
PhD Thesis

Nonparametric inference for neural
synchrony under low firing activity

Author:

Aldana M. González Montoro
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Abstract

The aim of this thesis is to introduce statistical tools to study neural syn-
chrony under spontaneous activity. The data analyzed comes from extracel-
lular recordings of the primary visual cortex of anesthetized cats. The effect
of the disruption of the normal spontaneous oscillations in neural synchrony
is studied. Disruptions of the typical sleep-like patterns are achieved by
means of electrical stimulations in the different neural nuclei that regulate
the sleep-wake transitions, namely, the brainstem and the basal forebrain.
Nonparametric methods are proposed to estimate the neural synchrony and
bootstrap tests are proposed to test several hypotheses regarding the effects
of stimulation in the associations between neurons at a pairwise and popula-
tion level. Moreover, the relationship between the orientation selectivity of
neurons and the synchrony among them is studied. Results indicate that the
methods proposed in this thesis are succesfull in achieving the goals of the
study. Significant decreases in synchrony due to the stimulations and dif-
ferential effects of the stimuli are found. Moreover, at a populational level,
our methods succeed on proving that functional affinity between neurons, re-
garding their orientations selectivity, affects the pairwise synchrony strength
and dynamics.





Resumen

El objetivo de esta tesis es el de introducir herramientas estad́ısticas para el
estudio de la sincronización neuronal bajo actividad espontánea. Los datos
analizados provienen de registros extracelulares realizados en la corteza vi-
sual primaria de gatos anestesiados. Se estudia el efecto de la disrupción
de la actividad oscilatoria espontánea en la sincrońıa entre pares de neu-
ronas. La disrupción de los patrones t́ıpicos en estado de sueño se obtiene a
partir de la micro estimulación eléctrica en los núcleos que regulan la tran-
sición del sueño a la vigilia, el tronco encefálico y el el área peribraqueal.
Se proponen métodos noparamétricos para estimar la sincrońıa y contrastes
bootstrap para contrastar hipótesis vinculadas con los efectos de la estimula-
ción en la asociación entre neuronas tanto a nivel de pares de neuronas como
a nivel poblacional. Más aún, se estudia la relación entre la selectividad a
la orientación de las células y la sincronización entre ellas. Se encuentran
disminuciones significativas en la sincronización debido a la estimulación y
se encuentran efectos diferenciales entre las áreas estimuladas. Además, a
nivel poblacional, nuestros métodos encuentran que la afinidad funcional en-
tre neuronas, debido a la selectividad a la orientación, afecta la fuerza y la
dinámica de la sincronización de pares de neuronas.





Resumo

O obxectivo desta tese é o de introducir ferramentas estat́ısticas para o estudo
da sincronización neuronal baixo actividade espontánea. Os datos analizados
proveñen de rexistros extracelulares realizados na cortiza visual primaria de
gatos anestesiados. Estúdase o efecto da ruptura da actividade oscilatoria
espontánea na sincrońıa entre pares de neuronas. A ruptura dos patróns
t́ıpicos en estado de soño obtense a partir da microestimulación eléctrica
nos núcleos que regulan a transición do soño á vixilia, o tronco encefálico
e a área peribraqueal. Propóñense métodos non paramétricos para estimar
a sincrońıa e métodos bootstrap para contrastar hipóteses vinculadas cos
efectos da estimulación na asociación entre neuronas, tanto a nivel de pares
de neuronas como a nivel poboacional. Máis áında, estúdase a relación entre a
selectividade á orientación das células e a sincronización entre elas. Atópanse
disminucións significativas na sincronización debido á estimulación, aśı como
efectos diferenciais entre as áreas estimuladas. Ademais, a nivel poboacional,
os nosos métodos atopan que a afinidade funcional entre neuronas, debida á
selectividade á orientación, afecta á forza e á dinámica da sincronización de
pares de neuronas.





Contents

Acknowledgments v

Funding vii

1 Introduction 1

1.1 Neuroscience context . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Action potentials and spike trains . . . . . . . . . . . . 2

1.1.2 Sleep-like activity versus awake-like activity . . . . . . 5

1.1.3 Spontaneous activity and activating ascending pathways 7

1.1.4 Neural synchrony . . . . . . . . . . . . . . . . . . . . . 8

1.1.5 Primary visual cortex and orientation selectivity . . . . 10

1.2 Nonparametric methods . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Kernel density estimation . . . . . . . . . . . . . . . . 12

1.2.2 Kernel regression estimation . . . . . . . . . . . . . . . 17

1.2.3 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Summary of the following chapters . . . . . . . . . . . . . . . 21

2 Objectives and experimental setting 23

2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Analysis of single spike trains 31

3.1 Point processes and rate functions . . . . . . . . . . . . . . . . 31

3.2 Inter-spike intervals . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Autocorrelation measures . . . . . . . . . . . . . . . . . . . . . 42

3.4 Testing independence for inter-spike intervals . . . . . . . . . . 49

3.5 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . 53

xv



4 Cross inter spike intervals 57

4.1 Pairwise neural association measure . . . . . . . . . . . . . . . 57

4.2 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Parameter selection . . . . . . . . . . . . . . . . . . . . 68

4.4 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Cross-correlation based synchrony measure 71

5.1 Integrated cross-correlation synchrony index . . . . . . . . . . 71

5.2 Estimation of ICCSI . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 ICCSI as a function of time . . . . . . . . . . . . . . . 73

5.2.2 Nonparametric smoothing of ̂ICCSI . . . . . . . . . . 75

5.3 Testing for synchrony differences . . . . . . . . . . . . . . . . . 76

5.4 Testing the differences between two conditions . . . . . . . . . 77

5.5 Application to spike trains . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Choosing the tunning parameters . . . . . . . . . . . . 79

5.5.2 Testing for synchrony differences . . . . . . . . . . . . 81

5.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Cross nearest spike interval based method to measure syn-
chrony 93

6.1 Synchrony measure based on cross nearest spike intervals . . . 93

6.2 Selection of Vt and δ . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 Hypothesis testing . . . . . . . . . . . . . . . . . . . . 100

6.4 Synchrony due to firing rate . . . . . . . . . . . . . . . . . . . 100

6.5 Theoretical approximation . . . . . . . . . . . . . . . . . . . . 101

6.6 Simulation approximation . . . . . . . . . . . . . . . . . . . . 103

6.7 Bootstrap confidence bands and testing for differences . . . . . 103

6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.9 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Stimuli and neural orientation selectivity effects using func-
tional data analysis 113

7.1 Functional two-way ANOVA . . . . . . . . . . . . . . . . . . 116

7.1.1 The random projections method for the ANOVA model 116

7.2 ANOVA with dependent data . . . . . . . . . . . . . . . . . . 119

7.2.1 ANOVA model with dependent errors . . . . . . . . . . 119

7.2.2 Estimation of the correlation coefficient . . . . . . . . . 122

xvi



7.2.3 Bootstrap calibration of the distribution of the ANOVA
test statistic . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.1 Distribution of the test statistic Q . . . . . . . . . . . . 128

7.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.5 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . 132

8 Population study 135
8.1 Estimation of the regression functions . . . . . . . . . . . . . . 136

8.1.1 Bandwidth selection . . . . . . . . . . . . . . . . . . . 137
8.2 Comparison of the regression functions . . . . . . . . . . . . . 138

8.2.1 Estimation of the pooled regression function . . . . . . 138
8.2.2 Hypothesis tests . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Bootstrap procedure . . . . . . . . . . . . . . . . . . . . . . . 141
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.5 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . 148

9 Discussion and conclusions 151
9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

References 157

Resumen en Español 163
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Chapter 1

Introduction

The aim of this thesis is to present statistical tools to deal with several
methodological problems regarding the analysis of electrophysiological data;
specifically, the estimation of synchrony dynamics between pairs of neurons
under a regime of low firing activity. The methods are applied to real data
and inferences about the estimated synchrony are made. The biological prob-
lem was proposed to the statistics group, MODES, of the Universidade da
Coruña, by researchers of the neuroscience group, Neurocom, of the same
university. Both, the questions and the data, resulted very challenging from
a statistical point of view. This thesis describes the approaches to tackle the
problem and the process to reach the objectives. This memoir can be found
online at http://dm.udc.es/profesores/ricardo/PhDadvisorships.htm.

The experimental work that posited the statistical problems addressed
in this work and that provided the neurophysiologycal data, aims to study
brain functional connectivity through the synchronization dynamics between
neurons of the primary visual cortex of anesthetized cats. We will present
some methods to measure synchrony and to test several hypotheses regard-
ing the effects of of stimulation in two precise areas of the brain. Finally,
we will also introduce another factor regarding a particular characteristic of
neurons of the visual cortex: the orientation selectivity. The objectives of
the experimental study will be clearly stated in Chapter 2 together with a
description of the experiment that led to the data. But, first of all, let us
start introducing the area of study as well as the context of the problem.
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1.1 Neuroscience context

Neuroscience is the field of knowledge that studies the structure and function
of the nervous system, in particular, the human brain. It has numerous areas
of study and brings together several disciplines such as medicine, psychology,
biology and engineering among others. The electrophysiology is a branch of
neuroscience that deals with the electrical properties and electrical activity of
neurons. Technological advances have made possible the simultaneous elec-
trophysiological recording of groups of neurons, generating large amounts of
data that require specific methodological tools for their analysis. Areas like
mathematics, physics, statistics and computational sciences are nowadays
much involved in neuroscience, developing methods for data analysis to cope
with the demand that electrophysiological problems generate.

1.1.1 Action potentials and spike trains

Neurons are specialized cells, which, along with glial cells, are the basic struc-
tural and functional units of the nervous system. These cells are organized
in large and complex networks and they shape and connect the three main
components of the nervous system: sensory, integration and motor. This is,
they carry information from the sensory regions, analyze it, and then convey
the responses to the corresponding regions. Neurons are formed by three
functional parts: dendrites, soma and axon. The dendrites are ramifications
that receive signals from other neurons or sensory organs and carry them into
the soma. The soma is the central processing unit for the signals. Roughly
speaking, it processes the information and generates a response signal which
will travel through the axon to be delivered to other neurons or muscle cells.
This information is carried as electrical impulses, which are called action po-
tentials and often referred to as spikes.

Neurons are characterized by their capacity to propagate information
very rapidly thorough very long distances. The generation of action poten-
tials involves various specific morphological and physiological properties of
the neurons. A simple way to describe it is the following. Every neuron is
a kind of biological battery, with an electrical potential (Vm) between the
inner and outer part of the cellular membrane (plasma membrane). The Vm
is not fixed, but varies depending on the neuron inputs. When the electrical
signal received at the soma surpasses a certain threshold, a sudden change
in the cell’s membrane potential is produced giving birth to an action po-
tential, which will travel along the cell’s membrane. These electrical pulses
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are relatively easy to record, as they are abrupt changes in the Vm with a
relatively high amplitude (∼100 mV). To do so, electrophysiologists place
tiny electrodes inside or close to the neuron’s soma or axon and record the
electrical activity. These signals are referred to as intracellular or extracel-
lular recordings basically depending on whether the electrode penetrates the
cell or not. Figure 1.1 shows a neuron and three simulated recordings of its
activity. We can see two intracellular recordings at the soma and axon of
the neuron in which we can observe, not only the action potentials, but also
the subthreshold activity of the cell. On the other hand, in the extracellu-
lar recording (center) we can only observe action potentials, as it is outside
the cell and the electrode can only distinguish with clarity high amplitude
changes of the extracellular potential.

Figure 1.1: Representation of intracellular and extracellular recordings from
Dayan and Abbott (2001).

Action potentials have an approximate amplitude of 100mV and a dura-
tion of around 1ms. The shape of these pulses remains practically constant
while they travel through the axon. For this reason, it is believed that the
information is carried by sequences of these spikes. The sequences of action
potentials are called spike trains and they are the main object of study of
this project. Figure 1.2 shows a typical plot to display spike trains, called
raster plot. It corresponds to 50 seconds of spontaneous activity of a group
of neurons which were recorded simultaneously. Action potentials are repre-
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sented by vertical lines in the plot. Each row of each panel represents the
spike activity of a neuron and each panel belongs to a different trial of the
same group of neurons. As the principles of neural information processing
are not well understood, the means by which spike trains carry information
are a matter of debate and there exist several possible properties to be inves-
tigated. Firing rates and exact time of firing are two main views of possible
neural codes (Shadlen and Movshon (1999), Singer (1999)), also associations
and temporal correlations among neurons are key features in neural coding
(Singer (1999)). For a more complete introduction to neuroscience in gen-
eral, to spike trains in particular and mathematical modeling of neuronal
data, please refer to, for example, Dayan and Abbott (2001) and Gerstner
and Kristler (2002).
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Figure 1.2: Raster plots of two trials (top and bottom panels) of a group
of simultaneously recorded neurons (N1, N3a, N3b, N4a, N4b, N5 and N7)
during 50 s of spontaneous activity. The average firing rate of each spike
train is shown at the right of each row.
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1.1.2 Sleep-like activity versus awake-like activity

The global brain activity observed during deep sleep is strikingly different to
the one observed during the awake state. During the most profound phase
of sleep, most neurons of the cerebral cortex display an oscillatory behavior,
generating bursts of spikes with a dominant rhythm of about 1–4Hz (1–0.25 s
between bursts) which is called delta rhythm. This oscillation is highly syn-
chronized between neurons, giving rise to the almost simultaneous generation
of millions of action potentials by millions of neurons in the cortex and other
brain regions. Because of this massive synchronization, the global electrical
activity displays a high amplitude oscillation which is easily recorded even in
the surface of the head: this is the delta oscillation of the electroencephalo-
gram (EEG).

Under experimental conditions this global oscillatory activity can be in-
duced by some anesthetics, giving rise to a sleep-like activity that is very
useful to study the characteristic electrophysiological neuronal properties of
this period. The left part of Figure 1.3 shows the EEG recording of an anes-
thetized cat, with a conspicuous delta oscillation, resulting from the synchro-
nization of neuronal spikes that is taking place inside the brain.

During the awake state such global oscillatory synchronized activity does
not exist, and neuronal spikes are not organized in repetitive bursts of ac-
tivity, but follow what could be seen as a more random response, generating
trains of spikes with different patterns and frequencies. This is called tonic
activity, in contrast with the mentioned slow oscillatory activity. Of course,
this tonic activity is not random, but is used to convey all kinds of informa-
tion; and also, during this period, there are several types of high frequency
(> 15Hz) oscillatory patterns, but those are not global, but carried out by
specific and small groups of neurons. Due to the fact that during this tonic
activity, characteristic of the awake state, there is not a global neuronal syn-
chronization, the EEG does not show changes of big amplitude, and remains
fairly flat.

Interestingly, this tonic awake-like activity can also be reproduced ex-
perimentally and induced in the anesthetized cat by means of the electrical
micro-stimulation of some regions or activating pathways. This is shown on
the right part of Figure 1.3. At time 120 the global mode of operation of the
cerebral cortex was artificially changed due to the delivery for a short period
(usually 2 s) of micro-stimulation in the basal forebrain (one of the activating
pathways). The result was the disruption of the global delta oscillation. It
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can be seen that the previous high amplitude oscillation disappears, and for
a period of several seconds the brain operates in an awake-like mode.

The example in Figure 1.3 shows a very interesting experimental model,
in which we have, to the left, the spontaneous activity of a sleeping brain
and, after the induced activation, some seconds of awake-like activity. After
the stimulation, this awake-like activity last for up to 20 s and spontaneously
returns to the sleep pattern. Hence, this experimental setup provides us
with a model of sleep and awake activity, in which the same neurons can be
studied while they are spontaneously interacting. The awake-like behavior is
induced by a stimulation, but the subsequent activity can be thought of as
spontaneous, as it last for a very long period (in electrophysiological terms)
and spontaneously -and slowly- returns to the sleep-like pattern without any
other intervention.

Most electrophysiological works rest upon the study of neuronal responses
to some kind of stimulus. But we think that the study of the neuronal spon-
taneous electrical activity can also be of great help to unveil the underlying
functional architecture. Because it has been much less studied, there are
few mathematical and statistical tools to deal with the electrophysiological
characteristics of the spontaneous spike activity. One of the main drawbacks
is that, usually, the number of spikes is fairly small. Immediately after the
application of an appropriate stimulus, neurons generate trains of spikes that
can be easily analyzed using common statistics; but during spontaneous ac-
tivity (either sleep-like or awake-like) the response of neurons is less robust
and needs a specific statistical approach.

This is the case of the present work. It was developed to help in the
analysis of the dynamic synchronization between pairs of neurons under two
types of spontaneous activity: the anesthetic-induced sleep-like activity, and
the electrically-induced awake-like activity. Throughout the present work we
will use the term stimulus to refer to the micro-stimulation applied to acti-
vating pathways to induce the awake-like mode of operation, but, regarding
the type of spike activity and the statistical problems under study, will con-
sider both the sleep-like and the awake-like signals as periods of spontaneous
activity. In any case, this is only a terminological issue that does not change
at all the mathematical and statistical results and conclusions.
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1.1.3 Spontaneous activity and activating ascending

pathways

As it has just been explained, the data we will deal with along this work
comes from a particular scenario in brain activity, referred to as spontaneous
activity, which is the electrical activity that is observed in the absence of any
discernible or controlled stimuli. It can be thought of as the brain activity
at a resting state. The functional significance of this activity is not well
understood and has not been widely studied, some views consider it as just
noise, while others consider it a carrier of information. Rodieck et al. (1962)
presented several descriptive methods to investigate these data. In recent
years, some neurologist have focused their attention on a similar type of ac-
tivity, coining the term “default mode network” or DMN, to refer to several
brain regions implicated in the organization of neuronal activity while the
brain is somehow idle. This is a term that has cognitive implications. On
the other hand, in this work we study the spontaneous activity, which has
a much more broader sense, and refers to any type of activity which is not
directly driven by a controlled stimulus. The electrophysiological part of our
work is not intended to dwell on the cognitive properties of the DMN, but to
study some functional neuronal connections using the spontaneous electrical
activity.

The spike activity analyzed in this work was obtained from an experi-
mental model that combines a slow oscillatory mode (sleep-like) and a tonic
mode (awake-like), using to switch between modes the transient stimulation
of two activating pathways. Let us see this model with a bit more detail.
As previously indicated, during the sleep state, the EEG is characterized by
low frequency and high amplitude oscillations, while in the awake state, it
presents a pattern of low amplitude and high frequency rhythms (Steriade
et al. (1993)). There are several studies that indicate that these oscilla-
tions of the sleep state are originated in the thalamus and cerebral cortex
and regulated by the brainstem (bs) modulatory systems (Steriade (1994)).
Located in the upper brainstem, posterior hypothalamus and basal forebrain
(bf ), there are nerve paths, called the ascending pathways, that innervate the
entire cortex and thalamus and release different neurotransmitters. These
ascending pathways are responsible for the modulation and transition from
the sleep state to the awake state. To induce this transition, the released
neurotransmitters abolish the low-frequency rhythms in the thalamo-cortical
network and promote the appearance of high-frequency oscillations, charac-
teristic of the awake brain (Steriade et al. (1990)). For details on thalamic
functions and the control systems of these nuclei, refer to Steriade et al.
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(1997). The experimental electrical stimulation of these nuclei can change
the EEG pattern from the typical sleep-like pattern to the one expected in an
awake individual. This happens because stimulation suppresses slow waves
(< 1Hz), delta waves (1–4Hz) and spindle-wave oscillations (7–14Hz), and
enhances gamma oscillations (30–100Hz) and other high frequency patterns,
thus introducing a tool to study the effects of the mechanisms that underlie
the sleep-wake cycle (Hu et al. (1989); Burlet et al. (2002); Mariño and Cud-
eiro (2003)). Figure 1.3 shows a real EEG recording on the primary visual
cortex of a cat. The cat was under deep anesthesia and, after 120 seconds
of recording, an electrical stimulus was applied in its basal forebrain. A very
noticeable change occurs in the EEG recording, as the salient high amplitude
waves are lost for several seconds.
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Figure 1.3: EEG recording of an anesthetized cat. Electrically stimulation
wass applied at second 120 (dotted vertical line).

1.1.4 Neural synchrony

One of the key differences between the sleep and awake states is the synchro-
nization between cortical neurons. This issue is the center in which we focus
the present statistical work.

The oscillatory activity that is so clear in the EEG during the different
states of the brain (different stages of sleep) reveals a massive neural syn-
chronization. This synchronization can also be studied at the level of single

8



neurons and, in particular, of spike trains. Association measures are most
commonly used to analyze synchronization of isolated single-neuron activities
under certain conditions, like sensory stimulation or electrical activation of
brain areas. Those approaches are essential to study the information coding
and functional organization of the brain, but the spontaneous spike activ-
ity can also provide important clues to brain structure and function. Many
methods have shown to be useful and competitive but most of them are
designed to work with large spike densities (high firing rates) or plenty of
repetitions (trials) of an experiment.

One of the most used tools to measure neural associations is the cross-
correlation analysis. For example, the joint peristimulus time histogram
(JPSTH) (Gerstein and Perkel (1969); Aertsen (1989)) displays the dynam-
ics of correlation between neurons. This measure is the generalization for
two neurons of the peristimulus time histogram (PSTH), which accumulates
the spike times across trials of a single cell. The JPSTH is a two dimen-
sional histogram of the joint firing count at time t of the first neuron and
at time u of the second one. Its normalized version is just the Pearson
correlation coefficient (computed across trials) of the firing counts of both
neurons at two different time bins. This measure assumes that all the trials
are indistinguishable and therefore it cannot take into account trial to trial
variations. The cross-correlogram is the sum of the diagonals of the JPSTH
and therefore shows the lagged firing-together of the two neurons. This is,
the cross-correlogram is a histogram of the joint firing as a function of the
time lag.

Other methods commonly used to capture synchrony are those based on
‘unitary events’ (Grün (1996); Grün et al. (2002); Grün (2009)). These
methods rely on binned trains, where each bin will have a 1 if a spike occurs
or a 0 otherwise. Unitary events refer to the occurrence of coincident spikes,
or 1-1 matches, in the neurons under study. The unitary events analysis es-
timates the probabilities of joint-firing under the hypothesis of independence
of the two spike trains. These probabilities are used to compute the expected
numbers of joint spikes. Tests for synchrony are defined in terms of the dif-
ference between the expected frequencies and the observed ones. Faes et
al. (2008) proposed a synchrony index, the Conditional Synchrony Measure,
which is calculated, also, with binned trains. It is a flexible method, based
on estimating the probability of joint-firing given that one of the neurons
fired. However, as all the methods previously described, it was developed
for the presence of many trials or, at least, a high firing rate. Quiroga et al.
(2002) presented a nonlinear method based on relative timings of events in
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time series, which can be applied not only to spike trains but also to EEGs
or any other time series. Another interesting method is presented by Kruskal
et al. (2007). Their method is based on the smoothing of spike trains them-
selves. They propose the use of kernel methods for this smoothing. There
exist other approaches to neural associations which are defined in the fre-
quency domain. For example, the correlation of the Fourier transform of two
processes is called the coherency, and it is a function of the frequency. The
squared modulus of the coherency is called coherence and it is an association
method widely used in the literature (Brillinger (1992)). For general and
state-of-the-art methods on spike train analysis, including correlation among
neurons, see Brown et al. (2004) and Kass et al. (2005).

Usually, experiments are repeated several times under the same condi-
tions, to be able to average across trials and, in this way, reduce the within-
trial noise. On the other hand, averaging among trials has the natural draw-
back of possible between-trial noise that can be originated by uncontrollable
differences in the experiment setting. In our particular case, the data for
each neuron came from a small number of trials and also the overall spike ac-
tivity was fairly low. The number of recorded trials is low because of several
methodological restrictions, such as the long duration of the protocol applied
to every group of simultaneously recorded neurons, and the methodological
necessity to keep the number of electrical stimulations as low as possible.
Regarding the low spike activity, it is characteristic (among other regions)
of the spontaneous activity recorded in our area of study, the primary visual
cortex. It is then necessary to develop specific statistical tools to analyze
neural dynamic synchronization under these circumstances.

1.1.5 Primary visual cortex and orientation selectivity

Towards the last part of the present work some of the synchronization analy-
sis between pairs of neurons are related to one more variable (together with
the sleep vs awake mode and the two activating pathways studied): the ori-
entation selectivity of visual cortex cells.

The visual cortex is the part of the cortex responsible of processing vi-
sual information. It is composed by the primary visual cortex (V1) and the
extrastriate visual cortical areas, such as, V2, V3, V4 and V5. In mammals,
including humans, V1 is located in the posterior pole of the occipital cortex
and it is the one that receives the visual input from the retina, after being
processed at thalamic level.
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David Hubel and Tortsen Wiesel discovered in 1958 that cells in the
visual cortex are selective to orientation. This means that neurons respond
(fire more) if they detect local bars or edges at some particular angle in the
processed image (Hubel and Wiesel (1962)). Figure 1.4 shows an example of
this fact. In the left panel, it shows extracellular recordings of a neuron in
the primary visual cortex of a monkey while oriented light bars where shown
to the animal. It is clear how the amount of spikes depend on the orientation
of the bar. In the right panel, the figure shows the average firing rate of a
neuron in a cat V1 as a function of the angle of the bar presented.

Figure 1.4: Left panel: response firing of a neuron in the primary visual
cortex of a monkey. Right panel: average firing rate of a cat V1 neuron; the
data is from Henry et al. (1974).

1.2 Nonparametric methods

In general, we will use nonparametric methods to do descriptive analysis of
the data, develop association methods and make inference based on them. In
particular, kernel smoothing methods will be repeatedly used. We will use
these methods for the estimation of density and regression curves. In each
chapter, the methodology used or proposed is basically explained and refer-
ences are provided for more details. Anyhow, it is worth a general overview
of kernel methods. We refer the reader to the book of Wasserman (2006) for
general nonparametric statistics or the books of Wand and Jones (1995) and
Simonoff (1996) for theory and details on kernel smoothing.

When it cannot be assumed that the distribution of the variable under
study belongs to a given finite-dimensional parametric space, nonparame-
tric methods are used. Parametric estimators are the most efficient while the
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model assumed for the data is the correct one, otherwise these estimators can
be inconsistent. On the other hand, nonparametric estimators are usually
consistent although they tend to be less efficient for samples of small sizes
when a parametric model holds. In the spike train data context, Poisson
process models are often used to describe spike times. Nevertheless, there
are several intrinsic characteristics of spike trains that make the Poisson
model inadequate, such as refractory periods or burst activity, for example.
Statistical models for spike data have been widely discussed (Gerstein and
Madlebrot (1964); Tuckwell (1988); Smith and Smith (1965); Shadlen and
Newsome (1998)) and other models have been proposed and discussed by
Barbieri et al. (2001), Kass and Ventura (2001) and Reich et al. (1998),
among others. In Chapter 3 we will show the Poisson model is not useful for
the data under study in this thesis.

To estimate curves, such as density or regression functions, we will as-
sume they are smooth and make use of kernel estimators, which were first
introduced by Rosenblatt (1956) and Parzen (1962).

1.2.1 Kernel density estimation

Let X be a random variable with density function f and let x1, . . . , xn rep-
resent a random sample of size n coming from the density f . The histogram
is probably the most simple and widely used nonparametric method to es-
timate f . Another estimator of the density function, is the kernel density
estimator :

f̂n,K(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
,

whereK is a kernel function, typically non-negative and satisfying
∫
K(u)du =

1,
∫
uK(u)du = 0 and

∫
u2K(u)du = σ2

K > 0. The positive number, h, is
called the bandwidth and it is the parameter which controls the amount of
smoothing. Some commonly used kernel functions are shown in Table 1.1.

Figure 1.5 shows the estimated density function of a small set of data us-
ing a histogram and a kernel density estimator. The data are the logarithms
of the intersipke intervals which will be described in Chapter 3. The values of
the sample are depicted underneath the density estimations and correspond
to a real spike train. A Gaussian kernel has been used for this estimation.
It can be observed that even though the histogram is informative, the kernel
estimator has the advantage of being smooth and much more sensitive to
local properties of the underlying density.
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Table 1.1: Some common kernel functions.

Epanechnikov K(u) = 3
4
(1− u2) I{u ∈ [−1, 1]}

Biweight K(u) = 15
16
(1− u2)2 I{u ∈ [−1, 1]}

Triweight K(u) = 35
32
(1− u2)3 I{u ∈ [−1, 1]}

Gaussian K(u) = 1√
2π

exp(−u2/2)
Uniform K(u) = 1

2
I{u ∈ [−1, 1]}
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Figure 1.5: Histogram and (Gaussian) kernel density estimator for a sample
of the logarithms of intersike intervals.

It is well known that the choice of the kernel function in not too impor-
tant. When suitable bandwidths are chosen, the results obtained for different
kernels will not be considerably different, see, for example, Wand and Jones
(1995), pp. 28–31 or Simonoff (1996), pp. 41–44. This fact is also shown in
Figure 1.6 where the Epanechnikov, the biweight and the uniform kernels
have been used. The bandwidths have been chosen to obtain equivalent es-
timations to the one shown in Figure 1.5 (see Simonoff (1996), p. 45). Note
that the results are comparable.
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Figure 1.6: Kernel density estimation using Epanechnikov (left), biweight
(center) and uniform (right) kernels, for a sample of the logarithms of inter-
sike intervals.

On the other hand, the choice of the bandwidth, h, is really important.
Small bandwidths give rough estimates while larger bandwidths give over-
smoothed estimates. There exist several methods to conveniently choose this
smoothing parameter. Let us discuss briefly some of them. The simplest
method is the one that looks out for optimization of the mean integrated
square error (MISE). The mean square error (MSE)

MSE(x) = E((f̂n,K(x)− f(x))2)

is a measure often used to evaluate the error of the estimator f̂n,K . This
quantity can be rewritten as the sum of the squared-bias and the variance of
the estimator:

MSE(x) = (E(f̂n,K(x)− f(x)))2 +Var(f̂n,K(x)).

Under some regularity conditions (f ′′ absolutely continuous, and f ′′′ ∈ L2),
if h→ 0 with nh→ ∞ as n→ ∞, then, it can be proven using Taylor series
expansions,

E(f̂n,K(x)− f(x)) =
h2σ2

Kf
′′(x)

2
+O(h4)

and

Var(f̂n,K(x)) =
f(x)R(K)

nh
+O(n−1),

with R(K) =
∫
K2(u)du. Integrating the MSE we get the MISE, which is a

global measure of accuracy. Its asymptotic value can be written as:

AMISE =
R(K)

nh
+
h4σ4

KR(f
′′)

4
.
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The value of h that minimizes AMISE is

hAMISE =

(
R(K)

σ4
KR(f

′′)n

) 1
5

. (1.1)

This gives a possible method to select h: choose a reference density function
and substitute it into (1.1). For example, if f is a normal density with
standard deviation σ then,

hAMISE =

(
8
√
πR(K)

3σ2
Kn

) 1
5

σ.

If the kernel is the Gaussian one, and replacing σ by a sample estimate, σ̂,
we get that the optimal h is

ĥAMISE = 1.059σ̂n−1/5.

We now consider a second method. Following the plug-in principle, the
asymptotically optimal h in (1.1) can be estimated by

ĥ =

(
R(K)

σ4
KR̂(f

′′)n

) 1
5

,

where R̂(f ′′) is an estimate of R(f ′′). Sheather and Jones (1991) proposed

R̂(f ′′) = R(f̂ ′′) where f̂ is an estimate of f computed with a different pilot
bandwidth.

The last approach we will describe is the cross-validation method. Instead
of minimizing the MISE, the integrated square error (ISE) is considered here:

ISE(h) =

∫
(f̂n,K(u)− f(u))2du =

=

∫
f̂ 2
n,K(u)du− 2

∫
f̂n,K(u)f(u)du +

∫
f 2(u)du.

The term
∫
f 2(u)du clearly does not depend on h, therefore we can forget

about that term. On the other hand,∫
f̂n,K(u)f(u)du = E(f̂n,K(Y )|x1, · · · , xn),

where Y is a random variable with density f , which needs to be estimated.
Let f̂−i

n,K(xi) be an estimate of f without using the i-th element of the sample
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and evaluated in xi. The expected value of that estimate is E(f̂n,K(x)) and
therefore

E

(
1

n

n∑
i=1

f̂−i
n,K(xi)

)
= E(f̂n,K(x)) =

∫
f̂n,K(u)f(u)du

So, the cross-validation method consists in choosing h such that minimizes

CV(h) =

∫
f̂ 2
n,K(u)du− 2

n

n∑
i=1

f̂−i
n,K(xi).

In Figure 1.5 the bandwidth was chosen by the Sheather and Jones plug-
in method. The Sheather and Jones plug-in smoothing parameter turned out
to be h = 0.38. To exemplify the importance of the bandwidth selection, in
Figure 1.7 the same density is estimated again. In this case, the smoothing
parameters were chosen to be h = 0.095 and h = 0.85. Large differences can
be observed. On one side, when a small bandwidth is used, the density is
noticeably undersmoothed. On the other hand, when a large bandwidth is
used, the density results oversmoothed and important information could be
lost such as, for example, in this case, the bimodality of this density function
could have been disregarded.
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Figure 1.7: Kernel density estimation using a Gaussian kernel for a sample
of the logarithms of interspike intervals. The bandwidth paramteters are
h = 0.095 (left panel) and h = 0.85 (right panel).
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1.2.2 Kernel regression estimation

In the regression context, the interest lies on analyzing the relation between a
response variable, Y , and a covariable, X. This is, if {(xi, yi)}ni=1 is a sample
of (X, Y ), then, the regression model states:

yi = m(xi) + εi.

By definition,m(x) is the conditional expectation E(Y |X = x), with E(ε|X =
x) = 0 and Var(ε|X = x) = σ2(x). In the nonparametric case, m(x) is just
assumed to be a smooth general curve, contrary to, for example, the most
commonly used model, the linear regression, where a specific parametric form
is assumed: m(x) = a + bx.

The kernel regression estimator is defined as:

m̂n,K(x) =

n∑
i=1

wiyi with

wi =
K(x−xi

h
)∑n

j=1K
(x−xj

h

) =
1
nh
K(x−xi

h
)

1
nh

∑n
j=1K

(x−xj

h

) ,
K is a kernel function and h is the bandwidth as before. This estimator is
called the Nadaraya-Watson kernel estimator (Nadaraya (1964) and Watson
(1964)).

The Nadaraya-Watson estimator is a local weighted mean of the observa-
tions of Y with

∑n
i=1wi = 1 and it happens to be the solution to the weighted

least squares problem, being the quantity that minimizes the function:

Ψ0(γ0) =

n∑
t=1

(yi − γ0)
2K

(
x− xi
h

)
.

This idea suggests fitting a higher order polynomial and gives place to lo-
cal polynomial regression. This method was introduced by Stone (1977) and
Cleveland (1979) but it gained importance with the papers of Ruppert and
Wand (1994) and Fan and Gijbels (1995). The local polynomial estimator is
obtained by using weighted least squares to locally fit polynomials of a given
degree previously specified. It is a method of easy computation, it adaptates
to estimate derivatives and it also has other nice properties (see Wand and
Jones (1995) or Fan and Gijbels (1996) for details).
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Observe that, if m has p+ 1 continuous derivatives at the point x, it can
be approximated (using a Taylor expansion) by

m(z) ≈ m(x) +m′(x)(z − x) +
m′′(x)
2!

(z − x)2 + . . .+
m(p)(x)

p!
(z − x)p.

This polynomial can be fitted by minimizing the function:

Ψp(γ) =
n∑

t=1

(
yi −

p∑
j=0

γj(xi − x)j

)2

K

(
x− xi
h

)
,

where γ = (γ0, γ1, · · · , γp). The local polynomial regression estimator of
the j-th derivative of m(x), m(j)(x), is m̂j(x) = j!γ̂j , j = 1, · · · , p, where
γ̂ = (γ̂0, γ̂1, · · · , γ̂p) is the minimizer of Ψp. In particular, m̂(x) = γ̂0 is an
estimator of m(x). The Nadaraya-Watson estimator is the particular case of
the local polynomial kernel estimator when p = 0.

As in the density function estimation case, the choice of the kernel func-
tion K is not as relevant as the proper choice of the smoothing parameter
h. The methods described in Section 1.2.1 have a similar formulation for
the regression problem. For example, the cross-validation method, using the
leave-one-out procedure in this context is as follows. The cross-validation
function is

CV(h) =
1

n

n∑
i=1

(yi − m̂−i(xi))
2

where m̂−i is built as m̂ but with all the data except the pair (xi, yi) and
evaluated in xi. The bandwidth selector obtained by this method is the min-
imizer of CV(h).

Instead of a constant bandwidth, a local variable bandwidth can be used.
A variable bandwidth, h(x), allows for different degrees of smoothing, giving
flexibility to the fitting and helping to reduce the bias in rough regions while
possibly reducing the variance in flat regions. For example, for the cross-
validation method, the data can be separated in blocks or sliding windows
and the parameter h(x) estimated at each block\window. On the other hand,
Fan and Gijbels (1996) give a theoretical optimal local bandwidth for m̂j(x),
the estimator of the j-th derivative of m. It is obtained by minimizing the
conditional mean squared error (MSE):

MSE(x) = (Bias (m̂j(x)|{x− 1, · · · , xn}))2 +Var (m̂j(x|{x− 1, · · · , xn})) .
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This theoretical optimal choice can be approximated by the value that min-
imizes the asymptotic conditional mean squared error (AMSE):

AMSE(x) =

(
hp+1−j
n

m(p+1)(x)j!

(p+ 1)!

∫
uK(u)du

)2

+

+
h2j+1
n σ2(x)(j!)2

f(x)

∫
K2(u)du

and results in

hAMSE(x) = Cj,p(K)

(
σ2(x)

(m(p+1)(x))2f(x)

)1/(2p+3)

n−1/(2p+3),

where

Cj,p(K) =

(
(p+ 1)!2(2j + 1)

∫
K2(u)du

2(p+ 1− j)(
∫
up+1K(u)du)2

)1/(2p+3)

.

Of course, there are still unknown quantities in the expression for the asymp-
totically optimal bandwidth, such as, the density f , the conditional variance
σ2 or the (p + 1)-th derivative of the function m. These quantities can be
estimated from the data and pluged in the formula. Thus, this is the plug-in
method for the local bandwidth selection. Details of this and other methods
to choose the bandwidth for the local polynomial kernel estimator can be
found in Fan and Gijbels (1996).

Another important quantity to choose is the order of the polynomial, as
high orders may decrease the bias while increasing the variability. Although
there exist automatic procedures for this selection, in general, p = j + 1 is
sufficient and an odd value p is advised (Fan and Gijbels (1996), Chapter 3).

1.2.3 Bootstrap

Along this work we make an extensive use of bootstrap methods to approxi-
mate the sampling distribution of some estimators. The bootstrap is a resam-
pling technique that is relatively easy to use. It is an appealing alternative to
parametric inference when this is impossible or requires complicated math-
ematical calculations. Bootstrap methods obtain estimates for estimators’
properties by resampling with replacement from an original data sample.
These techniques are most often used to make inference on estimators by
approximating their variance or building confidence intervals but they can
also be used to conduct hypothesis tests. The bootstrap was first introduced
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by Efron (1979) to estimate the standard error of a statistic. This is proba-
bly the simplest and most commonly used application of the bootstrap. As
before, assume we have a sample x = {x1, · · · , xn} from an unknown prob-
ability distribution, F , and let θ by a parameter of that distribution, that
needs to be estimated. To do this, we can compute the estimate θ̂ = s(x)
from the sample x. To have a notion of how accurate θ̂ is, we could estimate
its standard error, se(θ̂). In this context, the bootstrap procedure is very
simple. A bootstrap resample, x∗ = {x∗1, · · · , x∗n} of size n is defined as a
random sample drawn with replacement from the empirical distribution, F̂ ,
that assigns probability 1/n to each point in the sample x. The bootstrap
statistic can be computed from x: θ̂∗ = s(x∗). So, the so called uniform
bootstrap procedure is as follows:

1. Draw a random sample x∗ = {x∗1, · · · , x∗n} from F̂ .

2. Evaluate the bootstrap statistic θ̂∗ = s(x∗).

3. Repeat 1 and 2, B times to obtain θ̂∗1, · · · , θ̂∗B and compute their
sample standard error. This gives ŝe(θ̂∗) which is an estimate of se(θ̂).

The general idea of the uniform bootstrap is repeated in almost every
context where the bootstrap can be applied. Although resampling proce-
dures may change, bootstrap samples are obtained by Monte Carlo from the
original sample, and the desired characteristic of the estimator distribution
approximated by the corresponding bootstrap analogue. We will briefly dis-
cuss some of the different bootstrap procedures.

If F is a continuous distribution with density function f , it can be es-
timated by the integral of the kernel density estimator, with bandwidth h,
discussed in Section 1.2.1:

F̂h(x) =

∫ x

−∞
f̂h(u)du.

Therefore, the random samples can be obtained by resampling from F̂h in-
stead of doing it fromF̂ . This is called the smooth bootstrap (Efron and
Tibshirani (1993) pp. 231; Silverman and Young (1987)). The Monte Carlo
resampling results easy: let W be a random variable with density function
K(w) and X0 another random variable with distribution F̂ , the empirical
distribution of the data. It results that F̂h is the distribution of hW + X0

and therefore a bootstrap sample can be obtained by x∗i = hwi + zi with wi

a realization of W and zi drawn with equiprobability from x1, x2, · · · , xn.
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Instead of using a nonparametric estimator for F , a parametric estima-
tion, F̃ , is sometimes plausible. If this is the case, a parametric bootstrap can
be used, resampling from F̃ .

The bootstrap can be also used to make inference on regression models.
Consider the linear model

yi = β0 + β1xi + εi,

where inference on β̂ = (β0, β1)
t is aimed. In this case, a possible procedure

is to resample from the residuals of the fitted model. This is, consider the
least squares estimator of β, β̂, and let ε̂ = yi− ŷi, with ŷi the fitted values of
the model. Then, a bootstrap resample for this problem can be obtained as
y∗i = β̂0 + β̂1xi + ε̂∗i , being {ε̂∗1, · · · , ε̂∗n} a bootstrap resample obtained from
the empirical distribution of {ε̂1, · · · , ε̂n}.

Of course, the smooth bootstrap and the parametric bootstrap described
above can be adapted to this regression context as well. Also, there exist vari-
ants that take into account heteroscedasticity (wild bootstrap; Wu (1986))
or dependence in the data. If this last one is the case, just resampling from
the estimated distribution of the residuals would not imitate the correlation
of the data and therefore the method would fail. There exists methods to
overcome this drawback which are widely used in time series analysis. The
moving blocks bootstrap (Künsch (1989); Liu and Singh (1992)) or the sta-
tionary bootstrap (Politis and Romano (1994)) are examples of bootstrap
methods designed for dependent data. In the moving block bootstrap, the
resampling procedure is made on fixed-length blocks of data instead of sin-
gle data points. The stationary bootstrap, allows for variable length and it
improves the moving blocks procedure because, as it name indicates, it is
stationary while the previous method is not. The stationary bootstrap pro-
cedure consists in choosing a real number p ∈ [0, 1], drawing at random y∗1
from F̂ and, once y∗i = yj has been chosen (for j ∈ {1, · · · , n− 1}), defining
y∗i+1 as yj+1 with probability 1 − p and drawing from F̂ with probability p.
In the case j = n, the observation yj+1 is replaced by y1.

1.3 Summary of the following chapters

The content of the rest of the thesis is briefly summarized now. In Chapter 2
the objectives of the experimental study are outlined. Also, the experiment
is described as the data used in this work are briefly presented. Chapter 3 is
an introduction to spike trains. A mathematical definition is presented and
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single spike train correlation measures are discussed. Chapter 4 introduces
interaction between two spike trains. A method to measure associations
based on a generalization of inter spike intervals for two neurons is proposed
and a procedure to test for significance in the effect of each stimulus on these
measures is presented. A second method to measure synchrony is presented
in Chapter 5. This method is based on the cross-correlogram. Hypothesis
tests are presented for the differential effect of stimulation. In Chapter 6
an alternative method to measure synchrony is presented with its respective
hypothesis tests. The orientation selectivity of neurons is introduced in the
analysis in Chapter 7 as the synchrony between neurons and the effects of
stimulation of the activating neural pathways are analyzed at a group level.
Finally, in Chapter 8 a brief analysis at a population level is made. The
estimations of synchrony are gathered across many experiments and the av-
erages of these curves analyzed. Chapter 9 gathers the general conclusions
of the thesis.
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Chapter 2

Objectives and experimental
setting

In this chapter we present the objectives of the study, describe the experi-
ments and briefly present the data that will be used throughout the thesis.

2.1 Objectives

Sleep is a fundamental part of our everyday life. Although it is a death-life
activity, there are still many questions that remain to be answered. One of
those questions is how is the sleep-wake cycle regulated by the neuronal net-
works. As already mentioned, an important characteristic of the sleep state
is the highly synchronized activity that can be observed in the EEG. How
is the spontaneous dynamics of synchronized cortical neurons? How is that
synchronization disrupted by the ascending systems? How are the temporal
patterns of synchronization during the awake state? How does they evolve
into the sleep state? These are some of the questions that guide one of the
research projects of the Neurocom group.

The main hypothesis of that project is that it is possible to extract in-
formation on cortical functional architecture from the spontaneous behavior
of neurons, a behavior obtained from their spike activity and reflected in the
synchronization strength between pairs of cells. In their current work, Neu-
rocom researchers are interested in defining the synchronization dynamics of
pairs of neurons in the sleep mode and also in the awake mode, using the
already described experimental model: a model in which the switch from the
sleep-like to the awake-like pattern is achieved by means of electrical micro-
stimulation on specific locations of either the brainstem (bs) or the basal
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forebrain (bf ). But there is a methodological problem that makes it diffi-
cult to define statistical significances: the scarce number of action potentials
(spike activity) which is typical of the spontaneous activity.

The present work is the result of our research to find appropriate statis-
tical tools to define, under the above mentioned experimental conditions:

• the synchronization dynamics of pairs of neurons under spontaneous
activity.

• the differences in synchronization strength between the sleep-like and
the awake-like periods.

• the efficacy of bs and bf in generating the transition from the sleep to
the awake mode, and the relative difference in such effect of bs versus
bf.

• the synchronization dynamics of pairs of neurons in the above condi-
tions regarding their orientation selectivity.

2.2 Experiment

The data analyzed in this thesis comes from experiments performed in adult
cats. All the procedures were performed by the researchers of Neurocom
group and according to national and international guidelines. The ani-
mals were anesthetized and paralyzed. Ketamine (15mg/kg) and xylazine
(3mg/kg) were used to induce the anesthesia and isofluorane (0.5–1%) in
nitrus oxide (70%) and oxygen (30%) to maintain a state of deep anesthesia
and a stable pattern of delta (1–5Hz) slow oscillatory activity. Paralysis was
obtained with gallamine triethiodide. The cats were artificially ventilated
and their body temperature was mantained at 37–38 ◦C. Four cranotomies
were performed. One in the primary somatosensory cortex (S1) to record
the electrocorticographic activity (ECoG), another one in V1 to perform the
extracellular electrophysiological recordings, and the other two for electri-
cal stimulation of ascending pathways located in the basal forebrain and
brainstem. Cells in V1 were recorded using an eight-points multielectrode.
Figure 2.1 shows a sketch of the experiment.

Once a group of neurons was selected for recording, visual stimulation
was used to detect each neuron’s preferred orientation. Visual stimulation
was performed using a monitor situated at 57 cm from the cats eyes. The
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Figure 2.1: Sketch of the experimental setting described in Section 2.2.

stimuli used were oriented light bars. Figure 2.2 depicts the nature of the
visual stimuli as well as the spiking activity of a real neuron provoked by
such stimuli.

After the visual stimulation procedure took place, bs and bf were stim-
ulated one at a time, three or four times each. The order of stimulation
was randomly chosen. Stimuli were trains of rectangular cathodal shocks
(0.05ms, 0.1–1mA) delivered at a frequency of 50Hz for periods of 2 s through
bipolar electrodes. Intervals of 8–10 minutes passed between stimulations to
let the neurons recover. Each recorded trial lasted for approximately 600 s
long, with the stimulus presented after around 120 s. Figure 2.3 shows the
location of the brainstem and basal forebrain in a cat’s brain as well as the
approximate locationof the recording and stimulating electrodes.

2.3 Data

The data resulting from the experiment are spike trains. As already stated,
these spike trains are temporal sequences of neuronal action potentials, which
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Figure 2.2: Light bars presented as visual stimuli to determine the favorite
orientation of the neurons (left panel). Spiking activity of a real neuron
provoked by the oriented light bars (right panel).

Figure 2.3: Approximate location of recording (S1, V1) and stimulating (bs,
bf ) electrodes in the cat brain.

can be easily visualized in Figure 1.2. In the following four chapters we
will apply different statistical methods to a group of seven simultaneously
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recorded neurons. We will denote these neurons with the names N1, N3a,
N3b, N4a, N4b, N5 and N7 (as in the Neurocom database). As already
mentioned, the neurons were recorded with an eight-points multielectrode.
A given electrode can record, none, one or more than one neuron in a given
trial. This is because the points of the electrode can be situated close to none,
one or more that one neuron respectively. This is the reason for the names of
the neurons we will work with. In this case, the first electrode recorded one
neuron, the second electrode recorded none and the third electrode recorded
two neurons at the same time, and so on. The activity of the two neurons
recorded by the third electrode was sorted off-line by the researchers. Origi-
nally, the data is stored in a large data base containing all the trials of every
recording of several experiments. As a first step we organized the data in
smaller data frames containing the information for each recording. Also the
data was aligned at the stimulation time. Table 2.1 shows the first eight
spike times from the beginning of the recording of trial one of the previously
discussed group of neurons. It also shows the eight first spike times after the
onset of the bs stimulus (120 s).

In Chapter 3 we will discuss some of the characteristics of spike trains,
such as their firing rates: frequencies at which the neurons fire. In the
meanwhile, Figure 2.4 shows the raster plots and corresponding firing rates,
estimated using kernel smoothers, forr 160 s of three spike trains. They be-
long to three neurons of the aforementioned group, namely, N1, N3a and N3b.

In Chapter 7 another group of neurons is used. The group chosen to ex-
emplify the use of the methodology described is a group of 8 simultaneously
recorded neurons. Also, four trials for each stimuli were performed in that
case.

In Chapter 8 the recordings of nine experiments like the one described in
Section 2.2 were combined together for the analyses.

2.4 Software

The R language was used for the statistical analyses. Although the major
part of the functions and algorithms were programmed by ourselves, several
R packages were often used. Those packages are: stats, MASS, mgcv, fda,
fda.usc, KernSmooth.
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Table 2.1: Raw spike times of one trial of a group of simultaneously recorded
neurons.

N1 N3a N3b N4a N4b N5 N7

0.987150 1.797775 2.117425 1.319200 1.174950 1.091600 1.033425
1.030650 1.812725 3.171450 1.322850 1.181975 1.096325 1.818850
1.041150 1.992225 3.226000 1.325175 1.183875 3.169600 1.823025
1.065000 2.121600 3.232725 1.327375 1.185800 3.175000 2.068100
1.206925 2.474200 4.204950 1.329775 1.188300 3.183150 2.070325
1.402850 2.510000 4.208350 1.332400 1.605100 3.307175 2.111125
1.517475 3.230400 4.212950 1.954500 1.611050 3.309450 2.112825
1.592500 3.588325 5.809900 2.028775 1.612725 3.314000 2.115100

...
...

...
...

...
...

...
121.4606 121.4458 121.7348 120.1265 121.7576 121.4010 122.9900
122.1192 121.4866 121.9913 120.1305 121.8439 121.9499 123.0143
122.3384 121.7293 122.1219 120.1348 121.8606 122.1055 123.0178
122.5217 121.7900 122.2710 120.1369 122.0996 122.1103 123.0376
122.5441 122.0254 122.4586 120.1390 122.1465 122.1126 123.0396
122.5695 122.3074 122.4820 120.1415 122.1988 122.5300 123.4560
122.8900 122.3501 122.4841 121.4034 122.2008 122.5333 124.6872
122.9102 122.5324 122.4882 121.4182 122.2595 122.5352 124.6905
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Figure 2.4: Raster plots of one trial (upper panel) of three simultaneously
recorded neurons during 160 s of spontaneous activity. Firing rates profiles
of the same three neurons (bottom panel) estimated using kernel smoothing.
Electrical stimulation was applied at 60 s.
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Chapter 3

Analysis of single spike trains

As a first approach to the study of spike trains, in this chapter we present a
mathematical representation for them and we discuss some of their proper-
ties. First we consider the firing rates, estimate them using the kernel method
and discuss how the selection of the smoothing parameter affects these esti-
mations. Second, we present the inter-spike intervals (ISIs), which are the
periods of time that elapse from one action potential to the following. We
use kernel estimators to describe the density function of the logarithm of ISI
and investigate its stationarity. Finally, we present autocorrelation measures
for spike trains and use them to propose a bootstrap-based hypothesis test
for independence of the ISIs. Part of the resutls of this chapter can be found
in González-Montoro et a. (2011).

3.1 Point processes and rate functions

Spike trains can be described by means of point processes. A point process is
a stochastic process that consists of a set of discrete events occurring in con-
tinuous time. A neural spike train is completely described by point process
where the events are the time points, 0 < X1 < X2 < . . ., when the spikes
occur. Apart from the event times, there are other ways to represent a point
process and, in particular, a spike train. Let S1, S2, . . . be the set of ran-
dom variables that describe the possible waiting times between consecutive
occurrences of the previous point process. We will refer to these variables as
inter-spike intervals, ISI. A third possible way to describe the spike trains
is by the counting process, N(t), defined as the number of events that occur
in the time interval (0, t], this is, N(t) = #{Xi ≤ t, i = 1, 2, . . .}. Also,
we can denote the amount of events in an arbitrary time interval (t1, t2] as
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ΔN(t1,t2) = N(t2)−N(t1).

The three ways of characterizing a spike train discussed above are equiva-
lent. All of them fully specify the point process and, any of them, completely
determine the other two. The ISI can be computed as the difference between
consecutive spike times, S1 = X2 −X1, S2 = X3 −X2, . . ., and, knowing the
ISI we can compute the spike times using the cumulative sum Xn =

∑n
i=1 Si.

On the other hand, Xj = u if and only if N(u) = j and N(t) < j for all
t < u. Both, the spike times and the inter-spike intervals, are variables with
a discrete index which take values in R, while the counting process takes
integer values but its index is continuous, indicating a point in time. These
three forms of representing the same point process could be useful to solve
different problems and we will use the three of them throughout the text.

When working with real data, the point processes are observed in a
time interval and, therefore, only a finite set of variables can be observed.
Given an observational interval (0, T ], we will work with single realizations
of the point process consisting on the observed spiking times in that in-
terval. We will denote these observed realizations with lower case letters:
X1 = x1, X2 = x2, . . . , XJ = xJ . In a similar way, we will use S1 = s1 =
x2 − x1, . . . , SJ−1 = sJ−1 = xJ − xJ−1 for the ISI.

It is often found in the neuroscience literature that Poisson processes
are used to model spike trains. Formally, a homogeneous Poisson process
with rate λ is a point process, N(t), which satisfies, a) N(0) = 0, b) for
any interval (t, t + Δt), ΔN(t,t+Δt) ≈ Poisson(λΔt) and c) N(t)has inde-
pendent increments, this is, for any two non-overlapping intervals, (t, t+Δt]
and (s, s + Δs], ΔN(t,t+Δt) and ΔN(s,s+Δs) are independent random vari-
ables. A major drawback of using Poisson processes to model neuronal data
is the fact the these processes assume no dependence on spiking history.
Consider Si, the inter spike interval between the (i − 1)-th and i-th spike.
The event Si > t occurs if and only if ΔN(Xi−1,Xi−1+t) = 0, and therefore,
P (Si > t) = P (ΔN(Xi−1,Xi−1+t) = 0) = exp(−λt), by the definition of Poisson
process. This means that the ISI follow a exponential distribution with mean
E(Si) = λ−1, as FSi

(t) = 1− exp(−λt).

In our particular problem, after the application of the stimulus to switch
from the sleep-like to the awake-like mode, it is clear that the spike train
can not be modeled with a homogeneous point process because of the non-
stationarity provoked by the appearance and disappearance of the stimu-
lus. But, what about the period before the stimulus? We performed a
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Kolmogorov-Smirnov goodness of fit test for several trials of all the neurons
obtaining p-values < 0.001 in every case. Figure 3.1 shows, a Q-Q plot of
the ISIs of the recording before stimulation of one trial of neuron N1. The
plot exhibits how the distribution of the ISIs diverges from the exponential
distribution.
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Figure 3.1: Q-Q plot for one trial of N1.

So far, we have considered processes that are stationary in time. This
assumption is not realistic when working with spike trains in general and
moreover when a sudden change (as the one induced by the stimulation in bs
or bf ) is being held. The rate function or intensity function can be defined
as the instantaneous probability of observing an event at every time point
per unit of time, this is:

λ(t) = lim
Δt→0

P (N(t+Δt)−N(t))

Δt

The rate function of spike trains has been widely studied since it is one
of the features in which information can be encoded. The rate function of a
point process is the instantaneous probability of finding an event at time t
per unit of time and, of course, this probability has to be estimated. There
exist several ways to estimate this quantity as, for example, the global count
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rate defined as the total amount of action potentials divided by the length
of the recording interval of time, r0 = J

T
, as shown in Figures 1.2 and 2.4,

by the raster plots, and Table 3.1. This measure has no information whatso-
ever about the dynamics of the firing rate over time so, more sophisticated
methods are needed.

A time varying firing rate can be defined to estimate the rate function
using different type of estimators. For example a histogram-like estimator
could be defined as follows. Given t0 = 0 and a bin width h0, let us define
the firing rate as constant in the intervals {(t0 + h0m, t0 + h0(m+ 1)] : m ∈
N}. This is, in each interval [tm, tm+1) (where tm = t0 + h0m) define, for
t ∈ [tm, tm+1),

r̃h0(t) =
1

h0

J∑
j=1

I{tm < Xj < tm+1}. (3.1)

Figure 3.2 shows the histogram firing rate estimations for N1 using three
different bin widths.

Kernel estimators are also useful to estimate rate functions. Given a
window length, h, and a kernel function, K, such that

∫∞
−∞K(t)dt = 1 and

generally non-negative, we can estimate the rate function as

r̂h(t) =
J∑

i=1

1

h
K

(
t−Xi

h

)
In the case of having several trials, sayN , of the same neuron, some resolution
can be gained using the mean of the firing rates. If this is the case, the firing
rate would be defined as:

r̂h,N(t) =
1

N

N∑
k=1

r̂
(k)
h (t) =

1

N

N∑
k=1

Jk∑
j=1

1

h
K

(
t−X

(k)
i

h

)
(3.2)

where r̂
(k)
h (t) is the kernel estimator of the rate function, X

(k)
i are the firing

times and Jk are the amount of spikes of the k-th trial.

An open and interesting discussion is how to choose the smoothing pa-
rameter h. Nawrot et al. (1999) studied the influence of the shape of the
chosen kernel function and the width of the smoothing parameter in the firing
rate estimation. Figure 3.3 shows kernel firing rate estimations for several
smoothing windows.
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Figure 3.2: Firing rate for neuron N1 averaged over three trials estimated
with the histogram-like method defined in (3.1). using three different choices
of bin size.

3.2 Inter-spike intervals

In this section we will investigate the nature of the ISIs in more detail. At
this point, it is important to note that the time to recover from a stimulus
varies from neuron to neuron and the recovery is not sudden but a continuous
process. Despite of this fact, and just for the present chapter, we use a parti-
tion of the time in three stages: pre (from the beginning of the recording to
the bs/bf stimulus), post (20 s, starting at the end of the stimulus) and final
(the rest). The choice of 20 s for the post part was made based on previous
work (Mariño and Cudeiro (2003)) and was intended to capture the period in
which the cerebral cortex is dominated by an awake-like pattern of activity.
Table 3.1 shows the global firing rates for each neuron in each of the stages.
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Figure 3.3: Firing rate for three trials of neuron N1 estimated with the
kernel estimator defined in (3.1) using three different choices of smoothing
parameter.

Figure 3.4 shows an example of the distribution of the ISIs for one trial
of the pre and post part of N1. It can be observed that the distribution of
this variable is highly concentrated for small values but has a very heavy tail
to the right. In this particular example, before stimulation, more than 300
of the 418 ISIs are smaller than 0.25 s but there also exist some intervals up
to 4 s long without any firing. After the stimulation, the large ISIs dissa-
pear almost completely for a period of time to reappear gradually later on.
Consequently, due to the nature of the data, we will work with the natural
logarithm of the ISIs to make results more easy to interpret.

We estimate the density functions of the logarithms of the ISIs and show
some examples to study stationarity. For the estimation of the densities we
use kernel estimators and, as before, we use a Gaussian kernel function. The
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Table 3.1: Average number of spikes per second in each stage.

N1 N3a N3b N4a

bs bf bs bf bs bf bs bf

pre 3.459 4.534 3.319 2.932 2.815 3.617 5.036 6.591
post 3.950 3.800 5.900 2.450 4.700 2.900 21.450 4.250
final 3.844 4.081 3.136 3.867 2.324 3.964 9.506 4.419

N4b N5 N7

bs bf bs bf bs bf

pre 4.260 4.443 2.237 2.122 1.271 1.453
post 5.600 4.950 3.750 2.900 1.150 0.050
final 3.39 4.083 2.336 2.404 1.386 0.731

smoothing parameter is chosen by the automatic plug-in window selection
described by Sheather and Jones (1991). These estimates are shown in Fig-
ures 3.5 to 3.8, where the left and right panels correspond to trials of the bs
and bf stimulations respectively.

An important fact that arises is that each neuron has a particular density;
some of them present two or three modes in the pre stage. In general, all
densities present a mode in very small values and another one around zero,
which corresponds to e0 ≈ 1 s. Also, it can be observed that the densities
change considerably in the post stage to recover in the final stage, in most
of the cases, a shape very similar to the original. This difference and re-
cuperation is very noticeable for neuron N1 in Figure 3.5 and neuron N3b
(Fig. 3.7) for the bf stimulation. This is also the case for Neuron N4b
(Fig. 3.8) in the bs panel although, the bf stimulation affects very little the
density of the ISIs, where the only considerable change can be observed in
a reduction of the principal mode. For neuron N3a (Fig. 3.6) the original
density does not seem to be recovered in the final stage, specially for the bf
stimulation. An interesting point is that, although the computations have
been made using the three trials of each condition altogether, these charac-
teristics can be observed for each of the isolated trials, as shown in Figure 3.9.

In order to be able to asses that the distribution of the ISIs is recovered
after the effect of the stimulus, we need to know whether the density during
the sleep-like pre period is stationary. To do this, we use sliding windows in
the pre part to estimate the density of the ISIs in each window. Figure 3.10
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Figure 3.4: Boxplot and frequencies of the ISIs of one trial of the pre (top)
and post (bottom) stages of N1.

shows this analysis for the first recorded trial of neuron N1. We have used
36 s time windows and have slided it every 18 s, which means that every win-
dow overlaps in half of its width with the previous one. It can be observed
that these densities are very similar. They all have the same two modes and
are essentially the same height. These densities do not change across trials.
There are other neurons in which the stationarity is not that clear.

Figure 3.11 shows the same type of analysis but for the period of time that
starts right after the stimulation. In this cases we have not separated the post
period from the final because in 20 s there are not enough spikes to perform
the analysis. Nevertheless, we have used 24 s windows and, therefore, the
first panel in the upper left position shows the density for the 24 s right after
stimulation, and hence contains the post period. The windows move every
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12 s and it can be seen how the two modes and height are recovered. Some
densities show differences with the ones in the pre part, but this fact can also
be due to the reduction in the amount of data used to estimate these densities.
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Figure 3.5: Density estimation of the log ISIs of the three stages of N1. Left
panel: bs stimulation. Right panel: bf stimulation.
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Figure 3.6: Density estimation of the log ISIs of the three stages of N3a. Left
panel: bs stimulation. Right panel: bf stimulation.
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Figure 3.7: Density estimation of the log ISIs of the three stages of N3b. Left
panel: bs stimulation. Right panel: bf stimulation.
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Figure 3.8: Density estimation of the log ISIs of the three stages of N4b. Left
panel: bs stimulation. Right panel: bf stimulation.
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Figure 3.9: Density estimation of the log ISIs of one trial (bs stimulation) of
neuron N1.
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Figure 3.11: Density functions of the log ISIs for 200 s after stimulation for
the first trial (bs stimulation) of neuron N1 estimated in 24 s windows slided
every 12 s. Time course from left to right and up to bottom. The first panel
includes the post period.

3.3 Autocorrelation measures

In the previous section we defined the inter-spike intervals (ISI) as the time
elapsed between consecutive spikes. In this section we introduce autocorre-
lation measures for spike trains and estimate them for the real data.

Given the ISIs of an observed spike train, S1, . . . , Sn, we can estimate the
serial autocovariance function as

γ̂(h) =
1

n

n−h∑
i=1

(Si+h − S̄)(Si − S̄), 0 ≤ h < n,

where S̄ = 1
n

∑n
i=1 Si is the sample mean. Then, the serial autocorrelation
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function is estimated by

ρ̂(h) =
γ̂(h)

γ̂(0)
, 0 ≤ h < n .

Although this is an interesting measure and the most used in the time
series literature, it is more common in neuroscience to study a higher order
autocorrelation measure between spikes which will be denoted as higher order
inter-spike autocorrelation,HOISA, (Perkel et al. (1967a)). The term higher
order results from the fact that distances from any two spikes are taken into
account, not only from consecutive spikes, as it will be made clear below.
Before introducing the HOISA itself, as it is presented in the neuroscience
literature, we will discuss on a very similar measure which can be derived as
the serial autocorrelation function of a different time series.

Let us split the total recording time, T , in Q =
[
T
q

]
+1 intervals of length

q. Let Ai be the i-th interval, Ai = [(i − 1)q, iq). Here it is convenient to
note that if only one spike is intended to fall in each interval, q must be
sufficiently small. A typical value is q = 1ms since it is known that, due
to the refractory period, a neuron needs approximately that time to recover
before firing again. Let us define the new series {Vi}Qi=1:

Vi =

n+1∑
j=1

I{Xj ∈ Ai}. (3.3)

We can estimate its autocovariance function by

γ̂V (h) =
1

Q

Q−h∑
i=1

(Vi+h − V̄ )(Vi − V̄ ), V̄ =
1

Q

Q∑
i=1

Vi .

Now, if h << Q the following approximations, Q−h ≈ Q and
∑Q−h

i=1 Vi+h ≈∑Q
i=1 Vi ≈

∑Q−h
i=1 Vi can be used to obtain, after some algebra,

γ̂V (h) ≈
1

Q

Q−h∑
i=1

Vi+hVi − V̄ 2 . (3.4)

Since V̄ does not depend on h, we can concentrate in γ̂∗V (h) = γ̂V (h) + V̄ 2 =
1
Q

∑Q−h
i=1 Vi+hVi without modifying the shape of the function γ̂V (h). Now,

Vi+hVi =
n+1∑
j=1

n+1∑
l=1

I{Xj ∈ Ai, Xl ∈ Ai+h}
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and then, γ̂∗V (h), as a function of h, is the histogram of these frequencies,
though divided by Q.

Observe that in the case of a small enough q (q=1ms for example),
Vi+hVi = 0, except when Vi+h = Vi = 1, in which case the product is 1.
This is why, for each h:

γ̂∗V (h) 	 #{(Vi+h, Vi) : (Vi+h, Vi) = (1, 1)}/Q ,

which is easy to think in terms of time: Vi+h = Vi = 1 means that there are
two spikes that are separated by a distance of, at least h− 1 and as much as
h + 1. From this follows that Qγ̂∗V (h) counts the number of spike pairs (al-
though some might be missing due to the discretization) that are separated
by a distance between h − 1 and h + 1. This is the main idea to define the
autocorrelation as it follows.

Autocorrelation, as it is used in neuroscience, is very similar to γ̂∗V (h) but
it is built in an alternative way. Actually, it is defined as the histogram of
relative frequencies (or, sometimes, absolute ones) of the elapsed time be-
tween any two spikes of a train that do not surpass a certain wmax chosen by
the researcher. This wmax is usually much smaller than T , which allows us
to compare with the serial covariance function of {Vi}Qi=1, since the approxi-
mations in (3.4) are valid.

Given a spike train {Xi}n+1
i=1 , let the set of distances between any two

spikes be {Dm}Mm=1 = {Xi − Xj/i, j ∈ {1, . . . , n + 1}, i 
= j}, such that
−wmax ≤ Dm ≤ wmax. Moreover, we need to choose b, where 2b is the width
of the histogram’s intervals. In this context, we define the higher order
interspike autocorrelation (HOISA) of a spike train at the distance d, by:

ĝ(d) =
1

M

M∑
m=1

I{d− b ≤ Dm ≤ d+ b}. (3.5)

Here b plays a similar role to q in (3.4) and, in fact, this histogram is very
similar to that obtained from the serial autocovariance of the series {Vi}Qi=1.
Some differences might arise from discretization and normalization. Inter-
estingly, for γ̂∗V (h) the discretization is done before calculating the distances,
while in the definition of ĝ(d) the discretization is carried out when con-
structing the histogram. On the other hand, to obtain γ̂∗V (h), the absolute
frequencies are divided by Q while for ĝ(d) the denominator is M . Then the
results should be almost proportional. Figure 3.12 shows these two types
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of histograms for three lengths of q and b, q = b = 0.01, 0.1 and 1 s for the
activity in the pre period of one trial of neuron N1. The functions γ̂∗V (h) and
ĝ(d) have been multiplied by Q and M respectively, so that the similarities
become more visible. The histograms are practically the same though there
are some differences for the three sizes. The differences grow with the size of
q and b and are more evident when q = b = 1.

γ

0

10

20

30

40

50
bin = 0.01 s

0

50

100

150

200

250

300 bin = 0.1 s

0

200

400

600

800

1000 bin = 1 s

H
O

IS
A

0 5 10 15 20

0

10

20

30

40

50

Time (s)
0 5 10 15 20

0

50

100

150

200

250

300

350

Time (s)
0 5 10 15 20

0

500

1000

1500

Time (s)

Figure 3.12: Comparison between Qγ∗V (h) (top panel) and Mĝ(d) (bottom
panel) for three bin sizes, q = b = 0.01, 0.1, 1. Data corresponds to one trial
of neurons N1.

Note that, in fact, the HOISA is just an estimate of the probability density
of time between any two spikes. To get a smoother estimation, a nonpara-
metric kernel estimator is considered:

g̃(d) =
1

Mh

M∑
m=1

K

(
d−Dm

h

)
.

We have used the Gaussian kernel function, K, and the Sheather and Jones
method for bandwidth selection (Seather and Jones (1991)).
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Figure 3.13: Higher order interspike autocorrelation estimated via the kernel
method for one trial of neurons N1, N3a, N3b and N4b in the pre period.
Black lines correspond to trials in which the stimulus was applied in bs and
red lines to the ones in which bf was stimulated.

Figure 3.13 shows the HOISA in the pre stage of four neurons, namely,
N1, N3a, N3b and N4b. It can be observed that there is a high probability
of two spikes occurring very close in time as the high central peaks indicate.
Different density estimations are shown for trials that correspond to different
stimulation areas to show that, as expected, there are not significant differ-
ences between them.

Figure 3.14 shows the HOISA functions in the post stage for the same
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Figure 3.14: Higher order interspike autocorrelation estimated via the kernel
method for one trial of neurons N1, N3a, N3b and N4b in the post period.
Black lines correspond to trials in which the stimulus was applied in bs and
red lines to the ones in which bf was stimulated.

four neurons as above. The differences between the autocorrelation functions
are mainly found in their dispersion. For this period of the recorded trials,
most of the histograms are unimodal, but there are some trials in which
conspicuous secondary peaks can be observed; these are supposed to reflect
stimulation-induced oscillations. In the post period it makes sense to com-
pare the estimates obtained for each of the two stimuli. In several neurons,
autocorrelations for the stimulus bs present more dispersion than those for
the bf stimulus.
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Figure 3.15: Higher order interspike autocorrelation estimated via the kernel
method for one trial of neurons N1, N3a, N3b and N4b in the final period.
Black lines correspond to trials in which the stimulus was applied in bs and
red lines to the ones in which bf was stimulated.

The estimates of the autocorrelation function for the final stage of the
study can be observed in Figure 3.15 and they are very similar to the corre-
sponding ones of the pre condition. The main peak of the probability density
remains at zero. There are also other peaks as in pre. In the post period,
distances between spikes were mainly small but when the awake-like pattern
is over, the distances return to the behavior they had before the stimulus
was applied.
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As already mentioned, many of the plots in Figures 3.13, 3.14 and 3.15
exhibit secondary peaks. These secondary peaks are commonly studied in
neuroscience as an easy way to detect oscillatory activity. As described in the
first chapter, under sleep states or, as in this case, anesthesia, most cortical
neurons display an oscillatory activity. Some rhythms have been character-
ized neurophysiologically in cats, as the slow rhythm (< 1Hz), the delta
rhythm (1–4Hz) and the spindle oscillation (7–14Hz). These rhythms are
designated as slow sleep oscillations. On the other hand, neuronal spike re-
sponses are grouped into what are called bursts. These features are sequences
of action potentials fulfilling certain characteristics, including: a) consecutive
spikes within a burst are not separated one from another in more than cer-
tain time, and b) between one burst and another there is, at least, a certain
time. Time values in this definition may be changed for different areas of
the brain depending on the experimental protocols. If there is an oscillation,
for example a delta oscillation of 2Hz, what happens is that after a neuron
generates a burst, it is quite likely that the next burst will occur after about
500ms. In anesthetized cats it is common to record oscillations of about
0.1Hz (belonging to the so termed slow rhythm). Thus, a slow oscillatory
activity of about 0.1Hz could be the cause of the peaks at 10 s. If larger
values of wmax were chosen, peaks at around 20 and 30 s could be observed
in the in the HOISA. Also, the peaks between 250 ms and 1 s (not clearly
observed in the previous figures because of the time used) are indicative of
the delta oscillation.

3.4 Testing independence for inter-spike in-

tervals

In this section we will study the existence of dependence among the elapsed
times between consecutive spikes. In statistical terms, the question may be
stated as a hypothesis test:

• H0 : the ISIs are independent,

• H1 : there exists dependence among the ISIs.

Two different tests are proposed. If the ISIs are dependent, this situation
will influence the shape of HOISA defined in the previous section. These
functions will be used to build the first test. The estimated autocorrelation
function for the original train will be compared with another one obtained
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from independent spike trains. On the other hand, the Kolmogorov-Smirnov
goodness-of-fit test will be used to compare the distribution of the elapsed
times between spikes in the original train with the distribution of the times
of independent trains.

To obtain the sample of independent ISIs, a random shuffle is performed
in the original ISIs. A new iid resample {S∗

i }ni=1 is obtained from {Si}ni=1,
destroying all the possible order dependence but preserving any other pos-
sible features. With this new sample a new spike train is built: X∗

1 = 0
y X∗

i =
∑i−1

j=1 S
∗
j , i = 2, . . . , n + 1 whose times between consecutive spikes

are independent. The differences between the HOISA function of this in-
dependent train and the one of the original train will show how far from
independence the train under study is.

The first test statistic is defined as follows. The HOISA function of a
registered spike train, g̃(x), will be compared with the one obtained from
a shuffled train. More specifically, N shuffled trains are used, their HOISA
functions are computed and averaged to avoid falling in a case that is not
representative. This average HOISA function is denoted ḡ(t). The test
statistic is defined as the L1 distance:

THOISA =

∫
|g̃(x)− ḡ(x)|dx .

H0 will be rejected for large values of THOISA.

For the second test, instead of using the HOISA itself, we make use of
the observed values of Dm, m = 1, . . . ,M . The Dm were introduced for
the definition of the HOISA in (3.5). Let {dm}Mm=1 = {xi − xj : i, j ∈
{1, . . . ,M}, i 
= j;−wmax < |xi − xj | < wmax} be the observed distances
between any spikes. The K-S statistic involves the empirical distribution of
the dm, F̃ , as well as the empirical distribution of their analogues for the
shuffled, thus independent, train, F̄ :

TKS = sup
x

|F̃ (x)− F̄ (x)| .

To compute F̄ (x), several shuffled trains are used, say N . From each shuffled
train, the set of distances between spikes is constructed, and F̄ is defined as
the empirical distribution of the pooled sample of all these N sets.

To calibrate the distributions of the test statistics a bootstrap method is
proposed. The steps for the first test are the following:
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1. Sample from {si = xi+1−xi}ni=1 to obtain a resample {s∗i }ni=1 of dis-
tances between consecutive spikes and build a bootstrap train: x∗1 = 0,
and x∗i =

∑i−1
j=1 s

∗
j , for i = 2, . . . , n+ 1.

2. Calculate g̃∗(t) for this bootstrap train.

3. Resample N times from s∗ to obtain: s∗∗(i), i = 1, . . . , N as before.
Build x∗∗(i) as in Step 1 and calculate g̃∗∗(i) for each train x∗∗(i). Then
define ḡ∗ = 1

N

∑N
i=1 g̃

∗∗(i).

4. Obtain T ∗
HOISA =

∫
|g̃∗ − ḡ∗|.

5. Repeat Steps 1–4 B times to get T ∗
HOISA,1, . . . , T

∗
HOISA,B and use

them to estimate the desired quantiles of the THOISA distribution or
the p-value for T obs

HOISA.

For the Kolmogorov-Smirnov test the procedure is very similar:

1. Build the independent spike train {x∗i }n+1
i=1 as before.

2. Calculate the distances between any two spikes for the bootstrap
train: {d∗m}Mm=1.

3. Resample N times from x∗, to build N trains {x∗∗(j), j = 1, . . . , N}
and for each train build the set of distances: {d∗∗(j)m }Mj

m=1.

4. Calculate T ∗
KS as the Kolmogorov-Smirnov statistic for the samples

{d∗m}Mm=1 and (d
∗∗(1)
1 , . . . , d

∗∗(1)
M1

, d
∗∗(2)
1 , . . . , d

∗∗(2)
M2

. . . , d
∗∗(N)
1 , . . . , d

∗∗(N)
MN

).

5. Repeat the Steps 1-4 B times to obtain T ∗
KS,1, . . . , T

∗
KS,B and use

them to estimate the desired quantiles of the TKS distribution or the
p-value for T obs

KS.

In general, differences can be observed between the HOISA function of the
original train and the one obtained with the resamples. Roughly speaking,
the density of the resampled data is more uniformly distributed and then the
main peak is lower than in the case of the real data. It is also very common
the absence of secondary peaks in the HOISA functions of the resampled
trains.

In Table 3.2 the results of the tests for four neurons, N1, N3a, N3b and
N4b and three different recordings (one in the pre part and two in the post
part, one for each stimulus) can be observed. The p-values obtained with
each test were calculated using the bootstrap method described above. A
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Table 3.2: p-values for the independence tests THOISA, TKS and TLB, con-
structed using the distances between two spikes.

THOISA TKS TLB

N1
pre 0 0.002 0

post
bs 0.080 0.036 0.205
bf 0.204 0.668 0.012

N3a
pre 0.006 0.266 0

post
bs 0.004 0.002 0
bf 0.126 0.456 0.018

N3b
pre 0 0.002 0

post
bs 0.006 0.004 0
bf 0.308 0.634 0.980

N4b
pre 0 0.001 0.002

post
bs 0.254 0.148 0.320
bf 0.547 0.514 0.911

total number of 500 bootstrap resamples and N = 80 shuffles were used for
each bootstrap train in the pre part and N = 100 in the post part. Also, a
Ljung-Box (TLB) test was implemented to compare the results.

In general, these results show that, in the pre period, the distances be-
tween consecutive spikes are not independent. In the post period the results
depend on the stimulus. We cannot reject the null hypothesis of indepen-
dence when the bf has been applied. On the other hand, for the bs, the
results are not that clear and depend on the neuron. Figure 3.16 shows the
HOISA functions of the pre period of four original trains and the average
HOISA function for the independent case, averaged over 100 shuffles of the
original train. Figure 3.17 shows the same as Figure 3.16 but for the post
periods of the same trials (bs stimulation). In both figures it is easy to rec-
ognize the cases where independence is rejected at a level 0.1(neurons N1,
N3a, N3b and the pre period of neuron N4b) and the one in which it is not
(post of neuron N4b).
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Figure 3.16: Comparison of the HOISA function for the original trains (solid
line) and the average HOISA function for independent trains (dashed line).
First trial of neurons N1, N3a, N3b and N4b in the pre period.

3.5 Chapter conclusions

The densities of the ISIs have been estimated and the stationarity of these
variables has been discussed concluding that. Under under sleep-like spon-
taneous activity, the ISIs are rasonably stationary. Also, the higher order
interspike autocorrelation (HOISA) has been presented. This autocorrela-
tion measure is commonly used in neuroscience. The spontaneous activity
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Figure 3.17: Comparison of the HOISA function for the original trains (solid
line) and the average HOISA function for independent trains (dashed line).
First trial of neurons N1, N3a, N3b and N4b in the post period after bs
stimulation.

of neurons is characterized by the existence of dependence among spikes.
Therefore, a test for independence based on the HOISA function has been
proposed. As this function is constructed on the basis of a histogram, an-
other test based on the Kolmogorov-Smirnov statistic, has been discussed.
The distribution of these statistics under the null hypothesis has been cal-
ibrated with a bootstrap procedure. Finally, a Ljung-Box statistic has also
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been used for comparison. This last statistic has the inconvenience of being
based on the serial autocorrelation which varies very much from one trial to
another. In general, it can be observed that dependence exists during the
sleep-like pre part, reflecting the highly synchronized neuronal oscillatory ac-
tivity. In the analyzed examples, this dependence is present for some neurons
during the period of awake-like activity after the bs stimulus, while it does
not appear after the bf stimulus for most of the neurons. In some cases,
the TKS and TLB statistics present values that are not consistent with the
ones obtained with the other tests. This does not happen with the THOISA

statistic, what makes it more robust. These results indicate that the HOISA-
based test for independence is a useful method for the characterization and
analysis of the dynamics of the neuronal oscillatory activity.
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Chapter 4

Cross inter spike intervals

Chapter 3 was devoted to make a description of some features of single spike
trains. Although each of these isolated trains can carry important informa-
tion, brain processing highly depends on associations among neurons. Syn-
chrony, oscillations and dynamic associations, among others, play important
roles in brain function. These interactions may depend on anatomical con-
nections and on different functional processes. Reliable tools are needed for
the quantification of these connectivity properties. In this chapter we intro-
duce joint spiking activity to our analysis.

A method to measure pairwise neural association is introduced in the first
section of this chapter. This method is used to construct a test statistic to
asses whether stimulation has a significant effect in neural association. This
test is used for the spike train data analyzed along this thesis.

4.1 Pairwise neural association measure

The aim of this chapter is to present a method to describe pairwise associa-
tions between neurons based on the cross-inter-spike intervals (CISIs) that
is a generalization of the ISIs. We focus on the problem of quantifying the
change neuronal synchronization between the sleep-like and the awake-like
periods (a change provoked by the bs/bf stimulation). The first measure we
present is a comparative one. By comparative we mean the following: this
tool measures the association of neurons (CISI-wise) during the awake-like
period in comparison to the existing association before the stimulation (i.e.,
neuronal synchronization in the post vs the pre periods).
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Let S̃ be the random variable denoting the waiting time from one spike
of neuron 1 to the following spike of neuron 2. We will call this variable
cross-inter-spike interval, which we have already mentioned. We decided to
work with the logarithms of the CISIs for the same reason as in the previous
chapter: there exist a lot of small CISIs but the distribution has a very heavy
tail to the right, and logarithms make the results much more interpretable.
From now on, we will refer to the variable S̃ conditioned to the occurrence
of a spike in neuron 1 at time t as ‘S̃ at time t’. Now, let g(s, t) be the
density function of the natural logarithm of S̃ at time t. We suppose that g
is stationary in the period of time before stimulation, g(s, t) = gpre(s). To see
how much this density is influenced by the stimulus or how the association
structure of the CISIs change, we propose to use a measure of the distance
between these densities. So, we define the CISI measure (CM) as the L1

distance between the density function of S̃ at a time t and the density of the
S̃ before the stimulation:

CM(t) =

∫
|g(s, t)− gpre(s)| ds.

It is important to notice that this measure is highly dependent on the choice
of the first neuron (i.e., it is not symmetric in both neurons) and therefore,
it captures causality.

In practice, let X = {0 < X1 < X2 < . . . < XJ1 < T} and Y = {0 < Y1 <
Y2 < . . . < YJ2 < T} be the spike times of any two simultaneously recorded
spike trains. For each spike, Xi, observed in train X , we will have an CISI
observation:

S̃i = min
j=1,...,J2

{Yj −Xi : Yj −Xi > 0} .

Notice that the set from which the minimum is chosen for the definition of the
S̃i could be the empty set if there are spikes of neuron 1 that are not followed
by any spike of neuron 2. The spikes of neuron 1 that correspond to this last
case, will not have a S̃i associated with them. We can compute the S̃i for each
spike of neuron 1 and estimate the density function of log S̃ at time t, say
ĝ(s, t). On the other hand, in order to capture the dynamics of such process
and have a reasonable time resolution, we propose the use of sliding windows.
This is, at time t, we will use the spikes that fall in a certain time window
around t, Xi ∈ (t−v, t+ v], i = 1, . . . , J1 and Yj ∈ (t−v, t+ v], j = 1, . . . , J2,
to compute the CISIs and estimate the density function of their logarithm
and therefore estimate CM(t):

ĈM(t) =

∫
|ĝ(s, t)− ĝpre(s)| ds. (4.1)
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Here, ĝpre(t) is the density function estimator of the logarithms of the
CISIs in the period of time before the stimulus onset. For the purpose of the
density estimations, the kernel method is used as follows. Let

At,v ={i ∈ {1, . . . , J1}/Xi ∈ (t− v, t+ v], ∃ j ∈ {1, . . . , J2}/Yj ≥ Xi,

Yj ∈ (t− v, t+ v]}

and let mt,v = #At,v. Also, let tst be the time when the stimulus is applied,

Btst = {i ∈ {1, . . . , J1}/Xi < tst, ∃ j ∈ {1, . . . , J2}/Yj ≥ Xi, Yj < tst}

and mtst = #Btst . So, the density estimators in (9.1) result in

ĝ(s, t) =
1

mt,vh

∑
i∈At,v

K

(
s− log(S̃i)

h

)

and

ĝpre(s) =
1

mtsth

∑
i∈Btst

K

(
s− log(S̃i)

h

)
,

where K is the kernel function and h is a smoothing parameter. In the fol-
lowing examples the sliding window has length 20 s (v = 10) and it is moved
every 1 s. Also, a Gaussian kernel has been used and the smoothing pa-
rameter was chosen using the Sheather and Jones plug-in method. How the
selection of v and h can affect the measure will be discussed in Section 4.3.
Figure 4.1 shows the density estimations of log(S̃) for neurons N1 and N3a,
using N1 as reference. For these figure, the density function of log(S̃) has
been estimated in 20 time windows, the centers of which are separated by
10 s. These estimations are shown with solid black lines. The red lines rep-
resent the density estimation of log(S̃) on the pre period for comparison.
Stimulation has occurred at time zero. The value CM measures the distance
between these two functions.
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Figure 4.1: Sequence of estimated density functions (black lines) in 20 time
windows of length 20 s, centered in t as indicated in the top right corner of
each subfigure. The estimated density of the log(S̃) in the pre period is also
shown in each window (red lines). Stimulation at time zero.
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Figure 4.2: ĈM(t) for neurons N1 and N3a using either N1 as the reference
neuron (black line) or N3a as the reference (green line), a time window of
length v = 10 is used. Dotted line: stimulation time.

Figure 4.2 shows ĈM(t) for neurons N1 and N3a. The black line is the

ĈM(t) obtained when N1 is used as the reference neuron and the green line
when N3a is considered as the reference. It can be observed that there are
differences in the curves, showing that some causal effects could be unveiled
with this method. Also, the figure shows that the differences between the
densities before and after stimulation are greater close to the stimulation
time which is shown in the figure by the dotted vertical line and corresponds
to time zero.

Figures 4.3, 4.4 and 4.5 show the estimated CM(t) for several pairs of
neurons. We only show one possibility of each pair for the sake of brevity.
This is, if N1-N3a is shown, then, N3a-N1 is not. When the trials of the
bs stimulation have been used for the estimation, solid black lines are used
and solid magenta lines are used for the estimation when bf stimulation has
taken place. Although the nature of this measure is very noisy, there are sev-
eral figures in which we can distinguish that the ĈM(t) is higher for values
of t close to zero.

61



0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

C
M

(t
)

N1−N3a

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

C
M

(t
)

N1−N3b

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

C
M

(t
)

N1−N4b

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

C
M

(t
)

N1−N5

0 50 100 150 200 250

Time (s)

Figure 4.3: ĈM(t) for all the pairs including neuron N1 for bs stimulation
(black solid lines) and bf stimulation (magenta solid lines). N1 is the refer-
ence neuron for every pair. A time window of length v = 10 is used. Dotted
vertical line: stimulation time.
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Figure 4.4: ĈM(t) for all the pairs including neuron N3a (except from N3a-
N1) for bs stimulation (black solid lines) and bf stimulation (magenta solid
lines). N3a is the reference neuron for every pair. A time window of length
v = 10 is used. Dotted vertical line: stimulation time.

63



0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

N3b−N4b

C
M

(t
)

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

N3b−N5

C
M

(t
)

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

N4b−N5

C
M

(t
)

0 50 100 150 200 250

Time (s)

Figure 4.5: ĈM(t) for all the pairs including neuron N3b and N4b for bs
stimulation (black solid lines) and bf stimulation (magenta solid lines). N3b
is the reference neuron in the top two panels, N4b is the reference in the other
one. A time window of length 20 s. is used. Dotted vertical line: stimulation
time.
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4.2 Hypothesis testing

In order to statistically asses significant differences in neuronal synchroniza-
tion between the pre (sleep-like) period and the synchronization dynamics
along the post (awake-like) period, we propose a hypothesis test. The null
hypothesis for this particular case is that the CISIs density after bs/bf stim-
ulation and the one in the pre stage are the same:

• H0 : g(s, t) = gpre(s) ∀s

• H1 : g(s, t) 
= gpre(s) ∀s

The test statistic we will use is the estimator of CM defined in (9.1). Since
the distribution of the test statistic under the null hypothesis is unknown, we
will use a bootstrap procedure to approximate it. Under the null hypothesis,
the observed S̃ come from the same density as the S̃ of the pre stage, which
is gpre(s). As the distribution of these variables are continuous we decided
to use a smooth bootstrap procedure described in Chapter 1.

Bootstrap Procedure

Compute the CISIs in the pre stage, S̃n = {S̃1, . . . , S̃n}. Compute the
CISIs from the observed spikes in the time window (t − v, t + v] and let nt

be the amount of them; t > tst.

1. Draw a random sample U+
1 , . . . , U

+
nt

from log(S̃n).

2. Select a smoothing parameter, hboot, and let the final bootstrap sample
be {U∗

i = U+
i +hbootZi}nt

i=1 with Z1, . . . , Znt iid from a distribution with
density function K(z).

3. Compute ĈM
∗
(t) =

∫
|ĝ∗(s, t)− ĝpre(s)| ds, where ĝ∗(s, t) is the boot-

strap version of the kernel density estimate of {U∗
1 , . . . , U

∗
n}.

4. Repeat Steps 1–3, B times to obtain ĈM
∗
b(t) for b = 1, . . . , B.

5. Compute the desired quantile of the ĈM
∗
b(t), b = 1, . . . , B to use as a

critical value at time t.

We eepeat the bootstrap procedure for each time window. Note that, at
each window, the resample size is the same as the size of the original sample.
In this procedure, K is a suitable kernel function and hboot is a smoothing
parameter that is chosen with the method proposed by Bowman et al. (1998)
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for the smoothing of distribution functions. Bowman et al. (1998) propose
to choose the smoothing parameter to minimize the cross-validation function

CV (h) =
1

n

n∑
i=1

∫ (
I{(x− xi) ≥ 0} − F̃−i(x)

)2

dx

where the indicator function given by I{(x − xi) ≥ 0} is a natural char-
acterization of each observation in the distribution functions context and
1
n

∑n
j=1 I{(x − xj) ≥ 0} results in the usual empirical distribution function.

The term F̃−i(x) denotes a kernel estimator of the distribution function con-
structed neglecting the i-th observation:

F̃−i(x) =
1

n− 1

n∑
j=1
j 	=i

W

(
x− xj
h

)

where W is a distribution function and h is smoothing parameter.

4.3 Results

Figures 4.6–4.8 show the results for the hypotheses tests described in the
previous section for three pairs of neurons. These pairs are representative of
all the studied pairs. Each figure shows the results for one pair of neurons,
the trials with bs stimulation in the top panel and the trials with bf stim-
ulation in the bottom panel. The red lines are the results of the bootstrap
test. They represent the 99-percentile of the distribution of the bootstrapped
test statistic. For the test, B = 500 bootstrap repetitions were performed at
each time window.

When the observed ĈM(t) is below the red line, the density functions of
the S̃, before and after stimulation, cannot be considered different. On the
other hand, if the black line is above the red one, there is statistical evidence
of the differences between these density functions.

In almost all cases it can be observed that differences exist between the
distribution of the CISIs before and right after stimulation. Anyhow, these
differences are also found along all the time axis. In these particular exam-
ples, the results are barely acceptable in some cases (N1-N3a and N1-N3b)
but in general are not conclusive.
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Figure 4.6: ĈM(t) for the pair N1-N3a after stimulation (black line) for the
bs stimulation trials (top panel) and bf stimulation trials (bottom panel).
Bootstrap critical value with significance level α = 0.01 (red line) for the null

hypothesis ĈM(t) = 0. Stimulation at time zero.
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Figure 4.7: ĈM(t) for the pair N1-N3b after stimulation (black line) for the
bs stimulation trials (top panel) and bf stimulation trials (bottom panel).
Bootstrap critical value with significance level α = 0.01 (red line) for the null

hypothesis ĈM(t) = 0. Stimulation at time zero.
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Figure 4.8: ĈM(t) for the pair N1-N5 after stimulation (black line) for the
bs stimulation trials (top panel) and bf stimulation trials (bottom panel).
Bootstrap critical value with significance level α = 0.01 (red line) for the null

hypothesis ĈM(t) = 0. Stimulation at time zero.

4.3.1 Parameter selection

Figure 4.9 shows the CM curve for three different widths for the sliding win-
dow, v: v = 5 in black, v = 10 in red and v = 15 in green. In this case the
smoothing parameter has been selected using the Sheather and Jones plug-in
method. It is clear that v = 5 is too small as the curve results very noisy.
Between v = 10 and v = 15 there are not great differences and therefore we
chose the smaller one to minimize the loss of temporal resolution.

Figure 4.10 shows the CM curve for three different choices of the smooth-
ing parameter at each time window (t− v, t+ v], say ht. The choices are ht
equal to the one given by the automatic selector of Sheather and Jones using

the Gaussian kernel, say h0t ,
h0
t

2
and 2h0t . For the estimation of the density

function in the pre period, the same proportion of the corresponding Sheather
and Jones parameter is used in each case. The sliding window used is v = 10.

As already mentioned, the parameter hboot was chosen using the method
presented by Bowman et al. (1998). The parameters resulted in hboot = 0.177
for the N1-N3a pair, hboot = 0.203 for N1-N3b and hboot = 0.151 for N1-N5.
Figure 4.11 shows the cross-validation function obtained for the pair N1-N3a.
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Figure 4.9: ĈM(t) for neurons N1 and N3a using N1 as the reference neuron
and different choices of the sliding window width: v = 5 (red), v = 10 (black)
and v = 15 (green). Vertical dotted line: stimulation time.
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Figure 4.10: ĈM(t) for neurons N1 and N3a using N1 as the reference neuron
and different choices of the smoothing parameter ht in each time window.

ht = h0t given by the Seather and Jones method (black), ht =
h0
t

2
(red) and

ht = 2h0t (green). Vertical dotted line: stimulation time.

69



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.989755

0.989760

0.989765

0.989770

0.989775

0.989780

0.989785

h

0.177

C
V

Figure 4.11: Cross-validation function obtained for the pair of neurons N1-
N3a in order to choose the optimal smoothing parameter, hboot, for the boot-
strap hypothesis test procedure.

4.4 Chapter conclusions

We have presented a method that compares the density functions of the
cross-inter-spike intervals between the sleep-like and the awake-like periods.
The aim of this approach was to search for differences in these functions and
therefore in the associations between the neurons. Statistically significant
differences reflect a clear separation in the structure of the dynamical asso-
ciations between neurons. But this measure resulted extremely noisy. In the
studied examples, the differences could be found along the whole time axis
with no clear temporal tendencies, as would be expected due to the evident
and progressive transformation of the awake-like pattern back to the sleep-
like mode that occurs in our experimental model. Although the method is
of interest and the visual inspection of the density functions along time is
informative, the MC does not seem trustworthy for the intended inference.
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Chapter 5

Cross-correlation based
synchrony measure

In this chapter we introduce the cross-correlation function for simultaneously
recorded spike trains and present a synchrony measure that is based on the
estimation of that cross-correlation function. Contrary to the CISI-based
method described in the previous chapter, the measure presented here is ab-
solute. It is not relative to the pre stage activity. We aim to develop a
method to detect significant changes in synchronization dynamics under the
two different experimental conditions simulating the sleep-wake cycle. The
measure proposed here is flexible in the sense that it can be adapted for dif-
ferent firing rates. We also propose hypothesis tests to asses for the changes
in synchrony induced by the differential electrical stimulation on bs and bf.
Two bootstrap procedures are presented. These resampling procedures take
into account the dependence between simultaneously spike trains by resam-
pling from the intervals of time that elapse between spikes of a joint spike
train built by merging the spike trains. These methods are inspired in the
stationary bootstrap proposed by Politis and Romano (1994).

5.1 Integrated cross-correlation synchrony in-

dex

Let us consider again, X = {Xi}J1i=1 and Y = {Yj}J2j=1 two simultaneously
recorded spike trains and let us denote [0, T ] their common time interval.
Let Ui and U−i be the waiting times from a spike in train X to the i-th
subsequent and the i-th preceding spike in train Y respectively. Observe
that U1 = S̃ is the CISI variable. The probability density functions of these
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random variables are called the forward and backward cross-interval densities
of order i, respectively, and we denote them by ηi(τ) and η−i(τ). The cross-
correlation function ζXY (τ) is defined as the weighted sum of cross-interval
densities of all orders:

ζXY (τ) =
i=∞∑

i 	=0, i=−∞
ψiηi(τ), (5.1)

where ψi can be thought of as follows. Given a spike on the first train
and choosing at random a spike of train 2, ψi is the probability that the
chosen spike is the i-th subsequent spike to the spike of the first train.
Cross-correlation represents the probability density function of the time from
an event in train X to an event randomly chosen in train Y (Perkel et al.
(1967b)).

The cross-interval densities can be estimated from the observed spike
trains and, in practice, we can use the empirical normalized cross-correlogram
to estimate the cross-correlation function ζXY (τ). The cross-correlogram is
built as the histogram of the observed waiting times between the spikes of
the first neuron and the spikes of the second neuron. Usually, joint firing
or close in time firing is the event of interest so only small values of τ in
(5.1) really matter. This is why the cross-correlograms are usually built for
waiting times smaller than ν. In order to consider a proper density we use
the normalized cross-correlogram:

TXY (τ) =
ζXY (τ)∫ ν

−ν
ζXY (t)dt

for − ν < τ < ν

An estimator for this function will be discussed in the next subsection.

Synchrony is usually defined as the event of neurons firing together. In
some cases, mostly in scenarios of low firing rate, as in the case of sponta-
neous activity, spikes of different neurons will not appear exactly at the same
time but still be highly synchronized, following a similar firing pattern. If
this is the case, to capture synchrony we need a flexible tool that will not
only take into account unitary events as regular synchrony measures do.

The measure proposed here is based on the normalized cross-correlation
function, calculated in a cross-correlation window of length 2ν. More pre-
cisely, we use the integral of the cross-correlation function around zero. In
this way, we allow synchrony to be based on delayed firing and not only in
simultaneous firing. We denote this measure as integrated cross-correlation
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synchrony index (ICCSI):

ICCSI =

∫ δν

−δν

TXY (τ)dτ, (5.2)

where δ < 1 is an arbitrary small number chosen by the researcher. Integrat-
ing of TXY (τ) in a neighborhood of zero we account for spikes that occur close
in time, although not exactly at the same time. In this way, if the ICCSI
is large, it means that neurons fire close in time. On the other hand, small
values of ICCSI mean that the waiting times are not concentrated around
zero, and therefore less synchrony exists. Figure 5.1 shows the estimation
of the density function of the waiting times using a histogram and a kernel
density estimator. In grey, the frequency of waiting times with absolute value
smaller than δν = 0.05 s are highlighted.

5.2 Estimation of ICCSI

In practice, cross-correlation can be estimated using the observed elapsed
times from one spike in the first neuron to all the spikes in the second one.
Let D = {Dk}Nk=1 = {Xi − Yj : |Xi − Yj| < ν, i = 1, . . . , J1, j = 1, . . . , J2}
be the waiting times that lay in a certain cross-correlation window of length
2ν. This is, the set of all possible differences between the spike times of one
train and the spike times of the second one, which are smaller than ν. We
estimate the normalized cross-correlogram using a kernel estimator of the
density function:

T̂XY (τ) =
1

Nh

N∑
k=1

K

(
τ −Dk

h

)
,

withK a kernel function and h the smoothing parameter. The cross-correlogram
can also be estimated using a histogram (Perkel et al. (1967b)). Let δ ∈ [0, 1],
then, the ICCSI in (5.2) can be estimated by

ÎCCSI =

∫ δν

−δν

T̂XY (τ)dτ.

5.2.1 ICCSI as a function of time

In the previous discussion, synchrony has been thought as a stationary mea-
sure. Stationarity in spike trains is often difficult to assess and it is an
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Figure 5.1: Histogram and kernel density estimation for the waiting times
between neurons N1 and N3a.

object of study in itself. In our context, time-varying properties of ICCSI
are of interest, since we want to study how synchrony evolves in two different
spontaneous states (sleep vs awake, artificially evoked) and after differen-
tial induction of the awake-like state. We take into account time, by making

use of moving windows to estimate ICCSI and therefore obtaining ̂ICCSI(t).

At each time point t, let ηi(τ ; t) be the cross-interval densities of order
i at time t. Then the cross-correlation at time t, ζXY (τ ; t), is defined as
the weighted sum of the cross-interval densities of all orders at time t and
TXY (τ ; t) as its normalized version. Therefore, we can define ICCSI(t) as

ICCSI(t) =

∫ δν

−δν

TXY (τ ; t)dτ. (5.3)

In practice, to estimate the cross-correlations, and therefore the ICCSI,
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we will use the information of spike trains in a neighborhood around t. Let
Wt = [t − w, t + w] be a time window of length 2w around t, for each
t ∈ [w, T − w]. Then, for each t we can define the subtrains Xt = {Xi ∈
X : Xi ∈ Wt, i = 1, . . . , J1} and Yt = {Yi ∈ Y : Yi ∈ Wt, i = 1, . . . , J2}.
Moreover, we can define Dt = {Dt

k}Nt
k=1 as the INISIs of the trains Xt and Yt,

build the normalized cross-correlogram T̂XY (τ, t) and therefore, estimate the
ICCSI at time t:

ÎCCSI(t) =

∫ δν

−δν

T̂XY (τ ; t)dτ.

The ICCSI can be estimated in as many points, t, as desired. It is a con-
tinuous measure that will be calculated in a sequence of points, say t1, . . . , tM .
The amount of waiting times in each time window, Wt, is very variable, spe-
cially, when the firing is sparse. Thus, there are windows with very small
amount of data. To remedy this we propose, in the next subsection, a kernel

smoothing of ̂ICCSI(t).

5.2.2 Nonparametric smoothing of ̂ICCSI

The number of spikes at each time window is very variable and when this

number is small ̂ICCSI(t) becomes less reliable. To make ̂ICCSI(t) more
robust, in order to be able to highlight characteristics of these curves and find
patterns due to experimental conditions, we use a regression kernel smoother
of the form:

̂ICCSI
smooth

(t) =

M∑
j=1

Ψj(t) ̂ICCSI(tj),

for some weight functions Ψj. We will use the most common kernel estimator:
the Nadaraya-Watson estimator, presented in Chapter 1. For this estimator,
the weights are:

Ψj(t) =
K
(

tj−t

h

)
∑M

r=1K
(
tr−t
h

) ,
We use the uniform kernel function K(u) = 0.5 if |u| < 1 and 0 otherwise.

For simplicity of notation ̂ICCSI
smooth

(t) is actually denoted by ÎCSI(t)
throughout the chapter.
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5.3 Testing for synchrony differences

To check whether there are differences between the ICCSI during the awake-
like and the sleep-like activity, a hypothesis test is implemented as follows.
Under sleep-like activity it is assumed that the mean synchrony do not change
with time, i.e., ICCSI(t) = ICCSI0 for every t ∈ [0, tst), where tst is the time
when the stimulus is applied. Given two values t0 ∈ [0, tst) and t1 ∈ (tst, T ]
we would like to test if the synchrony index is equal at these two values.
This is equivalent to say that, at time t1 (in the awake-like period, after the
stimulus) the synchrony recovered the value it had before the stimulus onset.

• H0 : ICCSI(t) = ICCSI0

• H1 : ICCSI(t) < ICCSI0.

for some fixed t ∈ [tst, T ].

To calibrate the distribution of ICCSI(t) under the null hypothesis we use
a bootstrap procedure. Spontaneous activity in the sleep-like time interval is
imitated using a stationary bootstrap (see Politis and Romano (1994)). We
propose a resampling procedure that takes into account the dependence that
may exist between the spike trains, resampling from a joint spike train. Then,
the bootstrapped ICCSIs are calculated and used to calibrate the distribu-
tion of the ICCSI under the null hypothesis and test for differences between
̂ICCSI(t) in an awake-like t and the baseline ICCSI0. The bootstrap re-
samplig procedure is the following:

1. Merge the two observed trains, X1 and X2, in one, ordering all the
spiking times together in a pooled train. Let this joint train be X p =
{(Xp

1 , γ
p
1), . . . , (X

p
N , γ

p
N)} where γpi is an indicator variable of the spike

train to which the action potential that occurs at time Xp
i belongs.

2. Next, compute the ISIs of this new train: Sp
1 = Xp

1 and Sp
i+1 = Xp

i+1 −
Xp

i , i = 1, . . . , N − 1 and let Sp = {(Sp
i , γ

p
i )}Ni=1.

3. Build the sets S1 = {(Sp
i , γ

p
i ) : γpi−1 = 1; i = 1, . . . , N} and S2 =

{(Sp
i , γ

p
i ) : γpi−1 = 2; i = 1, . . . , N}. This is, S1 (and S2) contains the

elapsed times from a spike of neuron 1 (respectively 2) to the following
spike in the joint train, and their corresponding neuron indicators.

4. Randomly choose (Sp∗
1 , γ

p∗
1 ) from Sp, i.e. P ((Sp∗

1 , γ
p∗
1 ) = (Sp

i , γ
p
i ) =

1
N
)

i = 1, . . . , N .
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5. If Sp∗
i = Sp

j choose (Sp∗
i+1, γ

p∗
i+1) = (Sp

j+1, γ
p
j+1), [in the case j = N ,

(Sp∗
i+1, γ

p∗
i+1) = (Sp

1 , γ
p
1)], with probability pboot and choose it at random

from Sγp
j with probability 1− pboot.

6. Repeat Step 5 until obtaining the first (Sp∗
M , γ

p∗
M ) for which

∑M
i=1 S

p∗
i ≥

tst.

7. Build the ISIs for the first bootstrap train, X 1∗. Let L1 = minl{γp∗l =

1}, then S1∗
1 =

∑L1

k=1 S
c∗
k . For i = 2, . . . , I1 = #{γp∗l : γp∗l = 1} let

Li = minl>Li−1
{γp∗l = 1}, and then S1∗

i =
∑Li

k=Li−1+1 S
p∗
k .

8. Build the first bootstrap train X 1∗ as X1∗
i =

∑i
k=1 S

1∗
k for i = 1, . . . , I1.

9. Build the second bootstrap train X 2∗ in a similar way. This consists in
repeating Steps 7–8 but with the condition γp∗l = 2.

10. Calculate ̂ICCSI
∗1
(t) for the bootstrap trains, X 1∗ and X 2∗.

11. Repeat Steps 4–10, B times to obtain ̂ICCSI
∗b
(t), b = 1, . . . , B.

Steps 1–3 in the algorithm are used to build the pooled train. Bootstrap
resamples for the ISIs of this joint train are obtained in Steps 4–6. Fi-
nally Steps 7–9 separate the pooled bootstrap train to obtain two ‘simulta-
neously recorded’ bootstrap trains. This algorithm simulates the distribution

of ̂ICCSI under the null hypothesis. In our case, we seek for significant re-
ductions in the awake-like period with respect to the sleep-like period, so we
propose to build a critical value as follows.

We are assuming the synchrony is constant in the time period preceding
the stimulus onset, ICCSI(t) = ICCSI0 ∀ t ∈ (0, tst). For each b and at
each time t, ICCSI∗b(t) is an approximation to that real value ICCSI0 and
therefore, the α-percentile of all the bootstraped values is a plausible choice
for a critical value. We will denote this value by ICCSI∗α and the null hy-
pothesis will be rejected at each time point t if ICCSI(t) < ICCSI∗α.

5.4 Testing the differences between two con-

ditions

Apart from detecting differences between synchrony among neurons, before
(sleep-like) and after (awake-like) the stimulus onset, the aim of this chapter
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is to develop a method to detect differences in synchronization dynamics dur-
ing the awake-like period induced by the activation of two different pathways.
In this context the relevant hypothesis to test is:

H0 : ICCSI
bs(t) = ICCSIbf(t)

H1 : ICCSI
bs(t) 
= ICCSIbf(t),

for each t ∈ [tst, T ]. In this hypothesis, ICCSIbs(t) and ICCSIbf(t) are the
ICCSI under bs and bf stimulation respectively. Moreover, we develop a
test that enables detecting in which time periods there are differences, if any,
between the awake-like activity induced by each pathway. The test statistic

to use will be TICCSI(t) = ̂ICCSI
bs
(t) − ̂ICCSI

bf
(t). In this case, we need

to focus in changes in time so, the bootstrap procedure used in the previous
section is not valid. As the test needs to be applied in the time interval
after the stimuli onset, the different trials for each stimulus are comparable
and we can use the information collected through trials. In this case, the
resampling is made at each time point from the different trials taking care for
the dependence in a similar way as in the previous procedure. The bootstrap
resampling plan is the following:

1. Build a joint train for each recorded trial k, k = 1, . . . , K,
X p

k = {(Xp
k1, γ

c
k1), . . . , (X

p
kNk

, γpkNk
)} where, as above, γpki is an indicator

variable of the spike train to which the action potential that occurs at
time Xp

ki in trial k belongs.

2. Choose a trial, k1, at random with equal probability from {1, . . . , K}
and define Xp∗

1 = Xc
k11

and γp∗1 = γck11.

3. If (Xp∗
l , γ

p∗
l ) = (Xp

klj
, γpklj) then, with probability pboot set kl+1 = kl,

Xc∗
l+1 = Xp

kl+1(j+1) and γ
p∗
l+1 = γpkl+1(j+1). With probability 1−pboot, draw

kl+1 at random with equal probabilities from {1, . . . , K}, set Xp∗
l+1 =

Xp
kl+1m

so that Xp
kl+1m

= minν{Xc
kl+1ν

> Xp∗
l } and γp∗l+1 = γpkl+1m

.

4. Increase the index l by one unit and repeat Steps 2–3 while possible,
i.e., while there exists some index ν, such that Xp

kl+1ν
> Xp∗

l .

5. For each trial, k, and each stimulus, j = 1, 2, repeat Steps 2–4 above
to obtain the bootstrap train X ∗

jk. This is, resample a joint spike train
an therefore, two trains, one for each neuron, X∗

1k and X∗
2k from all the

registered trials.

6. Compute the bootstrap ̂ICCSI
s∗
(t) for each stimulus, s = 1, 2 and

T ∗
ICCSI(t) = ̂ICCSI

1∗
(t)− ̂ICCSI

2∗
(t).
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7. Repeat Steps 5–6, B times to obtain T ∗1
ICCSI(t), . . . , T

∗B
ICCSI(t).

8. Calculate the α and (1− α) quantiles, T ∗
ICCSI,α(t) and T

∗
ICCSI,(1−α)(t),

at each t. Reject H0 at time t if TICCSI(t) < T ∗
ICCSI,α(t) or TICCSI(t) >

T ∗
ICCSI,(1−α)(t).

If H0 holds, the trials for both stimuli are generated by the same process.
The proposed bootstrap mimics that process using the pooled information
in Steps 1–4 above.

5.5 Application to spike trains

In this section we apply the methods described so far to the real data. First
of all, we will discuss briefly how the different parameters have been chosen.

5.5.1 Choosing the tunning parameters

Here, we show how the synchrony measure is affected by the choice of the
parameters δ and v. As Figure 5.2 shows, the values of the ICCSI are highly
influenced by these choices, therefore the importance of being aware of it
and having insight of the physiological problem studied. In our problem we
have chosen δ = 0.025 s. As the neurons are under spontaneous activity, it
is plausible to still consider associated two spikes that are separated by 25ms.

As expected, the larger v the smoother the ICCSI curve, although large
values of v also have the drawback of loosing temporal resolution. On the
other hand, the changes observed when changing the choice of δ are of an-
other nature. As δ gets larger, the mean value of the curve gets larger and
so does the dispersion. This is also expected as the total amount of wait-
ing times are the same, so as the interval of integration gets bigger the area
increases. For our analysis, after discussing with the experimentalists and
physiologists, we decided to use v = 10 s and δ = 0.025. Also we use ν = 1 s
and therefore the area of integration will be δν = 0.025 s. As we already
know, the data come from spontaneous activity recordings. Therefore, the
firing rates are very low for each neuron and it is very hard to find spikes
occurring at exactly the same moment. Then, synchrony can be considered
as the event of neurons firing together in a more general way than unitary
events. This is why δ = 0.025 is considered as a good choice. On the other
hand, for the nonparametric smoothing of the ICCSI we chose a small value
of h, h = 0.5. Consequently, since the ICCSI is computed every 0.05 s, we
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are averaging one second around each time point where the ICCSI was cho-
sen to gain smoothness.

Figure 5.3 shows the results of the bootstrap test described in Section 5.3
for three different choices of δ (0.01, 0.025 and 0.1) for the pair N1-N3a. It
can be observed that, even though the scale of the ICCSI(t) curve changes
considerably, the periods of time where the null hypothesis can be rejected are
very similar. This means that, when searching for differences in synchrony,
the results do not vary significantly depending on the choice of δ.
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Figure 5.2: ICCSI of pair N1-N3a using different values of v and δ: v = 5, 10
and 15, δ = 0.01, 0.025 and 0.1.
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Figure 5.3: Bootstrap significance test for synchrony between neurons N1
and N3a, using different values of δ. Panels in the left column correspond to
bs and the ones in the right to bf. Top panels correspond to δ = 0.01, middle
panels to δ = 0.025 and bottom panels to δ = 0.1. The value v = 10 s. has
been considered in all the panels. The horizontal dashed lines correspond to
the bootstrap critical value.

5.5.2 Testing for synchrony differences

In this subsection, hypothesis testing for synchrony between two neurons is
considered. We show the results for pairs N1-N3a, N1-N3b, N1-N4b, N1-N5,
N3a-N3b, N3a-N4b and N3b-N4b.

For the bootstrap tests we have chosen pboot = 0.97. We have based our
decision on an attempt to reach a balance between imitating the dependence
in the data and the variability that the resampling pursues. The stationary
bootstrap is based on the sampling of blocks of observations with random
length. The length of the k-th block, Lk, follows a geometric distribution,
so that P (Lk = r) = pr−1

boot(1− pboot). On the other hand, the expected value
of the block length is 1

1−pboot
. With this in mind, and knowing that our time

series are 460 points long, we chose pboot = 0.97 so as to have, in the mean, 14
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blocks of length 33. Figure 5.4 shows the test performed with different choices
of pboot and B = 500. Some differences can be observed, but these are small
and, in general, the significant periods of time remain similar. The resulting
critical levels are ICCSI∗α = 0.0418 for pboot = 0.95, ICCSI∗α = 0.0504 for
pboot = 0.97, ICCSI∗α = 0.0417 for pboot = 0.98 and ICCSI∗α = 0.0484 for
pboot = 0.99.
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Figure 5.4: Bootstrap significance test for synchrony between neurons N1
and N3a. The horizontal dashed lines correspond to the bootstrap critical
value, using different values of pboot: pboot = 0.95 (top-left panel), pboot = 0.97
(top-right panel), pboot = 0.98 (bottom-left panel) and pboot = 0.99 (top-right
panel).

To test for synchrony variations over time, the bootstrap procedure de-
scribed in Section 5.3 was used. Figures 5.5 to 5.10 show the results for the
existing synchrony between neurons for several pairs of neurons. The signifi-
cance level α = 0.05 has been used in the tests throughout the analysis. The
results for the N1-N3a pair were already shown in Figures 5.3 and 5.4. In
these cases our method is able to detect subtle changes in the synchroniza-
tion dynamics. In the bf case, we can see a mild effect in some of the pairs
of neurons. On the other hand, for bs, we can observe an immediate decrease
of synchrony after stimulation that can be successfully detected by our test.
The decrease in synchrony can be observed even before the stimulation is
applied due to the use of moving windows in the method.
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Figure 5.5: Estimated ICCSIs (solid lines) averaging over the three trials of
bs stimulation (top panel) and bf stimulation (bottom panel) of neurons N1
and N3b. The bootstrap critical value is shown in horizontal dashed lines.
The period of stimulation is indicated by the dashed vertical lines.
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Figure 5.6: Estimated ICCSIs (solid lines) averaging over the three trials of
bs stimulation (top panel) and bf stimulation (bottom panel) of neurons N1
and N4b. The bootstrap critical value is shown in horizontal dashed lines.
The period of stimulation is indicated by the dashed vertical lines.
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Figure 5.7: Estimated ICCSIs (solid lines) averaging over the three trials of
bs stimulation (top panel) and bf stimulation (bottom panel) of neurons N1
and N5. The bootstrap critical value is shown in horizontal dashed lines.
The period of stimulation is indicated by the dashed vertical lines.
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Figure 5.8: Estimated ICCSIs (solid lines) averaging over the three trials of
bs stimulation (top panel) and bf stimulation (bottom panel) of neurons
N3a and N3b. The bootstrap critical value is shown in horizontal dashed
lines. The period of stimulation is indicated by the dashed vertical lines.
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Figure 5.9: Estimated ICCSIs (solid lines) averaging over the three trials of
bs stimulation (top panel) and bf stimulation (bottom panel) of neurons
N3a and N4b. The bootstrap critical value is shown in horizontal dashed
lines. The period of stimulation is indicated by the dashed vertical lines.
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Figure 5.10: Estimated ICCSIs (solid lines) averaging over the three trials
of bs stimulation (top panel) and bf stimulation (bottom panel) of neurons
N3b and N4b. The bootstrap critical value is shown in horizontal dashed
lines. The period of stimulation is indicated by the dashed vertical lines.
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In Figures 5.11 to 5.13 we show the results obtained when testing for the

effect of the applied stimulation (bs/bf ) in the difference between the ̂ICCSI.

Difference ̂ICCSI curves are shown together with their 95% critical bands
obtained by the bootstrap procedure described in Section 5.4. The figures
show that our test can effectively detect differences between synchrony un-
der stimulus bs and under stimulus bf for almost every pair of neurons. As
expected, these differences are found mostly right after the stimulation.
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Figure 5.11: Differences (bs-bf ) of ̂ICCSI(t) (solid black lines) with critical
bands (dashed black lines) built with 500 bootstrap replications (grey lines)
for neurons N1 and N3a. Stimulation time at t = 0.
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Figure 5.12: Differences (bs-bf ) of ̂ICCSI(t) (solid black lines) with critical
bands (dashed black lines) built with 500 bootstrap replications (grey lines)
for neurons N1 and N3b. Stimulation time at t = 0.
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Figure 5.13: Differences (bs-bf ) of ̂ICCSI(t) (solid black lines) with critical
bands (dashed black lines) built with 500 bootstrap replications (grey lines)
for neurons N3a and N5. Stimulation time at t = 0.

5.6 Simulation study

A simulation study was carried out to study the sensibility of our measure
to sudden changes in synchrony. For this aim, we simulated pairs of spike
trains controlling their association. We used an underlying Poisson process
with rate λ(t), say M0(t). To generate two spike trains from this underlying
process, we assumed to have a realization ofM0(t) with events atX0

1 , . . . , X
0
N

and two vectors of random errors μ1 = (μ1
1, . . . , μ

1
N) and μ2 = (μ2

1, . . . , μ
2
N)

with μj
i sampled from a uniform distribution chosen accordingly to the firing

rate as explained later. Let M1(t) and M2(t) be the pair of spike trains
induced by M0(t) as follows:

P (M j(t)−M j(t−) = 1) =

{
pj(t) if t = X0

i + μj
i for some i = 1, . . . , N

0 otherwise

for j = 1, 2, i = 1, . . . , N and pj(t) a certain probability function defined for
each train.

Since we wanted to study dynamic changes in synchrony, we considered a
time point, t0, as the time where the association between the trains change.
So, the probabilities were set constant before t0 and also constant, although
with a different value, after t0. Also, for simplicity, we used the same proba-
bilities for both trains. This is:
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p1(t) = p2(t) =

{
p1 if t < t0
p2 if t ≥ t0

.

On the other hand, we defined the firing rate of the trains as constant
throughout the trial, say λ0. Therefore, the firing rate of the process M0(t)
was defined as

λ(t) =

{
λ0p1 if t < t0
λ0p2 if t ≥ t0

.

In practice, we drew random numbers ρji ∈ [0, 1] and then selected X0
i +μ

j
i

as a spike for train j if ρji ≤ pji (which occurs with probability pji ).

Finally, in our simulation study, 80 s spike trains with constant rate of
λ0 = 4Hz were generated: 40 s were simulated with probability p1 of acquir-
ing the spikes from the underlying process and another 40 s with probability
p2. We used μj

i ∼ U(−1/(10λ0), 1/10λ0)) for all i = 1, . . . , N and j = 1, 2, in
order to have a controlled error which shifts the spikes in a small amount but
so that it was not likely that one spike would be shifted so much that it goes
over another spike. The choices for the parameters p1 and p2 are, p1 = 0.9
with p2 = 0.1, 0.3, 0.5 and 0.7 on one hand and p1 = 0.7 with p2 = 0.1, 0.3, 0.5
and 0.65 on the other. We simulated 500 pairs of trains and estimated the
ICCSI function for them using the same parameters as for the real data
(δν = 0.025ms, v = 10 s.). Then we performed the bootstrap test described
in Section 5.3 with B = 500 and pboot = 0.97 the same as for the real data.

Figure 5.14 shows eight ICCSI curves from eight pairs of simulated spike
trains with p1 = 0.7 and p2 = 0.65 in the top panel, whereas in the bottom
panel the average of 500 of these curves are shown for different choices of p2.
Figures 5.15 and 5.16 show the rejection percentage of the null hypothesis
using the bootstrap test in Section 5.3. Figure 5.15 shows the simulations
for p1 = 0.9 and Figure 5.16 for p1 = 0.7. As it can be observed the test can
easily detect the changes in synchrony. Of course the use of sliding windows
provokes the existence of a period of time where the rejection percentage
grows slowly but this is one of the prices we have to pay because of the low
firing rates.
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Figure 5.14: ICCSI curves for eight simulated pairs of neurons using p1 = 0.7
and p2 = 0.65 (top panel) and average of 500 ICCSI curves for p1 = 0.7 and
p2 = 0.1 (solid line), 0.3 (dashed line), 0.5 (dotted line) and 0.65 (dashed-
dotted line) (bottom panel). The stimulus is simulated at t = 40.

5.7 Chapter conclusions

The method presented in this chapter, the ICCSI, is based on the cross-
correlation function. It is a flexible method because it permits the tunning
of its parameters to better fit the problem. In order to asses for differ-
ences in synchronization between the sleep-like and the awake-like periods
and between the two stimulation conditions, we proposed bootstrap based
hypothesis tests. Two resampling and bootstrap procedures were presented.
These resampling procedures take into account the dependence between si-
multaneous spike trains by resampling from the intervals of time that elapses
between spikes of a joint spike train built by merging the spike trains. A
simulation study illustrates the good behavior of these tests. When applied
to the real data, the methods prove to be useful to address the problems
posited by the neuroscientists. In the sample used for our study, significant
decreases in neural synchrony are found after the stimulation of bs. Never-
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Figure 5.15: Rejection proportion of the bootstrap test for changes in syn-
chrony using p1 = 0.9 and different p2 = 0.1, 0.3, 0.5 and 0.7. The stimulus
is simulated at t = 40.

theless, there is not enough evidence to detect these kind of differences in
every pair of neurons in the bf case. On the other hand, a second test per-
mits the observation of differences between the two used stimuli. This is, the
bootstrap test results allow to state that the observed synchrony during the
awake-like period is different depending on the stimulus.

Although we did not observe the same behavior in all the studied pairs
of neurons, we can asses that the stimuli disrupts, in a differential way, the
neural synchrony for a short period of time, and then the normal synchrony
is slowly recovered.
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Figure 5.16: Rejection proportion of the bootstrap test for changes in syn-
chrony using p1 = 0.7 and different p2 = 0.1, 0.3, 0.5 and 0.65. The stimulus
is simulated at t = 40.
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Chapter 6

Cross nearest spike interval
based method to measure
synchrony

In this chapter we present a different method to measure synchrony between
pairs of neurons. This method is also based on spikes times rather that
binned trains. The aim is to solve the same problem as with the ICCSI but
using a different approach.

Along this chapter, cross nearest spike intervals are defined, depending
on some tuning parameters whose selection is also discussed. A synchrony
measure based on these intervals is proposed and fitted to the data using
generalized additive models. Relevant hypothesis tests concerned with syn-
chrony are proposed and calibrates using a theoretical approximation and
also by simulation. The bootstrap method is also used to construct confi-
dence bands. All these methods are applied to the data studied in this thesis.

6.1 Synchrony measure based on cross near-

est spike intervals

Let X = {Xj}J1j=1 and Y = {Yj}J2j=1 be two simultaneously recorded spike
trains as in the previous chapters. Let NX(t) and NY (t) for t ∈ [0, T )}
be the counting processes associated to X and Y respectively. Recall from
Chapter 3 that NX(t) = #{Xj ≤ t j = 1, . . . , J1} and NY (t) = #{Yj ≤
t j = 1, . . . , J2}. Also, let n = J1 + J2 be the total amount of spikes.

93



Define the cross nearest spike interval (CNSI) as the time that elapses
between the spikes of one neuron and the closest spike of the other neu-
ron, not necessarily forward. If we denote the CNSI variable as Ũ then,
Ũ = min{U−1, U1}, where U−1 and U1 are the waiting times defined in Chap-
ter 5 and U1 is CISI defined in Chapter 4.

As already discussed, when the firing rate of spike trains is low, we need a
broader definition of synchrony because exact firing matches hardly ever oc-
cur in 1ms windows, not even in 10ms windows. Here, synchrony is defined
as the event of AP occurring within a time window of width δ that can be
selected by the researcher according to the problem, just as with the ICCSI.
Issues about the selection of δ are discussed in the next section. Let nδ be the
number of CNSIs smaller than or equal to δ, counting from both neurons. So,
we define the following measure, which we will call CNSI-Synchrony Measure
(CSM) and denote with pδ:

pδ =
nδ

n
,

where n is total amount of spikes, over both neurons, and therefore, the total
amount of CNSIs too. The measure pδ is a global measure of synchrony. It
is symmetric and it does not pick up causality. In terms of the counting
processes, nδ can be expressed as:

nδ =

J1∑
j=1

I{NY (Xj+δ)−NY (Xj−δ) ≥ 1}+
J2∑
j=1

I{NX(Yj+δ)+NX(Yj−δ) ≥ 1}

where, recall that, I{A} is the indicator function of event A.

In order to define CSM as a function of time, pδ(t), to take into account
the non stationarity of the processes we consider nδ(t) as follows:

nδ(t) =

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1)}I{Xj = t}+

+
J2∑
j=1

I{NX(Yj + δ) +NX(Yj − δ) ≥ 1}I{Yj = t.}

Of course, Xj = t and Yj = t are events of probability zero but, even in
practice, when working with binned trains, observing a spike in a given bin
is very difficult when firing rates are low. So, in order to solve this problem,
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we will work with the information provided by a neighborhood of t. Let
Vt = (t− v, t+ v] be a symmetric time window of length 2v around t, with v
chosen by the researcher depending on the context of the study. For higher
firing rates, smaller windows could be used. Therefore, we define

nδ(t, v) =

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1}I{Xj ∈ (t− v, t+ v]}+

+

J2∑
j=1

I{NX(Yj + δ) +NX(Yj − δ) ≥ 1}I{Yj ∈ (t− v, t+ v]}

(6.1)

and let n(t, v) be the number of spikes (and CNSIs) that fall in Vt:

n(t, v) =
J1∑
j=1

I{Xj ∈ (t− v, t+ v]}+
J2∑
j=1

I{Yj ∈ (t− v, t+ v]}

For each t, we compute the CSM in the time window Vt obtaining pδ(t).
Consequently, to measure synchrony at a time point t0, the probabilities
P (NY (Xj + δ) − NY (Xj − δ) ≥ 1) and P (NX(Yj + δ) − NX(Yj − δ) ≥ 1)
are considered constant along Vt0 and estimated using the information of the
whole interval. In this way, the local low firing rate is outweighed by neigh-
borhood activity.

Population-wise talking, pδ(t) is an estimator of the probability, πδ(t), of
(given two trains) finding two spikes (one of each neuron) closer than the
quantity δ, given that occurred one spike at time t. In general, πδ can be
considered as the probability of success of a certain Bernoulli trial, where
the trial corresponds with one observation of the Ũ with success probabil-
ity that Ũ is smaller than δ. Therefore, nδ becomes the observation of a
binomial variable, ηδ, that counts the number of successes of the Bernoulli
trials, ηδ ∼ B(N, πδ) and consequently, pδ is an estimator of the probability
πδ, pδ = π̂δ. Finally, the same argument can be used at each time window
Vt to obtain pδ(t) as the estimator of πδ(t) where ηδ(t) ∼ B(N(t), πδ(t)). In
the rest of the chapter we will drop the subscript δ except for the quantity
nδ, because there is no possibility of confusion as everything depends on this
quantity in the same way.
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6.2 Selection of Vt and δ

When the firing rate is high, or a large amount of trials are available, both
windows Vt and δ can be chosen to be small. On the other hand, if there
are few trials or the firing rates are low, wider windows need to be chosen
to ensure that enough spikes are present in the intervals. How to choose
the quantities Vt and δ is a matter of discussion. We propose a compromise
between Vt and δ and the use of the smallest values that will allow compu-
tations of the CSM. Figure 6.1 shows an example carried out with real data.
In this figure, we observe the amount of zeros (no presence of CNSIs smaller
than δ) encountered while computing the CSM on a 150 s trial of a real neu-
ron. We have repeated computations for 45 pairs (v,δ): v = 3, 4, 4.5, 5, 5.5
seconds and δ = 0.005, 0.01, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.1. Each line
corresponds to one value of v. We see that the amount of zeros for small
windows together with small δ is large. Figure 6.2 shows CSM for four dif-
ferent selections of the pair (δ, v) for the real data example. As the firing
rates of these neurons are very low, we can see that very small δ and v would
result in a lot of zeros and even sometimes not allow for the calculation of
CSM because of lack of spikes in a given window. When a large v, v = 5,
and a large δ, δ = 0.1 are chosen, the CSM grows considerably because the
proportion of CNSIs smaller than δ is large. Finally, when a large v (v = 10)
and δ = 0.05 are chose, the CSM flattens probably due to the fact that in
a wide range of time points, very large pieces of the spike trains are used
repeatedly. In this case we have chosen v = 5 and δ = 0.05 with the results
as shown in the top-right panel of the figure.

The values of CSM are clearly influenced by the choice of the parameters v
and δ. Therefore it is important to asses how much of the synchrony observed
is real and how much of it is a product of the choice of these parameters or
due to independent neuron firing. We will discuss this issue in Section 6.4.

6.3 Model formulation

In this section we present a model for our measure. As already discussed,
at each time window, the proposed measure is an estimator of the probabil-
ity of a binomial process where success is the event of observing Ũ smaller
than δ and the total number of CNSIs is the number of Bernoulli trials,
η(t) ∼ B(n(t), π(t)). We propose to use binomial generalized additive mod-
els (GAM) with a logit link to explain the proportion of ‘small’ CNSIs in
time. The convenience of using GAMs lies in the flexibility of non-parametric
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Figure 6.1: Number of zeros obtained in the calculation of CSM when using
different δ (x-axis) and different v for the time windows ((t−v, t+ v]): v = 3
(solid line), v = 4 (short-dashed line), v = 4.5 (dotted line), v = 5 (dot-
dashed line) and v = 5.5 (long dashed line).

functions. It would be not reasonable to choose a parametric model for the
response function. The additive terms in the model allows for an easy inter-
pretation.

In general, GAMs can be represented as follows:

g(μ) = S∗α + f1(x1) + f2(x2) + . . .+ fm(xm)

where μ = E(Y ), Y is a random variable belonging to the exponential family
of distributions, g is called the link function, S∗ is the model matrix for the
parametric component of the model, α is the corresponding parameter vector
and the fj are smooth functions of the covariates xj (Hastie and Tibshirani
(1990); Wood (2006)).

For our problem, we propose the use of logistic GAMs. In the particu-
lar case of a binomial GAM, the canonical link function used is the logit:
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Figure 6.2: CSM(t) for different δ and v. δ = 0.001 , v = 3 (top-left panel);
δ = 0.05 , v = 5 (top-right panel); δ = 0.1, v = 5 (bottom-left panel);
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logit(μ) = μ
1−μ

. Also, it is important to recall that we have several experi-

mental conditions (induced by the two stimuli) which are suppesed to drive
to different probabilities of joint firing. The model we propose is a mean
curve plus difference one, which we will call Model 1:

logit(πj(t)) = β0 +
J−1∑
l=1

βlI{j = l}+ f0(t) +
J−1∑
l=1

fl(t)I{j = l}+ εt,

where πj(t) stands for the success probability in ηj(t) ∼ B(Nj(t), πj(t)) un-
der the j-th experimental condition. The parametric part is reduced only to
a intercept and f0(t) is a common curve for all the conditions, while fj(t)
represents the difference from the curve f0(t) to the one corresponding to
condition j = 1, . . . , J − 1. Finally, the εt are the errors of the model which
will be discussed later on.

In practice, we only have two conditions, J = 2, and we have three
repetitions for each condition. Let nδji(t) and nji(t) be the observed nδ and
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total number of CNSIs observed in the time window Vt under the i-th trial
of the j-th condition respectively, for j = 1, 2 and i = 1, 2, 3. Therefore,

pji(t) =
nδji(t)

nji(t)
is the CSM at time t for the i-th trial of the j-th condition.

So, the model to fit is:

logit(pji(t)) = β0 + β1I{j = 1}+ f0(t) + f1(t)I{j = 1}, (6.2)

where, after obtaining β̂0, β̂1, f̂0 and f̂1 we will have an estimator of πj(t),
π̂j(t), for each condition.

We are interested in the time evolution of synchrony and therefore in the
differences that could occur in certain periods of time. Nonetheless, a first
overall study of the synchrony profile is cautious. To do this, we will fit a
simple model, a single curve model (Model 2), and compare it with Model 1:

logit(pji(t)) = β0 + f0(t). (6.3)

Model 2 in (6.3) corresponds to the hypothesis of no differences between
experimental conditions over the whole time period. It comprises a single
function for both conditions, while Model 1 in (6.2) allows the smooth func-
tions to differ. With the present approach, in a two experimental conditions
model, a possible difference between the two conditions is easier to observe
because, if there are no differences between conditions then f̂1(t) will be es-
sentially flat.

To represent the smooth functions we have used penalized regression
splines, with cubic splines basis. Smoothing parameters are chosen by the
generalized cross validation (GCV) criterion and the number of knots using
the akaike information criterion (AIC) value. The mgcv R package was used
for this aim (Wood (2006) pp.128–133).

An important issue to note is that no dependency between time points is
taken into account with these proposed models. Nevertheless, we are aware
of the high dependency that exists between consecutive time points. The
dependency will be taken into consideration when building confidence bands
for the estimators and when developing the hypothesis tests. For this aim,
we consider that the dependency is gathered in the errors of the model and
we propose to model this dependency with an AR(1) model:

εt = αεt−1 + at with at ∼ N(0, σ2).

We can estimate α by ordinary least squares. The estimated errors are
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ε̂ji(t) = pji(t) − π̂j(t) and we need to find α so as to minimize the sum of
squares:

2∑
j=1

3∑
i=1

T∑
t=2

(ε̂ji(t)− αε̂ji(t− 1))2.

Differentiating this expression in α and making the derivative equal to zero
it is straight forward to prove that the α̂ we are looking for is

α̂ =

∑2
j=1

∑3
i=1

∑T
t=2 ε̂ji(t)ε̂ji(t− 1)∑2

j=1

∑3
i=1

∑T
t=2 ε̂

2
ji(t− 1)

.

Now we can estimate σ2 by σ̂2 = V̂ ar(âji(t)), with âji(t) = ε̂ji(t)−α̂ε̂ji(t−1).

6.3.1 Hypothesis testing

Let us state the hypothesis regarding the electrical stimulation in bs and
bf to be tested in the context of the present chapter. Considering the two
experimental conditions, bs, denoted by 1, and bf, denoted by 2, the two
main null hypotheses to test are

• H1
0 : π1(t) = π0 for every t after the condition onset. Here, π0 represents

the baseline synchrony before the stimulus. A similar hypothesis can
be formulated for condition 2.

• H2
0 : π1(t) = π2(t). With this test we aim to detect differences in the

synchrony profile induced by the two different experimental conditions.

To test these hypotheses we will use CSM as a test statistic and bootstrap
critical bands to find significant differences. The bootstrap procedure will be
discussed in Section 6.7.

A third important aspect to investigate is whether the observed synchrony
is different from the one that would be expected just by chance. To test this
we will compare the observed synchrony with the expected one. This problem
is presented in the next section.

6.4 Synchrony due to firing rate

Even in the case of two independent spike trains, CSM will not be zero, and
its value could be large due to random close firing. It seems reasonable that
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this synchrony obtained by chance will increase with increasing firing rates.
In the way the CSM is built, it could be affected by the firing rate and by
its changes in time. To study this aspect we will compare the observed CSM
with the one expected only by chance, due to the firing rate. For this purpose
we need to calculate what CSM values are expected for the observed activ-
ity if the two trains were independent. These values will be approximated in
this chapter in two different ways: 1) approximating the theoretical expected
synchrony by chance and 2) by simulating independent trains and modeling
their synchrony.

6.5 Theoretical approximation

Let us start with the theoretical expression for the CSM:

Ai(t, ν) = {s ∈ (t− ν, t+ ν]/Ni(s) > N i(s)]}

where N i(s) = lim
τ→s−

Ni(τ) and i ∈ {X, Y }. Observe that Ni(t+ ν)−Ni(t−
ν) ≥ 1 if and only if Ai(t, ν) 
= ∅. Therefore, we can think of the quantity

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1}I{Xj ∈ (t− v, t+ v]}

in (9.3) as an estimator of the expected value of:

#{s ∈ AX(t, v)/AY (s, δ) 
= ∅} =
∑

s∈AX(t,v)

I{AY (s, δ) 
= ∅}.

Taking expectations and using the property E(A) = E(E(A|B)) we have:

E

⎡⎣ ∑
s∈AX(t,v)

I{AY (s, δ) 
= ∅}

⎤⎦ = E

⎡⎣E
⎛⎝ ∑

s∈AX(t,v)

I{AY (s, δ) 
= ∅}
∣∣∣∣∣NX

⎞⎠⎤⎦ =

= E

⎡⎣ ∑
s∈AX(t,v)

E

(
I{AY (s, δ) 
= ∅}

∣∣∣∣∣NX

)⎤⎦ ,
which, under the assumption of independence, becomes:

E

⎡⎣ ∑
s∈AX(t,v)

E (I{AY (s, δ) 
= ∅})

⎤⎦ = E

⎛⎝ ∑
s∈AX(t,v)

ρδY (s)

⎞⎠
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where ρδY (s) = E(I{AY (s, δ) 
= ∅}) which is the expected value for the in-
dicator that there is a ‘jump’ in process 2 in (s − δ, s + δ]. As we are using
the information of the whole interval (t − v, t + v] to compute nδ, we can
assume the process is stationary in this interval, so, ρδY (s) ≡ ρδY constant
in (t− v, t+ v]. If this is not the case, but v is sufficiently small, then, ρδY (s)
can be approximated by a constant value, for example, the value of ρδY (s)
at the middle point of the interval: ρδY (s) ≈ ρδY (t).

From the previous paragraph we have,

E

⎛⎝ ∑
s∈AX(t,v)

I{AY (s, δ) 
= ∅}

⎞⎠ ≈ ρδY (t)E

⎛⎝ ∑
s∈AX(t,v)	=∅

1

⎞⎠ = ρδY (t)rX(t, v)

where rX(t, v) = E(NX(t+ v)−NX(t− v)).

The previous discussion also holds for the quantity

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1}I{Xj ∈ (t− v, t+ v]}

in (9.3). So finally we get that, under independence,

E(nδ) ≈ ρδY rX(t, v) + ρδXrY (t, v),

where, ρδX = E(I{AX(s, δ) 
= ∅}) and rY (t, v) = E(NY (t+ v)−NY (t− v)).

Finally, we estimate ρδi, i ∈ {X, Y } by,

ρ̂δi =
1

2v

∫ t+v

t−v

I{Ni(s+ δ)−Ni(s− δ) ≥ 1}ds

and ri(t, v), i ∈ {X, Y } by,

r̂i(t, v) = Ni(t+ v)−Ni(t− v).

On the other hand, we have that the total number of CNSIs, n(t, v), in
the time window (t− v, t+ v] is n(t, v) = rX(t, v) + rY (t, v) and therefore,

nδ(t, v)

n(t, v)
≈ ρδY rX(t, v) + ρδXrY (t, v)

rX(t, v) + rY (t, v)
(6.4)

is an approximation to the CSM under the independence hypothesis.
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6.6 Simulation approximation

The expected random synchrony under independence given certain neuronal
activity can be also approximated using simulation. For this, we assume
there exists an underling function, g, of synchrony dependent on the firing
rates of the two spike trains,r1 and r2, this is:

g(r1, r2) = E (synchrony between trains Xand Y under independence|r1, r2)

We smooth this function with two dimensional splines after approximating
it by simulation as follows. Given two values of instant probability of firing,
p1 and p2, we simulate independent spike trains with the corresponding fir-
ing rates and compute the CSM for the simulated trains. This procedure is
repeated for every pair (p1, p2) in a two dimensional grid, P , spanning from
1Hz to 100Hz. Going from 2 to 10Hz every 1Hz, from 12 to 60 every 2Hz
and from 65 to 100 every 5Hz.

To simulate a spike train with a global firing rate of p1, 500 s time in-
tervals are divided in 1ms bins. In each bin, a Bernoulli trial with success
probability p1 (spiking) is drawn. Let {bi}Mi=1 be the indices of the bins in
which spikes are randomly assigned. Then, the spike times (in ms) for the
simulated train are X∗

j = 0.001bj j = 1, . . . ,M . The same procedure is used
to simulate trains with global firing rate equal to p2. Using the two simulated
spike trains with firing probabilities p1 and p2, the CSM is calculated and
an average over the 500 s is considered as the approximation to the value
of g at (p1, p2). Notice that this simulation scheme is not independent of δ
and v and therefore it needs to be carried out for each choice of these two
parameters.

Finally, the smoothed g is used to calculate the expected synchrony, under
the assumptions of independence, for the real pair of neurons. At each time
point, the instant firing rate of each real train are estimated and those values
evaluated in g(r1, r2) to obtain the expected value.

6.7 Bootstrap confidence bands and testing

for differences

A bootstrap procedure is carried out to build confidence bands for the pre-
dictions of the selected model and also for the predictors under the null
hypothesis described in Section 6.3.1. The bootstrap procedure is now de-
scribed to build confidence bands for the estimators and later the procedure

103



is slightly changed to test the hypotheses. The procedure for I trials is the
following:

1. Fit the penalized regression model to the response data pji(t) and
obtain the fitted probabilities π̂j(t) for each condition j.

2. Compute the errors for each trial i: ε̂ji(t) = pji(t) − π̂j(t), i =
1, . . . , I.

3. Estimate α and σ2 in the AR(1) model for the residuals: ε̂j(t) =
αε̂j(t− 1) + at (as described in Section 6.3).

4. Build bootstrap errors ε∗ji(t) = α̂ε∗ji(t− 1)+ zt, with ε
∗
ji(1) = π̂j(1)−

Yj

Nji(1)
+ z1, Yj ∼ B(N1, π̂j(1)) and zt ∼ N(0, σ̂2).

5. Compute the bootstrap data by adding the bootstrapped errors to
the fitted model: p∗ji(t) = π̂j(t) + ε∗ji(t).

6. Fit the regression model from Step 1 to the bootstrap data to obtain
the bootstrap synchrony curve π∗

j (t).

7. Repeat Steps 4–6 B times to obtain B bootstrap curves for each
condition: π∗1

j (t), . . . , π∗B
j (t).

To build the confidence bands for the estimators the only step left is to
compute the quantiles α/2 and 1−α/2 at each time point t to obtain (1−α)%
confidence bands at each condition j = 1, 2.

For the hypothesis tests, the procedure changes slightly mainly because
the model to be fitted has to be the one under the null hypothesis. It is
worth to note that the errors used to fit the AR model that will be used
to build the bootstrap samples are the ones obtained by fitting the general
model (6.2). Therefore, the procedure for hypothesis testing with I trials is
the following:

To fit the AR(1) for the errors:

1. Fit the general penalized regression model (as before) to the response
data pji(t) and obtain the fitted probabilities π̂g

j (t) for each condition
j.

2. Compute the errors for each trial i: ε̂ji(t) = pji(t) − π̂g
j (t), i =

1, . . . , I.

104



3. Estimate α and σ2 of the AR(1) model for the errors: εj(t) =
αεj(t− 1) + at (as described in Section 6.3).

Build the bootstrap samples under the null:

4. Fit the penalized general regression model under the null hypothesis
to the response data pji(t) and obtain the fitted probabilities π̂0

j (t) for
each condition j.

5. Build bootstrap errors ε∗ji(t) = α̂ε∗ji(t− 1)+ zt, with ε
∗
ji(1) = π̂j(1)−

Yj

Nji(1)
+ z1, Yj ∼ B(N1, π̂g

j(1)) and zt ∼ N(0, σ̂2).

6. Compute the bootstrap data by adding the bootstrapped errors to
the null model: p∗ji(t) = π̂0

j (t) + ε∗ji(t)

7. Fit the regression model from Step 1 to the bootstrap data to obtain
the bootstrap synchrony curve π∗

j (t).

8. Repeat Steps 5–7, B times to obtain B averaged bootstrap curves
for each condition: π∗1

j (t), . . . , π∗B
j (t).

For the first hypothesis test, the model fitted in Step 4 is the one that
corresponds to the null hypothesis of constant synchrony before stimulation,
the baseline model:

logit(π0(t)) = β0

and it is fitted using only the data from the period previous to stimulation.
Once the bootstrap curves are obtained, compute the desired quantiles to
build confidence bands around the baseline model for each condition.

For the second hypothesis test we need a further step. The null hypothesis
H2

0 states that π1(t) = π2(t). This means that π1(t)− π2(t) = 0. So, in this
case, we want to build confidence bands for the difference of the synchrony
curves. First of all, in Step 4, we need to fit the model which represents
this hypothesis. This is Model (6.3) described in Section 6.3. Then, we will
subtract the bootstrap curves to obtain:

π̄∗b
dif (t) = π̄∗b

1 (t)− π̄∗b
2 (t), m = 1, . . . , B.

After this additional step we will compute the desired quantiles to build
confidence bands for zero (difference under the null hypothesis) and see
whether the observed difference curve π̂dif (t) = π̂1(t) − π̂2(t) falls inside
the band.
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Table 6.1: AIC values for the two models.

Model 1 Model 2

AIC 145134 163071.8

6.8 Results

The main interest of studying synchrony between neurons lies in its time
evolution. In this section we present the results when the methods are ap-
plied to the pair of neurons N1 and N3a. The aim of the study, just as in
Chapter 5, is to determine in what periods of time the CSM profiles differ.

The models described in Section 6.3 were fitted and the results are pre-
sented here. In this context, we have two experimental conditions which
stand for stimulation in bs and bf. In Table 6.1 the AIC values for each
model can be observed and, based on them, we can say that Model 1 is a
better one.

In Figure 6.3 we can observe that the curve that accounts for the differ-
ence between experimental conditions in the GAM, f1(t), is different from
zero, this means that there are differences between the conditions and dif-
ferent smooth terms are needed for each stimulus. This hypothesis is tested
statistically below using the bootstrap procedure discussed in Section 6.7.
Figure 6.4 shows the bootstrap confidence bands built for each of the esti-
mators using B = 500 bootstrap replicates.

Figure 6.5 shows the results for the first hypothesis test using B = 500
bootstrap replicates. The CSM at baseline is represented as the horizontal
dotted line. It is very clear how the CSM for both stimuli depart from this
baseline value showing a difference in synchrony before (sleep-like mode) and
after stimulation (awake-like mode).

Finally, Figure 6.6 shows the results for the second hypothesis test using
B = 500 bootstrap replicates. Although the critical band for zero (expected
synchrony difference under the null hypothesis) is quite wide, we can still
find a period of time, right after stimulation, where the observed difference
lies outside the band. This means that the differences in synchrony observed
between stimuli are significant.

Next, we show the results for the comparison of the observed synchrony
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Figure 6.3: Smooth terms for GAM for CSM. Mean curve for both experi-
mental conditions f0(t) (top panel) and smooth curve that accounts for the
difference between experimental conditions, f1(t), (bottom panel). Two stan-
dard error lines above and below the estimate of the smooth curves are shown
(dashed lines).
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Figure 6.4: CSM profiles for the two stimuli with bootstrap confidence bands,
averaged over three trials. Results for bs trials are represented in black and
for bf trials in red.

to the expected one by chance. Figures 6.7 and 6.8 show these results for
the real data. The first uses the calculations from the analytical expression
obtained in Section 6.5 and the second one the results obtained with the
simulations described in Section 6.6. In both cases we can observe that the
expected synchrony under independence is smaller than the observed one.
There are short periods of time where the synchrony observed by chance
gets close to the observed one. This happens, for example, in both figures,
for the bs stimulus, right after the stimulation has taken place. This uprise
in the expected synchrony is due to the increase of the firing rates so the real
synchrony might not have increased but actually have decreased. Accord-
ing to our working hypothesis we would expect the synchrony to decrease
when the stimuli are applied. In fact, for bs stimulation there is a short
time interval (right after stimulation) where the observed synchrony could
be explained just from the increase in the firing rate. This is not the case for
bf stimulation.

6.9 Chapter conclusions

An alternative method to measure neural synchrony, specially under low fir-
ing rate scenarios, has been proposed in this chapter. The method is based
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Figure 6.5: CSM profiles for the two stimuli averaged over three trials: bs
(top panel) and bf (bottom panel). Baseline CSM estimated from the pre-
stimuli time period (dotted lines) with bootstrap critical region.
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Figure 6.6: Difference of CSM profile for the two stimuli averaged over three
trials and bootstrap confidence bands for the null hypothesis of difference
equal to zero.

on the computation of times between nearest spikes of two spike trains. This
is a flexible method that allows the researcher to decide how close two spikes
have to be, to be considered synchronous. The method uses the information
of time windows to estimate synchrony at a given time point. Although tem-
poral resolution is lost with the use of this kernel-like method, it allows to
study synchrony even with very few -or even only one- trials. Generalized
additive models are proposed to fit these curves, giving flexibility to their
shape by the use of nonparametric functions. Nevertheless, the dependency
between consecutive time points is taken into account by modeling the error
term with an autoregressive process.

The synchrony expected by chance has been computed showing that the
CSM is able to distinguish true synchrony from the one that arises just due
to the firing rate. Two hypothesis tests have been proposed and bootstrap
procedures have been developed to calibrate the distribution of the test statis-
tics. The results show that the differential stimulations have different effects
on the synchrony profile. They also show that the observed synchrony in a
short time interval right after stimulation can be partially explained by the
increasing in the firing rate in that period.
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Figure 6.7: CSM profiles (solid lines) for bs stimulation (top panel) and
bf stimulation (bottom panel) compared with the theoretical expected syn-
chrony under independence (dotted lines). The moment of stimulation is
indicated with dashed vertical lines. Bootstrap confidence bands are shown
using thin solid lines.
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Figure 6.8: CSM profile (solid lines) for bs stimulation (top panel) and bf
stimulation (bottom panel) compared with the simulated expected synchrony
under independence (dotted lines). The moment of stimulation is indicated
with dashed vertical lines. Bootstrap confidence bands are shown using thin
solid lines.
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Chapter 7

Stimuli and neural orientation
selectivity effects using
functional data analysis

Until now we have devoted our analysis to pairs of neurons and to compare
the possible effects of differential stimulation on synchrony for a given cell
pair. It is also important to check if these differences are significant at a
population level. This is, if the differences are consistent throughout a group
or a population of neurons. In this chapter we will zoom out from a single
pair of neurons and study a group of cells.

For the analysis performed in this part of our study we have organized
our pool of cells according to an important functional property of V1 neu-
rons, the orientation selectivity, i.e., the existence of a preferred orientation
of the visual stimulus (Hubel and Wiesel (1962)). This property is important
in neurophysiological studies because it can provide important clues regard-
ing the functional architecture of the striate cortex. The neuroscientists of
the Neurocom group are interested in the synchronization dynamics of V1
cells during the two periods of spontaneous activity (sleep-like and awake-
like) generated with their experimental model, taking also into account the
orientation selectivity of the recorded neurons. This can render important
information regarding the underlying functional connectivity. So, we will
compare the synchrony profiles among different pairs of neurons, including
the orientation selectivity in the analysis. We will study whether a second
factor, regarding the affinity in orientation selectivity of a given pair, has a
determinant influence in how neuronal synchronization evolves.

The experiment in which our data was recorded included in a first step the
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characterization of each neuron regarding their preferred orientation. Sev-
eral lines, with different angles of orientation, were shown to the cat and the
firing was recorded, so each recorded neuron was associated with one specific
orientation, corresponding to the highest firing rate. In this way, when paired
up, we can define a new variable that is the difference between the favorite
orientations of two neurons.

It is worth mentioning that, although the orientation selectivity should
be a continuous variable, the way in which the experiments are carried out,
make it a discrete variable, since only 16 orientations are shown, 8 angles
with two different directions each. The use of two directions of movement
with the same angle is also of interest in order to define another prop-
erty of V1 neurons, the selectivity to direction. For the purposes of the
present work, we will only take into account the orientation selectivity, and
hence will just consider 8 orientations: 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦

and 157.5◦. For this aim, we will identify the orientation 180◦ with 0◦, 202.5◦

with 22.5◦, and so on. Finally, let us define G as the random variable that
measures the difference between preferred directions of two given neurons:
G = min{|O1 −O2|, 180− |O1 − O2|}. Given the previous considerations, G
can take one of these five possible outcomes: 0◦, 22.5◦, 45◦, 67.5◦ and 90◦.

We will use the synchrony measure defined in Chapter 5 for the analyses.
Our data are functions: the ICCSI profiles. So, in this chapter, the ana-
lysis are carried out using a functional data analysis approach. Details on
functional data analysis are not given here, although we will give the basic
notions that are necessary to understand our analysis. For details and theory
on this subject, refer to, for example, the books by Ramsay and Silverman
(2002, 2005) or Ferraty and View (2006).

We will use a group of eight simultaneously recorded neurons (n = 8).
Therefore there are 28 pairs to work with. In this particular experiment
four trials for each stimulation were carried out, providing us with N = 224
curves. In this case, the number of pairs in each of the categories given by
G is:

0◦ 22.5◦ 45◦ 67.5◦ 90◦

5 12 6 3 2

and there are 8 trials for each pair, 4 for each stimulus (bs/bf ). Therefore
there are 20, 48, 24, 12 and 8 curves in each category defined by stimulus
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and orientation. On the other hand, we can obtain as many points in the
curves as we like. Points in an equispaced grid 0 < t1 < . . . < tM = T
are considered: from 10 s to 230 s every 0.1 s. Therefore, each synchrony
curve is evaluated in 2300 points. The curves, ICCSI(t) are bounded, since
0 ≤ ICCSI(t) ≤ 1 ∀t ∈ [0, T ]. Figure 7.1 shows the data averaged over
trials. The top panel shows the functions that correspond to bs stimulation
and in the bottom panel shows the ones for bf stimulation. Different colors
are used for the different levels of G.
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Figure 7.1: Functional data. Top panel: ICCSI(t) averaged over trials for
the first stimulus, bs. Bottom panel: ICCSI(t) averaged over trials for the
second stimulus, bf. Difference in orientation selectivity groups are defined
in colors: 0◦ (black), 22.5◦ (red), 45◦ (green), 67.5◦ (blue) and 90◦ (cyan).

We will search for population differences in the dynamics of the awake-like
period induced by each stimuli taking into account the possible effect of the
other factor: difference between orientations selectivity. This problem can
be dealt with as a two-way ANOVA with a two level factor: stimulus and a
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five-level factor: G. Since the response is ICCSI(t), a functional variable, we
will use the method proposed by Cuesta-Albertos and Febrero-Bande (2010).

7.1 Functional two-way ANOVA

As already mentioned, the aim of this chapter is to search for differences
on synchrony dynamics relative to two factors: stimulus and difference in
orientation selectivity. As the difference in orientation selectivity can take
values in a given finite set of values, the problem is one of a two way analysis
of variance with fixed effects in which the response variable is functional. In
the following subsection, we outline the methods but, for a more detailed
explanation on the random projections methodology please refer to Cuesta-
Albertos et. al (2007) and, on the specific case of functional ANOVA, refer
to Cuesta-Albertos and Febrero-Bande (2010).

7.1.1 The random projections method for the ANOVA
model

The random projections approach to solve problems in the functional data
context is based on the ideas of Cuesta-Albertos et al. (2007). In that
paper, the authors give an extension, on Hilbert spaces, to the Cramer-
Wold theorem, which characterizes a probability distribution in terms of
one-dimensional projections. Their Theorem 4.1 states that if two distribu-
tions are different, and we choose a marginal of them, those marginals will
be almost surely different. Based on this fact, Cuesta-Albertos and Febrero-
Bande (2010) propose a method for hypothesis testing in infinite dimensional
spaces. We will state their result more formally, particularizing it to our prob-
lem. Roughly speaking, what they say is the following. Let us assume the
data belong to a Hilbert space, H, with a scalar product 〈, 〉, and let μ be a
Gaussian distribution in H. Suppose the hypothesis to be tested is whether
certain parameters, say γ1 and γ2, are equal (H0 : γ1 = γ2). If γ1 
= γ2, then
the set of random directions, ν, from μ in H, for which 〈ν, γ1〉 = 〈ν, γ2〉, has
probability zero. This is, if H0 fails, then it also fails in its projected version
for μ-almost every ν ∈ H. Therefore, a test at level α in the one dimensional
space is a test at the same level to test H0.

We now present the functional two-way ANOVA model for our prob-
lem and state the methodology more formally. Let A = {(i, j) : i, j ∈
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1, . . . , n and i < j} and denote the pairs of neurons with indices (i, j) ∈ A.

Therefore, r = #A = n(n−1)
2

is the total amount of neuron pairs. We consider
the following linear model for the synchrony curves:

y
(i,j)
kl (t) = m(t) + αk(t) + βg(i,j)(t) + γkg(i,j)(t) + ε

(i,j)
kl (t), (7.1)

for k = 1, 2 and l = 1, 2, 3, 4. The function ŷ
(i,j)
kl (t) is the integrated cross-

correlation index (ICCSI(t)) for trial l of the pair given by neurons i and
j under stimulus k; m(t) is the global effect, αk(t) is the effect of stimulus
k. The function g : A �→ {1, 2, . . . , 5} indicates the level of the factor G
that corresponds to the pair given by neurons i and j, identifying level 1
to the level 0◦, level 2 to 22.5◦ and so on. Therefore, βg(i,j) is the effect of
level g(i, j) to the synchrony. The effect of a possible interaction between the

factors is gathered by γkg(i,j) and, finally, ε
(i,j)
kl (t) is the random error term.

For identifiability of the parameters, we assume:

α1 + α2 = 0,

5∑
g=1

βg = 0, and

2∑
k=1

5∑
g=1

γkg = 0.

The relevant null hypotheses to be tested are:

Hα
0 : α1 = α2 = 0,

which means that there is no effect of the stimulus,

Hβ
0 : β1 = · · · = β5 = 0,

which states that there is no effect of the orientation selectivity. Also, a
hypothesis for the interactions is reasonable:

Hγ
0 : γkg = 0 ∀ k = 1, 2, ∀ g ∈ {1, 2, . . . , 5}.

Theorem 2.1 in Cuesta-Albertos and Febrero-Bande (2010) states that,
if the data belong to a Hilbert space, H, endowed with a scalar product 〈, 〉,
μ is a Gaussian distribution on H such that its one-dimensional projections
are nondegenerate, then,

1. If ∃k ∈ {1, 2}, such that αk 
= 0, then

μ({ν ∈ H : 〈ν, αk〉 = 0 ∀k ∈ {1, 2}}) = 0

2. If ∃g ∈ {1, 2, 3, 4, 5}, such that βg 
= 0, then

μ({ν ∈ H : 〈ν, βg〉 = 0 ∀g ∈ {1, 2, . . . , 5}}) = 0
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3. If ∃k ∈ {1, 2} and g ∈ {1, 2, 3, 4, 5} such that γkg 
= 0, then

μ({ν ∈ H : 〈ν, γgk〉 = 0 ∀k ∈ {1, 2}, ∀g ∈ {1, 2, . . . , 5}}) = 0

Therefore, the proposed procedure is to randomly project the data on the
one-dimensional space and to test the hypotheses in that context. Given a
random function, ν(t), we consider the projected model:

y
(i,j)(ν)
kl = m(ν) + α

(ν)
k + β

(ν)
g(i,j) + γ

(ν)
kg(i,j) + ε

(i,j)(ν)
kl , (7.2)

and the hypotheses in the one dimensional problem:

Hν,α
0 :α

(ν)
1 = α

(ν)
2 = 0

Hν,β
0 : β

(ν)
1 = · · · = β

(ν)
5 = 0

and

Hν,γ
0 : γ

(ν)
kg = 0 ∀ k ∈ {1, 2} and g ∈ {1, 2, . . . , 5}.

(7.3)

The tests defined in the one-dimensional response case are clearly con-
ditional to the random projection used, ν. To reduce the error introduced
by the choice of the random projection, we will use the correction that im-
plies controlling the false discovery rate (FDR) introduced by Benjamini
and Hochberg (1995). This is also recommended by Cuesta-Albertos and
Febrero-Bande (2010). We will use a procedure that arises from the paper of
Benjamini and Yekuteli (2001). Given the ordered p-values, p(1) < . . . < p(d),
obtained using d random projections, we will choose the corrected p-value as
the quantity inf{d

i
p(i), i = 1, · · · , d}.

So far, this test can help to search for global differences between the two
groups of curves although we would rather study how these differences change
in time. To do this, we propose to use moving windows along time. For each
time point, t, we will consider an interval of time, centered at t, and project
the resultant curve pieces so as to perform the ANOVA test with a better
time resolution.

The hypothesis in (7.3) can be tested with any regular ANOVA approach.
We will consider the classical ANOVA statistic to test these hypotheses,
which we will denote by Q. This statistic has the form:

Q =
(SSR0 − SSRq)/(q − q0)

SSRT/(N − (q + 1))
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where q is the total number of parameters of the model, q0 is the number of
parameters of the reduced model, i.e. the model under the null hypothesis.
SSRq is the total sum of squares of the residuals of the complete model:

SSRq =
∑

(i,j)∈A
k=1,2

l=1,2,3,4

(y
(i,j)
kl − ŷ

(i,j)
kl )2

=
∑

(i,j)∈A
k∈{1,2}

l∈{1,2,3,4}

(
y
(i,j)
kl − (m̂+ α̂k + β̂g(i,j) + γ̂kg(i,j))

)2

and SSR0 is the sum of squares of the residual for the reduced model, under
the null hypothesis. For example, for hypothesis Hν,α

0 :

SSR0 =
∑

(i,j)∈A
k∈{1,2}

l∈{1,2,3,4}

(
y
(i,j)
kl − ( ˆ̂m+

ˆ̂
βg(i,j) + ˆ̂γkg(i,j))

)2

where ˆ̂m,
ˆ̂
βg(i,j) and ˆ̂γkg(i,j) are the estimates of the parameters of the reduced

model.

The test statistic Q is referreded to as the F -statistic because, in classical
ANOVA analysis, under conditions of independence, normality and homo-
cedasticity, it follows an F distribution with q − q0 and N − (q + 1) degrees
of freedom. In the next section we will discuss why we cannot trust the F -
distribution.

7.2 ANOVA with dependent data

In this section we introduce the problem of dependence that is present in our
data. This dependency comes from the fact that the data are observed at
neuron pairs level. So, it is only fair to think that the curves obtained from
two pairs of neurons with one cell in common could be correlated.

7.2.1 ANOVA model with dependent errors

We need to be very careful in the way we write the model that accounts for
dependence. Since we are going to work with the projections of the ICCSI
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functions, we can forget about the infinite dimensional problem and focus in
the one-dimensional one. Let us consider the model in (7.2) dropping the
superscript (ν):

y
(i,j)
kl = m+ αk + βg(i,j) + γkg(i,j) + ε

(i,j)
kl , (7.4)

with (i, j) ∈ A, k ∈ {1, 2} and g ∈ {1, 2, . . . , 5}. Model (7.4) is a two-way
ANOVA model with a two-level first factor and a five-level second factor, with
unbalanced cells, as we do not observe the same amount of pairs of neurons
with difference in orientation selectivity. The following interpretation of the
problem is more convenient. Consider each Y

(i,j)
k , i.e., the synchrony of a

given pair of neurons under each stimulus, as a random variable. In this
way, we have four realizations of each variable, so, our linear model becomes
another linear model with 2r = m variables with L = 4 observations each.
The model can be written in a matrix form, as follows:

y = Xζ + ε

where y ∈ R4mx1 are the data ordered in a convenient form, X ∈ R4mxq is
the design matrix, ζ ∈ Rqx1 is the vector of parameters and ε ∈ R4mx1 is the
vector of errors. Here, we consider the data ordered as follows:

y = (y
(1,2)
1,1 , y

(1,3)
1,1 , . . . , y

(7,8)
1,1 , y

(1,2)
2,1 , . . . , y

(7,8)
2,1 , y

(1,2)
1,2 , . . . , y

(7,8)
1,2 , . . . , y

(1,2)
2,4 , . . . , y

(7,8)
2,4 )

and therefore the vector of errors, ε, has the form:

ε = (ε
(1,2)
1,1 , ε

(1,3)
1,1 , . . . , ε

(7,8)
1,1 , ε

(1,2)
2,1 , . . . , ε

(7,8)
2,1 , ε

(1,2)
1,2 , . . . , ε

(7,8)
1,2 , . . . , ε

(1,2)
2,4 , . . . , ε

(7,8)
2,4 )

The assumptions of normality and homocedasticity for the errors are rea-
sonable in this context, but the fundamental problem in this study comes
from the presence of dependence among the data that comes from pairs of
neurons sharing a cell. The data obtained from the first trials of pair N1-N2
and N1-N3 are clearly dependent as they share neuron N1. This is, Y

(i,j)
k and

Y
(i′,j′)
k are dependent if {i, j}∩{i′, j′} 
= ∅. So, the errors of the model are con-

sidered normally distributed with zero mean and covariance matrix Σ, and we
will make some additional assumptions on Σ. We assume that the variance of
ε
(i,j)
k is the same for all (i, j) and all k and equal to σ2. On the other hand, we

will also assume that, if #({i, j} ∩ {i′, j′}) = 1 then cov(ε
(i,j)
k , ε

(i′,j′)
k ) = ρσ2.

Let B = {(i, j, k, l, i′, j′, k′, l′) : #({i, j} ∩ {i′, j′}) = 1, k = k′, l = l′} then, in
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summary:

Cov(ε
(i,j)
kl , ε

(i,j)
k′l′ ) =

⎧⎨⎩
σ2 if (i, j, k, l) = (i′, j′, k′, l′)
σ2ρ if (i, j, k, l, i′, j′, k′, l′) ∈ B
0 otherwise

(7.5)

Therefore, Σ results in a very special matrix, with, σ2 in the diagonal, σ2ρ
where the variable in the column and the variable in the row share a neuron
and they also share the trial (and, thus, the stimulus). In our particular
example Σ is a 224× 224 (224 = 2 · 4 · 28) matrix, composed by a diagonal
of eight 28× 28 blocks and the rest of the elements are zeros:

Σ =

⎛⎜⎜⎜⎝
σ2C 0 · · · 0
0 σ2C · · · 0
...

...
. . .

...
0 0 · · · σ2C

⎞⎟⎟⎟⎠ (7.6)

The blocks in the diagonal are all equal and equal to the covariance matrix,
σ2C, of the data that corresponds to one level of the first factor (stimulus).
Let us explicitly show C:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ 1 ρ ρ ρ ρ ρ ρ 0 0 0 0 0 ρ ρ ρ ρ ρ 0 0 0 0 0 0 0 0 0 0
ρ ρ 1 ρ ρ ρ ρ 0 ρ 0 0 0 0 ρ 0 0 0 0 ρ ρ ρ ρ 0 0 0 0 0 0
ρ ρ ρ 1 ρ ρ ρ 0 0 ρ 0 0 0 0 ρ 0 0 0 ρ 0 0 0 ρ ρ ρ 0 0 0
ρ ρ ρ ρ 1 ρ ρ 0 0 0 ρ 0 0 0 0 ρ 0 0 0 ρ 0 0 ρ 0 0 ρ ρ 0
ρ ρ ρ ρ ρ 1 ρ 0 0 0 0 ρ 0 0 0 0 ρ 0 0 0 ρ 0 0 ρ 0 ρ 0 ρ
ρ ρ ρ ρ ρ ρ 1 0 0 0 0 0 ρ 0 0 0 0 ρ 0 0 0 ρ 0 0 ρ 0 ρ ρ
ρ ρ 0 0 0 0 0 1 ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ 0 0 0 0 0 0 0 0 0 0
ρ 0 ρ 0 0 0 0 ρ 1 ρ ρ ρ ρ ρ 0 0 0 0 ρ ρ ρ ρ 0 0 0 0 0 0
ρ 0 0 ρ 0 0 0 ρ ρ 1 ρ ρ ρ 0 ρ 0 0 0 ρ 0 0 0 ρ ρ ρ 0 0 0
ρ 0 0 0 ρ 0 0 ρ ρ ρ 1 ρ ρ 0 0 ρ 0 0 0 ρ 0 0 ρ 0 0 ρ ρ 0
ρ 0 0 0 0 ρ 0 ρ ρ ρ ρ 1 ρ 0 0 0 ρ 0 0 0 ρ 0 0 ρ 0 ρ 0 ρ
ρ 0 0 0 0 0 ρ ρ ρ ρ ρ ρ 1 0 0 0 0 ρ 0 0 0 ρ 0 0 ρ 0 ρ ρ
0 ρ ρ 0 0 0 0 ρ ρ 0 0 0 0 1 ρ ρ ρ ρ ρ ρ ρ ρ 0 0 0 0 0 0
0 ρ 0 ρ 0 0 0 ρ 0 ρ 0 0 0 ρ 1 ρ ρ ρ ρ 0 0 0 ρ ρ ρ 0 0 0
0 ρ 0 0 ρ 0 0 ρ 0 0 ρ 0 0 ρ ρ 1 ρ ρ 0 ρ 0 0 ρ 0 0 ρ ρ 0
0 ρ 0 0 0 ρ 0 ρ 0 0 0 ρ 0 ρ ρ ρ 1 ρ 0 0 ρ 0 0 ρ 0 ρ 0 ρ
0 ρ 0 0 0 0 ρ ρ 0 0 0 0 ρ ρ ρ ρ ρ 1 0 0 0 ρ 0 0 ρ 0 ρ ρ
0 0 ρ ρ 0 0 0 0 ρ ρ 0 0 0 ρ ρ 0 0 0 1 ρ ρ ρ ρ ρ ρ 0 0 0
0 0 ρ 0 ρ 0 0 0 ρ 0 ρ 0 0 ρ 0 ρ 0 0 ρ 1 ρ ρ ρ 0 0 ρ ρ 0
0 0 ρ 0 0 ρ 0 0 ρ 0 0 ρ 0 ρ 0 0 ρ 0 ρ ρ 1 ρ 0 ρ 0 ρ 0 ρ
0 0 ρ 0 0 0 ρ 0 ρ 0 0 0 ρ ρ 0 0 0 ρ ρ ρ ρ 1 0 0 ρ 0 ρ ρ
0 0 0 ρ ρ 0 0 0 0 ρ ρ 0 0 0 ρ ρ 0 0 ρ ρ 0 0 1 ρ ρ ρ ρ 0
0 0 0 ρ 0 ρ 0 0 0 ρ 0 ρ 0 0 ρ 0 ρ 0 ρ 0 ρ 0 ρ 1 ρ ρ 0 ρ
0 0 0 ρ 0 0 ρ 0 0 ρ 0 0 ρ 0 ρ 0 0 ρ ρ 0 0 ρ ρ ρ 1 0 ρ ρ
0 0 0 0 ρ ρ 0 0 0 0 ρ ρ 0 0 0 ρ ρ 0 0 ρ ρ 0 ρ ρ 0 1 ρ ρ
0 0 0 0 ρ 0 ρ 0 0 0 ρ 0 ρ 0 0 ρ 0 ρ 0 ρ 0 ρ ρ 0 ρ ρ 1 ρ
0 0 0 0 0 ρ ρ 0 0 0 0 ρ ρ 0 0 0 ρ ρ 0 0 ρ ρ 0 ρ ρ ρ ρ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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With this definition, Σ results positive definite for small values of ρ. The
eigen values of the matrix in (7.6) result in only three different values: 1−2ρ,
1+4ρ and 1+12ρ, which, for ρ ∈ [0, 1], are all greater than zero at the same
time, whenever ρ < 0.5. This means that this correlation structure for the
data is plausible only for ρ ∈ [0, 0.5).

In this context, we cannot assume that the ANOVA statistic follows a F
distribution as in classical analysis. If the correlation coefficient and vari-
ance of the errors were known we could solve this problem in a very simple
way. Aitken (1935) and Rao (1973), Chapter 4, explain it in detail, but, the
procedure would be to transform the data to an independent setup. As Σ is

positive definite, there exist Q and D matrices such that
(

1
σ2Σ

)−1
= QDQt

with Q an orthogonal matrix and D a diagonal one, with positive numbers

in the diagonal and therefore R = QD
1
2Qt = σΣ− 1

2 . So, if ρ were known, we
could multiply our matrix model by R to have

Ry = RXζ + ε̃ (7.7)

where now, Ry is a vector of independent data since ε̃ ∼ N(0, σ2I).

As we do not know neither the variance nor the real correlation coef-
ficient we will use a different approach. We will calibrate the distribution
of the ANOVA test statistic, under the null hypothesis, using a parametric
bootstrap as described in the following subsection.

7.2.2 Estimation of the correlation coefficient

Since we assume that the covariance between the different pairs of error
terms are equal, provided the pairs belong to B, we will estimate the corre-
lation coefficient as the average of the Pearson correlation coefficient of the
corresponding pairs, which is equivalent to,

ρ̂ =
1

σ̂2

1

#B

∑
(i,j,k,l,i′,j′,k′,l′)∈B

ε̂
(i,j)
kl · ε̂(i

′,j′)
k′l′ , (7.8)

where ε̂
(i,j)
kl are the elements of the residual vector: ε̂ = y −Xζ̂, with ζ̂ the

estimated model parameters, and σ̂2 is the estimated variance of these resid-
uals.
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7.2.3 Bootstrap calibration of the distribution of the

ANOVA test statistic

As the data are considered normally distributed, we propose the use of a
parametric bootstrap to calibrate the distribution of the ANOVA test statis-
tic under the null hypothesis. We will now describe the procedure for a
general null hypothesis H i

0 : ζi = 0.

Once the linear model has been fitted to obtain ζ̂ and the classical
ANOVA statistic has been computed (denoting the result with Qobs) we es-
timate σ2 and ρ from the residuals to build the estimated covariance matrix,
Σ̂ = Σ(σ̂2, ρ̂). We can proceed with the following bootstrap algorithm:

1. Replace the i-th parameter in the estimated ζ̂ by zero (null hypothesis).
This set of parameters will be denoted by ζ̂0. Build a bootstrap sample:
y∗ = Xζ̂0 + z with z ∼ N(0, Σ̂).

2. Fit the linear model to the sampled data, obtain the bootstrap version
of the estimated parameters ζ̂∗ and compute Q∗, the bootstrap version
of Q.

3. Repeat Steps 1–2, B times to obtain Q∗1, . . . , Q∗B.

4. Compute the desired (1−α)-percentile of the bootstrap statistics, Q∗
1−α.

We reject the null hypothesis if Qobs > Q∗
1−α.

7.3 Results

The random projections method can be used to solve several problems for
functional data. For example, Cuevas et. al. (2007) discuss the application
of these ideas in the classification and estimation frameworks. This methodo-
logy can be also used to define a functional depth. The depth notion makes
reference to how central is a point in a given set of points. In R, for ex-
ample, the depth of a point is often defined as the number of intervals with
extremes in data values that contain that point. With this notion of depth,
the median is the deepest point in a given data set. We will use a method
based on random projections proposed by Cuevas et al. (2007), based in
the results we have already described for the ANOVA problem. Another
method to measure functional depth can be found in Fraiman and Muñiz
(2001), for example. Consider an independent direction ν and a process F .
Let f1(t), . . . , fn(t) be realizations of the functional process F and let D(r)
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be a measure of depth in R. The deepest element of the set f1(t), . . . , fn(t)
is defined as fj(t) for which

j = argmaxi=1...,n{D (〈ν, fi(t)〉)}.

Figure 7.2 shows the deepest curve of each group in terms of G.
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Figure 7.2: Top panel: deepest ICCSI(t) curves for the first stimulus, bs.
Bottom panel: deepest ICCSI(t) curves for the second stimulus, bf. Dif-
ference in orientation selectivity groups are defined in colors: 0◦ (black),
22.5◦ (red), 45◦ (green), 67.5◦ (blue) and 90◦ (cyan). The functional depth
is computed using the random projections method.

To draw the random vectors we use Brownian motions or, more precisely,
approximations to standard Brownian motions by sequences of partial sums
of normally distributed random variables. We only need to compute the
values of the random vectors in the equidistant time points, t1, . . . , tM , where

the functions, ̂ICCSI(t), are defined. For this, we consider M independent
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and identically distributed standard normal random variables, Z1, . . . , ZM ,
and define a trajectory ν1 as

ν1(t1) = 0 and ν1(tk) = ν1(tk−1) + (tk − tk−1)Zk for k = 2, . . . ,M. (7.9)

On the other hand, we would like to have directions without tendency
and such that their variability throughout the trajectory is not large so as
not to give more importance to a certain period of the functions. For this aim
we will define the random trajectories as the sum of two Brownian motion,
as just defined, where one of them has been “flipped” so as to be equal to
zero in the last time point tM . This is, let ν1 and ν2 be defined as in (7.9)
and let ν3(tk) = ν2(tM−k+1). In this way, the final directions we will use are
defined as ν(t) = ν1(t) + ν3(t).

A preliminary analysis, fitting model (7.4), showed that the interaction
between factors are not significant. Therefore, the final model considered is:

y
(i,j)
kl = m+ αk + βg(i,j) + ε

(i,j)
kl , (7.10)

with, k ∈ {1, 2}, g(i, j) ∈ {1, 2, . . . , 5}, l ∈ {1, 2, 3, 4}. Figure 7.3 shows
the p-values obtained by using sliding windows along time to study the de-
velopment of the effects of both factors. Forty seconds time windows were
considered, moving along the time axis from the second 20 of recording to
the second 215. In the time period between 110 and 150 this was done every
second, in the rest, it was done every 5 s. At each window, 30 random direc-
tions have been used to project the data (the same ones in every window)
and the FDR correction was applied to come up with just one p-value. It is
clear that there are differences between the two approaches used. When de-
pendence is not taken into account (dashed lines) the test is less conservative
than when the dependence is included. Although for the effect of the stimuli
there is a period of time at the beginning of the awake-like period for which
both tests reject the null hypothesis, next there is another period in which
it would be rejected if the dependence was not accounted for. The results
show that there exists a period of time during the awake-like mode when the
differences between the effects of the kind of stimulus are significant. On the
other hand, the differences in synchrony among the levels of the factor G are
also found significant after the stimulus.

The estimation of the correlation parameter changes for each window, ne-
vertheless, the estimation is not very variable, not even from one projection
to the other. Figure 7.4 shows the ρ̂ as a function of time. This figure also
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Figure 7.3: p-values for the two-way ANOVA as a function of time. p-values
for the null hypotheses of no effect of the stimuli (top panel) and for the null
hypothesis of no effect of the difference in orientation selectivity (bottom
panel). p-values obtained using the F distribution are shown with dashed
lines while the p-values obtained using the bootstrap are shown in solid lines.
The horizontal dotted line is the constant value 0.05 for reference and the
vertical dotted lines depicts the stimulation time.

126



shows the mean ¯̂ρ across projections. We can observe that, at the beginning
of the recording, correlation coefficients were estimated to be greater than
0.5 and they were truncated so as the covariance matrix, Σ̂, resulted positive
definite.
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Figure 7.4: Evolution of the estimate of the correlation coefficient ρ. Esti-
mations for different random projections (grey lines), mean ¯̂ρ (black line).
The vertical dotted lines depicts the stimulation time.

If the case of large correlation was the most common, if pairs sharing a
neuron were very correlated (ρ > 0.5) an alternative, nonparametric, boot-
strap can be carried out. For example, in the following procedure, the trials
are shuffled, assigning to each trial the residuals of other trial chosen with
equal probability from the eight possible ones. Having fitted model (7.10):

1. For each k ∈ {1, 2} and l ∈ {1, 2, 3, 4} draw the bootstrap pair (k∗, l∗)
with equal probability from {1, 2} × {1, 2, 3, 4}, this is P (k∗ = k′, l∗ =
l′) = 1

8
for all k′ ∈ {1, 2, } and all k′ ∈ {1, 2, 3, 4}.

2. Define ε̂
(i,j)∗
k,l = ε̂

(i,j)
k∗,l∗ ∀(i, j).

This bootstrap procedure has the drawback that, in our case, the vector of
bootstrap residuals can only take eight possible values. A possible improve-
ment of the method is to use a smoothed version. For this, a smoothing
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parameter h, small with respect to the standard deviation of the residuals,
would be chosen and Step 2 would be replaced by:

2. Define ε̂
(i,j)∗
k,l = ε̂

(i,j)
k∗,l∗ + hZ

(i,j)∗
k,l with Z

(i,j)∗
k,l ∼ N(0, 1) iid ∀(i, j).

7.3.1 Distribution of the test statistic Q

To visualize the differences between the distribution of the test statistic ta-
king into account the dependence and the one when independence between
observations is assumed (F-distribution), Figure 7.5 shows the estimated den-
sity of Q obtained by simulation. We simulated data from (7.10) using the
parameters estimated for one particular random projection: 10000 data vec-
tors were generated from y = Xζ + ε, where ζ = (m,αt, βt), with m = 1.6,
α1 = 0.1, β1 = −0.06, β2 = 0.2, β3 = −0.08 and β4 = 0.27. We simulated
the case of 8 neurons, i, j ∈ {1, · · · , 8}, and 4 trials for each stimulus. The
second factor was chosen exactly as in the real case and, therefore, the de-
sign matrix, X, was the same as for the real data. The errors were sampled
from a multivariate normal distribution, ε ∼ N(0,Σ) with Σ defined as in
(7.6) and σ2 = 1.42. The values for the correlation coefficient were chosen
as ρ = 0, 0.1, 0.15 and 0.4. Figure 7.5 shows that the null distribution of the
test statistic is well approximated by the F distribution (as it should) when
ρ = 0 and, on the other hand, it departs from it when ρ increases. This is
an evidence for the need of using the bootstrap to calibrate de distribution
of Q instead of using the F distribution. When ρ increases, the peak of the
density decreases and the tale of the distribution becomes more heavy. This
explains why, sometimes, the test using the classical approach rejects while
the bootstrap approach does not.

7.4 Simulation study

To evaluate the performance of our test we developed a small simulation
study. We simulated data, similar to the real ones, using different (known)
model parameters and correlation coefficients. With the simulated data, we
computed Q and followed the procedure used to calibrate the distribution
of the test statistic for a level 0.05 test. Finally, we compared the results
(reject\non-reject of the null hypothesis) with the true case. The data were
generated as if three trials under two stimulation conditions of a group of
seven neurons had been recorded. Each neuron was assigned with a given
fixed characteristic (orientation selectivity) to be able to compute the sec-
ond factor (difference in orientation selectivity). In this case the preferred
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Figure 7.5: Density of the the test statistic Q underH0 (black lines) compared
with the F distribution (red lines) under different dependence scenarios: ρ =
0 (top-left panel), ρ = 0.1 (top-right panel), ρ = 0.15 (bottom-left panel)
and ρ = 0.4 (bottom-right panel).
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orientations were defined with only two possible values that were assigned
arbitrarily to each neuron. Then,

y = Xζ + ε, ε ∼ N(0,Σ),

where, ζ = (μ, αt, βt)t, where αt = (α1,−α1) and βt = (β1,−β1). The co-
variance matrix, Σ, was defined as in (7.5) for four values of ρ. The values
used for the simulations are shown in Table 7.1.

Table 7.1: Parameters used in the simulation study.

m 0
α1 0, 0.5, 1
β1 0, 0.5, 1
ρ 0, 0.05, 0.15, 0.35

On the other hand, a large variance (σ2 = 1) with respect to the param-
eters was chosen to reflect a typical situation for the real data. For most of
the projections, the signal to noise ratio is rather large. This large variance
could affect the ability of the test to detect differences between the param-
eters. M = 1000 Montecarlo simulations were performed and for each one,
B = 500 bootstrap trials were used. The results are shown in Tables 7.2,
7.3 and 7.4. Table 7.2 shows the proportion of rejections for the situation of
no effect of the first factor. It can be observed that the test meets the level
satisfactorily almost all the times, although it rejects more than expected in
some cases, when the correlation coefficient is positive. Table 7.3 shows the
proportion of rejection of the null hypothesis that there is no effect of the
second factor. In this case the behavior under the null hypothesis is good,
although it seems to be a little conservative for large correlations. Regarding
the power of the test, we can observe 100% rejection under the alternative
in almost all the cases. For the first factor, when α1 = 0.05, proportions
of rejection decrease with the increase of ρ. Surprisingly, the value of the
correlation parameter does not seem to influence much the results for β1.

Finally, Table 7.4 shows similar simulation results for the interaction be-
tween the two factors. In this case we show the proportion of rejections under
the null hypothesis for different values of ρ and 1000 Montecarlo replications.
We can see that the level of 0.05 is successfully met, although for the case
of large correlation values, the test seems to be conservative. It is important
to notice that, regarding the power of the test, in these simulations the test
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Table 7.2: Proportion of rejections for Hα
0 at level 0.05.

ρ = 0 ρ = 0.05 ρ = 0.15 ρ = 0.35

β1 = 0 0.046 0.079 0.077 0.078
α1 = 0 β1 = 0.5 0.047 0.068 0.084 0.069

β1 = 1 0.055 0.077 0.095 0.076

β1 = 0 0.999 0.995 0.944 0.791
α1 = 0.5 β1 = 0.5 0.999 0.996 0.951 0.779

β1 = 1 1 0.990 0.946 0.770

β1 = 0 1 1 1 1
α1 = 1 β1 = 0.5 1 1 1 1

β1 = 1 1 1 1 1

Table 7.3: Proportion of rejections for Hβ
0 at level 0.05.

ρ = 0 ρ = 0.05 ρ = 0.15 ρ = 0.35

β1 = 0 0.058 0.056 0.057 0.045
α1 = 0 β1 = 0.5 0.058 0.049 0.046 0.036

β1 = 1 0.053 0.046 0.041 0.045

β1 = 0 1 1 1 1
α1 = 0.05 β1 = 0.5 0.999 1 1 1

β1 = 1 0.999 1 1 1

β1 = 0 1 1 1 1
α1 = 1 β1 = 0.5 1 1 1 1

β1 = 1 1 1 1 1
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Table 7.4: Proportion of rejections for Hγ
0 at level 0.05.

ρ = 0 ρ = 0.05 ρ = 0.15 ρ = 0.35

β1 = 0 0.054 0.033 0.032 0.034
α1 = 0 β1 = 0.5 0.039 0.041 0.035 0.034

β1 = 1 0.040 0.038 0.035 0.031

β1 = 0 0.031 0.037 0.034 0.035
α1 = 0.05 β1 = 0.5 0.043 0.052 0.041 0.035

β1 = 1 0.042 0.043 0.037 0.030

β1 = 0 0.029 0.038 0.043 0.038
α1 = 1 β1 = 0.5 0.035 0.033 0.036 0.032

β1 = 1 0.047 0.052 0.035 0.041

rejected the null hypothesis 100% of the times (results not shown), using
values of γ = 0.5, 1 to simulate data in the alternative.

7.5 Chapter conclusions

In this chapter we have applied up-to-date methodology for functional data
analysis to the synchrony curves. Random projections techniques have been
used. These methods are very easy to implement and interpret, what makes
them appealing for the application in many problems. In particular, we have
used them for a design of experiments model, a two-way functional ANOVA.
In this context, the method showed to be useful as it allowed us to find sig-
nificance in the effects of the factors under study.

The model under study involved the synchrony curves obtained by the
method described in Chapter 5. The curves are separated in groups given
by the stimuli and the difference in preferred orientation between the two
neurons involved in each curve. The aim of the chapter was to study if
the differences during the awake-like period regarding the applied stimuli
(bs/bf ), found in Chapter 5, were still significant at a group level. Moreover,
a factor regarding difference in preferred orientation of neurons was brought
into the analysis. Differences between the levels of this second factor were
also of interest. Although there were groups with very few elements, several
conclusions can be established.

It was also shown the importance of the incorporation of the dependence
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between curves into the analysis. The distribution of the test statistic was
approximated using a parametric bootstrap on the residuals of the model
allowing for dependence. It was shown that the classical F-test statistic can
lead to false positives, as the distribution of the test statistic has a heavier
tail than the F distribution. Also, a nonparametric bootstrap was proposed
for the cases of large correlation coefficients, although the results of its im-
plementation were not shown.

The interactions between the factors did not result significant. An effect
of the factor stimulus can be found at the beginning of the awake-like period
(few seconds after the stimulus onset), allowing us to extend the results of
Chapter 5 to a more general setting. Although, the analysis of more neuron
groups is necessary, we can affirm that we were able to find evidence of the
differential effect that electrical stimulation in bs and bf have in the syn-
chrony between neurons during the subsequent awake-like mode of operation
at a population level. On the other hand, the effect of the factor difference in
orientation selectivity results significant throughout all the generated awake-
like activity.
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Chapter 8

Population study

In this chapter we gather data from many recordings of several experiments.
All the experiments were developed under the same conditions and following
the same protocol so the data can be merged in a large data base and ana-
lyzed all together. The aim of the chapter is to study differences between the
levels of the factor difference in orientation selectivity as described in Chap-
ter 7. So, we will study the data from each stimulus separately. In other
words, for each stimulus, we would like to compare the synchrony functions
observed for each group given by the second factor. We will use a regression
approach where the neural synchrony is the response variable while time is
the independent variable. Within each group defined by the stimulus, we
observe the sample {(tli, yli) : l = 1, . . . , L; i = 1, . . . , nl}, where l gives the
level of the factor difference in orientation selectivity, nl is the number of time
instants observed for the l-th level of difference in orientation selectivity and
tli are the time points where the synchrony is estimated. In our particular
problem, the synchrony estimate was computed at the same time points for
every level. Thus, we can drop the subscript l for the design points as well
as for the sample sizes. We will denote by n the sample size of every level.
The data sample is then denoted by {(tl, yli) : l = 1, . . . , L; i = 1, . . . , n}.

We assume the following regression models for the data:

yli = ml(ti) + εli, l = 1, . . . , L and i = 1, . . . , n, (8.1)

where ml are smooth curves and {εli}ni=1 are random errors with finite vari-
ance. The aim of the study is to test whether the regression functions are
equal:

H0 : m1 = · · · = mL versus H1 : ml 
= mj for some l and j. (8.2)
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8.1 Estimation of the regression functions

To estimate the regression functions in (8.1) we will use nonparametric regres-
sion methods, in particular, local polynomial kernel estimators. As briefly
described in Chapter 1, recall that nonparametric regression functions esti-
mators are of the form:

m̂l(t) =

n∑
i=1

wiyli, with

n∑
i=1

wi = 1

where wi is the weight given to the point t by the i-th observation. These
weights depend on a kernel function K and a bandwidth h but not on the
index l.

Suppose that the (p+ 1)-th derivative of the function ml(t) exists at the
point t0. The idea of local polynomial estimation lies in approximating the
function ml(t) by a polynomial of degree p in a neighborhood of t0. The
polynomial is locally fitted by solving a weighted least squares problem. In
this way, the ν-th derivative of the function ml at t0 is estimated by

m̂
(ν)
l (t0) = ν!γ̂lν ν = 1, . . . , p,

where the parameter vector γ̂tl = (γ̂l0, γ̂l1, . . . , γ̂lp) is the one that minimizes:

Ψl(γ) =

n∑
i=1

(
yli −

p∑
j=0

γj(ti − t0)
j

)2

K

(
ti − t0
h

)
, (8.3)

where K is a kernel function and h is a suitably chosen bandwidth . The
term

∑p
j=0 γj(ti− t0)j in (8.3) comes from a Taylor expansion of the function

m(t) around t = t0. Note that, in particular, γ̂l0 estimates ml(t0).

To solve the minimization problem in (8.3), it is better to use matrix
notation. Let X be the n× (p+ 1) design matrix:

X =

⎛⎜⎜⎜⎝
1 (t1 − t0) · · · (t1 − t0)

p

1 (t2 − t0) · · · (t2 − t0)
p

...
...

...
1 (tn − t0) · · · (tn − t0)

p

⎞⎟⎟⎟⎠
and let yl ∈ Rn×1 be the vector of observed data for level l:
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yl =

⎛⎜⎜⎜⎝
yl1
yl2
...
yln

⎞⎟⎟⎟⎠
and, let W be the n× n matrix of weights:

W = diag

{
K

(
ti − t0
h

)}
.

Observe that neither X nor W depend on l.

Finally, the weighted least squares problem in (8.3) can be rewritten as:

γ̂l = argminγ(yl −Xγ)tW(yl −Xγ)

which, by least squares theory, can be explicitely written as:

γ̂l = (XtWX)−1XtWyl.

8.1.1 Bandwidth selection

As in any other kernel procedure, some elements have to be chosen, such as
the kernel function, the degree of the polynomial and the smoothing parame-
ter. Although it is very computationally intensive, we have used local variable
smoothing parameters because of the sudden changes that occur close to the
stimuli. After trying many choices, we decided to choose these parameters by
a leave-15-out cross-validation method. We chose the leave-15-out because
we preferred to take the risk of oversmoothing than severe undersmoothing
the original data. Given a time window of length 2w, Vt0 = [t0 − w, t0 + w]
around a time point, t0, we compute the cross-validation function:

CVt0(h) =
1

n

n∑
i=1

(yli − m̂l,−i(ti, h))
2I{ti ∈ Vt0 , } (8.4)

where m̂l,−i(ti, h) is the local polynomial kernel regression estimator (with
smoothing parameter h), computed without the values ti−7, . . . , ti, . . . , ti+7

and evaluated at ti. Observe that only the design points inside the time
window Vt0 are used to select the optimal h for t0. The cross-validation
smoothing parameter, hCV(t0), is the one that minimizes CVt0(h) in Vt0 .
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8.2 Comparison of the regression functions

To test the hypothesis of equality of regression functions given in (8.2) we
will consider three different test statistics. The first two tests compare the
estimated curves (or a characteristic of the curves) for every level with the
pooled one, computed using all the data in a single regression model. This
is, if the null hypothesis is true, all the data comes from the same model,
and, therefore, it can be used all together to estimate the common regression
function: m = m1 = · · · = mL.

8.2.1 Estimation of the pooled regression function

We will denote by m̂P (t) the local polynomial kernel estimator of the func-
tion m(t) when all the pooled data sample was used to compute it. To fit
m̂P , another weighted least square problem must be solved.

Let yP = (yt
1, . . . ,y

t
n)

t ∈ RLn×1 be the pooled data sample and let XP

be the Ln × (p + 1) design matrix for this new problem. Note that XP is
formed by L blocks of matrices equal to X:

XP =

⎛⎜⎜⎜⎝
X
X
...
X

⎞⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭L times

Now, let us denote by WP the nL×nL block-diagonal matrix of weights for
the combined problem. Observe that WP can be constructed by repeating
the elements of the diagonal of W L times:

WP =

L times︷ ︸︸ ︷⎛⎜⎜⎜⎝
W 0 · · · 0
0 W · · · 0
...

...
. . .

...
0 0 · · · W

⎞⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭L times

Finally, let γ̂P be the solution vector for the weighted least squares problem,
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which can be written as

γ̂l = argminγ(y
P −XPγ)tWP (yP −XPγ).

Therefore,

γ̂P =
[
(XP )tWPXP

]−1
(XP )tWPyP . (8.5)

Observe that,

(XP )tWPXP =
(
Xt · · ·Xt

)⎛⎜⎝ W · · · 0
. . .

0 · · · W

⎞⎟⎠
⎛⎜⎝ X

...
X

⎞⎟⎠ =

=XtWX+ · · ·+XtWX = LXtWX

then, [
(XP )tWPXP

]−1
=

1

L

[
XtWX

]−1
.

On the other hand,

(XP )tWPyP =
(
Xt · · ·Xt

)⎛⎜⎝ W · · · 0
. . .

0 · · · W

⎞⎟⎠
⎛⎜⎝ y1

...
yL

⎞⎟⎠ =

=XtWy1 + · · ·+XtWyL = XtW

L∑
l=1

yl.

And, therefore, γ̂P in (8.5) is

γ̂P =
[
(XP )tWPXP

]−1
(XP )tWPyP =

1

L

[
XtWX

]−1
XtW

L∑
l=1

yl =

=
[
XtWX

]−1
XtWȳ

with ȳ = 1
L

∑L
l=1 yl. Then, γ̂

P is the solution for the weighted least squares
problem for the local polynomial estimation of ȳ. In summary, the local
polynomial estimator for the combined sample can be obtained by fitting the
estimator to the sample of the averages of the L curves at each time point:
{(ti, ȳi) : i = 1, . . . , n}, with ȳi = 1

L

∑L
l=1 yli.

139



8.2.2 Hypothesis tests

We now present three tests which are studied in detail, for the dependent
errors case, by Vilar-Fernández et al. (2007).

Test A. The first test we consider compares the nonparametric variance
estimator of the pooled sample, σ̂2

P , and a convex combination of the nonpa-
rametric variance estimators of each sample, σ̂2

C . The test statistic is

Q̂(A) = σ̂2
P − σ̂2

C ,

where the estimators are defined by

σ̂2
P =

1

n

L∑
l=1

n∑
i=1

(yli − m̂P (ti))
2 and

σ̂2
C =

1

n

L∑
l=1

n∑
i=1

(yli − m̂l(ti))
2.

This last estimator was introduced by Hall and Marron (1990) and the test
was discussed in Dette and Neumeyer (2001) for the independence case.

Test B. The second test was proposed by Young and Bowman (1995) and
comprises the difference between the function estimators themselves:

Q(B) =
1

n

L∑
l=1

n∑
i=1

(m̂P (ti)− m̂l(ti))
2.

Test C. The third, and last, test we consider is a Crámer-von-Mises type
test. The test statistic is

Q(C) =

L∑
l=2

l−1∑
s=1

∫
(m̂l(t)− m̂s(t))

2ωls(t)dt,

where ωls(t) are weight functions defined in the support of the design vari-
ables. This test has been discussed in the independence case by King et al.
(1991) and Kulasekera (1995), among others.

To calibrate the distribution of these test statistics under the null hy-
pothesis, we will use a bootstrap procedure. As it seems natural to assume
that the errors of the model in (8.1) are correlated, we propose a stationary
bootstrap procedure. Vilar-Fernández et al. (2007) discuss these and other
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bootstrap tests. The bootstrap procedure we use to calibrate the test statis-
tics is slightly different from one of their proposals and it is described in the
next section.

8.3 Bootstrap procedure

To calibrate the distributions of the test statistics, and test the null hypothe-
sis at a level α, we use a stationary bootstrap procedure (Politis and Romano
(1994)) for the residuals of model (8.1). We decided to use a nonparametric
bootstrap, since no parametric structure seems plausible for the residuals.
Note that, under the null hypothesis, all the regression curves are equal.
This is the reason why the bootstrap samples are built adding resamples of
the residuals to the regression function estimate obtained from the combined
sample. This is, the observations from the L groups are averaged and used to
estimate the regression function m(x), using the local polynomial kernel es-
timator, m̂P (t), already described. Nevertheless, the residuals are computed
from the individually estimated curves, m̂l. With this in mind, let us describe
the bootstrap algorithm to be used for the test Q̂(•), with • = A,B,C:

1. Compute the test statistic, Q̂
(•)
obs for the observed sample

{(ti, yli) : i = 1, . . . , n; l = 1, . . . , L}.

2. Obtain the residuals for each individual estimation

ε̂li = yli − m̂l(ti), l = 1, . . . , L; i = 1, . . . , n.

3. Obtain a bootstrap sample of the residuals, for each group, as follows:

3.1 Fix a real number pboot ∈ [0, 1].

3.2 Draw ε̂∗l1 randomly from {ε̂l1, . . . , ε̂ln}.
3.3 If ε̂∗li = ε̂lj for j = 1, . . . , n and i < n has been drawn, then, ε̂∗l(i+1)

is chosen as ε̂l(j+1) with probability pboot and drawn randomly from
{ε̂l1, . . . , ε̂ln} with probabilty 1 − pboot. In the particular case of
j = n, ε̂l(j+1) is replaced by ε̂l1.

4. Obtain the bootstrap resamples by

y∗li = m̂P (ti) + ε̂∗li l = 1, . . . , L; i = 1, . . . , n.

where m̂P is the regression function estimated from the pooled sample.
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Table 8.1: Number of synchrony curves obtained for every group of neurons.

0◦ 22.5◦ 45◦ 67.5◦ 90◦

bs 550 687 568 367 154
bf 588 740 562 390 152

5. Compute Q̂(•)∗ using the bootstrap resample {(ti, y∗li) : i = 1, . . . , n; l =
1, . . . , L}.

6. Repeat Steps 3–5 a large number, B, of times to obtain Q̂(•)∗1, . . . , Q̂(•)∗B .

7. Finally, compute the desired percentile, Q̂
(•)∗
(1−α), of the bootstrap test

statistics and reject the null hypothesis if

Q̂
(•)
obs > Q̂

(•)∗
(1−α).

8.4 Results

We performed the analysis using data from 9 experiments. The synchrony
was estimated for each possible pair of neurons and then an average was
computed for each level of the factors stimulus and difference in orientation
selectivity. The total amount of synchrony curves obtained for each group
are shown in Table 8.1

The synchrony functions were estimated, every second, in a 210 s interval
including the time point when the stimulus was applied. The curves were
averaged within each group. These averages are the raw data for our subse-
quent analyses and can be observed in Figure 8.1.

Regarding the regression estimator, a Gaussian kernel was used to locally
fit degree p = 3 polynomials. As the first derivative of our functions are also
of interest and odd degrees are often recomended (Fan and Gijbels (1996)),
p = 3 was a natural choice.

The local bandwidths were selected using the cross-validation procedure
described in Section 8.1.1, using 40 s overlapping sliding windows. This is, at
each time point t0, the data that fell in the time window Vt0 = [t0−20, t0+20]
were used to find the cross-validation smoothing parameter, hCV(t0). More
precisely, hCV(t0) was chosen as the value that minimized CV(h) from a grid
of values spanning from 1.5 to 5. The grid comprised values from 1.5 to

142



0 50 100 150 200

0.02

0.04

0.06

0.08

0.10

IC
C

S
I(

t)

0 50 100 150 200

0.02

0.04

0.06

0.08

0.10

IC
C

S
I(

t)

Time (s)

Figure 8.1: ICCSI functions averaged in each group defined by the stimuli bs
(top panel) and bf (bottom panel) and the difference in orientation selectiv-
ity. Difference in orientation selectivity levels are shown in different colors:
0◦ (red), 22.5◦ (green), 45◦ (blue), 67.5◦ (cyan) and 90◦ (magenta).
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1.9 every 0.1 s, from 2 to 20 every 0.5 s and from 25 to 50 every 5 s. After
the optimal bandwidth was found for each time point the curve hCV(t) was
smoothed using a moving average procedure as it is natural to think that the
optimal bandwidths should evolve smoothly on time. Figure 8.2 shows the
local polynomial estimates for the regression functions in (8.1).
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Figure 8.2: Local polynomial estimates of the ICCSI curves using local vari-
able bandwidths chosen by leave-15-out cross validation. Top panel: curves
corresponding to the bs stimulus. Bottom panel: curves corresponding to the
bf stimulus. Difference in orientation selectivity levels are shown in different
colors: 0◦ (red), 22.5◦ (green), 45◦ (blue), 67.5◦ (cyan) and 90◦ (magenta).
The estimate of the pooled regression curve is also shown (black dashed line).

In order to perform the hypothesis test, the pooled regression function is
also estimated. For this aim, m̂P (t) was computed with the average of the
original 5 curves. Again, to fit the estimator, the local bandwidths were se-
lected via a leave-15-out cross-validation procedure. This estimate is shown
in Figure 8.2 with a dashed black line.
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For the resampling procedure, B = 500 bootstrap samples were used.
Once the residuals, ε̂∗li were sampled and the bootstrap curves built, variable
local bandwidths were searched just as for the original data. On the other
hand, the pooled bootstrap curves were also obtained and their bandwidths
selected. Although the resampling procedure itself is not very time consum-
ing, the optimization procedure for the bandwidth for each curve is somehow
slow. Regarding the parameter pboot of the bootstrap algorithm, pboot = 0.94
was chosen. In this way, as the sample lengths are 210, the blocks in the
resampling procedures are of length 16 on the mean and therefore, around
13 blocks are used.

The three tests lead to the same conclusion: there exist enough evidence
to reject the null hypothesis of equality of regression functions. Taking into
account the whole time interval, the p-values obtained were smaller than
0.002. These results hold for both stimuli. It seemes reasonable to check
whether these differences are still found if we just look at a period of time
right after the stimulus onset. For this aim we repeated the tests A, B and
C for a period of time from 10 s before the stimulus onset to 30 s after the
stimulus ([40 s, 80 s]). Again, the p-values found are smaller than 0.002.

To check whether the results were merely a consequence of a vertical shift
of the curves, this is, if the general shape of the functions is the same but
some presented regularly more synchrony than the others, we performed the
test after aligning the curves. For this aim, the curves were shifted vertically
so that they all coincided at the time were the stimulus occured and the tests
were carried out again. Figure 8.3 shows these estimated aligned regression
functions. The results were again the same. We can reject the hypothesis of
equality of regression functions, for both stimuli, when we look at the whole
time interval as well as when we only take into account a smaller interval
including the stimulus.

One of the advantages of local polynomial fitting is that it allows to eas-
ily estimate the derivatives of the regression functions at the same time as
the function itself. We have used degree 3 polynomials in order to obtain
the estimates of the first derivative of the regression functions for inspection.
Anyway, to estimate the derivatives we have increased the bandwidths by
a factor of five, to be able to see the global tendencies more than the local
features. Figure 8.4 shows the derivatives in a time period of 130 s, including
the stimulus, of the regression curves shown in Figure 8.2, with the same
color code.
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Figure 8.3: Local polynomial estimates of the aligned ICCSI curves using lo-
cal variable bandwidths chosen by leave-15-out cross validation. Top panel:
curves corresponding to the bs stimulus. Bottom panel: curves correspond-
ing to the bf stimulus. Difference in orientation selectivity levels are shown
in different colors: 0◦ (red), 22.5◦ (green), 45◦ (blue), 67.5◦ (cyan) and 90◦

(magenta). The estimate of the pooled regression curve is also shown (black
dashed line).
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Figure 8.4: Local polynomial estimates of the derivatives of the ICCSI curves.
Top panel: curves corresponding to the bs stimulus. Bottom panel: curves
corresponding to the bf stimulus. Difference in orientation selectivity levels
are shown in different colors: 0◦ (red), 22.5◦ (green), 45◦ (blue), 67.5◦ (cyan)
and 90◦ (magenta).

Let us focus, first, in the case of the bs stimulus. From Figures 8.2 and 8.4
we can make a few statements. The decrease in synchrony observed around
the stimulus onset is more rapid for the groups of differences 0◦, 22.5◦ and
45◦ than for the groups 67.5◦ and 90◦. Although from the regression curves it
seems that group 22.5◦ desynchronizes faster than level 0◦, Figure 8.4 shows
that, when computed with a wider bandwidth, the derivatives are very simi-
lar and, therefore, they desynchronize at the same rate. On the other hand,
level 67.5◦ (blue curve) seems to drop more rapidly than the other ones, as its
derivative is the smallest one at some point around 10 s before the stimulus.
But, it is also true that, at the stimulus, the velocity of the drop diminishes
and, also, the interval of time until resynchronization is longer and the drop
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is the most profound, which suggests a larger desynchronization. Let us look
now at around 25 s after the stimulus. Disregarding level 90◦, it can be ob-
served that, the smaller the difference in orientation selectivity, the larger
the speed of the increase in synchrony. This fact could be explained by a
stronger functional or anatomical relation between neurons with the same
preferred orientation. From all this, we can state that the smaller the dif-
ference in favorite orientation, the neurons desynchronize faster as well as
resynchronize faster.

The case of the 90◦ level is strange. It looks like the drop in synchrony is
much slower than for the other levels, but, on the contrary, after 20–25 s have
passed from the stimulus, the resynchronization occurs very rapidly. This is
surprising as it contradicts the previous statement that the more related the
cells are regarding orientation selectivity, the faster they would recover from
the desynchronization provoked by the stimulus. This fact, and the fact that
the curve has a lot of ups and downs indicate that there might be something
special about these data. It is important to notice that this level has a much
smaller sample size than the other ones. This fact could be affecting the esti-
mation, making the curve a lot less smoother than it should, maybe because
of a large variability in the original curves.

The case of the stimulus bf is more complicated than the one of bs. To
begin with, the effect of this stimulus is not as clear as for the other one. If
some, the effect can be observed around 10 s after the stimulus onset. We can
observe that for the levels 0◦, 22.5◦ and 45◦ the development of the synchrony
is very similar. The rates of resynchronization are practically the same. Also,
the decreasing of synchrony occurs practically at the same time, although for
the level 0◦ it seems to be less abrupt than for the other two. Again, the
behavior of the level 90◦ seems strange as the curve is very wiggly, and, the
same occurs in this case for 67.5◦.

8.5 Chapter conclusions

In this chapter we carried out a population analysis in order to study dif-
ferences in synchrony strength between the levels of the factor difference
in orientation selectivity. A nonparametric regression approach was used
and three different test statistics computed to test the coincidense of the
regression functions. The results show that the differences are statistically
significant proving that the associations and the dynamics of those associa-
tions are related to the functional affinity among neurons. Moreover, we are
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in position of stating a description of those relations although a deeper sta-
tistical analysis would be needed to prove this fact: neurons desynchronize
and resynchronize faster when their favorite orientation differ less.
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Chapter 9

Discussion and conclusions

The aim of this thesis has been to present statistical methods useful to mea-
sure synchrony dynamics of pairs of neurons under low firing rate activ-
ity. Nonparametric methods have been used to study characteristics of spike
trains, to present synchrony measures and to develop hypothesis tests to bet-
ter understand the synchrony mechanisms.

9.1 Discussion

The biological problem consists in investigating the synchrony dynamics be-
tween neurons in V1 of anesthetized cats and its relationship with certain
factors. The first factor under study is defined by a controlled electrical stim-
ulation in any of two precise sites of the cortex: the brainstem and the basal
forebrain. These two regions regulate the transitions of the sleep-wake cycle
and, when stimulated, provoke the change from the sleep-like activity to the
typical awake-like activity. The stimulations are performed one at a time
and, therefore, the effect of those stimulations can be differentially analyzed.
On the other hand, the second factor emerges from an intrinsic characteristic
of each neuron: orientation selectivity. This factor is defined as the difference
between preferred orientations and can be only included in the analysis of
groups of neurons.

Before studying relations between pairs of neurons, a single spike train
analysis seems reasonable. Chapter 3 is devoted to study the stationarity
of neural activity under spontaneous activity and controlled conditions as
the ones guaranteed by the experimental setting. The findings are that sta-
tionarity is acceptable for our data during the sleep-like period (before the
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electrical stimulation is applied) and that this stationarity is recovered after
the stimulus effect has vanished. This is an interesting fact that gives some
solid ground where to start studying pairwise associations from.

Chapters 4, 5 and 6 are devoted to the study of methods to capture the
nature of neural synchrony under unfavorable situations such as low firing
rates and small amount of trials. Usually, if many trials are available, neural
associations are estimated using binned trains methods across trials but, this
approach is not possible in our scenarios due to the lack of many trials. To
overcome this drawback, our methods are based on a sliding windows pro-
cedure. That is, the information of small neighborhoods of the time point
under study is used to estimate the activity at that point. This approach has
the obvious disadvantage that the temporal resolution is affected and there-
fore, conclusions can be in a general basis although not with a very precise
timing. Anyway, informative results have been obtained which encourage us
to continue in this line of study.

Single spike trains analysis is based mainly on the study of inter spike
intervals. Therefore, a natural way of moving on to pairwise associations is
the study of times between the spikes of the two trains. The cross inter spike
intervals are presented in Chapter 3 as a first approach to neural synchrony.
The results are interesting regarding the comparison of the density functions
of the CISI before and after the stimulus onset. These comparisons show a
clear change in the density functions when the stimuli appears. Despite this
fact looked promising, the final performance of the CISI based measure is
not satisfactory. The resulting curves are too rough and the hypothesis tests
are not able to find any relevant information.

The results presented in Chapters 5 and 6 are considerably more revealing.
The ICCSI method presented in Chapter 5 is based on the cross-correlation
function and accounts for the area under this function in a neighborhood
of zero. On the other hand, the CSM, presented in Chapter 6, counts the
amount of small cross nearest spike intervals over the total count, again in
small time windows. Both methods are flexible in the sense that the time
that occurs between two spikes to be considered synchchronous can be chosen
by the researcher depending on the context.

Different approaches are used with the previously mentioned methods.
For the ICCSI, the estimated raw values are used, developing a complete
nonparametric bootstrap hypothesis tests. In the case of the CSM, a semi-
parametric approach is used: the values obtained by the synchrony estimator
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are modeled with generalized additive models. Thus, the resulting curves ob-
tained by the CSM method are much smoother than the ones obtained with
the ICCSI. This fact can result in a drawback or in an advantage depending
on the context.

The results obtained with ICCSI and CSM are comparable. Although the
applications in Chapter 6 are only shown for one pair of neurons, namely,
N1 and N3a, we can still make comparisons of the outcomes based on that
pair. In both cases, significant differences are found between the synchrony
during the sleep-like and the awake-like periods with the application of the
bs stimulus. In the ICCSI case, the period when these differences are sig-
nificant starts few seconds after the stimulation time (Figures 5.3 and 5.4).
With CSM, the results are somehow different. The period in which the differ-
ences are found to be significant starts around 15 s after the stimulus. This
delay could be an artifact caused by the extra smoothing that the splines
give (Figure 6.5). On the other hand, in the bf case, ICCSI cannot find any
differences between the sleep-like and awake-like synchrony while CSM finds
them in a period of 18 s starting around 20 s after the stimulation occurs.
Regarding the differential effect of the stimuli, ICCSI barely finds differences
between the synchrony induced the the two stimuli. The period in which
these differences are roughly accepted lasts for around 15 s right after the
stimuli onset (Figure 5.11). In the CSM case, the differences are found with
much more evidence for a period of 20 s starting from around 17 s after the
stimuli appear.

An important fact, discussed in Chapter 6, is that the estimated syn-
chrony is not a mere effect of the spiking activity. The estimate of the ex-
pected synchrony in the independence case results different from the observed
one. Anyhow, there exists a short time interval. right after stimulation where
the observed synchrony can be explained by some increasing in the firing rate.

The differences just described are also studied at group and population
levels. In Chapter 7 we use an existing functional data analysis technique
to study the effect of the stimuli together with a second factor: difference
in orientation selectivity. For this analysis we use the synchrony curves es-
timated using the ICCSI method presented in Chapter 5 from one group of
simultaneously recorded neurons. As the variable difference in orientation
selectivity is presented as a fixed effect, the problem can be considered as
a two way ANOVA model with functional dependent response. The results
indicate that the functional relationship between neurons, given by the ori-
entation selectivity affinity, has a great effect in the reaction to the stimuli.
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However, this effect does not depend on the applied stimulus, as the interac-
tion between the two factors does not result significant.

To go a little bit further and get a global overview, in Chapter 8 we gather
the recordings of nine experiments. As we found out in Chapter 7 that the
interaction between the stimulus and the level of the factor difference in ori-
entation selectivity is not relevant, the population analysis is carried out for
each stimulus separately. The ICCSI curves for each group defined by the dif-
ference in orientation selectivity are averaged together and a nonparametric
regression framework is used for the comparison of the average curves. The
results are conclusive in the sense that the differences are found significant
with extremely low p-values. Moreover, a simple overview of the resulting re-
gression curves and their derivatives, close to the stimuli, suggests a relation
between the affinity between neurons regarding their preferred orientation
and the strength of their association. The functional affinity between two
neurons seems to be represented in the way their synchrony behaves. The
hypothesis that remains to be proven is: the stronger the functional affin-
ity of two neurons regarding their orientation selectivity, the faster they will
transit from a synchronized state to a desynchronized state and viceversa.

Overall, this work is a contribution to the development of statistical tools
for neuroscience. Although the methods were thought for and applied to a
very particular problem, we believe the methods here discussed can be used in
many other contexts where low firing rates are an issue. On the other hand,
this work also emphasizes the usefulness of nonparametric methods and the
bootstrap in this context. Nonparametric statistic is a natural choice when
no parametric model seems plausible for the data, as commonly occurs with
spike data. On the other hand, bootstrap techniques are powerful tools which
are easy to implement and, although they can be time consuming, they pro-
vide a great alternative to parametric inference using minimal mathematical
assumptions.

9.2 Conclusions

Considering the objectives of the study given in Section 2.1 and the discussion
above, we can conclude that:

• A bootstrap test to detect dependence among the inter-spike interval
of a single neuron has been proposed. From its the application to the
experimental data we conclude that it is able to successfully detect the
presence of dependence among the ISI.
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• The proposed method to detect fluctuations in neuronal synchroniza-
tion based on the density function of the cross inter-spike intervals is
not stable enough to analyze low firing neuronal activity. Nevertheless,
the visual inspection of these densities is informative.

• We have developed two methods, CSM and ICCSI, that are able
to successfully estimate neuronal synchrony under low firing rate sce-
narios. Stimulation-induced variations in this measured synchrony
strength were differentiated by means of bootstrap hypothesis tests.

• Differences in neural pairwise synchronization depending on the acti-
vation of the brainstem vs the basal forebrain were assessed through
the development of bootstrap hypothesis tests. Analyses were carried
out both at a single pair level and at a group level arriving to the same
conclusions.

• We have proposed bootstrap tests that allow to affirm that there ex-
ist significant differences in the synchronization dynamics between the
sleep-like state and the awake-like state regarding the functional affinity
between neurons given by their preferred orientation.

9.3 Future work

Although the main objectives of the study have been reached, there still
remain many aspects to improve and different analyses to implement. We
will point out some of these aspects in this section:

• Apply our synchrony measures to controlled in-vitro data in which the
correlation is known in order to be able to test the methods. These type
of data has been already generated by researchers of the Theoretical
Neuroscience/Neuroinformatics research group of the Freie Universität
at Berlin. A collaboration with this group is planned for the coming
months.

• Study the possible implementation of regression methods where the res-
ponse variable is the synchrony curve and the dependent variable is the
difference in orientation selectivity. The orientation selectivity could be
computed with a better resolution using nonparametric density estima-
tion techniques for circular data. Therefore, it could be included in the
models as a random effect. The prediction power of a model like this
would be very useful in the sense that our predictions could be possibly
extended to other areas of the cortex other than V1.
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• Implement the nonparametric bootstrap stated in Chapter 7 for com-
parison with the parametric bootstrap.

• Study new models for the derivatives presented in Chapter 8 in order
to statistically asses the relationship between the functional affinity of
neurons and their synchrony strength.

• Study the velocity of desynchronization and resynchronization at a
pairwise level developing methods to test for differences in such profiles.

• Apply our methods in other contexts and compare the results with the
obtained by other standard methods.
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Resumen en Español

El objetivo de esta tesis es presentar herramientas estad́ısticas para tratar
algunos problemas metodológicos en el análisis de datos electrofisiológicos;
espećıficamente, la estimación de la dinámica de la sincrońıa entre pares de
neuronas con bajas tasas de disparo. Los métodos son aplicados a datos reales
y se hace inferencia acerca de la sincrońıa estimada con ellos. El problema
biológico fue propuesto al grupo de estad́ıstica, MODES, de la Universidade
da Coruña, por investigadores del grupo Neurocom, de la misma Universi-
dad. Tanto las preguntas como los datos resultaron un reto desde el punto
de vista estad́ıstico. Esta tesis describe los distintos enfoques y propuestas
para resolver el problema y el proceso para alcanzar los objetivos.

La neurociencia es el campo de conocimiento que estudia la estructura
y función del sistema nervioso, en particular, del cerebro humano. Tiene
numerosas áreas de estudio y aúna a muchas disciplinas como, medicina, psi-
coloǵıa, bioloǵıa e ingenieŕıa, entre otras. La electrofisioloǵıa es la rama de la
neurociencia que estudia las propiedades eléctricas y la actividad eléctrica de
las neuronas. Los avances tecnológicos han hecho posible el registro electrofi-
siológico simultáneo de grupos de neuronas, generando grandes cantidades de
datos que requieren de herramientas y metodoloǵıas potentes para un pos-
terior tratamiento y análisis. Ciencias como matemáticas, f́ısica, estad́ıstica
y computación se involucran cada d́ıa más con la neurociencia, para hacer
frente a la gran demanda de métodos para el análisis de la electrofisioloǵıa.

Las neuronas son células especializadas, que, junto con las células gliales,
son las unidades básicas estructurales y funcionales del sistema nervioso. Es-
tas células están organizadas en grandes y complejas redes y dan forma y
conectan las componentes del sistema nervioso. Esto es, transportan infor-
mación desde las zonas sensoriales, la analizan y llevan las respuestas hacia
otras células o zonas musculares.

Las neuronas se caracterizan por su capacidad de propagar información
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muy rápidamente a través de largas distancias. La información se transporta
en forma de impulsos eléctricos, llamados potenciales de acción o espigas. Es-
tos impulsos nerviosos son bastante fáciles de registrar dado que son cambios
abruptos en el potencial de la membrana de las neuronas, tienen una am-
plitud relativamente alta (∼100mV) y duran aproximadamente 1ms. Para
registrarlos, los electrofisiólogos colocan electrodos cerca o dentro de las neu-
ronas. Como los potenciales de acción son todos muy similares, se cree que
la información está codificada en las secuencias de ellos. Estas secuencias se
denominan trenes de potenciales de acción o trenes de espigas y son el ob-
jeto de estudio principal de esta tesis. Como los principios del procesamiento
neuronal de la información no se entienden en su totalidad, la forma en
que estos trenes llevan la información es un tema de debate y existen varias
propiedades a tener en cuenta. Las tasas de disparos y los tiempos exactos de
disparo son las dos ĺıneas más importantes de investigación. Por otro lado,
las asociaciones entre neuronas y la sincrońıa son caracteŕısticas clave para
entender el código neuronal.

Los datos con los que se trabaja a lo largo de esta tesis provienen de
un posible estado del cerebro, denominado actividad espontánea. La activi-
dad espontánea es la actividad que se observa en ausencia de est́ımulos y
puede pensarse como la actividad cerebral en un estado de reposo. En este
trabajo, estudiamos la sincronización de las neuronas bajo dos tipos de ac-
tividad espontánea: el estado de sueño inducido por la anestesia y el estado
de vigilia inducido eléctricamente. Si bien utilizamos el término est́ımulo
para referirnos a la micro-estimulación eléctrica que se utiliza para inducir
el estado de vigilia, esta micro-estimulación no altera el estado de actividad
espontánea.

Durante el sueño la actividad global del cerebro se caracteriza por ser muy
sincronizada, con ondas de mucha amplitud y baja frecuencia. Esta activi-
dad oscilatoria global puede inducirse mediante anestésicos permitiendo aśı
el estudio de propiedades neuronales caracteŕısticas de este estado. Durante
la fase de vigilia la actividad global del encéfalo no presenta dichas oscila-
ciones. La actividad global t́ıpica durante la vigilia también puede inducirse
mediante la aplicación de micro-estimulaciones en ciertas áreas del cerebro,
denominadas v́ıas ascendentes activadoras que regulan el paso del estado de
sueño a vigilia y viceversa. Estás v́ıas están ubicadas en el tronco encefálico
(te) y el área peribraquial (pb) (Steriade et al. (1997)).

Aunque el sueño es una parte fundamental de nuestro d́ıa a d́ıa, todav́ıa
existen muchas preguntas sin respuesta. Una de esas preguntas es cómo es
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regulado el ciclo de sueño-vigilia por las redes de neuronas. ¿Cómo es la
dinámica espontánea de la sincronización entre neuronas corticales? ¿Cómo
es esta sincronización interrumpida por los sistemas ascendentes? ¿Cómo
son los patrones temporales de la sincronización durante la vigilia? ¿Cómo
evolucionan hacia el estado de sueño? Éstas son algunas preguntas que gúıan
el trabajo de investigación del grupo Neurocom.

En pocas palabras, el proyecto experimental busca analizar los efectos
de la micro-estimulación eléctrica en te y pb en la sincrońıa entre neuronas
de la corteza visual primaria de gatos anestesiados. Se presentan métodos
para medir la sincrońıa y contrastes de hipótesis con respecto a los efectos
de dicha estimulación. También se introduce otro factor que involucra una
caracteŕıstica espećıfica de las neuronas al análisis: su selectividad a la orien-
tación.

La hipótesis más importante de ese proyecto es que es posible extraer
información sobre la arquitectura funcional cortical del comportamiento es-
pontáneo de las neuronas, un comportamiento obtenido de la actividad de
disparo y reflejada en la fuerza de la sincronización entre pares de células. En
su trabajo, los investigadores de Neurocom se interesan en medir la dinámica
de la sincronización entre pares de neuronas en el sueño y, también, du-
rante la vigilia, usando un modelo experimental concreto. Dicho modelo
consiste en cambiar de los patrones del sueño a los de la vigilia a través de
estimulando eléctricamente tanto en te como en pb. Pero, existen problemas
metodológicos que hacen que sea complicado encontrar diferencias significa-
tivas: el escaso número de potenciales de acción, que es t́ıpico de la actividad
espontánea.

El presente trabajo es el resultado de la búsqueda de técnicas estad́ısticas
para definir (bajo las condiciones experimentales ya mencionadas):

• la dinámica de la sincronización de pares de neuronas bajo actividad
espontánea.

• las diferencias en la fuerza de la sincronización entre los estados de
sueño y vigilia.

• la eficacia de te y pb provocando la transición del estado de sueño al
de vigilia, y la diferencia relativa en ese efecto.

• la dinámica de la sincronización de pares de neuronas con respecto a
su selectividad a la orientación.
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A lo largo del trabajo se definen técnicas, fundamentalmente no paramé-
tricas para la estimación de la sincronización y se proponen contrastes de
hipótesis para las hipótesis que se desprenden de los objetivos recién men-
cionados. Los métodos utilizados se centran, mayormente, en técnicas de
suavizado tipo núcleo y bootstrap. De todas maneras, también se utilizan
métodos semiparamétricos, espećıficamente modelos aditivos generalizados y
técnicas de análisis de datos funcionales.

Los métodos se aplican a grupos de neuronas simultáneamente registradas
en la corteza visual de gatos anestesiados que han sido sometidos a la micro-
estimulación tanto en te como en pb de forma separada y aleatoria. Por otro
lado, antes de las micro-estimulaciones, los gatos son sometidos a est́ımulos
visuales consistentes en barras de luz orientadas y aśı se detecta la orienta-
ción preferida de cada neurona registrada.

Uno de los métodos más utilizados para medir asociación neuronal es el
análisis de cros-correlaciones. Por ejemplo, el joint peristimulus time his-
togram (JPSTH) (Gerstein and Perkel (1969); Aertsen (1989)) muestra la
dinámica de la correlación entre neuronas a partir de un est́ımulo dado. Este
método es una generalización del peristimulus time histogram (PSTH), que
acumula los disparos, a través de los ensayos, de una sola célula. El JPSTH
en un histograma bidimensional de la frecuencia de disparos conjunto de una
neurona en el tiempo t y de la otra en el tiempo u. Su versión normalizada
es el coeficiente de correlación de Pearson, calculado a través de los ensayos,
de la frecuqncia de disparos de ambas neuronas con cierto retardo. Esta
medida asume que los ensayos son indistinguibles y, por lo tanto, no tiene
en cuenta la variabilidad entre ensayos. El cros-correlograma es la suma de
las diagonales del JPSTH y, por lo tanto, es un histograma de la actividad
conjunta de las neuronas como función de retardos en el tiempo.

Otros métodos ampliamente utilizados para capturar sincronización entre
neuronas se basan en los eventos unitarios (Grün (1996); Grün et al. (2002);
Grün (2009)). Estos métodos se basan en la discretización de los trenes, par-
tiendo el tiempo en pequeños bins y asignando un uno a los bins en los que
se haya producido una espiga y un cero a los que no. El análisis de eventos
unitarios estima la probabilidad de que dos neuronas disparen juntas bajo
la hipótesis de independencia de los trenes. Pueden definirse contrastes para
la sincrońıa en términos de la diferencia entre las frecuencias esperadas y las
observadas. Faes et al. (2008) propusieron otro ı́ndice de sincrońıa, la medida
de sincrońıa condicional, que se basa en la estimación de la probabilidad de
que ocurran disparos conjuntos dado que ha habido actividad en una de las
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neuronas. Otros métodos han sido propuestos por Quiroga et al. (2002),
Kruskal et al. (2007) y otros.

Generalmente, los experimentos se registran muchas veces bajo las mis-
mas condiciones, contando as con muchos ensayos. De esta manera, y si
la actividad de disparo es alta, se pueden utilizar métodos con trenes dis-
cretizados, y usando la información de cada bin a lo largo de todos los
ensayos reduciendo la variabilidad dentro de los ensayos y trabajando con
buena resolución temporal. En el caso de esta tesis, se han llevado a cabo
pocos ensayos en cada condición debido, entre otras causas, a la larga du-
ración de los ensayos y a la necesidad de limitar el número de estimulaciones.
Por otro lado, los trenes de espigas contienen baja actividad, situación carac-
teŕıstica de la actividad espontánea en la corteza visual primaria, bajo la cual
se registran las neuronas. De ah́ı la necesidad de desarrollar herramientas
espećıficas para la estimación de la sincrońıa bajo estas circunstancias. A
lo largo de la memoria se presentan tres métodos para estimar la sincrońıa.
Nuestros métodos se basan en ventanas móviles. De esta forma, la sincrońıa
puede estimarse en cada instante de tiempo, t, utilizando un solo ensayo, ha-
ciendo uso de la información de un pequeño entorno de t. Obviamente, estos
métodos tienen peor resolución temporal pero, de todas maneras, se pueden
obtener conclusiones acerca de la dinámica general de la sincronización.

El primer paso en nuestro estudio es el de describir la actividad de neu-
ronas aisladas. Se estudia la estacionariedad de la actividad espontánea para
un grupo de neuronas, encontrando que ésta es aceptable cuando las células
no se encuentran bajo el efecto del est́ımulo. Esta estacionariedad se recu-
pera cuando ha pasado el efecto del est́ımulo.

El análisis de neuronas aisladas se basa, principalmente, en el estudio de
los tiempos entre disparos. El primer método presentado para medir asocia-
ciones entre neuronas, se basa en una generalización de estos tiempos.

Sea S̃ la variable aleatoria que denota el tiempo de espera entre un disparo
de la neurona 1 hasta el siguiente disparo de la neurona 2. Esta variable se de-
nota por intervalos entre espigas cruzados (cros-inter-spike interval (CISI)).
Se trabaja con los logaritmos de los CISIs para interpretar más fácilmente
los resultados. Se denota por g(s, t) la función de densidad del logaritmo
de S̃ condicionado a que hubo un disparo de la neurona 1 en el instante
t. Suponemos que g es estacionaria en el intervalo de tiempo antes de la
estimulación, g(s, t) = gpre(s). La medida propuesta, mide la influencia del
est́ımulo en la estructura de la densidad de CISI mediante la distancia L1
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entre gpre(s, t) y la densidad de CISI después de la estimulación:

CM(t) =

∫
|g(s, t)− gpre(s)| ds.

En la práctica, utilizamos la actividad de los trenes en ventanas de tiempo
para estimar estas densidades, y por lo tanto CM , con métodos de tipo
núcleo:

ĈM(t) =

∫
|ĝ(s, t)− ĝpre(s)| ds, (9.1)

donde, ĝpre(t) es el estimador tipo núcleo de la función de densidad de CISI
antes del est́ımulo y ĝ(s, t) es el estimador tipo núcleo de la densidad de CISI
en una ventana de tiempo que contiene al instante t.

La comparación de las densidades estimadas para los peŕıodos de sueño
y vigilia resulta muy interesante. Se observa cómo, tras la transición provo-
cada por la estimulación, las densidades son distintas a aquellas observadas
en el peŕıodo de sueño. Sin embargo, cuando el tiempo pasa, las densidades
se vuelven a asemejar a las originales. De todas maneras, el método que se
sugiere para medir la diferencia en la sincronización en el estado de vigilia
con respecto a la original, resulta muy ruidoso y los contrastes de hipótesis no
son capaces de llegar a conclusiones satisfactorias con respecto a las hipótesis
planteadas.

Tambin se presentan en la tesis otros dos métodos para medir sincrońıa.
Un primer método es el llamado ICCSI. El valor de ICCSI(t) se define
a través de la integral en un vecindario alrededor de cero de la función de
correlación cruzada entre los trenes, X e Y , en el instante t, TXY (τ ; t):

ICCSI(t) =

∫ Δ

−Δ

TXY (τ ; t)dτ. (9.2)

Para estimar ICCSI, se utilizan ventanas alrededor de cada punto t y se
estima la función de correlación cruzada con el correlograma normalizado.

El segundo método, al que denominamos CSM , se define a partir de
los intervalos de tiempo entre un disparo de una neurona y el más cercano
de la otra. A estos intervalos los llamamos intervalos entre espigas más
cercanas cruzadas (cross-nearest spike interval (CNSI)). El CSM mide la
proporción de estos tiempos que son menores que cierto valor, δ, elegido
convenientemente por el investigador. Formalmente, seanX e Y dos trenes de
espigas con un número de J1 y J2 espigas respectivamente y NX(t) = #{Xj ≤

168



t, j = 1, . . . , J1} y NY (t) = #{Yj ≤ t, j = 1, . . . , J2} con t ∈ [0, T )} los
procesos de contar asociados a X e Y respectivamente. Definimos,

nδ(t, v) =

J1∑
j=1

I{NY (Xj + δ)−NY (Xj − δ) ≥ 1}I{Xj ∈ (t− v, t+ v]}+

+

J2∑
j=1

I{NX(Yj + δ) +NX(Yj − δ) ≥ 1}I{Yj ∈ (t− v, t+ v]}

(9.3)

donde 2v es el ancho de la ventana móvil a utilizar. Si, además, n(t, v) es el
número total de espigas, de X y de Y en conjunto, que caen en la ventana
(t− v, t+ v], CSM se define, en el instante t, como:

pδ(t, v) =
nδ(t, v)

n(t, v)
.

Estos dos métodos, ICCSI(t) y CSM(t), son flexibles dado que permiten
el ajuste de sus parámetros según el contexto. Por otro lado, en ambos ca-
sos se hace uso de ventanas móviles para medir la sincronización local a lo
largo del tiempo. De ésta forma, las bajas tasas de disparo y la baja cantidad
de ensayos se compensa con el uso de la información de pequeños vecindarios.

Para cada uno de los métodos recién mencionados, se utilizan metodoloǵıas
diferentes. Para ICCSI, las curvas estimadas se utilizan para llevar a cabo
contrastes de hipótesis completamente noparamétricos. Además, se presen-
tan dos contrastes bootstrap que tienen en cuenta la dependencia de los
datos. Estos métodos están basados en el bootstrap estacionario de Poli-
tis y Romano (1994). Por otro lado, para el CSM se utiliza un enfoque
semiparamétrico. La medida se ajusta a los datos utilizando modelos adi-
tivos generalizados, resultando aśı, funciones de sincronización mucho más
suaves que las obtenidas con ICCSI. Esta suavidad extra puede resultar una
ventaja o una desventaja según el objeto de estudio. También se proponen
contrastes bootstrap para el estudio de las diferencias en la sincronización.
En este caso, los contrastes bootstrap utilizados son paramétricos.

Los resultados obtenidos con ICCSI y CSM son comparables. Con
ambos métodos encontramos peŕıodos, después de la disrupción del estado
de sueño, en que la sincronización difiere de la estimada antes de la estim-
ulación. Con CSM estas diferencias se encuentran después de que varios
segundos hayan transcurrido desde la aplicación de la micro-estimulación.
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Con respecto a la diferencia entre el efecto de la estimulación te y pb, CSM
tiene mayor éxito que ICCSI, sobre todo en el caso de te y, otra vez, las
diferencias encontradas por un método se encuentran desfasadas con respecto
al otro y esto puede ocurrir debido a la suavización extra que conlleva CSM .
También, y en particular para CSM , se estimó la sincrońıa que se observaŕıa
si dos trenes fueran independientes, encontrando que ésta seŕıa menos a la
realmente observada, concluyendo aśı, que el método es capaz de detectar
sincrońıa más allá de la que surgiŕıa simplemente por estar las neuronas en
actividad.

Las diferencias descritas en el párrafo anterior también se estudian tanto a
un nivel de grupo de neuronas como a nivel poblacional. A nivel de un grupo
de neuronas, se utiliza una metodoloǵıa de análisis de datos funcionales,
basada en proyecciones aleatorias, para realizar un análisis de la varianza de
dos factores con variable de respuesta funcional (Cuesta-Albertos y Febrero-
Bande (2010)). Las funciones utilizadas son las estimadas con el método
ICCSI para un grupo de 8 neuronas. Los dos factores en cuestión, son, por
un lado, las v́ıas ascendentes activadoras estimuladas: te y pb, y, por otro,
la diferencia entre la orientación preferida de cada neurona del par. Esta
variable se presenta como un efecto fijo y se calcula a partir de la orienta-
ción preferida de cada neurona, definida en el procedimiento experimental.
Los resultados muestran que la relación funcional entre neuronas, dada por
la afinidad en la selectividad a la orientación, repercute en el cambio que
ocurre en la sincronización al aplicar el est́ımulo. Sin embargo, este hecho no
depende del área estimulada, ya que la interacción entre factores no resulta
significativa.

Para obtener una visión global de la relación entre la selectividad de la
orientación y el efecto de la estimulación en la sincronización entre pares
de neuronas, se realiza un análisis poblacional. Teniendo en cuenta que no
la interacción entre factores no resulta significativa, este análisis se lleva a
cabo para cada una de las áreas que provocan la transición del estado de
sueño al de vigilia por separado. Se estima la sincrońıa entre pares de neu-
ronas utilizando los registros de nueve experimentos. Las curvas obtenidas
con ICCSI se promedian dentro de cada nivel del factor diferencia en orien-
tación preferida y las curvas promediadas se modelan mediante el método
de regresión polinómica local, utilizando ventanas de suavizado locales. Se
utilizan varios contrastes para comparar las curvas (Vilar-Fernández et al.
(2007)) y los resultados son concluyentes. Los p-valores obtenidos para la
hipótesis de igualdad de funciones de regresión son muy pequeños para am-
bos est́ımulos, corroborando aśı los resultados encontrados con un solo grupo
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de neuronas. Más aún, observando las derivadas de dichas curvas, también
estimadas por el método de regresión polinómica local, podemos esbozar una
hipótesis con respecto a la relación entre la diferencia en orientación preferida
y la fuerza de la sincronización: mientras más sea la afinidad de las neuronas
con respecto a su selectividad a la orientación, más rápidamente se desin-
cronizarán estas neuronas y, a su vez, más rápido se resincronizarán. De
todas maneras, seŕıan necesarios análisis más profundos para comprobar es-
tad́ısticamente esta hipótesis.

En conjunto, este trabajo es una contribución al desarrollo de herramien-
tas estad́ısticas para la neurociencia. Aunque los métodos han sido propues-
tos para un problema en particular, son aplicables en otros muchos contex-
tos donde las bajas tasas de disparos resulten un problema. Por otro lado,
este trabajo enfatiza la utilidad de los métodos no paramétricos y el boot-
strap. La estad́ıstica no paramétrica es una elección natural cuando ningún
modelo paramétrico resulta adecuado, como suele suceder con los datos de
trenes de potenciales de acción. Además, las técnicas bootstrap son muy
potentes, fáciles de implementar y, aunque pueden ser costosas computa-
cionalmente, son una gran alternativa a la inferencia paramétrica usando
supuestos matemáticos mı́nimos.

Las principales conclusiones de esta tesis pueden resumirse en las siguien-
tes ĺıneas:

• Se propuso un contraste bootstrap para detectar dependencia entre los
intervalos entre espigas. De la aplicación a los datos experimentales
se desprende que el contraste detecta satisfactoriamente la dependecia
existente entre estos intervalos.

• El método basado en la densidad de los intervalos entre espigas cruzados
para detectar fluctuaciones en la sincrońıa no resulta lo suficientemente
estable para analizar bajas tasas de disparo. Sin embargo, la inspección
visual de la evolución de dichas densidades resulta informativa.

• Se definieron dos medidas de sincrońıa, CSM e ICCSI. Estas medidas
estiman satisfactoriamente la sincronización neuronal en escenarios de
baja actividad de disparo. Las variaciones en la sincrońıa estimada in-
ducida por la estimulación se diferenciaron utilizando contrastes boot-
strap.

• Se propusieron contrastes bootstrap que permitieron encontrar difer-
encias significativas en la sincronización inducida por la activación de
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las v́ıas ascendentes localizadas en el tronco encefálico versus las lo-
calizadas en el área peribraqueal. Estos contrastes se llevaron a cabo
tanto a nivel de pares de neruonas como a nivel de grupos de células.

• Hemos propuesto contrastes bootstrap que permiten encontrar diferen-
cias significativas en la dinámica de la sincronización entre los estados
de sueño y vigilia relacionadas con la afinidad entre neuronas dada por
su orientación preferida.
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