estimators based on averages of

pairwise differences (see next section) are found to be the best compromise between good

performance and general applicability among this set of eight estimators. They are also

widely used in practice.

In the model-based estimation approach described in Wolter (2007), the model de-

pendence is explicitly recognized and a Rao-Blackwell type estimator is proposed, which

minimizes the model mean squared error in estimating the sampling variance. The models

considered in Wolter (2007) are parametric, and the Rao-Blackwell estimator therefore

depends on unknown parameters that must be estimated from the sample data. A recent

example of this approach is Bartolucci and Montanari (2006), who proposed an unbiased

model-based variance estimator when the population follows a linear regression model.

In practice, despite its potential efficiency, wide applicability of the model-based

method is viewed as being hampered by lack of robustness. Wolter (2007, p.305) noted

that:

“Since [the model] is never known exactly, the practicing statistician must

make a professional judgment about the form of the model and then derive

[the variance estimator] based on the chosen form. The ‘practical’ variance

estimator [with estimated parameters] is then subject not only to errors of

estimation [...] but also to errors of model misspecification.”
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However, this lack of robustness can be at least partly offset by the use of a nonparametric

model specification. Compared to parametric models, this class of models makes much

less restrictive assumptions on the shape of the relationship between variables, typically

only requiring that the relationship be continuous and smooth, i.e. possessing a pre-

specified number of derivatives. Hence, the risk of model misspecification is significantly

reduced. This is particularly important in the survey context, because the same variance

estimation method often needs to be applied to many survey variables collected in the

same survey, and a single parametric model is much less likely to be correct for all these

variables.

Bartolucci and Montanari (2006) discussed the use of nonparametric estimation as a

way to “robustify” the model-based approach. They evaluate the bias properties of the

resulting estimator under the linear population model, and then consider the behavior

under nonlinear population models through simulation. The latter results suggest that

the nonparametric approach remains effective in estimating the variance under a range of

population model specifications.

In the current article, we will consider a broadly applicable model for the data, in

which both the mean and the variance are left unspecified subject only to smoothness

assumptions. We propose a model-based nonparametric variance estimator, in which

both the mean and the variance functions of the data are estimated nonparametrically.

The smoothing method we will use is local polynomial regression (see Wand and Jones

(1995) for an overview). We will show that the proposed estimator is consistent for

the design variance of the survey estimator, subject only to the population smoothness

assumptions. The theoretical portion of the article will focus on the case of estimating

the finite population mean using the sample mean for a systematic sample, but there is

no inherent difficulty in extending the method to estimate the (approximate) variance of

more complicated estimators such as model-assisted estimators.

The rest of the article is organized as follows. In Section 2, we describe the systematic

sampling estimation context and the main variance estimators in use today. In Section 3,

we introduce the nonparametric variance estimator and describe its statistical properties.

Section 4 evaluates the practical properties of the estimator in a simulation study. Section

5 returns to the analysis for the northern Utah forestry data.
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2 Systematic sampling and design-based variance es-

timation

We will be sampling from a finite population U of size is N . For now, we consider a single

study variable Yj ∈ R, j = 1, 2, · · · , N with population mean

ȲN =
1

N

N∑
j=1

Yj.

Let n denote the sample size and k = N/n denote the sampling interval. For simplicity,

we assume throughout this article that N is an integral multiple of n, i.e. k is an integer.

The variable Y will only be observed on the sampled elements only.

Let xj ∈ Rp (j = 1, 2, · · · , N) be vectors of auxiliary variables available for all the

elements in the population. To draw a systematic sample, the population is first sorted

by some appropriate criterion. For example, we can sort by one or several of the auxiliary

variables in xj. If the study variable Y and auxiliary variables x are related to each other,

sorting by x and then drawing a systematic sample has been long known to reduce the

variance of the sample mean. Conversely, if the population is sorted by a criterion that

is not related to Y , for instance, by a variable in x which is independent of Y , then we

will have a random permutation of the population. In this case, systematic sampling is

equivalent to simple random sampling without replacement (SRS hereafter). After sorting

the population, drawing a systematic sample is done by randomly choosing an element

among the first k with equal probability, say the bth one, after which the systematic

sample, denoted by Sb, consists of the observations with labels {b, b+k, ... , b+(n−1)k}.
The random sample S can therefore only take on k values on the set of possible samples

{S1, . . . , Sk}.
The sample mean,

ȲS =
1

n

∑
j∈S

Yj,

is the Horvitz-Thompson estimator for the finite population mean. Its design-based vari-

ance was first derived by Madow and Madow (1944) and is equal to

Varp(ȲS) =
1

k

k∑
b=1

(ȲSb
− ȲN)2. (1)
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It should be clear that, if only a single systematic sample is drawn and hence only one

of the ȲSb
is observed, no unbiased design-based estimator of Varp(ȲS) exists for general

variable Y . A more formal way to state this is that the systematic sampling design is not

measurable (Särndal et al. 1992, p.33).

We describe the three main methods used in practice to estimate Varp(ȲS), all of which

are part of the eight estimators evaluated by Wolter (2007) and mentioned in Section 1.

The simplest estimator is to treat the systematic sample as if it had been obtained by

SRS. This estimator is defined as

V̂SRS =
1− f
n

1

n− 1

∑
j∈S

(Yj − ȲS)2, (2)

where f = n/N . The two remaining estimators are based on pairwise differences and are

recommended in Wolter (2007) as being the best general-purpose estimators of Varp(ȲS)).

They are defined as

V̂OL =
1− f
n

1

2(n− 1)

n∑
j=2

(Yj − Yj−1)
2, (3)

which uses all successive pairwise differences (and hence uses overlapping differences, OL),

and

V̂NO =
1− f
n

1

n

n/2∑
j=1

(Y2j − Y2j−1)
2. (4)

which takes successive non-overlapping differences (NO). Additional estimators based on

higher-order differences are described in Wolter (2007) but will not be further considered

here.

All three estimators just described are design biased for Varp(ȲS) in general. The

estimator V̂SRS is viewed as suitable when the ordering of the population is thought to have

no effect on ȲS, or is considered as a conservative estimator when the ordering is related

to the variable Y . However, as discussed in Opsomer et al. (2007), the unbiasedness of

V̂SRS for uninformative ordering only holds if one averages over samples and over orderings

of the population (see Cochran 1977, Thm 8.5), so this is not, strictly speaking, design

unbiasedness. The design bias of V̂SRS for a fixed ordering of the population can be large

and either positive or negative, so that relying on its conservativeness can be potentially
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misleading. This was clearly seen in the synthetic estimator approach used in Opsomer

et al. (2007), for instance. The remaining two estimators tended to have smaller bias in

the simulation experiments reported in Wolter (2007), but their statistical properties as

estimators of Varp(ȲS) are not generally available.

3 Variance estimation under a nonparametric model

In the model-based context, the finite population is regarded as a random realization from

a superpopulation model. A simple approach consists of assuming a parametric model

for this superpopulation model. Under the assumption of linearity for the model, Bar-

tolucci and Montanari (2006) proposed an unbiased estimator for the anticipated variance

E[Varp(ȲS)], denoted by V̂L, using a least squares estimator for the regression parameters

and a model unbiased estimator for the variance of the errors. In this section, we propose

a model consistent variance estimator under a nonparametric model. The nonparametric

superpopulation model is

Yj = m(xj) + v(xj)
1/2 ej 1 ≤ j ≤ N, (5)

where m(·) and v(·) are continuous and bounded functions. The errors ej, 1 ≤ j ≤
N , are independent random variables with model mean 0 and variance 1. Define Y =

(Y1, Y2, . . . , YN)T , m = (m(x1), . . . ,m(xN))T and Σ = diag{v(x1), v(x2), · · · , v(xN)}.
The design variance of ȲS can be written as

Varp(ȲS) =
1

k

k∑
b=1

(ȲSb
− ȲN)2 =

1

kn2
YT DY, (6)

where D = MT HM, with M = 1T
n ⊗ Ik and H = Ik− 1

k
1k1

T
k , with ⊗ denoting Kronecker

product and 1r a vector of 1’s of length r. Stated more explicitly, H is a k × k matrix

with diagonal elements being 1− 1
k

and off-diagonal element being − 1
k
, and D is a N ×N

matrix composed of n× n Hs. Then, the model anticipated variance of ȲS under model

(5) is

E[Varp(ȲS)] =
1

kn2
mT Dm +

1

kn2
tr(DΣ). (7)

To estimate E[Varp(ȲS)], we propose the following estimator

V̂NP =
1

kn2
(m̂T Dm̂) +

1

kn2
tr(DΣ̂), (8)
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where m̂ = (m̂(x1), · · · , m̂(xN))T , with m̂(xj) the local polynomial regression (LPR) esti-

mator of m(xj) computed on the observations in the sample S and Σ̂ =

diag{v̂(x1), v̂(x2), · · · , v̂(xN)}, with v̂(xj) the LPR estimator of v(xj). We briefly describe

the two LPR estimators, and for simplicity we will assume that the xj are univariate and

that the degree of the two local polynomials is equal to p. Both assumptions are readily

relaxed, but lead to more complicated notation and derivations. Note that there is no

restriction that the xj should or should not be related to the sorting variable used to draw

the systematic sample.

For the estimator of the mean function,

m̂(xj) = eT
1 (XT

SjWSjXSj)
−1XT

SjWSjYS,

with e1 a vector of length (p+ 1) having 1 in the first entry and all other entries 0, YS a

vector containing the Yj ∈ S, XSj a matrix with ith row equal to (1, (xi − xj), . . . , (xi −
xj)

p), i ∈ S, and

WSj = diag

{
K

(
xi − xj

hm

)
, i ∈ S

}
,

where hm is the bandwidth and K is a kernel function. For the estimator of the variance

function, the expression is completely analogous, except that YS is replaced by the vector

of squared residuals r̂S with elements r̂j = (Yj−m̂(xj))
2, j ∈ S, and a different bandwidth

hv is used instead of hm in the weight matrix WSj. This variance estimator was previously

used in Fan and Yao (1998) in a different context and does not include a “degrees of

freedom” correction term as in Ruppert et al. (1997). While the latter estimator could

certainly be used here, we found little difference between both in this setting, so that we

chose the simpler estimator.

Under suitable regularity conditions on the population and the nonparametric estima-

tor, which are stated in the Appendix, we obtain the following results on the asymptotic

properties of V̂NP . An outline of the proof is given in the Appendix. The theorem shows

that V̂NP is a model consistent estimator for E[Varp(ȲS)] and a model consistent predictor

for Varp(ȲS).

Theorem 3.1 Assume that the degree p of the local polynomial is odd. Using superpopu-

lation model (5) and under assumptions A.1–A.6 in the Appendix, the design variance is
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model consistent for the anticipated variance, in the sense that

Varp(ȲS)− E[Varp(ȲS)] = Op

(
1√
N

)
, (9)

and the nonparametric variance estimator is model consistent for the anticipated variance

and for the design variance, in the sense that

V̂NP − E[Varp(ȲS)] = Op(hp+1
m ) +Op

(
1√
nhm

)
(10)

and

V̂NP − Varp(ȲS) = Op(hp+1
m ) +Op

(
1√
nhm

)
. (11)

The best bandwidth hm should satisfy the condition hp+1
m = O

(
1√

nhm

)
, which leads to

hm = cn−1/(2p+3), the usual optimal rate for local polynomial regression (see e.g. Fan and

Gijbels 1996, p.67). Hence, it is expected that the usual bandwidth selection methods

such as GCV or a plug-in method could be applied in this context as well. We do not

explicitly address bandwidth selection in this article, however.

In these results, the effect of estimating the variance function is asymptotically negli-

gible, because of assumption A.4 on the relationship between hm and hv. Without that

assumption, model consistency of V̂NP would continue to hold but a more complicated

expression for the convergence rates would apply. Similarly, the restriction that p be odd

simplifies the expressions for the rates but does not affect the overall consistency.

In Li (2006), a simpler nonparametric estimator is defined as

V̂ ho
NP =

1

kn2
(m̂T

SDm̂S) +
1

kn2
tr(D)σ̂2

S (12)

with

σ̂2
S =

1

n

∑
j∈S

(Yj − m̂(xj))
2, (13)

and its properties were studied under the special case of superpopulation model (5) with

homoscedastic errors, i.e. when v(xj) ≡ σ2, j = 1 . . . , N . Under this model, Li (2006)

obtained the same results for V̂ ho
NP as in Theorem 3.1. Because this estimator does not

require the additional smoothing step on the residuals, it is easier to compute and, as we

will discuss in the next two sections, it performs very similarly to the more complicated

estimator V̂NP , even in the presence of heteroscedasticity.
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4 Simulation Study

The practical behavior of the proposed nonparametric estimator is evaluated in a simula-

tion study. The covariate xj is uniformly distributed in the interval [0,1], and the errors

ej are generated as an independent and identically distributed (iid) sample from a stan-

dard normal distribution. Superpopulations of size N = 2, 000 are generated according

to model (5) with two different mean functions

“linear”: m(xj) = 5 + 2xj

“quadratic”: m(xj) = 5 + 2xj − 2x2
j

and three different shapes for the variance functions

“constant”: v(xj) = β

“linear”: v(xj) = βxj

“quadratic”: v(xj) = β(1− 4 (xj − 0.5)2).

The values of β for the three variance functions are selected to achieve two levels for the

population coefficient of determination (R2), equal to R2 = 0.75 (the “precise model”)

and R2 = 0.25 (the “diffuse model”).

Several of the estimators are sensitive to the relationship between the modeling co-

variate and the sorting variable used in generating the systematic samples. We therefore

investigate three sorting scenarios, based on the strength of the association between the

sorting variable zj and the xj. We construct the zj as zj = xj + σzηj with the ηj iid

standard normal, and we select the value of σz to achieve R2 = 1 (i.e. sorting by x),

R2 = 0.75 (“z strongly associated with x”) and R2 = 0.25 (“z weakly associated with

x”). We consider samples of sizes n = 500 and n = 100.

For each simulation scenario, we compare the performance of the estimators V̂NP , V̂ ho
NP ,

V̂L, V̂OL, V̂NO and V̂SRS described in Sections 2 and 3. Additionally, we also compute an

estimator similar to V̂L, but assuming a linear model for the variance of the errors and

using the least squares estimator to estimate this function from the parametric residuals,

this estimator is denoted by V̂ lin
L . This will allow us to evaluate the performance of

the nonparametric approach relative to the parametric approach and the commonly used
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design-based estimators. For the nonparametric estimators, we used local linear (p = 1)

regression and the Epanechnikov kernel equal to K(t) = (1−t2) if |t| ≤ 1 and 0 otherwise.

We consider three different values for the bandwidths, hm = 0.10, 0.25, 0.50 and the same

values for hv in the case of V̂NP . The stratification-based estimators V̂OL, V̂NO construct

pairs of observations based on the sorting variable zj.

It is important to note that the anticipated variance in (7) contains two components,

with the first related to the difference in the sample means and the second to the model

variance. It can readily be shown that both components are of the same order of magni-

tude in general. In addition, while the first component can in principle be decreased by

choosing an appropriate sorting variable (this is a major theme in the systematic sampling

literature), the second component is independent of the sorting. Because the proposed

model-based variance estimator targets the anticipated variance, it would therefore ap-

pear critical to capture the model variance correctly in order to obtain a good variance

estimator. This was the main reason for the nonparametric specification of the function

v(·).
In summary, we study 72 scenarios (twelve superpopulation models, three sorting

criteria and two sample sizes) for V̂L, V̂OL, V̂NO and V̂SRS, 216 scenarios (three bandwidth

values in addition) for V̂ ho
NP and 648 scenarios (three additional bandwidths to estimate

the variance function) for V̂NP .

In each simulation run, we keep the population xj and the zj fixed but generate new

population errors ej, and draw a systematic sample according to the sorted z values (cor-

responding to the model-based setting we are considering in this article). Each simulation

setting is repeated B = 10000 times and the results are obtained by averaging over the

B replicates. We consider both E(Varp(ȲS)) and Varp(ȲS) as targets for the estimators,

with Varp(ȲS) computed exactly for each replicate. Letting V̂ denote one of the estima-

tors above, we calculate the relative bias (RB) and mean squared error (MSE) and mean

squared prediction error (MSPE), where

RB =
E∗(V̂ )− E∗[Varp(ȲS)]

E∗[Varp(ȲS)]
,

MSE = E∗(V̂ − E∗[Varp(ȲS)])2,

MSPE = E∗(V̂ − Varp(ȲS))2,
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with E∗ indicating which expectations are obtained by averaging across the replicates.

Tables 1 and 2 report the relative bias (in percent) of V̂L, V̂ lin
L , V̂ ho

NP , V̂NP , V̂OL, V̂NO and

V̂SRS, when populations are sorted by the covariate x, for the sample size n = 500 and the

precise (R2 = 0.75) regression model, and n = 500 and the diffuse (R2 = 0.25) regression

model, respectively. Tables 3 and 4 show the same information but with n = 100.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

Similar conclusions can be deduced from these four tables. Linear estimators V̂ ho
L and

V̂ lin
L perform similarly very well when the superpopulation model is linear, they are almost

unbiased. However, when the superpopulation model is not linear, their biases increases

dramatically due to the misspecification. The nonparametric estimators V̂ ho
NP and V̂NP

perform well under all superpopulation models if proper bandwidths hm and hv values

are chosen. Specifically, when the superpopulation model is linear, V̂ ho
NP or V̂NP tend to

favour bigger bandwidth hm, due to the use of the local linear regression in the calculation

of V̂ ho
NP and V̂NP . When the superpopulation is quadratic, they tend to favour smaller

bandwidth of hm. For example, the bias for V̂ ho
NP for hm = 0.5, R2

2 = 0.75 and n = 500

is more than 54%. It appears that some care is needed in selecting the bandwidths. In

this paper we will not further discuss the bandwidth selection problem. We choose these

three bandwidth values for hm and hv to illustrate the bandwidth effect.

The results also show that the variance function specification generally has only a

modest effect on the bias of the estimators. An interesting result is that the estimator

V̂ ho
NP , which uses the mean squared residuals, appears to perform better than many of

the more complicated V̂NP even when the errors were heteroscedastic. We conjecture

that this is due to the fact that under heteroscedasticity, the variance component of the

anticipated variance is of the form c
∑N

j=1 v(xj)/N , and the mean of the squared residuals

is a very good estimator for the mean of the variance over the population for approximately

balanced samples, such as those obtained by systematic sampling.
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Estimators V̂OL and V̂NO have small biases under the models presented in those Tables.

This is because when the populations are sorted by x before drawing systematic samples,

V̂OL and V̂NO can capture the population trend very well and thus very efficient. The

most inefficient variance estimator in this case is V̂SRS. It always overestimates the true

variance.

Tables 5 and 6 report the relative bias (in percent) of V̂L, V̂ lin
L , V̂ ho

NP , V̂NP , V̂OL, V̂NO

and V̂SRS, when populations are sorted by a variable z strongly associated with x (case

R2 = 0.75), for the sample size n = 500 and the precise (R2 = 0.75) regression model,

and n = 500 and the diffuse (R2 = 0.25) regression model, respectively. Tables 7 and 8

show the same information but with n = 100.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

For V̂
ho

L , V̂
lin

L , V̂
ho

NP and V̂NP , we can draw similar conclusions to those in Tables 1,

2, 3 and 4. The linear estimators V̂
ho

L and V̂
lin

L do well when the superpopulation model

is linear, but have large biases when the superpopulation model is quadratic. However,

under the quadratic superpopulation model, their relative biases are smaller than those in

Tables 1, 2, 3 and 4. This is because when populations are sorted by a variable strongly

associated with covariate x, the systematic sample is closer to a simple random sample and

does not capture the quadratic trend as well as the case where populations are sorted by x.

So misspecification has less effect because the sample is less quadratic. The nonparametric

estimators V̂
ho

NP and V̂NP again perform well if we choose proper bandwidths. The most

important difference with respect to the case of populations sorted by x is that V̂OL and

V̂NO have larger bias values than those in Tables 1, 2, 3 and 4. When the populations

is sorted by a variable strongly associated with x, the overlapping and nonoverlapping

difference estimators V̂OL and V̂NO cannot capture the population trend as well as when

the population is sorted by x. In contrast, the nonparametric estimator is able to use the
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correct modeling variable xj in all cases and is able to capture any unknown but smooth

trend.

Tables 9 and 10 report the relative bias (in percent) of V̂L, V̂ lin
L , V̂ ho

NP , V̂NP , V̂OL, V̂NO

and V̂SRS, when populations are sorted by a variable weakly associated with covariate x

(case R2 = 0.25), for the sample size n = 500 and the precise (R2 = 0.75) regression

model, and n = 500 and the diffuse (R2 = 0.25) regression model, respectively. Tables 11

and 12 show the same information but with n = 100.

[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

[Table 12 about here.]

We can see a similar trend as in previous Tables. When the superpopulation model

is linear, the linear estimators V̂
ho

L and V̂
lin

L perform well. When the superpopulation

model deviates from linearity, they become more biased. Given a proper bandwidth

hm, the nonparametric estimator V̂
ho

NP has small bias for all superpopulation models and

both sample sizes. We can also see that the overlapping difference estimator V̂OL and

nonoverlapping difference estimator V̂NO tend to have more biases than those in Tables

5, 6, 7 and 8. Note that this is the case where the populations are sorted by a variable

weakly associated with x, which results in almost random permutations of populations.

So, the systematic samples are close to SRS samples. Thus, it is not surprising to see that

V̂OL and V̂NO have similar bias to V̂SRS, especially when the superpopulation model is

quadratic. The performance of the stratification-based estimators decreases substantially

when the relationship between the sorting variable and the model covariate becomes

weaker, resulting in substantial bias and large MSE values (as we will see later). The

interpretation of this result is that the stratification-based variance estimators work well

only when the “implicit model” under which it is constructed is correct. This implicit

model assumes that the relationship between zj and yj is well approximated by a piecewise

constant function. This is true when R2 = 1, but not in the remaining cases. On the other
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hand, the nonparametric estimator have the advantage of using auxiliary information to

improve its precision under this circumstance.

Tables 13 and 14 report the MSE of V̂L, V̂ lin
L , V̂ ho

NP , V̂NP , V̂OL, V̂NO and V̂SRS when pop-

ulations are sorted by variable x, for the sample size n = 500 and the precise (R2 = 0.75)

regression model, and n = 500 and the diffuse (R2 = 0.25) regression model, respectively.

Tables 15 and 16 show the same information but with n = 100. The MSE results for

the different estimators are normalized by dividing by the MSE of V̂ ho
NP with bandwdith

hm = 0.10, to facilitate comparison.

[Table 13 about here.]

[Table 14 about here.]

[Table 15 about here.]

[Table 16 about here.]

We can see that when the superpopulation model is linear, the linear estimators V̂
ho

L

and V̂
lin

L and the nonparametric estimators V̂
ho

NP and V̂NP with larger bandwidth hm

values tend to be favourable choices (except V̂NP : hm = 0.5, hv = 0.5). When the

superpopulation model is quadratic, the nonparametric estimators V̂
ho

NP and V̂NP perform

the best if given a proper bandwidth hm. This can be seen by noting that in the last

three columns of these Tables, only a few values are less than one, and they are the ratios

of the nonparametric estimators at different bandwidth hm values. In all cases, although

never the best, V̂OL and V̂NO do not perform too badly either. They are close to the

best choice in each case. The linear estimators V̂
ho

L and V̂
lin

L drastically fails when the

superpopulation model is quadratic. The SRS variance estimator V̂SRS is almost always

a bad choice.

Tables 17 and 18 report the MSE of V̂L, V̂ lin
L , V̂ ho

NP , V̂NP , V̂OL, V̂NO and V̂SRS when

populations are sorted by a variable strongly associated with covariate x, for the sample

size n = 500 and the precise (R2 = 0.75) regression model, and n = 500 and the diffuse

(R2 = 0.25) regression model, respectively. Tables 19 and 20 show the same information

but with n = 100. Tables 21, 22, 23 and 24 present the results in analogous settings as in
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Tables 17, 18, 19 and 20, but when populations are sorted by a variable weakly associated

with covariate x. Similarly as previously, the different estimators are normalized by

dividing by the MSE of V̂ ho
NP with bandwdith hm = 0.10.

[Table 17 about here.]

[Table 18 about here.]

[Table 19 about here.]

[Table 20 about here.]

[Table 21 about here.]

[Table 22 about here.]

[Table 23 about here.]

[Table 24 about here.]

We see a similar trend as when sorting by x, although differently, now, the sorting vari-

able deviates further from the model variable x, and the overlapping difference estimator

V̂OL and nonoverlapping difference estimator V̂NO tend to be worse.

Finally, Tables 25 and 26 present the MSPE of V̂L, V̂ lin
L , V̂ ho

NP , V̂NP , V̂OL, V̂NO and

V̂SRS when populations are sorted by the variable x, for the sample size n = 500 and the

precise (R2 = 0.75) regression model, and n = 500 and the diffuse (R2 = 0.25) regression

model, respectively. Tables 27 and 28 show the same information but with n = 100.

Tables 29, 30, 31 and 32 present the results in analogous settings as in Tables 25, 26, 27

and 28, but when populations are sorted by a variable strongly associated with x (case

R2 = 0.75), while Tables 33, 34, 35 and 36 present the results when populations are

sorted by a variable weakly associated with x (case R2 = 0.25). Similarly as in the case of

the MSE, the different estimators are normalized by dividing by the MSPE of V̂ ho
NP with

bandwdith hm = 0.10.

[Table 25 about here.]
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[Table 26 about here.]

[Table 27 about here.]

[Table 28 about here.]

[Table 29 about here.]

[Table 30 about here.]

[Table 31 about here.]

[Table 32 about here.]

[Table 33 about here.]

[Table 34 about here.]

[Table 35 about here.]

[Table 36 about here.]

Similarly, when MSPE is computed instead of MSE (and hence Varp(ȲS) is targeted

instead of the anticipated variance), the conclusions just stated continue to hold. The

main difference is that because of the randomness of Varp(ȲS), the mean squared differ-

ences between the estimators and the target are larger than the differences between the

estimators and E(Varp(ȲS)), and hence the normalized MSPEs are all closer to 1.

5 Application in Forest Inventory and Analysis

We now return to the FIA data collected in Northern Utah. As illustrated in Figure

1, the forest survey data are collected using a two-phase systematic sampling design.

In phase one, remote sensing data and geographical information system (GIS) coverage

information are gathered on an intensive sample grid. In phase two, a field-visited subset

of the phase one grid is taken. Several hundred variables are collected during these field
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visits, ranging from individual tree characteristics and size measurements to complex

ecological health ratings. There are 24,980 phase one sample points and 968 phase two

sample points. It should be noted that the phase one data are available at essentially any

desirable resolution, so this grid of points is somewhat arbitrary and can be used as an

approximation for the underlying continuous population. We therefore treat the phase

one plots as the population of interest and phase two plots as a systematic sample drawn

from that population. At the “population” level, we have auxiliary information such as

location (LOC, bivariate scaled longitude and latitude) and elevation (ELEV). At the

sample level, information is available for the field-collected forestry variables in addition

to the population-level variables.

We consider here the following representative forestry variables, which are a subset of

all the variables collected in the survey:

• BIOMASS - total wood biomass per acre in tons

• CRCOV - percent crown cover

• BA - tree basal area per acre

• NVOLTOT - total cuft volume per acre

• FOREST - forest/nonforest indicator.

We are interested in estimating the population mean for these variables using the sys-

tematic sample mean ȲS, and estimating its design-based variance Varp(ȲS). We will

consider two traditional design-based variance estimators, V̂SRS as in (2) and V̂ST (see

below), and the model-based nonparametric variance estimator V̂NP . The stratified sam-

pling variance estimator V̂ST is similar to the nonoverlapping differences estimator V̂NO in

(4), generalized to a spatial setting by considering an approximate 4-per-stratum design:

V̂ST =
1− f
n

1

n

H∑
h=1

nh

nh − 1

∑
j∈Sh

(Yj − ȲSh
)2,

where Sh denotes the sample in cell h and nh the corresponding cell sample size. Note

that for points near the edge of the map, there may be more or less than four points per
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cell, because we collapsed all cells that contained less than two point with their closest

neighbor. Figure 2 displays this 4-per-stratum design prior to cell collapsing.

[Figure 2 about here.]

For the purpose of constructing the model-based nonparametric variance estimator

V̂NP , we consider the following model with location (LOC) as bivariate auxiliary variables:

Yj = m(LOCj) + εj. (14)

We considered both homoscedastic and heteroscedastic versions of this model. Firstly,

we assumed that the errors in (14) are independent with homogeneous variance. Under

this assumption, we implemented the nonparametric variance estimator V̂NP given in

(12) and (13) with xj replaced by LOCj. Here m(·) is estimated by bivariate local linear

regression, and the estimator m̂(·) is obtained using loess() in R. In loess(), the bandwidth

parameter h is replaced by the span, the fraction of the sample observations that have non-

zero weight in the computation of m̂(LOCj). Since the samples points are approximated

equally spaced (5 × 5 km grid), using loess() will produce similar results to those obtained

using a fixed bandwidth in the interior of the estimation region. At the boundaries of the

region, it will tend to select larger bandwidths and hence reduce some of the increased

variability often experienced close to boundaries in fixed-bandwidth smoothing. This

results in improved overall stability of the fits. In order to evaluate the sensitivity of the

results to the choice of the smoothing parameters, we choose three spans: 0.1, 0.2 and

0.5. After obtaining m̂(·), we can calculate the nonparametric variance estimator V̂NP for

each response variable. Table 37 presents the sample means and the estimated variances

using V̂SRS, V̂ST and V̂NP .

[Table 37 about here.]

While we do not know the true variance, the estimator V̂ST is likely to be a reasonable

approximation as long as the Yj can be modeled as a spatial trend plus random errors.

The naive estimator V̂SRS produces the largest values among the five variance estimators

for all response variables and so is likely to be biased upwards for this survey. In contrast,
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the nonparametric variance estimator V̂NP results in estimates that are close to those of

V̂ST , with smaller spans leading to slightly smaller estimates.

As already discussed in Section 4, an important advantage of the model-based non-

parametric method is that one is not restricted to using only the sampling variables

(LOC in this case) in the construction of the estimator, if other variables are thought to

be good predictors of the survey variables. We illustrate this here by considering more

sophisticated models that also includes elevation (ELEV) in additive to LOC:

Yj = m1(LOCj) +m2(ELEVj) + εj. (15)

Assuming that the errors in (15) are independent with homogeneous variance, we fit

model (15) in R using the Generalized Additive Models (gam) package. We use the same

span for both LOC and ELEV, as well as span = 0.1 for location and span = 0.3 for

elevation.

[Table 38 about here.]

Table 38 shows that, relative to the simpler model without elevation, the estimated

variances all decreased, by 8-14%. This decrease is due primarily to a reduction in the

σ̂2
S component in (12), which accounts for the fact that the extended mean model in (15)

captures more of the observed behavior of these forestry variables. This can be observed

by comparing Tables 37 and 38 with Tables 39 and 40, which show the σ̂2
S component in

(12) under homoscedastic models (14) and (15), respectively.

[Table 39 about here.]

[Table 40 about here.]

To complete the study with the homoscedastic models, we computed the model assisted

mean and variance estimates for five response under models (14) and (15). The results

are shown in Tables 41 and 42, respectively.

[Table 41 about here.]

[Table 42 about here.]
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The next step in our study was considering heteroscedastic versions of models (14)

and (15). First, we considered model (14), but assuming that the errors have a variance

function, v(·), depending on the variable LOC, that is,

Yj = m(LOCj) + εj = m(LOCj) + v1/2(LOCj) ej, (16)

where e′js are iid random variables with model mean 0 and variance 1.

Under this heteroscedastic model, we computed the nonparametric estimator (8). For

this, estimators of m(·) and v(·) using loess() with different spans were used. In particular,

we choose three spans to estimate the mean function, hm = 0.1, 0.2 and 0.5, and three

spans, hv = 0.2, 0.4 and 0.6, to estimate the variance function. It is important to note

that the nonparametric estimator of v(·) could give some negative values. In those cases,

we assigned value 0 to the estimator of v(·). The results obtained are shown in Table 43.

As expected from the simulations study in the previous Section, no important differences

with respect to the simpler homoscedastic case are observed.

[Table 43 about here.]

Finally, we considered heteroscedastic versions of the regression model (15) that also

includes elevation (ELEV) in additive to LOC. We studied a model with a variance

function, v(·), depending on the variables LOC and ELEV,

Yj = m1(LOCj) +m2(ELEVj) + v1/2(LOCj, ELEVj) ej, (17)

where e′js are iid random variables with model mean 0 and variance 1.

There are several possibilities to model the variance function v(LOCj, ELEVj). After

some tests, we selected the following two alternatives:

v(LOCj, ELEVj) = v1(LOCj) + v2(ELEVj). (18)

v(LOCj, ELEVj) = v3(ELEVj) (19)

To estimate nonparametrically these variance functions, we used loess() and gam pack-

age (in the case of (18)) with different spans. We used the same spans as before for the
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regression function (hm), and spans hv = 0.2, 0.4 and 0.6 for the variance functions es-

timators. As it was stated before, if the estimation of v(·) is negative (which happens

very rarely), we set value 0 for those estimations. The results obtained for model (18) are

given in Table 44 and for model (19) in Table 45.

[Table 44 about here.]

[Table 45 about here.]

Comparing Tables 44 and 45, it can be observed that the results are almost identical

and they are practically the same as those corresponding to the model with homoscedastic

errors (Table 38). We can also see that the degree of smoothing in the estimator of the

variance function does not play an important role in the final results.

In general, we observed that the nonparametric variance estimator V̂NP produced very

good estimates for the variance in this FIA example. The results were close to V̂ST , which

we believe to be a good estimator because the stratification should capture the spatial

trend very well. Both V̂NP and V̂ST were better than V̂SRS. An advantage of using V̂NP

is the flexibility. We can include more auxiliary variables, change the bandwidth (span) of

nonparametric fitting or model the variance of the errors, and further improve the results.

Moreover, the homoscedastic version of the nonparametric estimator appeared to behave

at least as well as the more complicated estimator that captures heteroscedasticity.
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A Assumptions

A.1 The xj’s are treated as fixed with respect to superpopulation model (5). The xj’s are

independent and identically distributed with F (x) =
∫ x

−∞ f(t)dt, where f(·) is a density

function with compact support [ax, bx] and f(x) > 0 for all x ∈ [ax, bx]. The first derivative

of f exists for all x ∈ [ax, bx].

A.2 The third and fourth moments of ej exist and are bounded.

A.3 The sample size n and sampling interval k are positive integers with nk=N. We

assume that n,N →∞ and allow k = O(1) or k →∞.

A.4 As n→∞, we assume h∗ → 0 and nh∗ →∞, where h∗ is hm or hv. Additionally,{
h

2(p+1)
m + (nhm)−1

}
= o (hp+1

v ), hp+1
v = o(nhp+1

m ) and 1

n2h
1/2
v

= o
(

1

n1/2h
1/2
m

)
.

A.5 The kernel function K (·) is a compactly supported, bounded, symmetric kernel with∫
uq+1K(u)du = µq+1(K). Assume that µp+1(K) 6= 0.

A.6 The (p + 1)th derivatives of the mean function m(·) and the variance function v(·)

exist and are bounded on [ax, bx].

B Outline of Proof of Theorem 3.1

Statement (9) is obtained by showing that Var[Varp(ȲS)] = O(1/N). This is done by

computing the variance of the quadratic form in (6) under model (5), and then bounding

each of the terms using assumptions A.1-A.3 and A.6. See Theorem 1.1 in Li (2006) for

details.

In order to prove (10), we write

V̂NP − E[Varp(ȲS)] =
1

Nn
(m̂T Dm̂−mT Dm) +

(
1− n

N

) 1

Nn

∑
j∈U

(v̂(xj)− v(xj))

= A+B. (20)
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The term A in (20) can be broken down into components that are functions of 1
n

∑
j∈Sb

(m̂(xj)−
m(xj))

l for b = 1, . . . , k and 1
N

∑
j∈U(m̂(xj) −m(xj))

l with l = 1, 2. Using the same ap-

proach as in the proof of Theorem 4.1 in Ruppert and Wand (1994) except that we are

treating the xj as fixed, and applying assumptions A.1-A.6, we approximate the required

moments of these quantities. Bounding arguments for the expectation and variance of

each of the components of A show that A = Op(hp+1
m + (nhm)−1/2). Theorem 1.2 in Li

(2006) provides a complete description.

For the term B in (20), the squared residuals are decomposed into r̂j = v(xj)e
2
j +

(m̂(xj)−m(xj))
2−2

√
v(xj)ej(m̂(xj)−m(xj)) = rj +b1j +b2j, with corresponding sample

vectors r̂S = rS + b1S + b2S. Hence, rS contains the true model errors for the sample

observations and does not depend on the first nonparametric regression. Letting ṽ de-

note the local polynomial regression fit using rS instead of r̂S, straightforward moment

approximations and bounding arguments show that(
1− n

N

) 1

Nn

∑
j∈U

(ṽ(xj)− v(xj)) = Op

(
hp+1

v

n
+

1

n2h
1/2
v

)
= op

(
hp+1

m +
1√
nhm

)

by assumption A.4. Using the fact that E(b1j) = O(h2p+2
m + (nhm)−1) and A.4 again, we

can show that the local polynomial regression for b1S is op(hp+1
v ). Similarly, the local

polynomial regression for b2S leads to terms that are of the same or smaller order. Hence,

we conclude that B = op

(
hp+1

m + 1√
nhm

)
.

Finally, statement (11) follows directly from (9) and (10).
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Figure 1: Map of the study region in northern Utah. Each triangle represents a field-
visited phase two sample point. Each dot in the magnified section represents a phase one
sample point.
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Figure 2: Four-per-stratum partition of sample points for computing stratified variance
estimator for systematic sampling.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -0.3127 -0.3511 -0.2291 297.74 300.83 296.88

V̂
lin

L -0.3128 -0.3508 -0.2287 297.74 300.83 296.88

Vho
NP : hm = 0.10 -1.9668 -2.0256 -1.7116 -1.7942 -1.8517 -1.5383

Vho
NP : hm = 0.25 -0.9096 -0.9593 -0.6956 4.9906 5.0035 5.1873

Vho
NP : hm = 0.50 -0.5563 0.5986 -0.3943 54.257 54.790 54.248

VNP : hm = 0.10, hv = 0.10 -2.0708 -2.1382 -2.7455 -1.9034 -1.9694 -2.5848
VNP : hm = 0.10, hv = 0.25 -2.0751 -2.1526 -6.9501 -1.9134 -1.9897 -6.8289
VNP : hm = 0.10, hv = 0.50 -2.1174 -2.2070 -14.536 -1.9576 -2.0460 -14.478
VNP : hm = 0.25, hv = 0.10 -0.9640 -1.0195 -1.7267 4.9498 4.9578 4.1621
VNP : hm = 0.25, hv = 0.25 -0.9955 -1.0603 -5.9868 4.4660 4.4597 -0.5829
VNP : hm = 0.25, hv = 0.50 -1.0479 -1.1235 -13.661 3.9995 3.9783 -8.7312
VNP : hm = 0.50, hv = 0.10 -0.5792 -0.6243 -1.4250 54.966 55.507 53.939
VNP : hm = 0.50, hv = 0.25 -0.6070 -0.6614 -5.6844 53.188 53.700 47.901
VNP : hm = 0.50, hv = 0.50 -0.6734 -0.7384 -13.393 41.711 42.094 28.754

V̂OL -0.6699 -0.7169 -0.4740 0.1673 0.1287 0.3621

V̂NO -0.7085 -0.7540 -0.6797 0.1274 0.0895 0.1554

V̂SRS 328.30 331.63 327.32 298.93 302.03 297.99

Table 1: Simulated relative bias (in percent) with sorting variable R2 = 1, n = 500 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -0.3148 -0.3535 -0.2306 29.510 29.787 29.497

V̂
lin

L -0.3149 -0.3531 -0.2302 29.509 29.787 29.497

Vho
NP : hm = 0.10 -1.9804 -2.0400 -1.7239 -1.9630 -2.0224 -1.7066

Vho
NP : hm = 0.25 -0.9160 -0.9662 -0.7006 -0.3259 -0.3696 -0.1124

Vho
NP : hm = 0.50 -0.5604 -0.6029 -0.3973 4.9252 4.9408 5.0708

VNP : hm = 0.10, hv = 0.10 -2.0852 -2.1534 -2.7653 -2.0683 -2.1363 -2.7492
VNP : hm = 0.10, hv = 0.25 -2.0895 -2.1679 -7.0005 -2.0732 -2.1515 -6.9884
VNP : hm = 0.10, hv = 0.50 -2.1322 -2.2227 -14.642 -2.1160 -2.2064 -14.636
VNP : hm = 0.25, hv = 0.10 -0.9708 -1.0268 -1.7392 -0.3793 -0.4285 -1.1504
VNP : hm = 0.25, hv = 0.25 -1.0025 -1.0679 -6.0302 -0.4565 -0.5156 -5.4901
VNP : hm = 0.25, hv = 0.50 -1.0553 -1.1316 -13.760 -0.5509 -0.6213 -13.267
VNP : hm = 0.50, hv = 0.10 -0.5834 -0.6288 -1.4355 4.9752 4.9899 4.1048
VNP : hm = 0.50, hv = 0.25 -0.6114 -0.6662 -5.7258 4.7717 4.7748 -0.3639
VNP : hm = 0.50, hv = 0.50 -0.6782 -0.7438 -13.491 3.5610 3.5414 -9.2759

V̂OL 0.0455 0.0057 0.2406 0.1299 0.0910 0.3249

V̂NO 0.0062 -0.0321 0.0333 0.0903 0.0526 0.1176

V̂SRS 33.120 33.416 33.030 29.985 30.266 29.893

Table 2: Simulated relative bias (in percent) with sorting variable R2 = 1, n = 500 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -1.9309 -1.9296 -1.6173 296.15 299.08 295.25

V̂
lin

L -1.9291 -1.9257 -1.6059 296.16 299.09 295.27

Vho
NP : hm = 0.10 -10.000 -10.058 -8.9370 -10.158 -10.205 -9.0553

Vho
NP : hm = 0.25 -4.8354 -4.8525 -3.9188 0.9053 0.9458 1.8255

Vho
NP : hm = 0.50 -3.1101 -3.1068 -2.4236 51.644 52.189 52.131

VNP : hm = 0.10, hv = 0.10 -10.530 -10.625 -9.8869 -10.710 -10.796 -10.042
VNP : hm = 0.10, hv = 0.25 -10.587 -10.663 -13.690 -10.774 -10.841 -13.981
VNP : hm = 0.10, hv = 0.50 -10.617 -10.691 -20.491 -10.807 -10.870 -21.016
VNP : hm = 0.25, hv = 0.10 -5.1193 -5.1666 -4.8513 0.6280 0.6365 0.8751
VNP : hm = 0.25, hv = 0.25 -5.3172 -5.3389 -8.9307 -0.0215 0.0099 -3.7877
VNP : hm = 0.25, hv = 0.50 -5.3986 -5.4124 -16.166 -0.5266 -0.4939 -11.692
VNP : hm = 0.50, hv = 0.10 -3.2404 -3.2555 -3.3541 52.269 52.798 51.910
VNP : hm = 0.50, hv = 0.25 -3.4191 -3.4068 -7.4285 50.332 50.874 45.956
VNP : hm = 0.50, hv = 0.50 -3.5718 -3.5516 -14.840 38.725 39.151 26.876

V̂OL -3.3266 -3.3881 -2.4816 0.7037 0.6806 1.5563

V̂NO -3.2996 -3.3637 -3.3716 0.7358 0.6964 0.6481

V̂SRS 320.01 322.91 318.88 301.50 304.46 300.19

Table 3: Simulated relative bias (in percent) with sorting variable R2 = 1, n = 100 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -1.9908 -1.9876 -1.6666 27.889 28.145 28.029

V̂
lin

L -1.9889 -1.9836 -1.6548 27.892 28.151 28.042

Vho
NP : hm = 0.10 -10.312 -10.363 -9.2115 -10.329 -10.376 -9.2240

Vho
NP : hm = 0.25 -4.9880 -5.0026 -4.0408 -4.4144 -4.4236 -3.4689

Vho
NP : hm = 0.50 -3.2075 -3.2020 -2.4984 2.2814 2.3347 2.9594

VNP : hm = 0.10, hv = 0.10 -10.857 -10.948 -10.191 -10.877 -10.964 -10.207
VNP : hm = 0.10, hv = 0.25 -10.916 -10.988 -14.111 -10.936 -11.004 -14.141
VNP : hm = 0.10, hv = 0.50 -10.948 -11.016 -21.121 -10.968 -11.032 -21.175
VNP : hm = 0.25, hv = 0.10 -5.2806 -5.3265 -5.0020 -4.7060 -4.7468 -4.4321
VNP : hm = 0.25, hv = 0.25 -5.4847 -5.5042 -9.2070 -4.9536 -4.9681 -8.6942
VNP : hm = 0.25, hv = 0.50 .5.5686 -5.5799 -16.665 -5.0817 -5.0892 -16.222
VNP : hm = 0.50, hv = 0.10 -3.3418 -3.3554 -3.4575 2.2266 2.2601 2.0717
VNP : hm = 0.50, hv = 0.25 -3.5261 -3.5114 -7.6574 1.8672 1.9281 -2.3146
VNP : hm = 0.50, hv = 0.50 -3.6835 -3.6607 -15.297 0.5548 0.6103 -11.131

V̂OL -0.5290 -0.5618 0.3336 -0.1140 -0.1431 0.7474

V̂NO -0.4941 -0.5304 -0.5720 -0.0810 -0.1178 -0.1606

V̂SRS 32.972 33.217 32.770 30.201 30.468 29.946

Table 4: Simulated relative bias (in percent) with sorting variable R2 = 1, n = 100 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -0.2528 -0.2846 -0.2061 147.28 148.21 147.05

V̂
lin

L -0.2534 -0.2838 -0.1940 147.30 148.23 147.08

Vho
NP : hm = 0.10 -0.7034 -0.8418 -0.6627 -1.1463 -1.2843 -1.1094

Vho
NP : hm = 0.25 -0.4834 -0.5552 -0.4101 -2.4125 -2.5012 -2.3362

Vho
NP : hm = 0.50 -0.3708 -0.4039 -0.2832 13.257 13.309 13.317

VNP : hm = 0.10, hv = 0.10 -0.7926 -0.9308 -1.3498 -1.2329 -1.3709 -1.7665
VNP : hm = 0.10, hv = 0.25 -0.7892 -0.9236 -4.1138 -1.2339 -1.3682 -4.4072
VNP : hm = 0.10, hv = 0.50 -0.8048 -0.9461 -9.0962 -1.2497 -1.3906 -9.1605
VNP : hm = 0.25, hv = 0.10 -0.5276 -0.6026 -1.0860 -2.4015 -2.4932 -2.9285
VNP : hm = 0.25, hv = 0.25 -0.5512 -0.6204 -3.8940 -2.7369 -2.8247 -5.9191
VNP : hm = 0.25, hv = 0.50 -0.5754 -0.6504 -8.9362 -3.0248 -3.1202 -10.992
VNP : hm = 0.50, hv = 0.10 -0.3917 -0.4276 -0.9577 13.812 13.863 13.245
VNP : hm = 0.50, hv = 0.25 -0.4145 -0.4443 -3.7658 12.666 12.717 9.4456
VNP : hm = 0.50, hv = 0.50 -0.4484 -0.4838 -8.8311 5.4618 5.4592 -2.5421

V̂OL 16.815 16.892 16.912 75.122 75.597 75.064

V̂NO 17.264 17.359 17.240 75.859 76.344 75.691

V̂SRS 181.96 183.19 181.59 148.29 149.23 148.02

Table 5: Simulated relative bias (in percent) with sorting variable R2 = 0.75, n = 500
and regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -0.3541 -0.4045 -0.2850 21.931 22.100 21.940

V̂
lin

L -0.3549 -0.4033 -0.2673 21.933 22.105 21.960

Vho
NP : hm = 0.10 -0.9891 -1.1934 -0.9353 -1.0304 -1.2353 -0.9784

Vho
NP : hm = 0.25 -0.7033 -0.8184 -0.5941 -0.9991 -1.1201 -0.8886

Vho
NP : hm = 0.50 -0.5368 -0.5943 -0.4084 1.5158 1.4765 1.6387

VNP : hm = 0.10, hv = 0.10 -1.1187 -1.3232 -1.9332 -1.1593 -1.3644 -1.9694
VNP : hm = 0.10, hv = 0.25 -1.1137 -1.3126 -5.9471 -1.1550 -1.3546 -5.9561
VNP : hm = 0.10, hv = 0.50 -1.1363 -1.3455 -13.183 -1.1777 -1.3874 -13.141
VNP : hm = 0.25, hv = 0.10 -0.7675 -0.8874 -1.5756 -1.0544 -1.1802 -1.8551
VNP : hm = 0.25, hv = 0.25 -0.8018 -0.9135 -5.6536 -1.1356 -1.2535 -5.9515
VNP : hm = 0.25, hv = 0.50 -0.8370 -0.9571 -12.976 -1.2109 -1.3377 -13.263
VNP : hm = 0.50, hv = 0.10 -0.5671 -0.6289 -1.3880 1.5739 1.5305 0.7526
VNP : hm = 0.50, hv = 0.25 -0.6002 -0.6531 -5.4660 1.3713 1.3357 -3.4653
VNP : hm = 0.50, hv = 0.50 -0.6495 -0.7107 -12.822 0.2365 0.1810 -11.852

V̂OL 2.4182 2.3833 2.5779 11.323 11.387 11.437

V̂NO 2.5000 2.4899 2.4834 11.453 11.538 11.395

V̂SRS 26.424 26.644 26.350 22.397 22.568 22.342

Table 6: Simulated relative bias (in percent) with sorting variable R2 = 0.75, n = 500
and regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -1.3784 -1.3505 -1.1660 128.70 129.53 128.66

V̂
lin

L -1.3832 -1.3538 -1.1435 128.77 129.60 128.75

Vho
NP : hm = 0.10 -3.6505 -3.7267 -3.4001 -4.0916 -4.1751 -3.8778

Vho
NP : hm = 0.25 -2.6141 -2.6340 -2.1813 -5.6521 -5.6866 -5.2541

Vho
NP : hm = 0.50 -2.0237 -1.9985 -1.5952 7.8444 7.9283 8.2108

VNP : hm = 0.10, hv = 0.10 -4.4362 -4.4585 -4.3331 -4.7921 -4.8267 -4.7102
VNP : hm = 0.10, hv = 0.25 -4.1650 -4.2227 -6.6840 -4.5566 -4.6235 -6.8217
VNP : hm = 0.10, hv = 0.50 -4.1075 -4.1775 -11.195 -4.5057 -4.5836 -10.860
VNP : hm = 0.25, hv = 0.10 -2.8574 -2.8655 -2.7806 -5.6476 -5.6706 -5.5686
VNP : hm = 0.25, hv = 0.25 -2.9764 -2.9825 -5.5598 -6.1666 -6.1898 -8.4686
VNP : hm = 0.25, hv = 0.50 -3.0311 -3.0337 -10.437 -6.4992 -6.5220 -13.116
VNP : hm = 0.50, hv = 0.10 -2.1011 -2.0621 -2.1603 8.9888 9.0864 8.9140
VNP : hm = 0.50, hv = 0.25 -2.2424 -2.1997 -4.9453 7.6463 7.7432 5.2087
VNP : hm = 0.50, hv = 0.50 -2.3738 -2.3274 -9.9636 0.4276 0.4818 -6.3686

V̂OL 17.632 17.739 17.959 64.660 64.913 64.971

V̂NO 15.707 15.748 15.544 62.460 62.680 62.353

V̂SRS 181.94 183.21 181.57 132.75 133.59 132.52

Table 7: Simulated relative bias (in percent) with sorting variable R2 = 0.75, n = 100
and regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -1.9822 -1.9483 -1.6699 18.800 19.044 19.049

V̂
lin

L -1.9891 -1.9532 -1.6372 18.803 19.048 19.092

Vho
NP : hm = 0.10 -5.2695 -5.3991 -4.8979 -5.2867 -5.4208 -4.9269

Vho
NP : hm = 0.25 -3.7963 -3.8362 -3.1596 -4.2749 -4.3179 -3.6449

Vho
NP : hm = 0.50 -2.9304 -2.9068 -2.3021 -1.3523 -1.3128 -0.7387

VNP : hm = 0.10, hv = 0.10 -6.4156 -6.4700 -6.2575 -6.4128 -6.4726 -6.2630
VNP : hm = 0.10, hv = 0.25 -6.0200 -6.1250 -9.6836 -6.0251 -6.1349 -9.6329
VNP : hm = 0.10, hv = 0.50 -5.9361 -6.0588 -16.257 -5.9427 -6.0699 -16.096
VNP : hm = 0.25, hv = 0.10 -4.1512 -4.1750 -4.0330 -4.5852 -4.6122 -4.4651
VNP : hm = 0.25, hv = 0.25 -4.3248 -4.3461 -8.0834 -4.8235 -4.8486 -8.5153
VNP : hm = 0.25, hv = 0.50 -4.4046 -4.4211 -15.191 -4.9478 -4.9690 -15.549
VNP : hm = 0.50, hv = 0.10 -3.0433 -2.9998 -3.1257 -1.2573 -1.1994 -1.3443
VNP : hm = 0.50, hv = 0.25 -3.2495 -3.2012 -7.1844 -1.6605 -1.5982 -5.5342
VNP : hm = 0.50, hv = 0.50 -3.4411 -3.3880 -14.498 -2.9899 -2.9355 -13.861

V̂OL 2.3395 2.3290 2.8992 10.096 10.096 10.677

V̂NO 1.9519 1.8583 1.8061 9.6582 9.5902 9.5549

V̂SRS 26.263 26.570 26.190 20.971 21.224 20.917

Table 8: Simulated relative bias (in percent) with sorting variable R2 = 0.75, n = 100
and regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -0.2064 -0.1801 -0.1899 -61.523 -61.577 -61.499

V̂
lin

L -0.2063 -0.1766 -0.1839 -61.510 -61.563 -61.485

Vho
NP : hm = 0.10 -0.2661 -0.3652 -0.3429 -1.4390 -1.4457 -1.4439

Vho
NP : hm = 0.25 -0.1614 -0.2269 -0.2169 -12.872 -12.887 -12.871

Vho
NP : hm = 0.50 -0.2080 -0.2391 -0.1828 -41.996 -42.037 -41.975

VNP : hm = 0.10, hv = 0.10 -0.3565 -0.4474 -0.9467 -1.4546 -1.4599 -1.5470
VNP : hm = 0.10, hv = 0.25 -0.3477 -0.4325 -3.3561 -1.4538 -1.4580 -1.9582
VNP : hm = 0.10, hv = 0.50 -0.3474 -0.4356 -7.6904 -1.4539 -1.4588 -2.6969
VNP : hm = 0.25, hv = 0.10 -0.2071 -0.2659 -0.8090 -12.872 -12.886 -12.964
VNP : hm = 0.25, hv = 0.25 -0.2210 -0.2720 -3.2551 -12.921 -12.934 -13.427
VNP : hm = 0.25, hv = 0.50 -0.2302 -0.2840 -7.6430 -12.965 -12.979 -14.218
VNP : hm = 0.50, hv = 0.10 -0.2315 -0.2549 -0.7723 -41.865 -41.905 -41.941
VNP : hm = 0.50, hv = 0.25 -0.2444 -0.2597 -3.2184 -42.051 -42.090 -42.542
VNP : hm = 0.50, hv = 0.50 -0.2640 -0.2822 -7.6283 -43.191 -43.232 -44.430

V̂OL 98.785 99.368 98.638 -63.386 -63.448 -63.363

V̂NO 97.473 98.117 97.310 -61.386 -61.437 -61.368

V̂SRS 146.59 147.51 146.31 -61.380 -61.434 -61.362

Table 9: Simulated relative bias (in percent) with sorting variable R2 = 0.25, n = 500
and regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -0.3154 -0.2796 -0.2918 -32.985 -33.136 -32.915

V̂
lin

L -0.3153 -0.2738 -0.2819 -32.978 -33.126 -32.902

Vho
NP : hm = 0.10 -0.3252 -0.5208 -0.4717 -0.9691 -1.0621 -1.0366

Vho
NP : hm = 0.25 -0.1607 -0.2944 -0.2700 -6.9808 -7.0778 -7.0199

Vho
NP : hm = 0.50 -0.2735 -0.3479 -0.2455 -22.554 -22.706 -22.497

VNP : hm = 0.10, hv = 0.10 -0.4725 -0.6550 -1.4539 -1.0513 -1.1367 -1.5848
VNP : hm = 0.10, hv = 0.25 -0.4582 -0.6307 -5.3727 -1.0436 -1.1236 -3.7721
VNP : hm = 0.10, hv = 0.50 -0.4577 -0.6357 -12.423 -1.0435 -1.1265 -7.7063
VNP : hm = 0.25, hv = 0.10 -0.2352 -0.3580 -1.2331 -7.0182 -7.1089 -7.5532
VNP : hm = 0.25, hv = 0.25 -0.2577 -0.3682 -5.2117 -7.0553 -7.1393 -9.7980
VNP : hm = 0.25, hv = 0.50 -0.2727 -0.3877 -12.349 -7.0868 -7.1734 -13.804
VNP : hm = 0.50, hv = 0.10 -0.3116 -0.3738 -1.2044 -22.505 -22.649 -22.961
VNP : hm = 0.50, hv = 0.25 -0.3327 -0.3815 -5.1830 -22.614 -22.751 -25.278
VNP : hm = 0.50, hv = 0.50 -0.3647 -0.4183 -12.356 -23.238 -23.382 -29.887

V̂OL 16.115 16.274 16.090 -33.811 -33.987 -33.747

V̂NO 15.910 16.151 15.867 -32.728 -32.857 -32.678

V̂SRS 23.862 24.144 23.764 -32.743 -32.894 -32.705

Table 10: Simulated relative bias (in percent) with sorting variable R2 = 0.25, n = 500
and regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -0.6368 -0.6108 -0.5631 -22.671 -22.725 -22.626

V̂
lin

L -0.6388 -0.6022 -0.5159 -22.342 -22.388 -22.275

Vho
NP : hm = 0.10 -1.4003 -1.7870 -1.5716 -1.5914 -1.8646 -1.7554

Vho
NP : hm = 0.25 -0.9841 -1.0562 -0.9385 -10.508 -10.597 -10.510

Vho
NP : hm = 0.50 -0.8339 -0.8294 -0.6742 -32.190 -32.267 -32.101

VNP : hm = 0.10, hv = 0.10 -2.0578 -2.4309 -2.2522 -1.9072 -2.1732 -2.0826
VNP : hm = 0.10, hv = 0.25 -1.8413 -2.2327 -3.6647 -1.8055 -2.0806 -2.7665
VNP : hm = 0.10, hv = 0.50 -1.7714 -2.1569 -6.4827 -1.7723 -2.0446 -4.1259
VNP : hm = 0.25, hv = 0.10 -1.2092 -1.2642 -1.3330 -10.536 -10.616 -10.620
VNP : hm = 0.25, hv = 0.25 -1.2794 -1.3483 -3.0519 -10.706 -10.793 -11.585
VNP : hm = 0.25, hv = 0.50 -1.3046 -1.3661 -6.1250 -10.821 -10.905 -13.169
VNP : hm = 0.50, hv = 0.10 -0.9206 -0.9034 -1.0329 -31.641 -31.712 -31.688
VNP : hm = 0.50, hv = 0.25 -1.0114 -1.0009 -2.7599 -32.131 -32.204 -32.965
VNP : hm = 0.50, hv = 0.50 -1.0937 -1.0741 -5.9242 -34.614 -34.689 -36.931

V̂OL 44.076 44.348 44.063 -23.118 -23.215 -23.070

V̂NO 39.375 39.643 39.271 -22.757 -22.837 -22.766

V̂SRS 77.575 77.932 77.426 -21.502 -21.557 -21.503

Table 11: Simulated relative bias (in percent) with sorting variable R2 = 0.25, n = 100
and regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L -1.3670 -1.3170 -1.1865 -9.1613 -9.2040 -9.0025

V̂
lin

L -1.3712 -1.2985 -1.0859 -9.0470 -9.0678 -8.8044

Vho
NP : hm = 0.10 -2.9013 -3.7375 -3.2654 -2.5725 -3.3486 -2.9622

Vho
NP : hm = 0.25 -2.0850 -2.2513 -1.9732 -5.2698 -5.4684 -5.2053

Vho
NP : hm = 0.50 -1.7834 -1.7828 -1.4208 -12.898 -12.996 -12.586

VNP : hm = 0.10, hv = 0.10 -4.3043 -5.1182 -4.7158 -3.7131 -4.4691 -4.1421
VNP : hm = 0.10, hv = 0.25 -3.8423 -4.6933 -7.7256 -3.3384 -4.1253 -6.5926
VNP : hm = 0.10, hv = 0.50 -3.6933 -4.5307 -13.730 -3.2173 -3.9934 -11.480
VNP : hm = 0.25, hv = 0.10 -2.5653 -2.6973 -2.8137 -5.6311 -5.8010 -5.8610
VNP : hm = 0.25, hv = 0.25 -2.7153 -2.8777 -6.4766 -5.8022 -5.9969 -8.8906
VNP : hm = 0.25, hv = 0.50 -2.7690 -2.9159 -13.025 -5.8820 -6.0646 -14.256
VNP : hm = 0.50, hv = 0.10 -1.9685 -1.9415 -2.1852 -12.829 -12.907 -12.995
VNP : hm = 0.50, hv = 0.25 -2.1622 -2.1505 -5.8653 -13.150 -13.239 -16.151
VNP : hm = 0.50, hv = 0.50 -2.3379 -2.3074 -12.608 -14.171 -14.252 -22.513

V̂OL 9.3733 9.5301 9.5384 -8.4247 -8.5327 -8.2360

V̂NO 8.4007 8.5532 8.3179 -8.3273 -8.4210 -8.3533

V̂SRS 16.558 16.765 16.475 -7.7409 -7.7805 -7.7443

Table 12: Simulated relative bias (in percent) with sorting variable R2 = 0.25, n = 100
and regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9304 0.9456 0.9601 2099.3 1637.5 1787.0

V̂
lin

L 0.9304 0.9454 0.9601 2099.3 1637.5 1787.0

Vho
NP : hm = 0.25 0.9398 0.9524 0.9630 1.5273 1.4042 1.5105

Vho
NP : hm = 0.50 0.9326 0.9471 0.9605 70.627 55.243 60.610

VNP : hm = 0.10, hv = 0.10 1.0221 1.0360 1.0843 1.0219 1.0360 1.0779
VNP : hm = 0.10, hv = 0.25 1.0440 1.0950 1.8254 1.0449 1.0962 1.7983
VNP : hm = 0.10, hv = 0.50 1.0967 1.2209 4.9348 1.0980 1.2235 4.8918
VNP : hm = 0.25, hv = 0.10 0.9557 0.9837 1.0045 1.5318 1.4259 1.3072
VNP : hm = 0.25, hv = 0.25 0.9782 1.0436 1.5836 1.4453 1.3997 0.8741
VNP : hm = 0.25, hv = 0.50 1.0289 1.1685 4.4417 1.4039 1.4535 2.2054
VNP : hm = 0.50, hv = 0.10 0.9477 0.9781 0.9894 72.480 56.711 59.916
VNP : hm = 0.50, hv = 0.25 0.9695 1.0377 1.5160 67.951 53.203 47.391
VNP : hm = 0.50, hv = 0.50 1.0198 1.1627 4.2980 42.240 33.241 17.4373

V̂OL 1.4072 1.4324 1.4571 1.4204 1.4425 1.4728

V̂NO 1.8900 1.9256 1.9686 1.9115 1.9430 1.9849

V̂SRS 2550.8 1994.8 2179.5 2116.1 1650.4 1800.4

Table 13: Comparisons between MSEs with sorting variable R2 = 1, n = 500 and regres-
sion model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9303 0.9458 0.9600 21.723 17.188 18.697

V̂
lin

L 0.9303 0.9456 0.9600 21.723 17.188 18.697

Vho
NP : hm = 0.25 0.9398 0.9526 0.9630 0.9244 0.9402 0.9547

Vho
NP : hm = 0.50 0.9326 0.9473 0.9606 1.5086 1.3918 1.4844

VNP : hm = 0.10, hv = 0.10 1.0222 1.0360 1.0843 1.0221 1.0360 1.0836
VNP : hm = 0.10, hv = 0.25 1.0441 1.0951 1.825 1.0443 1.0952 1.8227
VNP : hm = 0.10, hv = 0.50 1.0967 1.2210 4.9346 1.0968 1.2212 4.9305
VNP : hm = 0.25, hv = 0.10 0.9558 0.9839 1.0045 0.9389 0.9703 0.9717
VNP : hm = 0.25, hv = 0.25 0.9782 1.0438 1.5835 0.9615 1.0302 1.4600
VNP : hm = 0.25, hv = 0.50 1.0289 1.1687 4.4416 1.0119 1.1551 4.1751
VNP : hm = 0.50, hv = 0.10 0.9478 0.9784 0.9894 1.5360 1.4325 1.2971
VNP : hm = 0.50, hv = 0.25 0.9696 1.0379 1.5160 1.5101 1.4531 0.8747
VNP : hm = 0.50, hv = 0.50 1.0198 1.1629 4.2980 1.3184 1.3902 2.3827

V̂OL 1.3965 1.4232 1.4536 1.3991 1.4253 1.4563

V̂NO 1.8781 1.9159 1.9594 1.8816 1.9189 1.9623

V̂SRS 27.049 21.330 23.108 22.390 17.699 19.174

Table 14: Comparisons between MSEs with sorting variable R2 = 1, n = 500 and regres-
sion model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.6929 0.7574 0.7833 316.90 270.34 299.58

V̂
lin

L 0.6927 0.7569 0.7832 316.91 270.36 299.61

Vho
NP : hm = 0.25 0.7473 0.7958 0.8121 0.6750 0.7380 0.7781

Vho
NP : hm = 0.50 0.7064 0.7655 0.7899 10.307 8.9677 10.102

VNP : hm = 0.10, hv = 0.10 1.0404 1.0426 1.0569 1.0407 1.0429 1.0566
VNP : hm = 0.10, hv = 0.25 1.0584 1.0928 1.3107 1.0591 1.0942 1.3089
VNP : hm = 0.10, hv = 0.50 1.1011 1.1878 2.0036 1.1029 1.1911 2.0017
VNP : hm = 0.25, hv = 0.10 0.7615 0.8177 0.8342 0.6777 0.7494 0.7619
VNP : hm = 0.25, hv = 0.25 0.7821 0.8734 0.9630 0.6885 0.7984 0.7334
VNP : hm = 0.25, hv = 0.50 0.8259 0.9727 1.4635 0.7337 0.9007 0.9979
VNP : hm = 0.50, hv = 0.10 0.7165 0.7855 0.8020 10.554 9.1836 10.009
VNP : hm = 0.50, hv = 0.25 0.7333 0.8388 0.8862 9.8527 8.6355 7.9593
VNP : hm = 0.50, hv = 0.50 0.7782 0.9407 1.3240 6.1807 5.5669 3.0334

V̂OL 1.1029 1.1962 1.2416 1.0809 1.1806 1.2417

V̂NO 1.4544 1.6030 1.6525 1.4610 1.6077 1.6458

V̂SRS 389.02 331.86 368.40 328.38 280.02 309.63

Table 15: Comparisons between MSEs with sorting variable R2 = 1, n = 100 and regres-
sion model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.6943 0.7595 0.7834 3.8196 3.4297 3.6903

V̂
lin

L 0.6940 0.7590 0.7833 3.8200 3.4297 3.6927

Vho
NP : hm = 0.25 0.7481 0.7973 0.8120 0.7296 0.7824 0.7982

Vho
NP : hm = 0.50 0.7076 0.7676 0.7899 0.7030 0.7666 0.8081

VNP : hm = 0.10, hv = 0.10 1.0405 1.0428 1.0569 1.0405 1.0428 1.0569
VNP : hm = 0.10, hv = 0.25 1.0585 1.0932 1.3107 1.0585 1.0933 1.3104
VNP : hm = 0.10, hv = 0.50 1.1015 1.1886 2.0037 1.1016 1.1891 2.0034
VNP : hm = 0.25, hv = 0.10 0.7624 0.8194 0.8341 0.7427 0.8034 0.8164
VNP : hm = 0.25, hv = 0.25 0.7829 0.8752 0.9630 0.7638 0.8599 0.9312
VNP : hm = 0.25, hv = 0.50 0.8269 0.9749 1.4636 0.8093 0.9613 1.4101
VNP : hm = 0.50, hv = 0.10 0.7177 0.7877 0.8020 0.7100 0.7839 0.7850
VNP : hm = 0.50, hv = 0.25 0.7345 0.8411 0.8862 0.7165 0.8294 0.7153
VNP : hm = 0.50, hv = 0.50 0.7796 0.9433 1.3241 0.7429 0.9158 0.9539

V̂OL 1.0646 1.1644 1.2197 1.0651 1.1657 1.2224

V̂NO 1.4122 1.5678 1.6076 1.4162 1.5705 1.6108

V̂SRS 4.9969 4.4203 4.6747 4.3246 3.8562 4.0902

Table 16: Comparisons between MSEs with sorting variable R2 = 1, n = 100 and regres-
sion model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.5348 0.5062 0.8135 368.36 370.94 331.91

V̂
lin

L 0.5348 0.4984 0.8137 368.44 370.98 332.04

Vho
NP : hm = 0.25 0.6366 0.6084 0.8278 0.4952 0.5535 0.4874

Vho
NP : hm = 0.50 0.5611 0.5270 0.8103 3.3565 3.4276 3.0669

VNP : hm = 0.10, hv = 0.10 1.0164 1.0158 1.0416 1.0082 1.0045 1.0182
VNP : hm = 0.10, hv = 0.25 1.0205 1.0396 1.5259 1.0127 1.0255 1.2388
VNP : hm = 0.10, hv = 0.50 1.0499 1.0970 3.8129 1.0292 1.0680 2.1676
VNP : hm = 0.25, hv = 0.10 0.6503 0.6212 0.8538 0.5000 0.5555 0.5043
VNP : hm = 0.25, hv = 0.25 0.6560 0.6471 1.2964 0.5309 0.6057 0.8804
VNP : hm = 0.25, hv = 0.50 0.6854 0.7067 3.5405 0.5771 0.6786 2.1419
VNP : hm = 0.50, hv = 0.10 0.5733 0.5380 0.8303 3.6300 3.6965 3.0460
VNP : hm = 0.50, hv = 0.25 0.5801 0.5658 1.2470 3.1115 3.1987 1.6964
VNP : hm = 0.50, hv = 0.50 0.6100 0.6268 3.4586 0.9094 1.0167 0.3456

V̂OL 10.163 7.5920 14.204 98.031 98.665 88.484

V̂NO 11.556 8.6492 15.982 100.64 101.29 90.536

V̂SRS 907.41 676.78 1224.8 373.39 375.96 336.25

Table 17: Comparisons between MSEs with sorting variable R2 = 0.75, n = 500 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.8862 0.8896 0.9575 11.601 9.7939 9.9758

V̂
lin

L 0.8864 0.8739 0.9578 11.603 9.7709 9.9922

Vho
NP : hm = 0.25 0.9120 0.9139 0.9637 0.8021 0.8581 0.8180

Vho
NP : hm = 0.50 0.8925 0.8945 0.9574 0.8412 0.8882 0.8516

VNP : hm = 0.10, hv = 0.10 1.0272 1.0274 1.0507 1.0218 1.0225 1.0416
VNP : hm = 0.10, hv = 0.25 1.0391 1.0793 1.6573 1.0341 1.0737 1.5495
VNP : hm = 0.10, hv = 0.50 1.0937 1.1937 4.5300 1.0808 1.1801 3.9312
VNP : hm = 0.25, hv = 0.10 0.9357 0.9369 0.9969 0.8230 0.8784 0.8490
VNP : hm = 0.25, hv = 0.25 0.9492 0.9906 1.5554 0.8374 0.9322 1.3635
VNP : hm = 0.25, hv = 0.50 1.0037 1.1068 4.3817 0.8874 1.0435 3.8068
VNP : hm = 0.50, hv = 0.10 0.9149 0.9160 0.9829 0.8677 0.9119 0.8045
VNP : hm = 0.50, hv = 0.25 0.9291 0.9709 1.5078 0.8627 0.9512 0.937
VNP : hm = 0.50, hv = 0.50 0.9837 1.0880 4.2918 0.8646 1.0254 3.1460

V̂OL 1.7004 1.5634 1.7740 4.3742 3.8501 3.9341

V̂NO 2.2256 2.0366 2.2609 4.9507 4.4007 4.3703

V̂SRS 18.563 14.363 16.612 12.054 10.158 10.310

Table 18: Comparisons between MSEs with sorting variable R2 = 0.75, n = 500 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.7732 0.7918 0.7727 121.48 107.87 148.55

V̂
lin

L 0.7748 0.7796 0.7741 121.60 107.93 148.74

Vho
NP : hm = 0.25 0.8119 0.8270 0.8135 0.8774 0.8955 1.0510

Vho
NP : hm = 0.50 0.7850 0.8056 0.7727 1.1667 1.1828 1.5127

VNP : hm = 0.10, hv = 0.10 1.0857 1.0712 1.0733 1.0705 1.0628 1.0829
VNP : hm = 0.10, hv = 0.25 1.0538 1.0714 1.1596 1.0519 1.0676 1.2030
VNP : hm = 0.10, hv = 0.50 1.0777 1.1463 1.5751 1.0673 1.1250 1.6800
VNP : hm = 0.25, hv = 0.10 0.8786 0.8851 0.8640 0.9264 0.9399 1.1200
VNP : hm = 0.25, hv = 0.25 0.8563 0.8910 0.9218 0.9401 0.9723 1.3577
VNP : hm = 0.25, hv = 0.50 0.8821 0.9690 1.3083 0.9974 1.0658 2.0763
VNP : hm = 0.50, hv = 0.10 0.8526 0.8676 0.8180 1.4207 1.4092 1.7300
VNP : hm = 0.50, hv = 0.25 0.8260 0.8693 0.8516 1.1958 1.2322 1.1279
VNP : hm = 0.50, hv = 0.50 0.8539 0.9490 1.2136 0.7534 0.8773 0.9889

V̂OL 6.0059 4.8903 5.5992 36.457 32.193 44.724

V̂NO 6.6147 5.3951 6.0676 36.084 31.864 43.691

V̂SRS 262.97 208.00 230.23 128.87 114.34 157.16

Table 19: Comparisons between MSEs with sorting variable R2 = 0.75, n = 100 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.8893 0.9209 0.9250 2.9748 2.5978 2.7833

V̂
lin

L 0.8915 0.9054 0.9270 2.9792 2.5794 2.7925

Vho
NP : hm = 0.25 0.9159 0.9344 0.9395 0.9060 0.9277 0.9583

Vho
NP : hm = 0.50 0.9000 0.9253 0.9292 0.8510 0.8935 0.9277

VNP : hm = 0.10, hv = 0.10 1.1092 1.0885 1.0902 1.1042 1.0854 1.0902
VNP : hm = 0.10, hv = 0.25 1.0698 1.0920 1.2005 1.0700 1.0912 1.2045
VNP : hm = 0.10, hv = 0.50 1.1039 1.1904 1.7336 1.1014 1.1845 1.7430
VNP : hm = 0.25, hv = 0.10 1.0011 1.0075 1.0025 0.9873 0.9983 1.0240
VNP : hm = 0.25, hv = 0.25 0.9744 1.0174 1.0770 0.9657 1.0107 1.1191
VNP : hm = 0.25, hv = 0.50 1.0107 1.1196 1.5742 1.0054 1.1123 1.6570
VNP : hm = 0.50, hv = 0.10 0.9871 1.0041 0.9872 0.9408 0.9748 0.9821
VNP : hm = 0.50, hv = 0.25 0.9542 1.0082 1.0298 0.9022 0.9725 0.9685
VNP : hm = 0.50, hv = 0.50 0.9914 1.1116 1.4933 0.9520 1.0813 1.4539

V̂OL 1.5454 1.5071 1.5698 2.2099 2.0115 2.2037

V̂NO 2.0277 1.9667 1.9863 2.6973 2.4803 2.5897

V̂SRS 4.7534 3.9486 4.0578 3.4147 2.9422 3.1309

Table 20: Comparisons between MSEs with sorting variable R2 = 0.75, n = 100 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.1748 0.2295 0.3573 114.05 121.56 214.80

V̂
lin

L 0.1747 0.2266 0.3571 114.00 121.52 214.70

Vho
NP : hm = 0.25 0.7561 0.6627 0.8679 5.5855 5.8220 10.024

Vho
NP : hm = 0.50 0.4633 0.4013 0.7191 53.302 56.757 100.30

VNP : hm = 0.10, hv = 0.10 1.0025 1.0045 0.9652 1.0011 0.9999 1.0036
VNP : hm = 0.10, hv = 0.25 1.0067 1.0160 1.1152 1.0021 1.0010 1.0836
VNP : hm = 0.10, hv = 0.50 1.0125 1.0374 1.8735 1.0025 1.0029 1.2768
VNP : hm = 0.25, hv = 0.10 0.7585 0.6668 0.8296 5.5859 5.8241 10.167
VNP : hm = 0.25, hv = 0.25 0.7621 0.6786 0.9716 5.6230 5.8630 10.856
VNP : hm = 0.25, hv = 0.50 0.7677 0.7002 1.7280 5.6597 5.9041 12.085
VNP : hm = 0.50, hv = 0.10 0.4658 0.4047 0.6774 52.978 56.411 100.15
VNP : hm = 0.50, hv = 0.25 0.4692 0.4167 0.8166 53.446 56.907 103.02
VNP : hm = 0.50, hv = 0.50 0.4751 0.4389 1.5743 56.361 60.021 112.30

V̂OL 99.235 103.98 165.77 121.31 129.32 228.46

V̂NO 97.720 102.51 162.94 114.22 121.72 215.07

V̂SRS 217.84 228.35 363.45 113.52 121.00 213.85

Table 21: Comparisons between MSEs with sorting variable R2 = 0.25, n = 500 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.6154 0.7029 0.8275 11.232 11.506 18.797

V̂
lin

L 0.6153 0.6911 0.8272 11.228 11.508 18.783

Vho
NP : hm = 0.25 0.8801 0.8660 0.9610 1.1612 1.1068 1.5998

Vho
NP : hm = 0.50 0.7427 0.7638 0.9211 5.4779 5.5891 9.1398

VNP : hm = 0.10, hv = 0.10 1.0140 1.0138 0.9074 1.0031 1.0031 0.9770
VNP : hm = 0.10, hv = 0.25 1.0261 1.0562 1.2846 1.0068 1.0125 1.1568
VNP : hm = 0.10, hv = 0.50 1.0550 1.1400 3.2426 1.0118 1.0302 1.8897
VNP : hm = 0.25, hv = 0.10 0.8940 0.8797 0.8576 1.1686 1.1168 1.7009
VNP : hm = 0.25, hv = 0.25 0.9054 0.9230 1.2153 1.1755 1.1294 2.3425
VNP : hm = 0.25, hv = 0.50 0.9338 1.0070 3.1695 1.1865 1.1540 3.9113
VNP : hm = 0.50, hv = 0.10 0.7573 0.7774 0.8143 5.4589 5.5694 9.4686
VNP : hm = 0.50, hv = 0.25 0.7686 0.8211 1.1685 5.5099 5.6254 11.353
VNP : hm = 0.50, hv = 0.50 0.7975 0.9059 3.1313 5.7973 5.9360 15.628

V̂OL 5.8269 5.2109 5.7090 11.895 12.193 19.884

V̂NO 6.1884 5.5939 5.9858 11.289 11.543 18.841

V̂SRS 10.868 9.5747 10.304 11.072 11.342 18.564

Table 22: Comparisons between MSEs with sorting variable R2 = 0.25, n = 500 and
regression model R2 = 0.25.

50



Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.7474 0.7864 0.7044 4.6722 6.0761 7.7511

V̂
lin

L 0.7487 0.7680 0.7045 4.5854 5.9466 7.5854

Vho
NP : hm = 0.25 0.7864 0.8325 0.7101 1.4846 1.8333 2.1642

Vho
NP : hm = 0.50 0.7542 0.8010 0.6856 8.2262 10.634 13.999

VNP : hm = 0.10, hv = 0.10 1.0381 1.0229 1.0029 1.0105 1.0126 1.0062
VNP : hm = 0.10, hv = 0.25 1.0240 1.0256 1.0368 1.0074 1.0123 1.0353
VNP : hm = 0.10, hv = 0.50 1.0347 1.0675 1.2511 1.0083 1.0225 1.1363
VNP : hm = 0.25, hv = 0.10 0.8202 0.8531 0.6998 1.4994 1.8470 2.1994
VNP : hm = 0.25, hv = 0.25 0.8074 0.8559 0.7188 1.5177 1.8768 2.4552
VNP : hm = 0.25, hv = 0.50 0.8188 0.8995 0.9228 1.5396 1.9135 2.9381
VNP : hm = 0.50, hv = 0.10 0.7887 0.8255 0.6715 7.9801 10.310 13.680
VNP : hm = 0.50, hv = 0.25 0.7742 0.8256 0.6805 8.2068 10.607 14.733
VNP : hm = 0.50, hv = 0.50 0.7856 0.8690 0.8758 9.4508 12.219 18.286

V̂OL 24.335 22.303 23.892 5.2750 6.4877 8.7567

V̂NO 22.897 21.032 22.550 6.0295 7.8604 10.038

V̂SRS 64.250 58.331 63.418 4.3018 5.5917 7.1295

Table 23: Comparisons between MSEs with sorting variable R2 = 0.75, n = 100 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.8841 0.9264 0.9211 0.9277 1.1003 1.1238

V̂
lin

L 0.8872 0.8890 0.9212 0.9256 1.0688 1.1122

Vho
NP : hm = 0.25 0.9030 0.9362 0.9244 0.8428 0.9451 0.9748

Vho
NP : hm = 0.50 0.8853 0.9252 0.9192 1.1549 1.3148 1.4586

VNP : hm = 0.10, hv = 0.10 1.0917 1.0495 1.0047 1.0446 1.0353 1.0041
VNP : hm = 0.10, hv = 0.25 1.0581 1.0539 1.0697 1.0292 1.0380 1.0576
VNP : hm = 0.10, hv = 0.50 1.0822 1.1424 1.4820 1.0394 1.0928 1.3578
VNP : hm = 0.25, hv = 0.10 0.9855 0.9809 0.9044 0.8955 0.9859 0.9854
VNP : hm = 0.25, hv = 0.25 0.9550 0.9850 0.9402 0.8814 0.9903 1.1071
VNP : hm = 0.25, hv = 0.50 0.9817 1.0775 1.3365 0.8952 1.0504 1.5575
VNP : hm = 0.50, hv = 0.10 0.9701 0.9785 0.8937 1.1983 1.3499 1.4963
VNP : hm = 0.50, hv = 0.25 0.9358 0.9776 0.9093 1.2036 1.3724 1.8274
VNP : hm = 0.50, hv = 0.50 0.9628 1.0697 1.2892 1.3020 1.5157 2.8031

V̂OL 2.2953 2.0817 1.9940 1.2039 1.3724 1.4584

V̂NO 2.8031 2.5147 2.4105 1.5601 1.7829 1.8761

V̂SRS 2.7954 2.4585 2.2453 0.8549 1.0267 1.0458

Table 24: Comparisons between MSEs with sorting variable R2 = 0.25, n = 100 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9996 0.9996 0.9993 14.311 14.495 14.458

V̂
lin

L 0.9996 0.9996 0.9993 14.311 14.495 14.458

Vho
NP : hm = 0.25 0.9996 0.9996 0.9998 1.0042 1.0044 1.0054

Vho
NP : hm = 0.50 0.9996 0.9996 0.9997 1.4481 1.4556 1.4607

VNP : hm = 0.10, hv = 0.10 1.0001 1.0001 1.0003 1.0001 1.0001 1.0003
VNP : hm = 0.10, hv = 0.25 1.0005 1.0008 1.0052 1.0004 1.0007 1.0049
VNP : hm = 0.10, hv = 0.50 1.0004 1.0013 1.0261 1.0003 1.0012 1.0255
VNP : hm = 0.25, hv = 0.10 0.9996 0.9997 0.9998 1.0041 1.0044 1.0036
VNP : hm = 0.25, hv = 0.25 1.0000 1.0004 1.0034 1.0037 1.0042 0.9994
VNP : hm = 0.25, hv = 0.50 0.9999 1.0009 1.0225 1.0030 1.0041 1.0067
VNP : hm = 0.50, hv = 0.10 0.9996 0.9998 0.9997 1.4598 1.4676 1.4554
VNP : hm = 0.50, hv = 0.25 1.0000 1.0004 1.0029 1.4312 1.4386 1.3603
VNP : hm = 0.50, hv = 0.50 0.9999 1.0009 1.0214 1.2665 1.2721 1.1303

V̂OL 1.0053 1.0071 1.0068 1.0055 1.0073 1.0070

V̂NO 1.0087 1.0116 1.0113 1.0090 1.0119 1.0117

V̂SRS 17.157 17.389 17.353 14.417 14.600 14.5582

Table 25: Comparisons between MSPEs of with sorting variable R2 = 1, n = 500 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9996 0.9996 0.9994 1.1376 1.1407 1.1412

V̂
lin

L 0.9996 0.9996 0.9994 1.1376 1.1407 1.1412

Vho
NP : hm = 0.25 0.9996 0.9996 0.9998 0.9996 0.9997 0.9999

Vho
NP : hm = 0.50 0.9996 0.9996 0.9998 1.0041 1.0045 1.0052

VNP : hm = 0.10, hv = 0.10 1.0001 1.0001 1.0003 1.0001 1.0001 1.0003
VNP : hm = 0.10, hv = 0.25 1.0004 1.0008 1.0052 1.0004 1.0007 1.0051
VNP : hm = 0.10, hv = 0.50 1.0003 1.0013 1.0262 1.0003 1.0012 1.0261
VNP : hm = 0.25, hv = 0.10 0.9996 0.9998 0.9998 0.9996 0.9998 0.9997
VNP : hm = 0.25, hv = 0.25 1.0000 1.0004 1.0034 1.0000 1.0004 1.0026
VNP : hm = 0.25, hv = 0.50 0.9999 1.0009 1.0226 0.9998 1.0008 1.0206
VNP : hm = 0.50, hv = 0.10 0.9997 0.9998 0.9997 1.0043 1.0047 1.0035
VNP : hm = 0.50, hv = 0.25 1.0000 1.0004 1.0029 1.0043 1.0049 0.9994
VNP : hm = 0.50, hv = 0.50 0.9999 1.0009 1.0215 1.0024 1.0036 1.0079

V̂OL 1.0053 1.0072 1.0069 1.0054 1.0072 1.0070

V̂NO 1.0088 1.0117 1.0115 1.0088 1.0118 1.0116

V̂SRS 1.1697 1.1716 1.1743 1.1418 1.1439 1.1449

Table 26: Comparisons between MSPEs of with sorting variable R2 = 1, n = 500 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9407 0.9445 0.9554 68.138 65.756 66.590

V̂
lin

L 0.9406 0.9445 0.9553 68.141 65.759 66.597

Vho
NP : hm = 0.25 0.9510 0.9527 0.9631 0.9345 0.9361 0.9542

Vho
NP : hm = 0.50 0.9429 0.9460 0.9585 2.9939 2.9169 3.0102

VNP : hm = 0.10, hv = 0.10 1.0075 1.0084 1.0113 1.0080 1.0086 1.0119
VNP : hm = 0.10, hv = 0.25 1.0115 1.0218 1.0631 1.0127 1.0237 1.0668
VNP : hm = 0.10, hv = 0.50 1.0219 1.0466 1.2073 1.0225 1.0492 1.2170
VNP : hm = 0.25, hv = 0.10 0.9529 0.9562 0.9671 0.9341 0.9369 0.9500
VNP : hm = 0.25, hv = 0.25 0.9572 0.9705 0.9926 0.9370 0.9512 0.9430
VNP : hm = 0.25, hv = 0.50 0.9680 0.9966 1.0963 0.9469 0.9779 0.9991
VNP : hm = 0.50, hv = 0.10 0.9440 0.9492 0.9604 3.0453 2.9664 2.9893
VNP : hm = 0.50, hv = 0.25 0.9476 0.9628 0.9765 2.8964 2.8369 2.5381
VNP : hm = 0.50, hv = 0.50 0.9586 0.9896 1.0672 2.1133 2.1000 1.4528

V̂OL 1.0232 1.0446 1.0523 1.0210 1.0443 1.0556

V̂NO 1.0947 1.1410 1.1376 1.0970 1.1452 1.1410

V̂SRS 79.946 77.001 77.932 70.576 68.077 68.796

Table 27: Comparisons between MSPEs of with sorting variable R2 = 1, n = 100 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9382 0.9429 0.9527 1.6121 1.5850 1.6005

V̂
lin

L 0.9381 0.9429 0.9526 1.6120 1.5851 1.6010

Vho
NP : hm = 0.25 0.9486 0.9508 0.9608 0.9442 0.9466 0.9573

Vho
NP : hm = 0.50 0.9404 0.9442 0.9559 0.9398 0.9429 0.9604

VNP : hm = 0.10, hv = 0.10 1.0079 1.0087 1.0119 1.0080 1.0086 1.0120
VNP : hm = 0.10, hv = 0.25 1.0124 1.0234 1.0670 1.0127 1.0237 1.0677
VNP : hm = 0.10, hv = 0.50 1.0225 1.0488 1.2180 1.0224 1.0491 1.2193
VNP : hm = 0.25, hv = 0.10 0.9506 0.9543 0.9649 0.9460 0.9498 0.9607
VNP : hm = 0.25, hv = 0.25 0.9555 0.9700 0.9924 0.9513 0.9660 0.9854
VNP : hm = 0.25, hv = 0.50 0.9660 0.9968 1.1009 0.9616 0.9929 1.0896
VNP : hm = 0.50, hv = 0.10 0.9416 0.9474 0.9580 0.9403 0.9451 0.9547
VNP : hm = 0.50, hv = 0.25 0.9456 0.9624 0.9756 0.9423 0.9586 0.9385
VNP : hm = 0.50, hv = 0.50 0.9563 0.9899 1.0703 0.9481 0.9818 0.9892

V̂OL 1.0173 1.0403 1.0508 1.0175 1.0411 1.0517

V̂NO 1.0906 1.1385 1.1349 1.0905 1.1386 1.1356

V̂SRS 1.8658 1.8293 1.8138 1.7202 1.6837 1.6891

Table 28: Comparisons between MSPEs of with sorting variable R2 = 1, n = 100 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9960 0.9944 0.9987 4.8099 4.8297 4.7704

V̂
lin

L 0.9960 0.9943 0.9987 4.8107 4.8299 4.7718

Vho
NP : hm = 0.25 0.9964 0.9954 0.9987 0.9942 0.9949 0.9927

Vho
NP : hm = 0.50 0.9960 0.9944 0.9985 1.0207 1.0197 1.0204

VNP : hm = 0.10, hv = 0.10 1.0000 1.0005 1.0002 1.0002 1.0004 1.0003
VNP : hm = 0.10, hv = 0.25 1.0002 1.0004 1.0025 1.0002 1.0000 1.0031
VNP : hm = 0.10, hv = 0.50 1.0005 1.0010 1.0128 1.0004 1.0005 1.0144
VNP : hm = 0.25, hv = 0.10 0.9964 0.9958 0.9988 0.9943 0.9952 0.9929
VNP : hm = 0.25, hv = 0.25 0.9966 0.9957 1.0010 0.9946 0.9952 0.9976
VNP : hm = 0.25, hv = 0.50 0.9968 0.9963 1.0110 0.9952 0.9962 1.0128
VNP : hm = 0.50, hv = 0.10 0.9960 0.9949 0.9986 1.0233 1.0224 1.0200
VNP : hm = 0.50, hv = 0.25 0.9962 0.9948 1.0006 1.0181 1.0171 1.0051
VNP : hm = 0.50, hv = 0.50 0.9964 0.9954 1.0106 0.9966 0.9966 0.9914

V̂OL 1.0588 1.0560 1.0611 2.0024 2.0004 1.9920

V̂NO 1.0686 1.0657 1.0693 2.0322 2.0307 2.0190

V̂SRS 6.6464 6.6933 6.4948 4.8623 4.8820 4.8201

Table 29: Comparisons between MSPEs of with sorting variable R2 = 0.75, n = 500 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9984 0.9980 0.9989 1.0703 1.0704 1.0694

V̂
lin

L 0.9983 0.9977 0.9989 1.0703 1.0700 1.0696

Vho
NP : hm = 0.25 0.9986 0.9985 0.9994 0.9980 0.9984 0.9979

Vho
NP : hm = 0.50 0.9984 0.9980 0.9992 0.9977 0.9979 0.9978

VNP : hm = 0.10, hv = 0.10 1.0002 1.0008 1.0005 1.0003 1.0008 1.0006
VNP : hm = 0.10, hv = 0.25 1.0003 1.0006 1.0051 1.0003 1.0004 1.0053
VNP : hm = 0.10, hv = 0.50 1.0006 1.0014 1.0248 1.0006 1.0012 1.0254
VNP : hm = 0.25, hv = 0.10 0.9988 0.9992 0.9998 0.9983 0.9991 0.9983
VNP : hm = 0.25, hv = 0.25 0.9990 0.9990 1.0041 0.9983 0.9988 1.0031
VNP : hm = 0.25, hv = 0.50 0.9992 0.9998 1.0234 0.9986 0.9996 1.0238
VNP : hm = 0.50, hv = 0.10 0.9986 0.9988 0.9996 0.9979 0.9986 0.9976
VNP : hm = 0.50, hv = 0.25 0.9988 0.9986 1.0036 0.9979 0.9982 0.9993
VNP : hm = 0.50, hv = 0.50 0.9990 0.9994 1.0227 0.9981 0.9990 1.0183

V̂OL 1.0052 1.0043 1.0061 1.0228 1.0220 1.0229

V̂NO 1.0089 1.0089 1.0092 1.0288 1.0285 1.0278

V̂SRS 1.1088 1.1083 1.1043 1.0734 1.0727 1.0721

Table 30: Comparisons between MSPEs of with sorting variable R2 = 0.75, n = 500 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9682 0.9623 0.9641 17.670 17.627 17.920

V̂
lin

L 0.9684 0.9609 0.9644 17.687 17.637 17.942

Vho
NP : hm = 0.25 0.9740 0.9689 0.9721 0.9812 0.9843 1.0055

Vho
NP : hm = 0.50 0.9701 0.9652 0.9656 1.0139 1.0198 1.0507

VNP : hm = 0.10, hv = 0.10 1.0118 1.0118 1.0108 1.0094 1.0096 1.0087
VNP : hm = 0.10, hv = 0.25 1.0078 1.0125 1.0253 1.0073 1.0111 1.0243
VNP : hm = 0.10, hv = 0.50 1.0086 1.0228 1.0814 1.0104 1.0206 1.0822
VNP : hm = 0.25, hv = 0.10 0.9829 0.9787 0.9798 0.9881 0.9904 1.0128
VNP : hm = 0.25, hv = 0.25 0.9804 0.9806 0.9905 0.9903 0.9966 1.0421
VNP : hm = 0.25, hv = 0.50 0.9820 0.9915 1.0432 0.9997 1.0126 1.1286
VNP : hm = 0.50, hv = 0.10 0.9788 0.9755 0.9725 1.0472 1.0515 1.0732
VNP : hm = 0.50, hv = 0.25 0.9759 0.9768 0.9800 1.0160 1.0252 1.0059
VNP : hm = 0.50, hv = 0.50 0.9776 0.9879 1.0294 0.9615 0.9778 0.9997

V̂OL 1.6106 1.5705 1.6202 5.8889 5.8274 6.0001

V̂NO 1.6869 1.6432 1.6914 5.8425 5.7817 5.8906

V̂SRS 33.084 32.119 31.961 18.694 18.636 18.908

Table 31: Comparisons between MSPEs of with sorting variable R2 = 0.75, n = 100 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9761 0.9770 0.9779 1.3124 1.3097 1.3014

V̂
lin

L 0.9765 0.9745 0.9784 1.3132 1.3061 1.3033

Vho
NP : hm = 0.25 0.9832 0.9819 0.9856 0.9829 0.9839 0.9906

Vho
NP : hm = 0.50 0.9790 0.9786 0.9816 0.9710 0.9748 0.9822

VNP : hm = 0.10, hv = 0.10 1.0193 1.0192 1.0175 1.0178 1.0180 1.0159
VNP : hm = 0.10, hv = 0.25 1.0129 1.0216 1.0421 1.0124 1.0208 1.0400
VNP : hm = 0.10, hv = 0.50 1.0161 1.0401 1.1427 1.0172 1.0393 1.1403
VNP : hm = 0.25, hv = 0.10 0.9979 0.9975 0.9980 0.9967 0.9980 1.0021
VNP : hm = 0.25, hv = 0.25 0.9940 1.0018 1.0163 0.9936 1.0029 1.0232
VNP : hm = 0.25, hv = 0.50 0.9986 1.0216 1.1114 1.0007 1.0239 1.1246
VNP : hm = 0.50, hv = 0.10 0.9932 0.9948 0.9927 0.9851 0.9894 0.9911
VNP : hm = 0.50, hv = 0.25 0.9886 0.9981 1.0052 0.9792 0.9916 0.9926
VNP : hm = 0.50, hv = 0.50 0.9934 1.0182 1.0944 0.9894 1.0155 1.0861

V̂OL 1.0946 1.1005 1.1087 1.1993 1.2007 1.2109

V̂NO 1.1709 1.1856 1.1871 1.2797 1.2939 1.2821

V̂SRS 1.6102 1.5852 1.5493 1.3854 1.3763 1.3625

Table 32: Comparisons between MSPEs of with sorting variable R2 = 0.75, n = 100 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9836 0.9841 0.9929 3.8817 3.9367 3.9779

V̂
lin

L 0.9836 0.9839 0.9928 3.8805 3.9356 3.9765

Vho
NP : hm = 0.25 0.9954 0.9933 0.9984 1.1077 1.1072 1.1163

Vho
NP : hm = 0.50 0.9893 0.9878 0.9967 2.3199 2.3436 2.3692

VNP : hm = 0.10, hv = 0.10 0.9998 0.9997 0.9989 1.0000 0.9999 0.9998
VNP : hm = 0.10, hv = 0.25 0.9998 0.9999 0.9998 1.0000 0.9999 1.0005
VNP : hm = 0.10, hv = 0.50 1.0001 1.0003 1.0073 1.0000 1.0000 1.0026
VNP : hm = 0.25, hv = 0.10 0.9953 0.9930 0.9973 1.1077 1.1071 1.1181
VNP : hm = 0.25, hv = 0.25 0.9951 0.9932 0.9981 1.1086 1.1081 1.1274
VNP : hm = 0.25, hv = 0.50 0.9955 0.9937 1.0056 1.1096 1.1091 1.1442
VNP : hm = 0.50, hv = 0.10 0.9892 0.9876 0.9954 2.3115 2.3350 2.3670
VNP : hm = 0.50, hv = 0.25 0.9891 0.9878 0.9963 2.3235 2.3472 2.4073
VNP : hm = 0.50, hv = 0.50 0.9895 0.9883 1.0038 2.3984 2.4236 2.5374

V̂OL 2.7953 2.8376 2.8273 4.0687 4.1268 4.1707

V̂NO 2.7637 2.8091 2.7912 3.8865 3.9411 3.9838

V̂SRS 4.9478 5.0429 5.0024 3.8681 3.9228 3.9644

Table 33: Comparisons between MSPEs of with sorting variable R2 = 0.25, n = 500 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9968 0.9967 0.9998 1.1828 1.1869 1.1946

V̂
lin

L 0.9968 0.9963 0.9998 1.1827 1.1868 1.1945

Vho
NP : hm = 0.25 0.9989 0.9984 0.9998 1.0010 0.9994 1.0049

Vho
NP : hm = 0.50 0.9976 0.9973 1.0001 1.0773 1.0785 1.0864

VNP : hm = 0.10, hv = 0.10 0.9998 0.9997 0.9983 0.9999 0.9997 0.9990
VNP : hm = 0.10, hv = 0.25 0.9995 0.9999 1.0017 0.9998 0.9999 1.0004
VNP : hm = 0.10, hv = 0.50 1.0005 1.0010 1.0205 1.0002 1.0003 1.0079
VNP : hm = 0.25, hv = 0.10 0.9987 0.9982 0.9980 1.0009 0.9992 1.0053
VNP : hm = 0.25, hv = 0.25 0.9984 0.9984 1.0012 1.0009 0.9995 1.0119
VNP : hm = 0.25, hv = 0.50 0.9994 0.9995 1.0201 1.0014 1.0000 1.0290
VNP : hm = 0.50, hv = 0.10 0.9975 0.9970 0.9982 1.0767 1.0778 1.0895
VNP : hm = 0.50, hv = 0.25 0.9972 0.9972 1.0014 1.0775 1.0789 1.1104
VNP : hm = 0.50, hv = 0.50 0.9981 0.9984 1.0204 1.0831 1.0847 1.1584

V̂OL 1.0409 1.0407 1.0424 1.1956 1.1991 1.2077

V̂NO 1.0429 1.0442 1.0428 1.1841 1.1875 1.1965

V̂SRS 1.0860 1.0868 1.0853 1.1798 1.1837 1.1920

Table 34: Comparisons between MSPEs of with sorting variable R2 = 0.25, n = 500 and
regression model R2 = 0.25.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9691 0.9712 0.9638 1.9308 2.0803 2.1188

V̂
lin

L 0.9688 0.9691 0.9636 1.9085 2.0521 2.0914

Vho
NP : hm = 0.25 0.9730 0.9764 0.9614 1.1149 1.1697 1.1874

Vho
NP : hm = 0.50 0.9703 0.9738 0.9602 2.8365 3.0546 3.1473

VNP : hm = 0.10, hv = 0.10 1.0053 1.0038 1.0031 1.0027 1.0017 1.0021
VNP : hm = 0.10, hv = 0.25 1.0024 1.0036 1.0072 1.0026 1.0028 1.0069
VNP : hm = 0.10, hv = 0.50 1.0058 1.0114 1.0384 1.0019 1.0041 1.0210
VNP : hm = 0.25, hv = 0.10 0.9776 0.9798 0.9627 1.1189 1.1716 1.1946
VNP : hm = 0.25, hv = 0.25 0.9752 0.9800 0.9654 1.1241 1.1791 1.2371
VNP : hm = 0.25, hv = 0.50 0.9785 0.9878 0.9951 1.1286 1.1859 1.3146
VNP : hm = 0.50, hv = 0.10 0.9751 0.9779 0.9612 2.7748 2.9852 3.0973
VNP : hm = 0.50, hv = 0.25 0.9723 0.9777 0.9624 2.8331 3.0496 3.2724
VNP : hm = 0.50, hv = 0.50 0.9755 0.9853 0.9909 3.1509 3.3948 3.8597

V̂OL 3.9904 4.0662 3.9840 2.0904 2.2482 2.2903

V̂NO 3.8220 3.8876 3.8274 2.2820 2.4616 2.5006

V̂SRS 9.1338 9.2800 9.1638 1.8362 1.9774 2.0160

Table 35: Comparisons between MSPEs of with sorting variable R2 = 0.25, n = 100 and
regression model R2 = 0.75.
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Mean function Linear Quadr.
Variance function Const. Linear Quadr. Const. Linear Quadr.

V̂L 0.9820 0.9866 0.9866 0.9776 1.0186 1.0241

V̂
lin

L 0.9817 0.9790 0.9861 0.9769 1.0105 1.0219

Vho
NP : hm = 0.25 0.9843 0.9875 0.9853 0.9613 0.9855 0.9935

Vho
NP : hm = 0.50 0.9820 0.9860 0.9859 1.0231 1.0615 1.0820

VNP : hm = 0.10, hv = 0.10 1.0145 1.0091 1.0058 1.0093 1.0053 1.0042
VNP : hm = 0.10, hv = 0.25 1.0086 1.0102 1.0176 1.0074 1.0082 1.0140
VNP : hm = 0.10, hv = 0.50 1.0157 1.0298 1.0984 1.0090 1.0190 1.0662
VNP : hm = 0.25, hv = 0.10 0.9967 0.9953 0.9862 0.9722 0.9915 0.9992
VNP : hm = 0.25, hv = 0.25 0.9921 0.9970 0.9934 0.9707 0.9951 1.0217
VNP : hm = 0.25, hv = 0.50 0.9994 1.0171 1.0711 0.9728 1.0068 1.1014
VNP : hm = 0.50, hv = 0.10 0.9950 0.9956 0.9860 1.0332 1.0672 1.0940
VNP : hm = 0.50, hv = 0.25 0.9895 0.9962 0.9892 1.0352 1.0740 1.1548
VNP : hm = 0.50, hv = 0.50 0.9966 1.0160 1.0637 1.0549 1.1031 1.3317

V̂OL 1.2041 1.2187 1.1865 1.0370 1.0772 1.0874

V̂NO 1.2954 1.3066 1.2741 1.1137 1.1630 1.1658

V̂SRS 1.2862 1.2918 1.2351 0.9624 1.0022 1.0099

Table 36: Comparisons between MSPEs of with sorting variable R2 = 0.25, n = 100 and
regression model R2 = 0.25.
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ȲS V̂SRS V̂ST V̂NP0.5 V̂NP0.2 V̂NP0.1

BIOMASS 14.5 0.46 0.36 0.40 0.38 0.37
CRCOV 22.5 0.71 0.62 0.64 0.62 0.59
BA 48.5 3.87 3.19 3.40 3.30 3.12
NVOLTOT 906.9 1886 1538 1645 1584 1511
FOREST (%) 54.8 2.46 1.89 2.16 2.05 1.91

Table 37: Mean and variance estimates for the five response variables for FIA data, using
estimators V̂SRS, V̂ST and V̂NP under model (14) with span = 0.5, 0.2 and 0.1.
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V̂NP0.5 V̂NP0.2 V̂NP0.1 V̂NP (0.1,0.3)

BIOMASS 0.36 0.34 0.33 0.34
CRCOV 0.59 0.55 0.53 0.55
BA 3.11 2.96 2.78 2.87
NVOLTOT 1487 1417 1342 1396
FOREST (%) 1.92 1.77 1.65 1.71

Table 38: Variance estimates for five response variables for FIA data, using nonparametric
estimator for additive model (15) with same span used for both variables (span = 0.5, 0.2
and 0.1), and span 0.1 for location and 0.3 for elevation.
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V̂NP0.5 V̂NP0.2 V̂NP0.1

BIOMASS 0.40 0.38 0.36
CRCOV 0.64 0.62 0.58
BA 3.40 3.29 3.10
NVOLTOT 1643 1580 1507
FOREST (%) 2.15 2.04 1.89

Table 39: Variance component of variance estimates for five response variables. V̂NP

under model (14) is considered with span = 0.5, 0.2 and 0.1, respectively.
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V̂NP0.5 V̂NP0.2 V̂NP0.1 V̂NP (0.1,0.3)

BIOMASS 0.34 0.32 0.31 0.32
CRCOV 0.58 0.54 0.51 0.53
BA 3.04 2.85 2.67 2.75
NVOLTOT 1446 1350 1280 1324
FOREST (%) 1.57 1.70 1.57 1.62

Table 40: Variance component of variance estimates for five response variables. V̂NP

under model (15) is considered with same span for both LOC and ELEV. (span = 0.5,
0.2 and 0.1), and span 0.1 for location and 0.3 for elevation.
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ȲS V̂SRS V̂ST V̂NP0.2

BIOMASS 14.5 0.40 0.36 0.38
CRCOV 22.5 0.64 0.61 0.62
BA 48.5 3.41 3.16 3.29
NVOLTOT 906.9 1635 1528 1580
FOREST (%) 54.8 2.11 1.87 2.04

Table 41: Model assisted mean and variance estimates for five response variables. Three
variance estimators are considered: V̂SRS, V̂ST and V̂NP under model (14) with span =
0.2.
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ȲS V̂SRS V̂ST V̂NP0.2

BIOMASS 14.39 0.33 0.33 0.32
CRCOV 22.4 0.56 0.56 0.54
BA 48.1 2.95 2.88 2.85
NVOLTOT 901.3 1397 1371 1350
FOREST (%) 54.6 1.76 1.67 1.70

Table 42: Model assisted mean and variance estimates for five response variables. Three
variance estimators are considered: V̂SRS, V̂ST and V̂NP under model (15) with span =
0.2.
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V̂NP hm = 0.5 hm = 0.2 hm = 0.1
hv = 0.2 0.40 0.39 0.37

BIOMASS hv = 0.4 0.40 0.39 0.37
hv = 0.6 0.40 0.39 0.37
hv = 0.2 0.64 0.62 0.59

CRCOV hv = 0.4 0.64 0.62 0.59
hv = 0.6 0.65 0.62 0.59
hv = 0.2 3.41 3.31 3.12

BA hv = 0.4 3.41 3.31 3.13
hv = 0.6 3.41 3.31 3.13
hv = 0.2 1653 1592 1519

NVOLTOT hv = 0.4 1655 1594 1521
hv = 0.6 1653 1592 1519
hv = 0.2 2.16 2.05 1.91

FOREST (%) hv = 0.4 2.16 2.05 1.91
hv = 0.6 2.16 2.05 1.91

Table 43: Variance estimates for five response variables using V̂NP under model (16) with
span = 0.5, 0.2 and 0.1 for the regression function and span= 0.2, 0.4 and 0.6 for the
variance function.
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V̂NP hm = 0.5 hm = 0.2 hm = 0.1 hX,Y = 0.1, helev = 0.3
hv = 0.2 0.36 0.35 0.33 0.34

BIOMASS hv = 0.4 0.36 0.35 0.33 0.34
hv = 0.6 0.36 0.35 0.33 0.34
hv = 0.2 0.59 0.56 0.53 0.55

CRCOV hv = 0.4 0.59 0.55 0.53 0.55
hv = 0.6 0.59 0.56 0.53 0.55
hv = 0.2 3.11 2.96 2.79 2.89

BA hv = 0.4 3.11 2.96 2.78 2.87
hv = 0.6 3.11 2.96 2.78 2.87
hv = 0.2 1516 1448 1372 1425

NVOLTOT hv = 0.4 1504 1435 1358 1411
hv = 0.6 1499 1429 1353 1406
hv = 0.2 1.91 1.76 1.64 1.70

FOREST (%) hv = 0.4 1.91 1.76 1.64 1.70
hv = 0.6 1.92 1.77 1.64 1.70

Table 44: Variance estimates for five response variables using V̂NP under model (17) with
variance (18), with same span for location and elevation (0.5, 0.2 and 0.1) and also 0.1
for the location and 0.3 for the elevation, for the regression function, and span= 0.2, 0.4
and 0.6 for the variance function.
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V̂NP hm = 0.5 hm = 0.2 hm = 0.1 hX,Y = 0.1, helev = 0.3
hv = 0.2 0.36 0.34 0.33 0.33

BIOMASS hv = 0.4 0.36 0.34 0.32 0.34
hv = 0.6 0.36 0.34 0.32 0.33
hv = 0.2 0.59 0.56 0.53 0.55

CRCOV hv = 0.4 0.59 0.56 0.53 0.55
hv = 0.6 0.59 0.56 0.53 0.55
hv = 0.2 3.11 2.96 2.78 2.87

BA hv = 0.4 3.10 2.95 2.77 2.87
hv = 0.6 3.10 2.95 2.78 2.87
hv = 0.2 1492 1427 1351 1404

NVOLTOT hv = 0.4 1487 1418 1342 1395
hv = 0.6 1486 1417 1341 1395
hv = 0.2 1.91 1.76 1.64 1.70

FOREST (%) hv = 0.4 1.92 1.77 1.65 1.70
hv = 0.6 1.92 1.77 1.65 1.71

Table 45: Variance estimates for five response variables using V̂NP (ȲS) under model (17)
with variance (19), with same span for location and elevation (0.5, 0.2 and 0.1) and also
0.1 for the location and 0.3 for the elevation, for the regression function, and span= 0.2,
0.4 and 0.6 for the variance function.
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