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Chapter 1

Introduction

1.1 The human genome

Human genome is, technically, the expression used to design the genome
of the Homo Sapiens, namely, the DNA sequence contained in each human
cell, putting together the 23 chromosome pairs in the cell core and the
mitochondrial DNA. It carries the basic information for the correct physical
development of any human being, coding what is needed to produce the
different proteins. The haploid genome (that is, with only one element from
each pair) has a total length of around 3.2 billions of base pairs (3200 Mb),
containing about 20000–30000 genes.

Since the boom of genetics in the nineties, a lot of hope has been set on
this field, as the one thought to have the answers to numerous questions in
the world of health and disease [394]. The Human Genome Project started
oficially in the United States in 1990 and some of its aims are to study
the variability in the human genome, to improve and develop sequencing
technologies or, undoubtedly, the most published advance, to complete the
human genome sequence, something achieved in 2000-2001 [203, 412]. All
this entails too many advances in genomics, as the field in charge of the
study of complete genomes. Obviously, scientific complexity of the task has
been (and still is!) quite big, and it has caused an exponential growing of
some sciences practically unknown before this adventure, like bioinformatics,
applied to the study of the informative content of genomes by means of
the intensive use of computational and technological resources. Likewise,
the different branches of genomics, as functional genomics or comparative
genomics, have substantionally evolved during the last decade [302].

One of the most prominent questions to answer about the genome is the
one referring to its own variablity. As commented above, the number of base
pairs making DNA up is enormous, but only a small percentage of these po-
sitions (locus) vary between humans, and it is in this variability where the
reason for the different traits in humans can be found. The set of traits in

1



2 1.1. The human genome

a human being is known as his phenotype, that is, the environmental ex-
pression of his genotype. Comparative genomics carry out the comparative
analysis of genomes in different animal species and also estimate the pro-
portion of coincidence between them. For instance, similarity of apes with
humans is above 90%; two human beings have more than 99.9% of the DNA
in common.

The existence of genetic diseases where only the genotype is responsible
of its appearance is widely known since centuries ago. Hemophilia is un-
doubtedly joint to history as a damn heritage bequeathed to crown princes
in royal families like spanish, russian or german. However, it is not this
kind of illness the ones clinical genetics is interested in. Genetic basis of
diseases caused by one single variant in the genome were unravelled time
ago by former generations of geneticists. Moreover, most of them (Wilson‘s
disease, acondroplasia, phenylketonuria, . . . ) are rare, and therefore their
impact in global health is, though important, at least limited. Nowadays
clinical genetics focus their interest on trying to discover the genetic basis
of common diseases which genetic basis is thought to be complex, not only
because they combine genetic with environmental triggers, but also because
it is expected to be intricate in the sense of having numerous genes involved
either separately or interacting. This means unarguably a challenge for
mathematicians, since the pattern generating common disorders seems to
be a complex one.

So, the conjunction of large amounts of data with complex patterns and
the need to recognize them are the reasons for the landing of statistics in a
biological field, as genetics is. But before moving to statistics, let us take
some time to study the environment we are going to work with.

1.1.1 Nuclear DNA

DeoxyriboNucleic Acid (DNA) is a macromolecule present in every cell.
It carries the genetic information needed for the correct development in
every alive organism and some virus, being the main responsible of heritage.
Chemically, DNA is a strand of nucleotides. Each nucleotide is compound
of a common sugar (deoxyribose) and a common phosphate group, while the
nitrogenated bases are specific: adenine (A), cytosine (C), guanine (G) and
thymine (T). They are the foundation for the diversity and the evolution not
only in humans, but also in the rest of the species. The sequence of bases
along the chain is actually the code for the genetic information. Proteins to
be produced in each moment of the cell life cycle strongly depend on this
code.

The nature of the DNA macromolecule was not known before the dis-
covering of the DNA structure in 1953 [423, 424]. Since the twenties, when
some experiments on bacterium cells were carried out [162], scientist knew
that DNA was the genetic transmitter, but its physical structure could not
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Figure 1.1: DNA double helix structure (B) as proposed by Watson (right)
and Crick (left) (A). Image obtained from www.nature.com.

be explained. Watson and Crick proposed a revolutionary model for DNA
physical structure, as it gave rise to the definition of the gene in chemical
terms and meant the starting point to understand gene function and her-
itage. Even before Watson and Crick’s discovery, it was known in science
that genetic material should fulfill three main properties:

• It allows to be faithfully copied.

• The content has to be informative.

• Given the fact that evolution is slow along time, genetic material would
change rarely.

Watson and Crick suggested a 3D structure compound by two strands or
threads that bend making a double helix and joint by the effect of hydrogen
chemical bonds. Figure 1.1 shows DNA double helix structure as proposed
by them in 1953. This theory explained successfully previous results, and
proposed immediately a way for the genetic material to be copied.

At the same time, double helix structure suggests how DNA would estab-
lish protein structure, so nowadays we know that the nucleotidic sequence
generates the amino acidic sequence in each protein, by means of a genetic
code that is degenerate (in the sense that more than one nucleotidic sequence
can give rise to the same amino acid) but not ambiguous (a nucleotidic se-
quence generates always the same amino acid). The human genetic code
is often depicted as in Figure 1.2, where each possible sequence of trinu-
cleotides is shown together with the amino acid being generated.

Genes are the physical and functional units of heritage. Heritage of
DNA from parents to the offspring consists of a complex process (meiosis)
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Figure 1.2: Human genetic code. 64 sequences of trinucleotides (codons) give
rise to the 20 different amino acids in humans (degenerate code). 3 codons
are stop codons, indicating the point where translation finishes. Image ob-
tained from the Encyclopedia of Philosophy of the University of Stanford.

where the two DNA macromolecules belonging to each parent lead to a
single final macromolecule in the child. Thus, the two parent chromosomes
recombine during meisis producing new “mosaic” chromosomes that are in
reality different combinations of the two parent ones. Therefore, the final
child DNA can be interpreted as a mix of the two parents strands; one
mosaic chromosome per parent. From a mathematical point of view, the
most interesting point is about the recombination produced as a result of this
mixture: combination of the nucleotidic sequence not only is not random,
but certain regions of the genome segregate together, and as a consequence
remain together throughout generations. This is going to be a main subject
in population genetics, where different populations inherit different variants
in each region, but also in clinical genetics, as association studies have to
cope with linkage desequilibrium (see below).

As commented before, genetic material establish the basis for evolution.
This happens by means of mutations in the nucleotidic sequence (muta-
bility of the DNA sequence), little changes in the nucleotidic bases of the
DNA strand, consistent of addings of bases (insertions), elimination of bases
(deletions) or replacements of one base to another. Mutations can be the
result of failures in any step of the replication process or as a product of
the effect of mutational agents; this can occur in the germline or in somatic
cells. Although human body is in possession of mechanisms that can repair
this biological failures, this is not always the case. As a result, a mutation
can be successful in a population and, with the pass of generations, become
a new variant (a polymorphism) in the genome, or can be removed, either
because the genealogy where it appears dies out or because the mutation
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entails some kind of handicap for the individual. As expected, natural se-
lection will favor those mutations giving rise to benefits, whilst those ones
producing disadvantages (and especially the lethal ones) will tend slowly
to disappear. Somatic mutations are also in the root of the emergence of
sporadic cancer; cancer is a disease caused by the appearance of genetic ab-
normalities in cells, more common as the individual grows older. This leads
to think that many types of cancer with a genetic basis can lie in those
regions of the genome that deal with the mechanisms of biological repair of
the human body, so most of the association studies involving cancer include
those regions as possible genetic targets.

Population genetics is the branch of genetics that studies the factors de-
termining the genetic composition of populations and the expected change
in this composition along time. Genetic composition of a population is the
set of frequencies of the different possibilities (called alleles) in a genotype.
These allelic frequencies are the result of different processes that occur inside
a population, like kind of mating, migrations, mutations, genetic recombina-
tions or natural selection. Random fluctuations have also their importance,
but obviously their influence tends to be null as a population tends to grow
or evolve. The Hardy–Weinberg principle [174, 426] states that both allele
and genotype frequencies in a population remain constant, that is, they are
in equilibrium from generation to generation unless specific disturbing influ-
ences are introduced. In the simplest case of a single locus with two alleles:
the dominant allele is denoted A and the recessive a and their frequencies
are denoted by p and q: freq(A) = p, freq(a) = q with p + q = 1. If the
population is in equilibrium, then we will have freq(AA) = p2, freq(aa) = q2

and freq(Aa) = 2pq in the population. Hardy–Weinberg principle has also a
vital importance in clinical genetics, as little deviances from this equilibrium
can mean association of a locus with a certain disease. For instance, if we
detect much less homozygotes in the rare variant than expected, this could
mean that these individuals are prone to suffer any disease, or simply that
they have any disorder or physical handicap which makes them to be at a
clear disadvantage with regard to other individuals.

When any locus take allelic frequencies significantly different than those
established by the Hardy–Weinberg principle, this is usually reported as a
Hardy–Weinberg disequilibrium status. This disequilibrium can be due to
the action of different evolving forces. For instance, natural selection pro-
duces changes in allele frequencies in the sense that the best gifted individ-
uals will tend to increase their proportion in a population. Random events
can also modify allelic frequencies in a population, due to its finiteness, by
means of what is known as genetic drift. Final state of a genetic drift event
is that a population can reach homozigosity (p = 1) in a locus due to e.g.
the random nature of mating. Genetic drift events are more probable in
endogamic small populations, producing what is commonly know as kinship
[164].
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1.1.2 Mitochondrial DNA

Despite nuclear DNA fills most of the informations related with genetics,
it is necessary to say that this is not the only genetic material in the hu-
man cell: mitochondrial DNA (mtDNA) is a small macromolecule that can
be found in mitochondrions, namely, organelas that are located in the cito-
plasm of the cells. The mtDNA is a small molecule of about 16569 kb, giving
rise to only 37 genes coding information about the production of RNA (Ri-
boNucleic Acid) and polypeptides. In Figure 1.3, a graph with the mtDNA
macromolecule is shown.

One of the most important subjects about mtDNA is related with the
fact that there is no recombination associated with it: mtDNA is directly
inherited all through the maternal line, so its only way to change is by means
of mutation. Statistical studies conclude that a new mutation appears in
mtDNA each 10000 years approximately. Some of these mutations mean
only a new step in human evolution, while others are the cause for developing
mitochondrial diseases. There are several dozens of mtDNA disorders, all
of them rare and uncommon. However, all together are relatively prevalent
(about 1 in 3000 individuals).

The fact of maternal heritage in combination with the low mutation
rate makes mtDNA a key tool in the study of population genetics and the
development of hypothesis about migrations and origin of prehistoric popu-
lations. Haplogroup is an useful and pragmatic concept in mtDNA research.
It refers to a group of sequences (clades) that are closely phylogenetically
related. Haplogroups are defined by series of diagnostic variants. Therefore,
any mtDNA usually carries the diagnostic variants that allow to classify

Figure 1.3: mtDNA macromolecule and its main regions. Image obtained
from Wikipedia.
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it into one particular haplogroup plus a series of “private” variants that
are specific of this mtDNA. Variation at the mtDNA molecule is strongly
stratified in populations such that different geographical regions or ethinic
groups can be identified (from a matrilineal point of view) by particular set
of variants/haplogroups. Analysis of the spatial distribution of haplogroups
is generally known as phylogeography. These studies allow to reconstruct
the demography and the origin of human population in ancient and more
recent events.

1.1.3 Chromosomes

Chromosomes are each of the small, tiny bodies with the shape of a cane
made by nuclear DNA plus proteins that arise as a result of the cell di-
visions (mitosis and meiosis). More specifically, chromosomes are the way
chromatin is organized during these divisions, so we can say chromatin and
chromosomes are morphologically different ways to represent the same en-
tity: the nuclear DNA associated with certain kind of proteins called his-
tones. Chromosomes show characteristic shapes and sizes. Each one has a
condensed, constricted region called centromere placed around the middle.
An important matter about them is that the number of chromosomes is
constant for the individuals belonging to the same species: this number is
called diploid number. The word diploid refers to the fact that in most of
the alive organisms chromosomes are organized in pairs, being each one a
single copy (almost exact) of the other; these are called homologous chromo-
somes. Therefore, each human being carries two complete genomes or two
complete chromosome sets. This diploid number is commonly represented
as 2n and change among species, being 46 in humans. Arrangement of the
chromosomes during the mitosis cycle is known as karyotype. Figure 1.4
shows the shape karyotype takes in humans.

Figure 1.4: Karyotype of a human male. As can be observed, chromosomes
differ both in shape and size. Y chromosome is substantially smaller than the
X one. Image obtained from the Biotechnology web page of the Australian
Government Initiative.
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Given that homologous chromosomes are virtually alike, they contain
the same genes in the same position, called locus (loci, in the plural). In
many organisms, it happens that one of the homologous chromosome pairs
is different to the others, stating the gender of an individual. In the human
karyotype, there are 22 pairs of chromosomes not linked to gender, called
autosomes, and one pair of sex chromosomes, making a total of 46.

As commented previously, sex chromosomes state the gender of an in-
dividual. Women have a pair of identical sex chromosomes called X chro-
mosomes; men have a pair of different chromosomes consisting of one X
chromosome and one Y chromosome. Name of sex chromosomes is due to
their shape. Y chromosome is substantially smaller than X. For instance,
SRY gene is contained in it, being responsible of testis development and
thus determining sex; likewise, some phenotypic features typical of men are
thought to be located in Y chromosome.

The same as happened with mitochondrial DNA finds an equivalent with
the Y chromosome: due to obvious reasons, Y chromosome is inherited di-
rectly from father to son, and mutation is the only way for changing. As
a consequence, Y chromosome is also very useful in relation with develop-
ing hypothesis and theories about prehistoric populations, migrations and
evolution [405].

Y-chromosomes can be also allocated into haplogroups. The same vari-
ants in polymorphic loci are normally shared by those individuals belong-
ing to the same population, or at least having common recent ancestries.
There are several diseases associated to sexual chromosomes. Undoubtedly,
the most famous one is hemophilia, which is determined in the X chromo-
some. Hemophilia is a disease characterized by the existence of problems
of blood coagulation, leading to hemorrhages that can be eventually fatal.
Coagulation is a body function regulated by a certain gene located in the
X chromosome. If this gene is damaged, women are probably covered, as
they have two copies, but men will suffer from the disease. Hemophilia has
been common along generations of royal families in Europe, partially due to
inbreeding.

1.1.4 Genes

A gene is a nucleotide sequence inside the DNA molecule containing the
necessary information to synthesize a macromolecule carrying out a certain
cellular function. Each one of them is understood as the basic unity for
genetic information storage and heritage, as this information will be eventu-
ally passed on to descendants. Genes are located along chromosomes. The
position occupied by them is known as locus.

Inside a gene sequence, two different kinds of regions can be found: codi-
fying regions are known as exons [152], and they are responsible for carrying
the necessary information to produce a protein, managing each one the elab-
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Figure 1.5: Organization of the human P53 gene. 22000 bp for 11 exons (in
blue). Translation begins in exon 2. Sizes of exons and introns are shown
in bp. Image obtained from p53.free.fr.

oration of a different portion of the protein; exons are separated among them
by large DNA regions called introns. Genetic information contained in in-
trons is not used to build proteins, so these are called non-coding sections of
the genome. Splicing is the process by means of which they will be removed
when moving to mature RNA. This is one of the several steps carried out in
the cell to elaborate the final protein. Figure 1.5 shows the sketch of the P53
gene, dividing in exonic and intronic sequences. A particular case happens
when, due to processes related with evolution like mutations, deletions,. . . ,
a gene stops being functional but remains inside DNA (as there is no an im-
mediate process to remove it). These ones are called pseudogenes, and use
to be similar to other genes in the same organism having specific function.

So genes carry the information needed for elaborating and sorting out
the amino acidic chain giving rise to a protein. But, as expected, some mech-
anism regulating for time and location where each genome region is going
to be translated has to be available. As its own police, DNA contributes
also with the codifying regions necessary for carrying out this task, provid-
ing the means for self-regulation and interaction with information about cell
physiological condition. Many steps are needed to produce a protein from
the sequence of nucleotides inside a gene. Gene regulation process is shared
among most of them, even after translation, by means of applying modifica-
tions to proteins. However, it is common thought that the great majority of
gene regulation is carried out during transcription, the process by means of
which DNA sequence is initially translated into messenger RNA (mRNA).

Regarding gene regulation, transcription changes according to the organ-
ism, and becomes more complicated as more complex this is, being therefore
quite different in eukaryotics than in prokaryotes. Given the fact of the ex-
tremely large number of genes in eukaryotic organisms, it seems to be clear
that most of the genes will be inactive in a given moment. This is under-
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standable since the fact that many genes are only transcripted in unlikely
events, as certain viral infections, or in early phases of the growing of an
individual. Bearing in mind these facts, eukaryotic gene regulation has to
be able to:

• Ensure that gene expression is generally inactive in the majority of the
genome, and only the correct subset of genes are being transcripted.

• Generate thousands of gene expression patterns.

During transcription, gene regulation happens when RNA polymerase
merges with the beginning of the DNA sequence, as well as when starts
moving along the sequence. Anyway, gene expression always depends on
the cell physiological state, in the sense that this is going to control if a gene
is going to be read.

Purpose of this essay is to bring the reader closer to some of the many
statistical approaches applicable in genetics, besides introducing some ad-
vances, hopefully profitable for (a part of) the scientific community. In this
sense, one of the aims of statistical geneticists is to help to unravel the ge-
netic basis of disease. Going one step beyond this, a major aim of statistical
genetics could be to relate disease with heritage, and, regarding this, it is
quite interesting to understand the mechanisms involved in heritage.

Gene heritage patterns were first studied by Gregor Mendel in the 19th
century. However, his studies suggested a model where transmission is in-
dependent between couples of traits, equivalently, independent transmission
among genes (though the term gene was not defined till some decades af-
ter). At the beginning of the 20th century, Bateson and Punnet studied
the heritage pattern in two genes of the pea, noticing that the results devi-
ated from the proportions expected by Mendel’s theories. This suggested a
more complex model where not all the genes are transmitted independently,
as in many cases after Bateson and Punnet’s studies they also proved to
be linked. Recombination maps are obtained from several genes inside the
same chromosome, studying the frequency of recombination among them
and establishing the amount of linkage. Linkage between a pair of genes
is usually associated with physical distance inside the chromosome, though
there is no a mathematical exact relation. In Figure 1.6, a linkage map
for a set of close genetic markers is shown. In mathematical terms, linkage
translates as existence of high correlations between genes and deviations
from Mendelian proportions. Moreover, recombination also happens inside
genes and, as physical distance seems to be the critical point, it is more
marked as the size of the gene increases. As it will be mentioned later in
the Methodology section, existence of linkage makes association studies even
more complicated, as in several times it will be difficult to say if the genetic
basis of some disease is located in a certain genetic marker or in other linked
with it.
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Figure 1.6: Linkage map for a set of genetic markers inside chromosome 20.
This kind of graphs try to give a visual idea of how some close markers are
usually inherited together. A colour palette indicates the level of linkage
(correlation) between markers and sets of close markers. Image obtained
using the software genomeSIMLA [107].

As heredity is not an independent process among genes, neither is its way
of operating. Genes interact as the different parts of the production line in
a factory. In this sense, genetic pathways is the name used to design the
groups compound by genes which carry out complementary functions acting
like steps of a more complex cell process. There are thousand of them, and
interaction is common in and between connected pathways. But interaction
also exists inside a gene, as nature and effect of the different alleles is highly
changeable.

As mentioned above, the different possibilities or alleles that can be
found in the DNA sequence appear as a result of mutations that occur in
a population with the pass of generations. The group of known mutations
inside a gene is called allelic series. Relation between the different alleles of
a gene can take different forms:

• Complete dominance and recessivity. A dominant allele express itself
with only one copy, as in heterozygosity, while its alternative allele
will be totally recessive, that is, it will be expressed only in presence
of two copies.

• Incomplete dominance. Term used for those cases where heterozygotes
show an intermediate phenotype between the two homozygotes.

• Codominance. A heterozygote individual express both alleles, as it
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happens with blood types in humans.

Gene–gene interaction is going to be, anyway, a recurrent topic along
this essay. In the next section, a small introduction about common diseases
with a genetic basis will be presented. As this basis is expected to be deeply
complex, it is not crazy to think in the possibility of interactions leading to
the appearance of such diseases, and the need for statistical methods grows
exponentially with the amount of genetic databases.

1.1.5 Variation. Genetic markers

As statistics look for patterns in data with the aim of developing models
able to explain reality, it is clear that its eye is going to be focused on DNA
regions showing variability. Above we already made a few comments about
variability between the human being genome and other species and also be-
tween two different unrelated individuals. Obviuosly, this enormous genomic
similarity simplifies the task of looking for variants giving rise to different
traits, but even so it is necessary to bear in mind that the approximately
0.1% of the DNA sequence where humans show differences represent millions
of single positions along DNA. Adding interactions to this sketch does not
make things easy.

Variation is, according to Darwin, the principle of evolution. Variation
is fundamental for a population to evolve. In this sense, kinship, understood
as crossing between closely related individuals, leads to loss of variation that
eventually can lead to the appearance of diseases due to endogamy. Varia-
tion shows itself mainly within but also between populations. The level of
population stratification, that is, how variation is stratified within a pop-
ulation, is an issue of interest in case-control association studies because
stratification can be a confounding factor leading to false positives of asso-
ciation (see below). In this context, investigation of the genetic causes of
complex diseases is facilitated by studying homogeneous populations (e.g.
isolated populations).

Variation can take different forms in the DNA. Structural variations
is the name used to include deletions, insertions or copy number variants
(CNVs) of large segments in the human genome. These variants involve a
large proportion of the genome and as a consequence the scientific commu-
nity thinks their importance could be comparable with SNPs (see below).
Figure 1.7 shows an approximated distribution of CNVs along the human
genome. This field of study is at the peak now [221, 310, 413] and, despite
being relatively recent, a new project has been created to study this kind of
variables over the same individuals used in the HapMap Project [389]. Al-
though global inventory of CNVs is still incomplete [361], they are thought
to be important factors which variants contribute to common phenotypes
of biomedical importance [273]. In fact, CNVs have already been used in
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Figure 1.7: Localization and frequency of CNVs in the human genome.
Image obtained from the Wellcome Trust Sanger Institute web page.

association studies looking for genetic variants involved in development of
common diseases [428].

Along this essay, prediction of the condition of an individual by means
of statistical methods will be focused on other kind of variations.

In genetics, the term polymorphism refers to the existence of multiple
alleles of a gene in a population. For a locus to be considered as polymorphic
in any population, its rare allele has to have an allelic frequency above 1%; in
any other case, it will be considered a mutation, as it has not settled enough
for ensuring its “survival” in the population. In this sense, it is clear that
mutation is the main source of variation. Polymorphism includes different
types of genetic markers. Let us take a quick look at them:

• Restriction Fragment Length Polymorphism (RFLP). DNA specific
sequences cut by restriction enzymes and variable among individuals.

• Variable Number Tandem Repetition (VNTR). Term used to refer to
locations inside the genome where a short nucleotide sequence is or-
ganized as a tandem repeat. They often show variations in length
between individuals, which makes them extremely useful in the differ-
ent branches of genetics. There are different classes of VNTRs (mi-
crosatellite, minisatellite, . . . ) but probably the most used are the
Short Tandem Repeats (STRs). STRs occur when a pattern of 2–
10 nucleotides is repeated, being the repeated sequences adjacent to
each other. By examining the number of repetitions of enough STR
loci, a unique genetic profile can be created for each individual. Due
to this, STR analysis has become the prevalent analysis method for
determining genetic profiles in forensic cases.

• Single Nucleotide Polymorphisms (SNP). Variations in the DNA se-
quence that affects only to one position in the genome (that is, one
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Figure 1.8: Identification of SNPs using sequencing analysis. In this illus-
tration a C–T SNP is seen in position 986 of the sequence. Image obtained
from www.clcbio.com.

nucleotide). A simple example is shown in Figure 1.8. SNPs form
around 90% of all the human genomic variations, so they are very
common, appearing frequently along DNA. It is a common thought in
the scientific community that SNPs can be in the core of the develop-
ment of some common diseases which could have a complex pattern.
As a result, large resources have been used in this area, giving rise to
an extensive area of study. This essay will be partly devoted to the
study of statistical methods applied on SNP case–control data.

As mentioned above, analysis of common diseases with a likely genetic
basis will be a main issue in the present essay. Looking for the genetic basis
of such diseases is one of the greatest challenges today [335]. Cancer, asthma
or psychiatric disorders, to name some examples, are likely to have complex
genetic basis. This complexity refers not only to the fact of having several
locus associated with a particular disease, but also with the environment
having an effect (in interaction with genotype). Many other factors have to
be taken into account when carrying out a case-control association study,
some of them of a biological nature, such as phenocopy, low penetrances,
etc., whereas some are more properly related to the study design, such as
sample sizes, approaches to correct for multiple test hypothesis, etc. [394].
Due to this complexity, the study of the multifactorial diseases represent
a main challenge for statistics, as methods of analysis of genetic databases
dealing with this complexity have to be adjusted or developed, at the same
time they prove to be computationally feasible.

1.1.6 Human Genome Project

In 1997, a research group from the University of Munich published the se-
quence of a mtDNA region of 379 bp from a piece of bone of an original
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fossil from a Neandertal discovered in 1856 [223]. This study was considered
to be an amazing technical achievement, due to all the technical difficulties
related to it. Besides, it enabled to explain that Neandertal genealogy be-
came extinct without contributing to the mtDNA of modern humans. This
achievement was followed by studies with similar significance and even more
technical difficulties that later will lead to the sequence of the first Nean-
dertal mtDNA genome. This period illustrates the enormous technological
advances that have allowed the boom of genomics, understood as the science
studying nuclear complete genomes. The Human Genome Project (HGP),
developed in 1990-2006, is the paradigm of all the advances in the genomic
science in these last two decades.

HGP stated in 1998 a series of aims to be fulfilled. Among them we find:

• To complete the human genome sequence in 2003. This initial aim
was forced to be sped up because of the competition created with the
private initiative of Celera Genomics, so finally the first draft of the
genome was published in 2001 in Nature [203] (the map from the HGP)
and Science [412] (the map from Celera Genomics).

• To study variation in the human genome. It is expected that deep
knowledge of variation can lead to know genes and loci involved in the
development of complex diseases.

• To identify all the genes and determine the function of each one of
them.

• To encourage development and appearance of sequencing technologies.
As a result, sequencing technologies have evolved unbelievably fast,
giving rise to high amounts of large datasets that have to be analyzed.

Apart from these, HGP had other aims, like popularization of genomics
or achievement of advances in different genomic branches. All together rep-
resent a lot of benefits, many of them still to be achieved, and most of them
related with advances in medicine and evolution, but also in other branches
of the genetics field. Ethical, legal and social issues also took away part of
the budget: confidenciality, genetic diagnosis, detection of genetic variants
associated with diseases and traits, . . . will be topics of constant debate in
the immediate future and need therefore to be spreaded in society, so ethical
basis supporting biomedical advances in the future can be well-based.

The tremendous advances in sequencing technologies have given rise to
the arising of large databases full of genetic data. As a consecuence, bioin-
formatic tools have also evolved. These bioinformatic tools intend to provide
with the ways to deal with data so all the meaningful information contained
in it can be correctly obtained. In this sense, bioinformatics is probably the
field of science which has better exploited the boom of genomics.
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Consequences of the HGP will let to be felt in science during a while.
That will be of advantage to mankind, as advances in biomedicine and
biotechnology are expected to be huge.

1.2 Gene expression

As told in the previous section, the nucleotide sequences in certain DNA
fragments contain the necessary information for elaborating proteins, the
main structural and functional elements in the human cell. In fact, these
nucleotide sequences fix the amino acids and the order in which they have to
be added during protein synthesis. The process by which this information
inside DNA is decoded and translated giving rise to proteins is commonly
known as gene expression. This process comprises two essential steps: tran-
scription (copy of a DNA sequence in the messenger RNA) and translation
(from the messenger RNA to the protein). A general sketch of the process
is shown in Figure 1.9.

Study of gene expression processes provides geneticists with the ability to
detect the entire complement of genes whose expression pattern is perturbed
in an organism with a given phenotype or trait, aiming to discover the
genetic basis of complex traits [28]. It consists of measuring the amount
of mRNA molecules (transcriptome) that are being produced in one or a
population of cells for each gene. Microarray methods are the tools needed
to measure the transcriptome. Everything began in the early 1990s, when
two groups pioneered microarray technology. Steve Fodor and co-workers at
Affymetrix developed commercial microarrays, using photolithography and

Figure 1.9: Explanatory diagram of the transcription and translation
processes to produce a protein. Only exonic regions inside DNA are
translated to give rise to the aminoacidic chain. Image obtained from
members.cox.net.
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solid–phase chemical synthesis to build short oligonucleotides in high density
on a solid surface [132, 309]. Today, Affymetrix controls around 70 per cent
of the market. At the same time as Fodor and co-workers, Patrick Brown
and colleagues at Stanford University School of Medicine were developing a
microarray that was manufactured by mechanically printing small spots of
DNA solutions onto a glass microscope slide; this last technology was widely
adopted, especially in academic settings, where its relatively low cost and
flexibility were important.

Search for genetics of complex diseases by means of gene expression has
its zenith in the use of some gene expression datasets [5, 6, 161] that have
become widely used in the statistical literature, with the aim of compare and
contrast abilities and disabilities of different statistical methods developed
to be used in the field. Nevertheless, many of the scientific articles about
gene expression aim to study genetics beyond disease, aiming to discover
gene function, complete gene pathways or gain knowledge in what respect to
cellular processes [198, 263, 373, 374, 396]. Anyway, statistics have reached
a great importance in this field, as the science designed to deal with data
and uncertainty.

A typical microarray experiment follows several steps, briefly depicted
in Figure 1.10. First, mRNA is isolated from a biological sample of interest.
At this point, complementary DNA (cDNA) is usually synthesized, because
DNA is more stable and easier to work with than RNA. Samples are then
labelled with a fluorescent dye. The labelled DNA is then hybridized to
the microarray surface. After hybridization, the microarrays are washed to
remove non-specific signal and then scanned to obtain an image at the wave-
length of the labels used. These images show the level of fluorescent label
hybridizing to each spot on a microarray. The images are then processed
with one of a variety of data acquisition software packages that calculate
important measurements for each spot on the array, such as total intensity,
local background, or pixel–by–pixel intensity. These measurements are what
are usually referred to as raw results of gene expression for microarray data.
Raw results are used to calculate an indicator of mRNA levels in the original
biological sample. Different microarray platforms exist for measuring gene
expression, such as Affymetrix, Illumina,. . .

As a logical consequence of progressive cost reduction and increase of
computational capacities, gene expression data has proliferated during the
last decade. The function of bioinformatics is now essential to the effective
interrogation of gene expression data. This makes expertise in bioinfor-
matics a prerequisite for efectiveness in genetics. Bioinformatics could be
understood as the science making up biology and the computational tools
needed to extract, organize and analyze all the information inside biological
data. This task is highly difficult even if we only consider the gene expres-
sion field inside the inmensity of the biological science, as it poses a large
number of statistical problems, different microarray platforms, lack of stan-



18 1.2. Gene expression

Figure 1.10: Steps carried out to obtain the final product of any microarray
experiment, understood as numerical expression intensities for each sample
in each gene. Image obtained from the IGBMC Microarray and Sequencing
Platform web page.

dardization,. . . This problem is easily observed just making a quick search
on the web, and realizing that the same original dataset can be found in
different formats, it is used with different purposes and so on. On the other
hand, one of the most important advantages of the gene expression field is
the existence of an enormous variety of public databases, as opposed to the
field of case–control SNP studies, where data is rarely made public, and only
results are available for the scientific community.

This section is organized as follows: next subsection is devoted to ex-
plain briefly how gene expression measurements are obtained from spotted
images; last subsection lists some of the areas where statistical methods are
recursively used. Anyhow, we do not make a deep study, as next section
will deal with classification and prediction methods for this kind of genetic
data.

1.2.1 Image processing

Even though the study of the technical steps needed to obtain gene expres-
sion measurements is not within the scope of the present introduction, it
is worth summarizing how image processing in a microarray slide is car-
ried out. As briefly explained previously, cDNA microarrays are prepared
by automatically printing thousands of cDNAs in an array format on glass
microscope slides, which provide gene–specific hybridization targets. The
image analysis task is to extract the average fluorescence intensity from
each target site (cDNA region).
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Image processing generally involves three stages, graphically explained
in Figure 1.11. First, the spots representing the arrayed genes must be
identified and distinguished from spurious signals that can arise due to pre-
cipitated probe or other hybridization artifacts or contaminants such as dust
on the surface of the slide. This task is simplified to a certain extent because
the robotic systems used to construct the arrays produce a regular arrange-
ment of the spotted DNA fragments. The second stage is the estimation of
background. For microarrays, it is important that the background is cal-
culated locally for each spot, rather than globally for the entire image as
uneven background can often arise during the hybridization process. Finally,
the background–subtracted hybridization intensities for each spot must be
calculated. There are currently two schools of thought regarding the calcu-
lation of intensities: the use of the median or the mean intensity for each
spot [325]. Some studies [421] add a fourth stage, consisting of determining
the quality of each measurement.

Common problems are noise, irregularities of spot shape, size, position,
. . . . Therefore, users need to be able to acquire quality data, to control
for imperfections that happen during printing and hybridization. Without
a good scheme to produce reliable, high quality data, any complex data
mining tools one may use can lead to misleading results [421].

Most of the commercially available microarray scanner manufacturers
provide software that handles image processing; moreover, there are several
additional image processing packages available. Many of them are listed in
[325, 327]. At the same time, different numerical/probabilistic methods are

Figure 1.11: General stages to obtain gene expression images. This task
is usually handled by specific image processing software packages. Joint of
images obtained from the Centre de Recherche Public of Luxembourg (left)
and the web page of Crossover Bioinformatics (right).
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proposed to correctly measure the intensities for each spot, as for example
[70, 421].

1.2.2 Research lines: challenges

Undoubtedly, there are many sections inside the whole gene expression mea-
surement process that could be explained here. However, we will only focus
on mentioning two of them, normalization of cDNA and oligonucleotide mi-
croarray data and classification of gene expression samples, as both require
the use of statistical methods to be solved. Both of them mean active re-
search lines in statistics nowadays.

1.2.2.1 Normalization of cDNA and oligonucleotide microarray
data

There are a number of reasons why data should be normalized before statis-
tical processing, including unequal quantities of starting RNA, differences in
labelling or detection of efficiencies between the fluorescent dyes used [328].
Some sources of variability are random but most are systematic and due to
specific features of the particular microarray technology. Systematic effects
resulting from the biological process under study are of interest whereas
other systematic sources should be removed [434]. For instance, in two-
color cDNA microarrays, where each microarray has been hybridized with
RNA from two sources labelled with different fluors, the two color channels
obtained are usually referred as red and green (by convention). After image
processing (see above), the red and green intensities must be normalized
relative to one another so that the red/green ratios are as far as possible an
unbiased representation of relative expression. In any other case, analysis
and interpretation of gene expression profiles will be exposed to unfavorable
and unreal results due to incorrect data processing [382].

The purpose of normalization is to adjust for effects which arise from
variation in the microarray technology rather from biological differences be-
tween the RNA samples or between the printed probes. Imbalances between
the red and green dyes may arise from differences between the labelling ef-
ficiencies or scanning properties of the two fluors complicated perhaps by
the use of different scanner settings. If the imbalance is more complicated
than a simple scaling of one channel relative to the other, as it usually will
be, then the dye bias is a function of intensity and normalization will need
to be intensity dependent. An example of gene expression normalization
extracted from [261] can be seen in Figure 1.12. Differences between ar-
rays may arise from differences in print quality, in ambient conditions when
the plates were processed or simply from changes in the scanner settings.
Therefore, normalization between as well as within arrays will need to be
considered.
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Figure 1.12: Normalized expression ratio versus average intensity in the red
(R) and green (G) channel plotted on a double logarithmic scale. Different
kinds of correction are carried out for the intensities of the red (C, E, G, I)
and the green (D, F, H, J) channels. Image obtained from [261].

Scientific literature covering this topic is dense. Many approaches can
be found with the aim of normalizing expression levels. Some of them are
based on extremely simple assumptions, while there are a number of alter-
native approaches based on statistical techniques, including linear regression
analysis [68], log centering, rank invariant methods [404] and Chen’s ratio
statistics [70]. Locally weighted linear regression (lowess) [74] analysis has
also been proposed [437, 438]; a robust semiparametric normalization tech-
nique using local regression is shown in [210]; robust non–linear methods
using cubic splines are developed in [434].

The Bioconductor project site (www.bioconductor.org) contains soft-
ware packages to carry out different normalization methods, as those de-
scribed in [382]. The Bioconductor packages use the free statistical pro-
gramming environment R. For normalization of cDNA arrays, the relevant
packages are marrayNorm [102, 103] and limma.

Most of the scientific literature addresing microarray normalization con-
cerns cDNA array data, whereas only a few examples can be found for
oligonucleotide arrays [242, 243, 357, 358]. Differences between these two
kinds of array refer to the different DNA products that can be used to fill
the probes in spotted microarrays.

Defining objective criteria for the quality of a DNA microarray assay is
highly necessary, as microarray assays have become widespread and subse-
quent results of analysis applied to this data are highly dependent of the
normalization carried out. A quality standard should be approved by the
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scientific community. Information about the standards usually carried out
can be found in the Normalization Working Group of the Microarray Gene
Expression Data (MGED) web page (www.mged.org).

1.2.2.2 Classification of gene expression samples

One of the most important research lines in statistics nowadays is focused on
developing new statistical tools for classification of gene expression samples.
This classification can be made from known classes (supervised learning)
or trying to recognize different classes from data patterns (unsupervised
learning).

A fast revision of the scientific literature is enough to conclude that (the
different types of) cancer dominate most of the articles, opposite to other
genetic association studies, where it is common to find any disease with a
likely genetic basis. Furthermore, a few databases can be recurrently found
along the literature, as the standard data used to compare many of the
statistical methods that keep arising with the existing ones. They cover
some of the diseases more studied in gene expression, all of them related
with cancer: breast cancer [343, 408, 429], leukemia [161], colon cancer [6],
prostate cancer [380] and B–cell lymphoma [5], just to mention a few.

Gene expression studies have meant a chance to develop new statisti-
cal tools needed to deal with high–dimensional data, specially those cases
where number of covariables (genes) p widely exceeds the number of samples
n (p >> n). These high–dimensional problems also carry around compu-
tational matters so, when looking for proper statistical methods, not only
classification and prediction abilities, but also computational feasibility and
efficiency have to be beared in mind. Another unresolved issue refers to
the way multiple test problems are corrected. Next section will be partially
devoted to the study of these and other questions.

1.3 Classification and prediction in genetics: chal-
lenges

Along the last two sections the different genetic concepts needed to cor-
rectly understand the results of this work have been pinpointed. Polymor-
phic genetic variants received special attention (see Section 1.1), as high–
dimensional studies involving them will represent a main part inside this
essay.

Microarray gene expression studies have been also explained in great
detail (see Section 1.2). Technical details about how to obtain the data (see
Subsection 1.2.1) have been given, just as for the shape of the final data,
understood as the fact of having much more variables than samples (p >> n
problem), often in a proportion of 100 to 1. Moreover, scientific areas where
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statistics seem to have great importance have been listed (see 1.2.2). Use
of statistical methods within these areas is expanding, giving rise to the
development of new tools. This is a fundamental fact to obtain valuable
scientific knowledge.

Therefore this section is thought to introduce the readers to forthcoming
chapters, where new approaches ready to deal with genetic data will be
explained. Empirical studies shown here will move in the sphere of clinical
genetics, leaving aside statistical studies in forensic and population genetics.

The rest of this section is organized as follows. Case–control SNP associ-
ation studies are reviewed in Subsection 1.3.1. Over there, a state–of–the–art
of the field will be described from a statistical point of view. Furthermore,
we will talk a little about genome–wide association studies (GWAS), that
represent present and future of the genetics of disease. In Subsection 1.3.2
a revision on classification in the gene expression field is given in a super-
vised (training data where the classes are known) and unsupervised (trying
to define new classes from data) way of learning. Emphasis will be pointed
toward the former one, as some of the techniques developed in this essay
deal with this kind of problems.

1.3.1 Case–control SNP association studies

Before the early 1980s, genetic risk factors for a disease or trait could be
identified only through direct analysis of candidate genes, usually through
association studies. Starting soon after their discovery, blood–group systems
as ABO, MN and Rh were tested directly against an array of human diseases,
tipically with little replicability [335].

Nowadays, two different approaches can be distinguished with the aim
of discovering genetic regions involved in disease development:

Linkage analysis. A method for localizing genes that is based on the co–
inheritance of genetic markers and phenotypes in families over several
generations.

Association studies. A gene–discovery strategy that compares allele fre-
quencies in cases and controls to assess the contribution of genetic
variants to phenotypes in specific populations.

At a fundamental level, association and linkage analysis rely on similar
principles and assumptions [40]. Both rely on the co–inheritance of adjacent
DNA variants, but over few generations for linkage studies and over many
generations for association. Thus, association studies can be regarded as
very large linkage studies. Considering this idea, it is theorized that disease
gene regions that are identified by linkage will often be large, and can encom-
pass hundreds or even thousands of possible genes across many megabases
of DNA. By contrast, association studies draw from historic recombination
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so disease–associated regions are (theoretically) extremely small. Authors
supporting association studies base his opinions under this idea, as disease
regions are thought to be not large, due to the effect of recombination across
time.

Linkage analysis leaded to the discovery of many genes for Mendelian
diseases and traits years ago. Some examples are shown in [335]. Robustness
of linkage analysis applied to Mendelian traits can be seen by its historic
low false–positive rate [330]. But so far, all genes first identified by linkage
analysis are those with low allele frequency and high displacement, that is,
near Mendelian inheritance. Differences between Mendelian inheritance and
non Mendelian inheritance are shown in Figure 1.13, and can be measured
in terms of displacement, denoted by t, which is the number of standard
deviations difference between the mean values of the two homozygotes AA
and aa.

By contrast, no genes with moderate displacement have been identified in
this way. Moderate displacement is what is expected to be found in common
diseases with a genetic basis. Linkage studies have had only limited success
in identifying genes for such diseases, like heart disease, asthma, diabetes
and psychiatric disorders. Some recognized limitations of existing linkage

Figure 1.13: Examples of Mendelian and non Mendelian inheritance using
a gaussian model. Graph (a) shows a dominant Mendelian locus with low
allele frequency p = 0.00275 and displacement t = 5 standard deviations
(sd; signaled in yellow background in the figure). Disease occurs above
the threshold of 3 sd. Disease risk for heterozygotes (Aa) is 98% and for
homozygotes aa is 0.13%. Prevalence is 0.67%. Graph (b) shows a non
Mendelian additive locus with allele frequency p = 0.4 and displacement
t = 0.5 sd for each A allele (total displacement t = 1). Disease occurs
above the threshold of 2.5 sd. Disease risk for high–risk homozygotes AA is
6.7%, for heterozygotes Aa it is 2.3% and for homozygotes aa it is 0.62%.
Prevalence is 2.4%. Image obtained from [335].
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strategies in complex disorders are listed in [368].
Therefore, although traditional approaches like linkage analysis may

identify a few of the genetic susceptibility agents, it seems to be clear that
this problem should be rethought from a forward–genetics perspective. Most
authors claim that genetic association studies provide greater power and res-
olution of location than linkage studies [334]. As a consequence, they have
become the common approach to dissect the genetic etiology of complex
traits. However, association studies suffer from many limitations, commonly
referred as factors complicating genetic analysis (see forthcoming section).
Despite these known limitations of association studies, their power to detect
genetic contributions to complex diseases can be much greater than that of
linkage studies. Most of the statistical methodologies developed along the
last decade have been thought to attenuate some of these widely perceived
limitations.

Two fundamentally different designs are used in genetic association stud-
ies: those that use families (family–based) and population designs that use
unrelated individuals, called case–control designs. The approach often used
is the case–control design, in which a difference in allele frequency is searched
between affected individuals and unrelated unaffected controls. Although
both designs have their own supporters, here we will try to offer an objec-
tive point of view.

Case–control gene association studies are undoubtedly the most common
in the scientific literature. Many authors [62, 335] claim they are a more
powerful and efficient approach, ensuring robustness when studying a large
number of independent SNPs. From an epidemiological perspective, a ma-
jor limitation of this approach is the potential for confounding leading to
artefactual as opposed to causal associations, giving rise to false positives.
Conventional case–control gene association studies have a long track record
of false–positive results [205, 227].

On the other side, family–based designs have unique advantages over
population–based designs, as they are robust against population admixture
[394] and stratification, and allow both linkage and association to be tested.
Furthermore, the fact that family–based designs contain both within and
between–family information has substantial benefits in terms of multiple
hypothesis testing, especially in the context of whole–genome association
studies. As a drawback of family–based studies, it is often said that they
require more genotyping, which increases the popularity of population de-
signs. Anyway, family-based study designs continue to contribute much to
the modern era of genome-wide association studies. A complete work show-
ing the role of family studies in modern genetics research, using results from
the Framingham Heart Study as examples, can be seen in [83].

The simplest version of the family–based design, the transmission dise-
quilibrium test (TDT) developed in [384], is well known. Family trios are
the basis of the TDT. A straightforward explanation is shown in Figure
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Figure 1.14: For the pedigree in the figure, the mother can only transmit the
A allele because she is homozygous for A. Such a parent is not informative
about transmissions to affected offspring. However, the father transmits A
and B with equal frequency, yielding offspring with AA or AB genotypes
with equal frequency. The transmission disequilibrium test (TDT) discards
all homozygous parents and just looks at transmissions from a heterozy-
gous parent to an offspring. Assuming the null hypothesis is correct, each
transmission of A occurs with a probability of 1/2. Image obtained from
[227].

1.14. This test compares the observed number of alleles of type A that are
transmitted to the affected offspring with those expected from Mendelian
transmissions. An excess of A (or B) alleles among the affected indicates
that a disease susceptibility locus for the trait is in linkage and in linkage
disequilibrium (LD) with the marker locus [226, 227].

Differently than thinking about them like face–to–face, in many stud-
ies, as for instead [227], is believed that both designs, which have different
strengths and weakness, should be viewed as complementary and not as
competitive in the effort to overcome the challenges of association studies
for complex diseases. In terms of statistical power, the differences between
the two approaches are generally small, specially when the use of trios in
family designs is compared to case–control studies, as can be observed in
Figure 1.15, obtained from [227].

1.3.1.1 Background

Although, as commented in the last section, gene–disease associations have
been searched since much time ago, this last decade represent the explosion
of genetic association studies.

The number of diseases suspicious of having a genetic basis is countless.
The scientific literature offers a straightforward opportunity to find a high
number of articles trying to detect a positive association. Here we will only
show some examples of gene–disease association studies involving some of the
most renowned diseases: different cancer types, like breast [248, 303, 369,
371], bladder [147], esophagus [192], lung [449], . . . ; psychiatric disorders
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Figure 1.15: The estimated power levels for a case–control study with 200
cases and 200 controls are compared with those for various family–based
designs: 200 trios (of an affected offspring plus parents); 200 discordant sib-
ling pairs (DSPs: one affected and one unaffected) without parents; 200 trios
of discordant offspring (at least one affected, at least one unaffected) and
no parents. Comparisons are carried out for rare diseases (a) and common
diseases (b). Image obtained from [227].

like bipolar disorder [191], schizophrenia [279] (these two are many times
studied together, for instance in [31, 279]), autism [262], eating disorders [86],
attention–deficit hiperactivity disorder (ADHD) [414]; neurological diseases
like Parkinson’s disease [150] or Alzheimer’s disease [239]; diabetes type 1
[321] and type 2 [72]; myocardial infarction [249] and heart–related disorders
like blood pressure (BP) [375] and hypertension [272]; ischemic stroke [80];
rheumatoid arthritis [249]; asthma [178]; obesity [324] or even traits like hair
color or skin pigmentation [39, 332].

Unfortunately the literature is teeming with reports of associations that
either cannot be replicated or for which corroboration by linkage has been
impossible to find [62, 146, 388, 427]. Explanations for this lack of re-
producibility are well–rehearsed, and tipically include poor study design,
incorrect assumptions about genetic architecture and simple overinterpreta-
tion of data. Some estimations about a high incidence of false positives in
case–control studies exist [205]

The common errors encountered in association studies of complex dis-
eases are: small sample size, lack or improper correction for multiple testing,
poorly matched control group, failure to attempt study replication, overin-
terpretation of results and publication bias and more. While many of those
errors are related with mistakes in the study design or financial problems,
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publication bias is the result of the imperative need to find a positive associ-
ation, to publish the result in a journal with high impact index. Violations
of Hardy–Weinberg equilibrium are also in the core of many non–replicable
associations [402].

Credibility of genetic association studies is studied deeply in [204] by
means of calculation of the Bayes factor

B =
√

1 +
m

n0
exp

[
(−z2

m)
2(1 + n0

m )

]
where m is the effective number of events in the study, zm is the standard-
ized test statistic for the distribution of the observed effect size θ under the
null hypothesis N(θ, σ2/m) and n0 takes into account differences between
expected values of the effects found under the null (H0) and the alternative
(H1) hypothesis. As a bayesian approach, the Bayes factor is a poststudy
measure of the odds of association being increased or decreased from the re-
sults in the study. B < 1 means that the study increases the odds that some
probed association exists compared with previous thoughts, while B > 1
means a decrease in the odds. Figure 1.16 shows the estimated Bayes fac-
tors for 50 meta–analyses versus the p–values obtained for the corresponding
variables, all of them under 0.05.

Anyway, focus of genetic association studies has not been only on the
search for lonely, unique variants with a marginal effect. Interaction or

Figure 1.16: Estimated Bayes factors for 50 meta–analyses of genetic asso-
ciations with formally statistically significant results. The Bayes factor is
plotted against the observed p–value. Dashed lines correspond to threshold
values (1, 0.32 and 0.1) separating different Bayes factor categories (weak
support, substantial support and strong support). Image obtained from
[204].
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Hom. A + Heter. Hom. a Total
Cases r0 r1 R
Controls s0 s1 S
Total n0 n1 N

Table 1.1: 2 × 2 contingency table showing the observed frequencies in a
case–control association study under a dominant model.

epistasis between different DNA regions is thought to have an effect on
disease development, especially regarding complex diseases. This effect is
in some cases believed to be even larger than that of marginal variants
[287]. A large proportion of studies have been devoted to develop or evaluate
statistical or machine learning tools with the aim of discovering gene–gene
interactions [80, 81, 185, 239, 266, 276, 303, 318, 369, 375], despite the
existing difficulties to settle a common definition for epistasis and interaction
[286, 316, 317].

1.3.1.2 Review of statistical methods

This subsection is devoted to explain some of the most used statistical pro-
cedures in case–control association studies with SNPs. Although scientific
literature is full of ad hoc non–prosperous methods, those mentioned here
are commonly found in many studies.

Single point analysis Use of statistical techniques in genetic
association studies widely varies from one study to another. In any case,
single point analysis [3], looking for association between each SNP marker
and the disease under study, are almost always carried out.

As biallelic SNPs can take three possible values (homozygous for the
rare (A) or the common (a) allele and heterozygous), case–control data
can usually be arranged in a 2 × 2 contingency table for each SNP, simply
assigning the heterozygous individuals to one of the homozygous variants.
This assignment is made according to either a dominant or a recessive model.
An example of 2× 2 contingency table is shown in Table 1.1.

The odds ratio (OR) or cross–product ratio is obtained as the quotient
of the odds.

OR =
r0/r1

s0/s1
=
r0s1

r1s0

It takes values in (0,∞). Independence of case–control status and genotype
is equivalent to OR = 1. When 1 < OR < ∞, allele A is more likely to
be associated with case status, and vice versa if 0 < OR < 1. Values of
OR further away from 1 represent stronger levels of association. Confidence
intervals for the OR values are given by
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OR · exp
[
±z1−α

2

√
1
r0

+
1
r1

+
1
s0

+
1
s1

]
where z1−α

2
is the (1− α/2)–quantile of the standard normal distribution.

The chi–square (χ2) statistic is a goodness–of–fit test first introduced by
Karl Pearson [308]. With data from a 2 × 2 contingency table, it tests the
null hypothesis H0 stating no dependence between case–control status and
genotype. In that case, the expected cell frequencies are

For sample counts, Pearson proposed the test statistic

X2 =
∑
i

(Oi − Ei)2

Ei

where the Oi are the observed frequencies (Table 1.1) and the Ei the ex-
pected ones (Table 1.2). For large samples X2 has approximately a χ2

null distribution with 1 degree of freedom (for 2 × 2 contingency tables).
Significant deviations from this distribution, usually measured by means of
p–values, indicate association. Pearson χ2 statistic is easily extended to
I × J contingency tables.

The Cochran–Armitage trend test [21] and the Fisher’s exact test [128,
129] are other goodness–of–fit tests tipically used in genetic association stud-
ies (see GWAS section).

Logistic regression (LR) Over the last 30 years, the logistic
regression model [403] has become a standard method of analysis in epi-
demiology [189]. It is suited for studies with a binary response variable.

From a dataset {(x1, y1), . . . , (xn, yn)} where xi = (xi1, . . . , xij , . . . , xip)
are the variable measurements (genotype) in each individual and the vector
of binary responses Y = (y1, . . . , yn) ∈ {−1, 1}n informs about membership
to cases (1) or controls (-1), the logistic regression model assumes that

P (yi = 1|xi) = π(xi) =
1

1 + exp(−β0 − x′
iβ)

where β = (β1, . . . , βp) ∈ Rp is the vector of coefficients for each covariate
and β0 the independent coefficient. The decision of whether to assign the

Hom. A + Heter. Hom. a Total
Cases n0R

N
n1R
N R

Controls n0S
N

n1S
N S

Total n0 n1 N

Table 1.2: 2 × 2 contingency table showing the expected frequencies in a
case–control association study.
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i sample to cases or controls is usually accomplished comparing the proba-
bility estimate with a threshold (e.g. 0.5). The coefficients β are obtained
maximizing the log–likelihood function

L(β) =
n∑
i=1

{yiln [π(xi)] + (1− yi)ln [1− π(xi)]}

Coefficient values are easy to interpret, so the effect of each covariate
(SNP) on the outcome can be known. Furthermore, significance of these
same coefficients can be easily tested by means of different strategies. Logis-
tic regression allows also for categorical variables (e.g. SNPs) as predictors;
this is made translating categories to several binary (dummy) variables.

Use of logistic regression have been common in genetic association studies
[75, 283, 304, 420], carrying out both conditional and unconditional models.

Classification and regression trees (CART) Tree method-
ology [50] is a product of the modern computer era. Classification trees
(CART) provide a meaningful tool to discover associations in intricate high–
dimensional problems, besides being easy to interpret. An example of a
classification tree can be seen in Figure 1.17. Nodes or branches T0, . . . , T3

ask a question to the dataset that split it into two new different and more
homogeneous (in terms of the response) datasets. The so called terminal
nodes t1, . . . , t5 end with data division and assign a class to each subset.
The splits are selected among a set S = {si} of questions involving the
covariates.

Like other classification procedures, CART usually divides each dataset
in a training and a test sample. The entire construction of a tree revolves
around three elements:

1. The selection of the splits.

2. The decisions when to declare a node terminal or to continue splitting
it.

3. The assignment of each terminal node to a class.

The third element is solved in a straightforward way assigning to the
class with more individuals in the training sample. To select the optimum
split si in a binary class problem is made from an impurity measure

Φ : D → R

being D = {(p1, p2) : p1 + p2 = 1, p1 ≥ 0, p2 ≥ 0}. The impurity measure Φ
has to fulfill:

(i) Φ takes a maximum in 1
2 ,

1
2 .
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Figure 1.17: Example of a classification tree in a case–control classification
problem with SNP data. The possible genotypes for a binary SNP are AA,
Aa, and aa; that can be coded as 1, 2, and 3. Data is splitted from the
selected SNP values in each branch/node. Terminal nodes classify as a
case or a control depending on the rate of training samples showing each
category. For instance, the most left leave of the tree indicates that SNP5
with genotypes AA or Aa, and SNP6 with genotype aa, are able to classify
the cohort into 249 + 186 cases, where 186 are in reality control individuals;
this indicates the classification error. Package rpart in R allows for graphical
displays of classification trees.

(ii) Φ takes a minimum in (0, 1) and (1, 0).

(iii) Φ is symmetrical.

So the impurity in a node is defined as

i(T ) = Φ(proportion of cases, proportion of controls)

and the split selected in a node will be the one giving rise to a higher decrease
in node impurity from the previous node to the resulting nodes.

To decide when to declare a node terminal is so simple as choosing a
threshold of decrease in node impurity from which no splitting can be carried
out. Another option leading to the same end is to allow the tree to grow to
their maximum and prune.

An advantage of CART in comparison with similar methods is that solves
the missing data problem by means of surrogating splits. The surrogate split
of a split is the split giving rise to the most similar data division.

Besides some of the results shown in this essay, CART has been widely
used in association studies [69, 147, 321, 371, 436, 445].
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Random forests (RFs) Random forests (RFs) [48] are a com-
bination of tree predictors so it could be considered an ensembling procedure
like bagging or boosting (see below); however, due to its unquestionable con-
nection with CART, we think it should be better presented separately.

The generalization error for forests converges to a limit as the number of
trees in the forest becomes large. It depends on the strength of the individual
trees in the forest and the correlation between them. An upper bound for
the generalization error is obtained in [48]:

ErrRF ≤ ρ ·
1− ST 2

ST 2

where ρ is the mean correlation between trees and ST is an estimate of
the strength of the tree classifiers. More theoretical results and asymptotic
properties about ensembles of trees can be found in [9, 48].

Trees constructed in RFs show slight differences with those developed in
CART procedures. Mainly, they can be summarized in:

1. The best split at each node is selected from among a random subset
of m predictor variables.

2. The training set used to grow each tree is a bootstrap resample of the
observations. Due to this, some observations are represented multiple
times, while others are left–out. The left–out observations are called
out–of–bag (OOB) and are used to accurately estimate prediction er-
ror.

3. Trees are allowed to grow to their full size and there is no pruning.

A main advantage of trees (e.g. CART) is its interpretability. Neverthe-
less, this property is lost in random forest. To alleviate this problem, differ-
ent variable importance measures, like the mean decrease accuracy (MDA)
or the Gini index, have been developed. Appropriate explanations about
these measures can be found in Chapter 5. Figure 1.18 shows an output of
the randomForest package [245] in the R software. MDA and the Gini index
are graphically displayed for a problem involving many dimensions; two of
the variables (SNPs) show the highest values for both indices.

Due to recurrent construction of trees and use of resampling techniques,
RF needs of an efficient computer implementation to reduce computation
times, especially in high–dimensional problems. Random forests have been
used in studies involving SNP markers [26, 56, 258]

Multifactor–dimensionality reduction (MDR) Multifac-
tor dimensionality reduction (MDR) [337] is a result of the boom of genetics
and the search for gene–gene interactions along last decade. MDR aims to
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Figure 1.18: Variable importance measures (MDA and Gini index) graphi-
cally displayed using R. Variables are sorted from large to small importance.

identify gene–gene (and higher order) interactions, by means of reducing the
dimensionality of genetic data.

Figure 1.19 illustrates the steps to be carried out to implement the MDR
procedure for case–control study designs. The first step involves partitioning
data into t equal parts for cross–validation (t–fold CV). Effect of the number
of CV intervals in MDR has been discussed in [293]. In Step two, a set of
N genetic markers is selected. These markers and their multifactor classes
or cells are represented in Step three, and the ratio of cases to controls is
evaluated within each cell. In Step four, each cell is labelled as high–risk or
low–risk depending on if the ratio exceeds or not a pre–established threshold
(e.g. 1). All possible combinations of N factors are tried and the best one
in terms of classification error is selected. Step six is used to estimate the
prediction error of the best model. This entire procedure is repeated for
each CV division, and the best global set of markers is selected.

MDR has unquestionably prospered in the genetic field: a Java software
has been developed to make its use easier [169], MDR properties have been
studied [336], even it has been pointed out as a particular case of a classifi-
cation tree [32]. Many studies can be found in the scientific literature using
MDR to search for interactions [72, 75, 289, 297].

Logic regression Logic regression is an adaptive regression
methodology that attempts to construct predictors as Boolean combina-
tions of binary covariates [345]. As the name indicates, it is based on the
construction of logical orders like x1 ∨ (x4 ∧ xc5) to detect interactions [369].
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Figure 1.19: MDR steps. Dimension reduction is carried out by means of
assigning high or low risk to each of the SNP–SNP combinations in Step 4.
Image obtained from [169].

Let x1, . . . , xk be binary predictors and Y the response variable. The
aim of logic regression is to fit regression models of the form:

g(E [Y ]) = β0 +
t∑

j=1

βjBj

where B1, . . . , Bt are Boolean expressions like

Bj = (xi ∨ xcr) ∧ xo

Note that the number t of Boolean expressions do not necessarily coin-
cides with the number k of binary predictors, or the number p of variables
in the model.

The above framework includes different regression models. For example

g(E [Y ]) = E [Y ] → linear regression
g(E [Y ]) = log

(
E[Y ]

1−E[Y ]

)
→ logistic regression

Classification trees can be seen as a logic regression model [345]. In fact,
search of the best model in logic regression is similar in terms of splitting,
deleting and pruning to the one carried out in CART, but now, optional
changes in logical operators increase the set of possibilities to be chosen
for splitting. The range of search algorithms for the best model is wide.
Similarities with CART are abundant. Logic regression models are usually
displayed like trees. Figure 1.20 shows a logic tree and the sequence of



36 1.3. Challenges in genetics

Figure 1.20: Logic regression tree (left), where nodes include logic operators,
and sequence of steps to construct a logic tree (right). Image obtained from
[345].

construction of a logic model by means of trees, obtained using a greedy
search.

Use of logic regression models in genetics have been common [73, 219,
220, 300, 369], although not so wide as with the methods explained previ-
ously.

Combinatorial partitioning methods (CPMs) The com-
binatorial partitioning method (CPM) [298] is another parameter–free ap-
proach. As opposed to the other methods studied here, CPM focus only
on quantitative phenotype responses. Its aim is to form subsets of SNPs
containing different numbers of loci having maximum association with the
response.

Let M be a set of m loci; the set of observed m–locus genotypes is
denoted as GM with size gM . A genotypic partition is defined as a partition
that includes one or more of all possible genotypes from the set GM . A
set of genotypic partitions, denoted K with size k, is a collection of two or
more disjoint genotypic partitions. The application of the CPM to identify
the subset of m loci that divide gM genotypes into k partitions that are
similar within and most dissimilar between partitions for the mean of a
quantitative trait can be broken down into three steps. Figure 1.21 (left)
shows a diagram of these steps. In step one, the estimation of the genetic
variance is measured by variation among the means of the k partitions of
the gM genotypes.
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s2
K =

k∑
i=1

ni(Ȳi − Ȳ )2

N
− k − 1

N

k∑
i=1

ni∑
j=1

(Yij − Ȳi)2

N − k

=
SSK
N
− k − 1

N
MSw

where Ȳ is the sample mean for the response, Ȳi and ni are the sample mean
and the sample size for partition i, Yij is the phenotype of individual j in
partition i, SSK is the sum of squared differences among partition means for
set K and MSw is the mean squared estimate of the phenotypic variability
among individuals within genotype partitions. This is made for the complete
space of sets of genotypic partitions, so it is very demanding, as the number
of ways to partition gM genotypes into a set of k genotypic partitions is
given by

S(gM , k) =
1
k!

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)gM

For m = 2 and gM = 9, there are 21146 ways to partition GM into
k = 2, . . . , 9 partitions. The computational feasibility of the CPM is a matter
of discussion [298] so many applications are restricted to the two–locus case.
Once all the genetic variances have been estimated, the sets of genotypic
partitions that predict more than a prespecified level of trait variability are
retained for further analysis. Figure 1.21 (right) illustrates step one. In the
second step each of the retained sets of genotypic partitions are validated by
cross–validation methods. Finally, the third step is to select the best sets of
genotypic partitions, on the basis of the results of the cross-validation from
Step 2, and proceed to draw inferences about the combinations of variable
loci and the relationships between the distribution of phenotypic variability
and the distribution of the genotypes.

Some applications of CPM can be found in association studies [225, 288],
just as discussions about CPM properties and advantages [179, 185].

Support vector machines (SVMs) SVMs are the main sub-
ject of Chapter 4 inside this essay. Proper explanation about the method
can be found there.

Bayesian approaches Since long time ago, mutual attraction
has existed between genetic association studies and Bayesian methods. The
terms “Bayesian approaches” include many different methods, having all of
them the foundations of Bayes theory behind. Take as example the use of
Bayesian methods to detect interactions in [201] or to use known population
allele frequencies as priors in [20]. In [85] Bayesian methods are used in
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combination wit frequentist ones. An example of use of Bayesian networks
can be seen in [265]. Different Bayesian approaches for variable selection in
association studies are described in [141].

As showing all the existing approaches is unfeasible and there is no rea-
son to enhance one over the others, here we will focus on giving a few ex-
planations about Bayes decision theory [97], bearing in mind the two–class
classification problem.

Bayesian approaches are based on the assumption that the decision
problem is posed in probabilistic terms, and that all of the relevant prob-
ability values are known. So the a priori probabilities P (y = −1) and
P (y = 1) reflecting our prior knowledge about the categories are needed.
Let P (x|y = j), j ∈ {−1, 1} be the state–conditional probability density for
x, then the Bayes rule is given by

P (y = j|x) =
P (x|y = j)P (y = j)∑

k=−1,1 P (x|y = k)P (y = k)

and it is the basis for the leap from the prior probability to the posterior
probability.

If we have an observation (genotype) x for which P (y = −1|x) is greater
than P (y = 1|x), we would be naturally inclined to decide that the true
state of nature is y = −1, and vice versa. To justify this procedure, let
us calculate the probability of error whenever we make a decision. For a
general decision rule d (d(x) ∈ {−1, 1}), if we observe a particular genotype
x,

Figure 1.21: Schematic of CPM steps (left) and graphical explanation of the
stages to be carried out in step 1 (right). Image obtained from [298].
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P (error|x) = Id(x)=1P (y = −1|x) + Id(x)=−1P (y = 1|x)

Thus it is clear that the Bayes decision rule minimizing the probability of
error is

d(x) = 0 if P (y = −1|x) > P (y = 1|x)
d(x) = 1 if P (y = 1|x) > P (y = −1|x)

Now we take λ01 as the loss incurred for deciding y = −1 when the true
state of nature is y = 1 and λ10 for the contrary case. Then, the conditional
risk for each decision is given by

R(y = 0|x) = λ00P (y = 0|x) + λ01P (y = 1|x)
R(y = 1|x) = λ10P (y = 0|x) + λ11P (y = 1|x)

Common choice for the loss function is the 0–1 loss used in classification.
Nevertheless, as a matter of clinic diagnosis, it often does not have the same
impact a case that is declared a control than a control that is declared a
case. Hence the need of different loss functions.

Ensemble procedures: bagging and boosting Ensemble
learning is the process by which multiple models such as classifiers or experts
are strategically generated and combined to solve a particular problem. An
ensemble–based system is obtained by combining diverse models (henceforth
classifiers). Figure 1.22 shows the main idea behind ensemble algorithms.

A brief approach to the two most famous ensemble procedures, boosting
and bagging, will be given here, apart from enumerating some other ones.

Boosting Boosting [140] is one of the most powerful
learning ideas introduced in the last ten years [177]. It was originally de-
signed for classification problems [46, 139, 140]. Boosting is a procedure
that combines the outputs of many weak classifiers to produce a powerful
“committee”.

Let {(x1, y1), . . . , (xn, yn)} be the sample, xi = (xi1, . . . , xij , . . . , xip) the
genotype of the i individual and yi = 1, yi = −1 the way to code now cases
and controls, respectively. If g(x) is a classifier producing a prediction in
{−1, 1}, the error rate on the training sample is

ērrg =
1
n

n∑
i=1

I [yi 6= g(xi)] (1.1)

A weak classifier is one whose error rate is only slightly better than
random guessing. The purpose of boosting is to sequentially apply the
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weak classification algorithm to repeatedly modified versions of the data,
thereby producing a sequence of weak classifiers gm(x), m = 1, . . . ,M . The
predictions from all of them are then combined through a weighted majority
vote to produce the final prediction:

G(x) = sign

(
M∑
m=1

αmgm(x)

)
The values α1, . . . , αM are computed by the corresponding boosting al-

gorithm and weigh the contribution of each classifier. Their effect is to
give more influence to the more accurate classifiers. Figure 1.23 (left) gives
the schematics of the algorithm AdaBoost.M1 [139], also called Discrete
AdaBoost [144]. The data modifications at each boosting step consist of
applying weights ω1, . . . , ωn to each of the training observations (xi, yi),
i = 1, . . . , n. Initially all the weights are set to ωi = 1/n, so that the first
step simply trains the classifier on the data in the usual manner. Different
implementations of the boosting procedure differ in the choice of the ωi and
αj . AdaBoost takes as weights for classification

αm = log
(

1− errgm
errgm

)
while the data weights at each step are updated in the following way

ω
(l)
i = ω

(l−1)
i exp {αm · I [yi 6= gm(xi)]}

Figure 1.22: The main idea underlying ensemble learning algorithms is to
reach a consensus from different classifiers. This is supposed to give com-
petitive results in complex classification problems. Image obtained from
Scholarpedia.
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Figure 1.23: Schematics of the AdaBoost algorithm (left) and bagging in a
feature selection problem (right) with support vector machine (SVM) clas-
sifiers. Images obtained from [177] and [244].

bearing in mind that the error for each classifier is weighted, not as in
equation (1.1)

errgm =
∑n

i=1 ωiI [yi = gm(xi)]∑n
i=1 ωi

Application of boosting procedures is not common in genetic associa-
tion studies. However, some empirical studies can be found [417], even in
pharmacogenetic association studies [347].

Bagging Bagging [47] (from bootstrap aggregation) is
a way to use bootstrap resamples [108, 111, 171] to improve classification or
prediction.

If from our training data Z = {(x1, y1), . . . , (xn, yn)} we obtain bootstrap
samples Z∗b, b = 1, . . . , B and a classifier ĝ∗b(x) is applied to each one, the
bagging estimate is defined by

GB(x) =
1
B

B∑
b=1

ĝ∗b(x)

Bagging can be used with a wide variety of classifiers, although the most
common ones are classification trees [94, 190] and classification trees with
only one branch, called “stumps” [89]. Applications of bagging to association
studies involving SNP markers are highly uncommon [371].
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Other ensemble procedures Bagging and boosting
have unquestionably been the most successful ensemble learning algorithms.
Nevertheless, there are another ensemble procedures which have not received
attention in the genetic field.

Stacking or stacked generalization [49, 235, 433] is a cross–validation
method in which an ensemble of classifiers is first trained using bootstrapped
samples of the training data.

Mixture of experts [206] generates several experts (classifiers) whose out-
puts are combined through a (generalized) linear rule. The weights of this
combination are determined by a gating network, tipically trained using the
expectation–maximization (EM) algorithm [88].

Other statistical methods Apart from the methodologies ex-
plained above, there are many others which use has not been wide in asso-
ciation studies. We will mention here some of them.

The k–nearest neighbors procedure has not spread as a classifier in ge-
netic studies [24], although it has been used as an imputation method for
missing genotype data [338, 441]. Neural networks [13, 275] have received
limited attention [84, 179]. An interesting discussion can be found in [294].
Multivariate adaptive regression splines (MARS) [142] was developed as an
adaptive procedure for regression, that can be adapted to handle classifica-
tion problems [177]. It is well suited for high–dimensional problems in ge-
netics [246]. Principal components analysis (PCA) [14] is a common method
in population genetics [66], and it is also used in other branches of genetics
to correct for stratification [323]. PCA is carried out in many association
studies to account for population substructure in their case–control samples
[12, 61, 67]. Apart from all these techniques, scientific literature is also full
of ad hoc procedures [280, 305, 432] which do not usually have much impact.

1.3.1.3 Factors complicating genetic analysis

Common diseases with a genetic basis are likely to have a complex etiology.
Some common errors usually made in association studies [62] were com-
mented above. To solve them is often a simple matter of common sense,
while in other cases remain an open research problem [92, 307]. Apart from
these ones, which are usually related with the study design, there are numer-
ous complicating factors that can be involved in complex genetic diseases
[394].

Basically, these complicating factors can be divided into two categories:
heterogeneity and interaction. Heterogeneity factors involve multiple pre-
dictor variables and/or multiple outcomes that complicate the analysis by
creating a heterogeneous model. Definitions for the distinct types are:

Allelic heterogeneity: two or more alleles of a single locus are indepen-
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dently associated with the same disease or trait.

Locus heterogeneity: two or more DNA variants in distinct loci are in-
dependently associated with the same disease or trait.

Phenocopy: presence of disease phenotypes with non–genetic basis (ran-
dom or environmental).

Trait heterogeneity: insufficient specificity defining a disease, causing two
or more distinct underlying diseases are considered to be only one.

Phenotypic variability: variation in the degree, severity or age of onset
of symptoms exhibited by persons actually having the same disease.

Locus heterogeneity is expected to be common in complex diseases, as
can be deduced from many genome–wide association studies [386, 390]. Ex-
istence of phenocopy cases support gene–environment studies. Trait hetero-
geneity appears as a result of the existing ignorance about some diseases
yet to be fully studied. In this sense, some cluster analysis carried out
with gene expression data aim to discover new variants of known diseases
[22, 439]. Finally, phenotypic variability requires careful study and deep
knowledge about the disease by the person in charge of collecting new sam-
ples for a particular association study. Figure 1.24 shows a small outline
with definitions and examples of these complicating factors.

Interaction factors have already been discussed in this essay, especially
regarding gene–gene interaction. The other important type of interaction is

Figure 1.24: Sketch of the heterogeneity factors complicating genetic asso-
ciation analysis. Below them (in blue) some examples of diseases showing
these factors can be observed. Image obtained from diagrams shown in [394].
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gene–environment interaction, understood as the existence of combined ef-
fects between DNA variation and environmental factors. A certain amount
of studies have been devoted to seek gene–environment interactions [119,
449], which have been proved to be in the core of some diseases, like depres-
sion [65] or bovine spongiform encephalopathy (BSE) [4, 77].

The biggest challenge nowadays in statistical genetics is the development
of approaches addressing these factors, although bearing in mind that the
source of some of them (e.g. trait heterogeneity) can only be corrected
through deeper studies about the etiology of the disease(s) considered.

1.3.1.4 Simulation studies with SNP data

Not all the genetic studies in the literature are fully carried out with real
data. Many of them involve the use of simulated data. To generate these
simulations, different software packages have been developed in the last
decade. Even so, it is difficult to find two of them serving the same purposes,
as the range of aims to be achieved is broad.

Most of these programs simulate population genetic data [232], which
complexity lies on accurately emulate complex demographic histories de-
pendent on recombination rates, migrations and bottlenecks. There are also
packages for pedigree haplotype data [234]. their main dificulty consists
of correctly simulate patterns of linkage disequilibrium (LD) present in mi-
crosatellite data (expected to be weak) and in dense SNP panels (expected
to be strong). Nevertheless, the aim of this section is addressed to simulation
of case–control SNP association studies.

Although it has many other applications, the SNaP software [301] seems
to fulfill many of the requirements usually demanded to a simulation pack-
age for SNP case–control data. It simulates different patterns of LD and
haplotypes. Phenotype can be in different ways (continuous or categorical,
including case–control). Several output formats are available and most im-
portantly, parameters like amount of noise SNPs, penetrance models, allelic
frequencies or sample sizes are defined by the user. Furthermore, a definition
(multiplicative, additive or heterogenetic) for the kind of locus interaction
to be simulated (if wanted) could be provided.

Probably the most difficult task when simulating genetic data is related
to the need for constructing an LD structure in agreement with the one
found inside the human genome and common haplotype blocks [418]. This
combines with a more recent demand: try to simulate sample and SNP sizes
as the ones carried out in GWAS, that is, dense SNP panels comprising tens
or hundreds of thousands of variables. Appearance of simulation packages
fulfilling those tasks would be invaluable in economical terms, as GWAS real
data could be at least approximated without carrying out very expensive
investments.

A recent approach is genomeSIMLA [107]; genomeSIMLA is a forward–
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time population simulation method that can simulate realistic patterns of
LD in both family–based and case–control datasets. As a consequence, it
allows simulation of whole–genome association data in reasonable compu-
tation times. This software was developed from two previous approaches:
genomeSIM [99] and SIMLA [30, 364]. More specific simulations to obtain
high–dimensional data have been also carried out; see for instance [281].

A survey of different programs developed to simulate population genetic
and genetic epidemiological data can be found in [251].

1.3.1.5 Genome–wide association studies (GWAS)

Genome–wide association studies (GWAS) are studies in which a dense array
of genetic markers, capturing a substantial proportion of genome variation,
is typed in a usually large set of DNA samples that are informative (case–
control) for a trait of interest. The aim is to map susceptibility effects
through the detection of associations [274]. Dense arrays are usually made
up of tens or hundreds of markers, while sample sizes are about several
thousands of individuals. Complexity and economical efforts required to
develop such studies obliged to the establishment of consortia composed by
different research groups [390].

GWAS are thought as the great hope to finally discover the genetic
basis of common diseases. Last years have seen a boom of GWAS involving
different diseases: diabetes, different types of cancer, coronary heart disease,
traits like height or fat mass, . . . . The recent study [274] reviews more than
40 GWAS studies recently carried out in different disorders. Another well-
known review in the field, although not so recent, was carried out in [181].

Despite having advantages typical of their characteristics (whole–genome
under study, large sample sizes), GWAS suffer from many of the same prob-
lems as common association studies. Moreover, new ones are added.

For instance, control sample selection problem and population stratifi-
cation are also present. Strategy of taking a joint sample of controls for
different sample cases of different diseases is carried out in [390] and dis-
cussed in [131].

Heterogeneity problems, which were commented in a previous section, do
not disappear either. In [274] pleiotropy, defined as a phenomenom whereby
a single allele could affect several aspects of the phenotype, is pointed out
as a possible factor of confusion in GWAS.

Multiple test correction in GWAS should undoubtedly be a matter of
further research, given the huge number of SNPs under study. Without a
proper correction, false–positive results would proliferate, increased also by
biases generated due to genotyping in different laboratories [320]. In many
cases, researchers are still using excessively conservative corrections from
the past like Bonferroni’s [38]. It has not happened the necessary transfer
from new techniques developed in the statistical field [34, 109, 112, 113, 340]
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Hom. A Heter. Hom. a Total
Cases r0 r1 r2 R
Controls s0 s1 s2 S
Total n0 n1 n2 N

Table 1.3: Contingency table for a case–control association study involving
SNP markers.

to empirical association studies published in genetics. There are also plenty
of studies developing their own ad hoc procedures, which have not usually
been previously tested.

Most of the GWAS in the literature do not try complex or recent sta-
tistical approaches to detect association, but focus in single point analysis,
aiming to detect associations separately for each marker. The most common
approach is the Cochran–Armitage trend test [3, 21, 356].

The Cochran–Armitage test is tipically used in ordinal data analysis, to
test for association in a 2× k contingency table (2× 3 with SNP markers).
It happens that the usual χ2 test may not be able to detect a trend, but
Cochran–Armitage test may be able to do so because a test statistic is chosen
to reflect the anticipated trend. Distribution of case–control genotype counts
can be represented as in Table 1.3.

The test statistic is given by

T =
2∑
i=0

ti(riS − siR)

where the ti are weights, which have to be chosen depending on the type of
associations expected to be found. The null hypothesis of no association is
expressed as

P (Case|genot.i) = P (Control|genot.i) =
ni
N

Assuming this holds, then

E(T ) = 0

Var(T ) =
SR

N
(

2∑
i=0

t2ini(N − ni)− 2
1∑
i=0

2∑
j=i+1

titjninj)

and as a large sample approximation

T√
Var(T )

∼ N(0, 1)

More complex models looking for epistasis or interaction have been also
developed and tried [150, 326]. Bayesian approaches [184, 448] are common,
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Figure 1.25: Power to detect association for 1500 individuals where both loci
are responsible for 5% of the variance. (A) additive model with no epistasis,
(B) epistatic model in which an individual requires at least one copy of the
increaser allele at both loci to increase the phenotype and (C) exotic model,
where an individual has to be heterozygous at both loci to have the trait.
Image obtained from [122].

too. Two–stage models to seek epistasis [122, 266] have proved to be efficient
with GWAS data. Figure 1.25 shows a comparison between the power of
different approaches looking for gene–gene interaction in GWAS.

When results from GWAS are evaluated by an external expert, it is com-
mon to ask for replication studies in an independent group of samples, or
even in independent populations [386]. The aim of replication is to fully
confirm authenticity of the possitive association found. There is great con-
troversy about this point, as carrying out a replication study leads to more
economical expenses and new problems relative to the design of the study.
Some studies [381] defend that joining of the two independent samples would
have a positive impact, increasing significantly the power of the studies.

In any case, it is clear that, due to sample size and power considerations,
many variants remain unidentified [202]. Meta–analyses association studies
[254, 443] are the most feasible approaches to address these problems, as
they enhance power while requiring low costs. Anyway, they are not exempt
from problems either.

Choice of the set of SNP markers to be genotyped is also critical. The
optimum would be to cover the whole–genome variability [104]. This is
a matter of research nowadays, where different points of view are being
defended [208]. Once a DNA region is identified as a target, resequencing
[184] and fine mapping strategies [255] allow recovery of a more complete
inventory of sequence variation within it.
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Figure 1.26: Recent successes in the identification of susceptibility variants
have opened a debate about how to translate them to clinical practice. There
are two principal routes through which such translation might be affected.
Image obtained from [274].

In conclusion, GWAS are expected to discover many of the DNA variants
giving rise to common diseases. A problem still to be handled is how to
translate this knowledge to the clinical field. A general sketch [274] is shown
in Figure 1.26. Even so, it is generally accepted that a high number of
genetic markers associated with complex diseases will remain undiscovered.
A graphical explanation [274] can be observed in Figure 1.27. Despite the

Figure 1.27: Sketch showing the characteristics of the different genetic mark-
ers depending on allele frequency and penetrance. Image obtained from
[274].
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large sample sizes obtained by international consortia, those markers with
extremely low allele frequencies would need even larger ones. Estimate of
the necessary sample sizes to detect SNP variants showing different degrees
of risk (from low to moderate) is carried out in [104]. A straightforward
graph can be seen in Figure 1.28.

1.3.1.6 Future of case–control association studies: copy number
variants (CNVs)

It is still distant the moment when the field of genetic association studies
could be thought to be finished. In this subsection we will focus on what
seems to be a new approach to study variation across the genome: copy
number variations (CNVs). Although a little advance was given in previous
sections, here we will try to bring the reader closer to the current situation.

A copy number variation (CNV) is a segment of DNA in which copy–
number differences have been found by comparison of two or more genomes.
The segment may range from one kb to several Mb in size [79, 310]; in Fig-
ure 1.29 a histogram of the sizes of CNVs in two different databases can
be observed. Humans ordinarily have two copies of each autosomal region,
one per chromosome. This may vary for particular genetic regions due to
deletion or duplication. CNVs may either be inherited or caused by de novo
mutations. The fact that DNA copy number variation is a widespread and
common phenomenon among humans was first shown up [200, 372] in the
studies which leaded to the completion of the human genome project. It is
estimated that approximately 0.4% of the genomes of unrelated people typi-
cally differ with respect to copy number [211]. In humans, CNVs encompass
more DNA than single nucleotide polymorphisms (SNPs). Different arti-
cles trying to compile the inventory of CNVs along the genome have been

Figure 1.28: Minimum risk detectable with a 80% power and p–value p =
0.05 after a Bonferroni correction for several sample sizes. Multiplicative
(red) and additive (blue) models are under study. Image obtained from
[104].
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already published [331]; nevertheless, completeness is still far to be reached.
Due to these reasons, CNVs are expected to have a strong contribu-

tion to common phenotypes of medical importance. CNVs associations
studies have been already carried out related to different diseases: autism
[428], schizophrenia [339], mental retardation [256], prostate cancer [250]
and more. An interesting review can be found in [180].

Further research involving CNVs aims to convert intensity traces and
SNP–based data into CNV genotypes [273]. New statistical tools, suitable
for the specific features of CNV data, need to be developed, together with
methods facilitating integration of CNV and SNP information.

1.3.2 Gene expression: state–of–the–art, challenges and ex-
pectations

1.3.2.1 Background

cDNA and oligonucleotide microarray techniques were developed to mon-
itor the expression of many genes in parallel [359, 360]. They have been
widely used for tumor diagnosis and classification, prediction of prognoses
and treatment, and understanding of molecular mechanisms, biochemical
pathways, and gene networks. Proper statistical analysis is vital to the
success of array use. What makes microarray data analysis different from
traditional statistics is the systematic biases inherent in the variations of
experimental conditions and distinguishing features associated with the mi-
croarray outputs: high dimensionality (making simultaneous inferences on
thousands of genes) and sparsity (only a small fraction of genes are statisti-
cally differentially expressed) [126]. Bioconductor (www.bioconductor.org)

Figure 1.29: Size distribution of CNVs from the Database of Genomic Vari-
ants (http://projects.tcag.ca/variation/) and the study carried out
in [310]. Image obtained from [310].
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comprises most of the software packages developed to work with gene ex-
pression data. Figure 1.30 summarizes the working scheme of microarray
studies and their most important areas of research.

Among these areas of research, our interest here will be focused on clas-
sification, which usually needs of variable selection. We will also present a
brief approach to cluster problems. Time course and gene regulatory net-
works [383] also mean a huge work field for statistics [240]. Functional data
analysis (FDA) [329] has been commonly used in such studies [173, 295],
just as spline approaches [27, 257], hidden Markov models [362] and others.

So the two following subsections will differentiate between supervised
(an outcome variable like disease status guides the learning process) and
unsupervised (there are only features and no measurements of the outcome)
learning.

Classification is included in supervised learning. The aim is usually to
predict the outcome, detecting which variables are the most associated with
the outcome. Gene expression datasets comprise measurements of thou-
sands of genes for only a few dozens of individuals (the p >> n problem).
As a consequence, multicollinearity (strong correlations between genes) and
overfitting are the two sticking points to be addressed by statistical meth-
ods [118]. Variable selection approaches are carried out to reduce dimen-
sionality [18] and get interpretable models. Filtering [37, 95] and wrapping
[145, 168] explicity select the variables (genes) to be employed by discrimi-
nation methods. Nevertheless, penalized regression methods [137, 183, 395]
are likely among the most used nowadays. Here, variable selection is made
implicitly to get sparse models where only a small fraction of the coefficients

Figure 1.30: Schematic representation of microarray strategy. Steps where
statistical analysis is needed are marked with an asterisk. Image obtained
from [126].
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(β1, . . . , βp) take nonzero values. Two interesting reviews compiling common
statistical methods in gene expression studies can be found in [101, 370]. A
penalized regression study with microarray data is properly shown in Chap-
ter 3 of this essay.

Clustering genes is an unsupervised learning procedure, as there is no
a response variable acting like a “teacher”. In microarray studies cluster-
ing aims to reveal groups of genes which act together and whose collective
expression follows similar patterns [90].

1.3.2.2 Supervised learning. Statistical classification and predic-
tion

Classification and prediction with gene expression data is usually carried out
in data where the response is binary (case–control, two disease subtypes,. . . )
or, in any case, categorical. As opposed to SNP studies, most gene expres-
sion studies focus on different types of cancer: melanoma [36], hepatic cancer
[236], leukemia [161], breast cancer [408], lymphoma [5], thyroid cancer [163]
and others. A low proportion of studies are devoted to non–carcinogenic dis-
eases: for instance, neuropathologies like postmortem Rett syndrome [76] or
schizophrenia [284]. A few amount of databases [5, 6, 161] have been made
public and their use has become common to compare different methods per-
formed over them. Gene expression data needs sometimes to be preprocessed
[101] to avoid redundancies and remove genes which contribution is null.

Traditionally, the aim of classification methods is to reduce misclassifica-
tion results. However, two–class gene expression studies need to discover the
group of genes associated with the response (expected to be small in most
cases). Penalized regression methods for classification also emphasize the
importance of reducing the bias and variance of the coefficient estimators.

A wide range of methodologies have been tried on expression data. Some
of them are listed in [158]. The greatest challenge statistics have to face up
with microarrays is the curse of dimensionality, as a result of scanning large
regions of the genome. When evaluating a certain statistical technique is
not only necessary to check its ability to classify and detect association, but
also its efficiency and computational feasibility to manage high–dimensional
data. Classification methods like random forests [93] or SVMs [385] have
been used, due to their ability to deal with noise. Two–stage methods
are also common [376]. A first stage is generally used to select the small
amount of covariates that will classify on the second stage. Feature selec-
tion (FS) methods are abundant in the field, to discard most of the non
associated genes. An interesting review of FS techniques in bioinformat-
ics can be found in [346]. In contrast with two–stage methods, penalized
regression approaches carry out variable selection and classification simul-
taneously, giving rise to sparse models where only a few genes have nonzero
coefficients. This makes models interpretable from a biological point of view.
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Penalization is usually carried out by means of an objective function like

LP (β, λ) = L(β) + P (β, λ)

where λ is the penalization parameter, P (β, λ) the penalization term and
L(β) is the log–likelihood of the sample for some method like logistic re-
gression. Penalized logistic regression [189] is widely used due to the fact of
having categorical variables as response.

The use of penalized regression methods with high–dimensional genetic
data has increased lately. Different approaches [118, 195, 196, 214, 224] have
been tried on gene expression data. These methods differ in their choice of
the penalization term:

• Lasso (l1) [395] penalizes the absolute value of the coefficients βj

P (β, λ) = λ

p∑
j=1

|βj |

• Ridge regression (l2) [183] penalizes their squared values

P (β, λ) = λ

p∑
j=1

β2
j

• Bridge regression (lq, 0 < q < 1) [137] applies a similar penalization
to lasso, using the lq norm

P (β, λ) = λ

p∑
j=1

|βj |q

• The elastic net (le) [452] is a convex combination of lasso (l1) and ridge
(l2) penalizations, le = (1− α)l1 + αl2 with 0 < α < 1

P (β, λ) = λ

(1− α)
p∑
j=1

|βj |+ α

p∑
j=1

β2
j


All but ridge give rise to sparse models. Our work here will be focused

on lasso. Lasso has been largely studied in high–dimensional data contexts
[151, 196, 214, 277, 451]. Chapter 3 in this essay is devoted to show a lasso
logistic regression approach to work with gene expression data.
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1.3.2.3 Unsupervised learning. Cluster analysis

Good clustering algorithms are very much desired for analyzing data with
high dimension where the number of variables is considerably larger than
the number of observations. DNA microarray analysis is a tipical exam-
ple that involves such high–dimensional data. Clustering microarray data
can be very helpful for certain types of biological studies, such as cancer
research. For example, based on the gene expression profiles, interesting
cluster distinctions can be found among a set of tissue samples, which may
reflect categories of diseases, mutational status or different responses to a
certain drug [419]. Biological pathways, understood as groups of genes work-
ing together to carry out the same task, are often recognizable by means of
cluster analysis [55]. Anyway, in gene expression studies it is not always
clear which type of information is wanted to be clusterized: samples [182]
or genes [90]. A wide range of objectives are pursued when analyzing gene
expression data. A list can be found in [263]:

1. Grouping of genes according to their expression under multiple sam-
ples.

2. Classification of a new gene, given the expression of other genes, with
known classification.

3. Grouping of samples based on the expression of a number of genes.

4. Classification of a new sample, given the expression of the genes under
some experimental conditions.

Among the clustering methods used, there are obviously several ad hoc
procedures, and also common cluster approaches like hierarchical clustering
[175, 422], k–means clustering [136, 253], self–organizing maps (SOM) [216,
217, 218], etc. Ensemble methods like bagging have been also proposed [100]
to improve the performance of clustering procedures. A review of cluster
analysis carried out with gene expression data can be found in [450]. Figure
1.31 shows the results from clustering samples in a case–control study of the
primary Sjogren’s syndrome [182]. Red and green indicate higher and lower
expressions, respectively.

However, the results from the application of standard clustering methods
to genes are limited. For this reason, a number of algorithms that perform
simultaneous clustering on the row and column dimensions of the data ma-
trix has been proposed [71, 233, 377]. The goal is to find submatrices, that
is, subgroups of genes and subgroups of samples, where the genes exhibit
highly correlated activities for every sample. This has been called bicluster
analysis [71]. Reviews and comparisons of different biclustering algorithms
can be found in [263, 322].
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Figure 1.31: Hierarchical clustering of data from the microarray analysis of
gene expression in minor salivary glands from patients with primary Sjo-
gren’s syndrome and from healthy control subjects. Samples with similar
patterns of expression of the genes studied will cluster together, as indi-
cated by the dendrogram. The hierarchical clustering of the 200 genes that
were most differentially expressed in patients vs. the healthy controls is
illustrated. Image obtained from [182].

1.4 Statistical tools in non–clinical genetics: pop-
ulation genetics and forensic genetics

1.4.1 Sets of markers

1.4.1.1 Short Tandem Repeats (STRs)

As explained previously (see Section 1.1.5), Short Tandem Repeats (STRs)
are genetic markers consisting of tandemly repeated sequences, between 2
and 10 bp in length, which exhibit a high degree of length polymorphism
due to variation in the number of repeat units. Analysis of STR sequences
has become the standard method in forensic identification nowadays.

To select a set of STR markers to be used in the forensic casework
relative to a certain population, the most important measures to be taken
into account are their combined power of exclusion and their combined power
of discrimination between individuals. These measures, to be explained in
the next subsection, depend on STR features such as polymorphic nature,
mutation rates or independence between the different markers of the set.
There is a wide choice of STR loci. Choice of the right ones for human
identification cases is critical [51, 406]. Some STRs are more useful than
others in forensic analysis, as they produce less amplification artifacts, or
simply their polymorphic structure in the population under study is more
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suitable or their heterozygosity is higher.
STR markers were first described as effective tools for human identity

testing in the early 1990s [105, 106]. Early successes in STR typing were ob-
tained in the U.K. [213] and Canada [138]. After that, the FBI Laboratory’s
Combined DNA Index System (CODIS) selected a core of 13 STR marked
to be used in U.S.A. (www.fbi.gov/hq/lab/codis/index1.htm). Some of
these STRs are displayed on Figure 1.32, where they are showed in terms
of chromosomal location. The same set was subsequently adopted in other
populations [58, 154, 207].

Throughout time, new STRs have been discovered as useful in forensic
cases [231]. Technical guidelines for validation of STR markers can be found
in [260]. Currently, every day new sets of STR markers are proposed to be
used with forensic purposes in different populations or subpopulations [166].
A very interesting review about STRs for human identity testing is given in
[59].

1.4.1.2 Commercial kits of STRs

The STR Project was an initiative launched in 1996, with the aim of know-
ing the best STR systems in forensic studies. Since the beginning, important
companies like Promega Corporation (Madison, WI) or Applied Biosystems
(Foster City, CA) got involved. As a logical consequence, these two compa-
nies have been responsible for the development of the great majority of the
STR commercial kits used in forensic casework [188, 241, 247, 415]. Table
1.4 summarizes the various STR kits that have become available in the past
decade.

Since the turn of the century, new multiplex assays have been developed
that amplify all 13 CODIS core loci in a single reaction. Nowadays, there are
esentially two available commercial kits standing out over the rest. These

Figure 1.32: STR locus used in the PowerPlex1.2 system and their approx-
imated chromosomal locations. Image obtained from http://cellbank.
nibio.go.jp/str2/str_locus.html.
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are:

• The PowerPlex 16 kit was released by the Promega Corporation in
2000, amplifying the 13 core loci with amelogenin (to determine gen-
der) and two pentanucleotide loci (Penta D and Penta E) [222].

• The 16plex Identifiler kit was released by Applied Biosystems in 2001,
amplifying the 13 core loci with amelogenin and two tetranucleotide
loci (D2S1338 and D19S433) [78].

Other forensic kits have been developed to be used in special cases (e.g.
degraded samples). New STR loci, regarded as very important in forensic
studies due to their high polymorphic nature (e.g. SE33 [365, 431]) have
been added to the STR kits or directly in forensic applications. Notwith-
standing, use of the two commercial kits above have not decreased through-
out time.

1.4.1.3 Use of SNPs in forensic cases

SNPs have a number of characteristics that make them ideal markers for
human identification. Some of them are listed in [354]:

Table 1.4: Summary of available commercial STR kits that are commonly
used. The random match probabilities measure, in some way, the power of
discrimination obtained with each kit. * Allele frequencies used for random
match probability calculations (to unrelated individuals) from U.S. Cau-
casian population data. Image obtained from [59].
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1. They have lower mutation rates than the STR and VNTR (variable
number tandem repeat) loci typically used for relationship analysis in
paternity and immigration testing.

2. SNPs are preferable for anthropological and crime case investigations
where the DNA is often degraded, due to technical issues.

3. SNPs can be genotyped with a growing range of high–throughput tech-
nologies.

4. As binary polymorphisms, are comparatively easy to validate, because
precise allele frequency estimates, required for the accurate interpre-
tation of forensic genotyping data, can be obtained by analysing fewer
samples compared to those needed for allele frequencies estimates of
STRs and VNTRs.

These characteristics have made SNPs a very nice alternative, or comple-
ment, to the standard use of STRs in forensic genetics. Nevertheless, there
are also some points making SNPs less attractive. For instance, seeking to
match the discriminatory power of the 10–15 multiple allele STRs routinely
used in forensic investigations, a set of about 50 polymorphic SNP markers
are required [11, 153]. Furthermore, as happened with STRs, SNPs that are
polymorphic in one population may be almost or completely monomorphic
in another population [311, 379]. Thus, it should be possible to select SNPs
that are useful for human identification purposes in the majority of popula-
tions, and to supplement these with SNPs showing highly contrasting allele
frequency distributions in particular populations.

The SNPforID group (www.snpforid.org) is a consortium supported by
the EU GROWTH programme with the following objectives:

(i) Selection of at least 50 autosomal SNPs suitable for the identification
of persons of unknown population origin and determination of allele
frequencies in the major population groups.

(ii) Development of a highly efficient DNA amplification strategy for the
simultaneous analysis of up to 50 independent SNPs in a single assay.

(iii) Assessment of automated, high–throughput DNA–typing platforms for
reliable and accurate multiplex SNP typing.

(iv) Assessment of the forensic application of the high–throughput SNP–
typing methods developed.

A set of 52 unlinked autosomal SNPs (52plex) that are highly poly-
morphic in European, Asian and African populations is presented in [354].
Discrimination power of this 52plex was tested in different European, Asian
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European Somali Asian
Mean match probability 5.0× 10−21 1.1× 10−19 5.0× 10−19

Power of discrimination >99.99999% >99.9999% >99.9999%
Mean exclusion probability 99.98% 99.95% 99.91%
Typ. paternity index (trios) 549000 337000 336000
Typ. paternity index (duos) 4640 3160 2880

Table 1.5: Various discrimination power measures in forensic for the 52plex.
Data obtained from [354].

and African populations. Some statistical results about the discrimination
power of this 52plex in forensic cases are given in Table 1.5.

Until now, only a few large SNP multiplexes have been reported [96],
but larger multiplexes that are constructed based on the same principles as
the present 52plex are emerging, e.g. packages with Y chromosome SNPs
[53, 353] or autosomal SNPs with contrasting allele frequency distributions
in different populations useful for the estimation of the population of origin
[315].

1.4.2 Common statistics

Probability theory has been used for a long time in forensic casework. Con-
cepts used are not very complex and do not need a strong mathematical
background, so a lot of people can understand them. Bayes probability
theory and some ideas about heritage shape the base to understand the
majority of problems that can be found in forensics. Although there are
different forensic problems, all the probabilistic approaches to solve them
are similar [64, 124]. Therefore, here we only show two of the most common
ones: criminal cases and paternity tests.

1.4.2.1 Criminalistic cases

Let us place ourselves in a criminal case: a crime has been committed and a
human sample (blood, hair,. . . ) has been collected at the crime scene. Later,
a suspect is arrested. Genetic profiles from the sample and the suspect are
obtained to subsequently observe if they match. In that case, we call G to
this common genetic profile.

To calculate a probability measure of the suspect being the real criminal,
we have to define the events. We call E to the scientific evidence obtained.
This event E consist of two events, namely, SG, meaning the sample at the
crime scene has genetic profile G and EG, meaning the suspect has genetic
profile G. Here, we will focus on the simplest case of having only one suspect
and one sample. So, this problem can be identified as a hypothesis testing
problem, where the null (H0) and the alternative (H1) hypotheses are:
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H0: the suspect is guilty.

H1: another randomly picked individual different from the suspect is guilty.

Bayes theorem provides a way to calculate the posterior probability
P (H0|E):

P (H0|E) =
P (E|H0)P (H0)

P (E)

=
P (EG|H0)P (SG|EG, H0)P (H0)

P (EG)P (SG|EG)

Despite in the formula P (EG|H0) is expressed as a conditional proba-
bility, EG and H0 are independent events, so P (EG|H0) = P (EG). On the
other hand, P (SG|EG, H0) is the probability of the sample having the ge-
netic profile G, assuming it was produced by the suspect, and the suspect
has genetic profile G, so it is obvious that P (SG|EG, H0) = 1. Value of the
prior probability P (H0) has to be decided from other nongenetic evidences.

Nevertheless, the International Society for Forensic Genetics (ISFG) rec-
ommendations on biostatistics [157, 290] suggest that the biological evidence
should be based on likelihood ratio (LR) principles. The likelihood ratio is
defined as the quotient between the probability of the evidence E assuming
H0 and the probability of E assuming H1:

LR =
P (E|H0)
P (E|H1)

This can be expressed in terms of the posterior probability P (H0|E) as
follows,

LR =
P (H0|E)(1− P (H0))
(1− P (H0|E))P (H0)

The LR is the usual way to express bets and it is also the only result
communicated to a judge in a courtroom, so this value is going to be fun-
damental facing imprisonment or freedom for a certain individual.

1.4.2.2 Paternity and relationship tests

To properly explain the role of statistics in paternity tests we will place
ourselves in one of the most common cases: paternity between an individual
(F ) and a child (S) is tested with no more information than their genotypes.

Scientific evidence is now E = (SGS , FGF ), where SGS means the son
has the genetic profile GS and FGF means the individual F has the genetic
profile GF . The null (H0) and alternative (H1) hypotheses are now:

H0: F and S have the relationship father–son.
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H1: F and S have not the relationship father–son.

This problem can become more complex if the alternative hypothesis H1

is divided in different hypotheses, like, for example, F and S have another
kind of relationship and F and S are not relatives at all.

The posterior paternity probability by Bayes theorem is:

P (H0|E) =
P (SGS |FGF , H0)P (FGF |H0)P (H0)

P (SGS |FGF )P (FGF )

=
P (SGS |FGF , H0)P (H0)

P (SGS |FGF )

The prior probability P (H0) takes a certain value based on nongenetic
evidences for or against paternity. It is also common to take P (H0) = 0.5,
indicating statistics are not inclined towards neither of the options (paternity
or not). The remaining probabilities are calculated from coincidences and
exclusions between the genotypes GS and GF , mutation rates,. . . . Anyway,
as happened with criminal cases, evidence of paternity is based on LR re-
sults. Likelihood ratio is referred in paternity testing as the paternity index
(PI). Therefore, the PI formula is:

PI =
P (E|H0)
P (E|H1)

=
P (SGS , FGF |H0)
P (SGS , FGF |H1)

=
P (SGS |FGF , H0)P (FGF |H0)
P (SGS |FGF , H1)P (FGF |H1)

=
P (SGS |FGF , H0)
P (SGS |FGF , H1)

The meaning of the PI value obtained in a paternity test need always to
be explained by an expert. Both Evett [123] and Carracedo and Barros [63]
fixed the evidence strength from the PI values in the terms given in Table
1.6.

PI Evidence strength
1–33 Weak

33–100 Fair
100–330 Good
330–1000 Strong
>1000 Very strong

Table 1.6: Approximated evidence strength for different ranges of PI values
in paternity testing. Data obtained from [63, 123].
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1.4.3 Intricate problems in forensic and population genetics

Paternity tests are subject to several problems, more or less complex. Seri-
ousness of these problems becomes bigger due to everything around this kind
of tests: violation cases, inheritances, feelings, etc. Regarding the scientific
ones, a list of some of them includes:

• Thresholds of decision. Once a LR–PI or probability result has been
reached, we need to know from which value we can guarantee pater-
nity/guilt. This has been a matter of discussion in forensic genetics
during many years [63].

• The choice of a correct value for the prior probability P (H0) has been
always critical, as this value determines in some way the final result
obtained.

• The choice of the reference population is not so easy as we could pos-
sibly think, because sometimes what is thought to be a homogeneous
population is composed of different populations in which allelic fre-
quencies differ substantially. This is called population stratification
and, if it is not deal with it properly, it can give rise to erroneous re-
sults, as it is shown in [401]. Each homogeneous population should be
represented by a suitable database summarizing the allelic frequencies
profile inside this population.

• Inbreeding is also a source of problems in paternity tests. Many times,
paternity cases become complex because the individual to be tested
as father is not available (disappearance, death, . . . ) and a relative
(brother, father, . . . ) is required. This kind of cases are specifically
studied in [314] (see also Chapter 6).

• Highly degraded DNA cases, in which DNA results are difficult to
obtain. SNPs are very useful in those cases as they offer greater success
than standard STRs with highly degraded DNA [133, 314, 354].



Chapter 2

Motivation and aims

Since its birth some centuries ago, due to the need to understand the me-
chanics of some gambling games, statistics have evolved and their use has
spreaded to other areas and subjects with not so markedly economical pur-
poses, and yet more scientific ones. Finances, medicine, physics, etc. (and
obviously gambling) have used statistical tools to obtain knowledge from
data.

Genetics is the term used, since Gregor Mendel’s experiments more than
a century ago, to refer to the science studying heritage patterns and how
they are expressed. To comprehend heritage and its mechanisms is expected
to offer many of the answers mankind has been looking for along centuries.

So this combination of gambling and peas is what it is today called
statistical genetics. This essay is a compendium of statistical approaches
and applications to different problems in different branches of genetics. This
small chapter aims to offer the reader a general idea about the current
situation and the motivation to carry out this work.

Research in genetics is continuously growing and evolving, as the hope to
find answers to many diseases (cancer, psychiatric disorders, diabetes, . . . )
in this field remains intact. Furthermore, the scope of genetics goes beyond
clinical application. Forensic genetics are fundamental nowadays regarding
successful resolution of criminal cases or parental studies. Population genet-
ics constitute a very powerful tool to investigate human migrations. Many
other uses could be listed, but let us stick here to the scope of this essay.

High–throughput technologies and cost reductions are producing a huge
mass of data that needs to be analyzed. Statistics have to provide with
the appropriate tools to efficiently discover the genetic patterns emerging.
Anyway, the economic costs required to carry out competitive studies are
sometimes difficult to take. Simulated data can be often a good replacement,
specially when evaluating the abilities of different statistical methods in
several scenarios.

Data types produced in genetic research are esentially two–fold nowa-
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days:

1. Gene expression measurements usually move in continuous ranges.
However, categorization has been carried out in a reduced number
of studies, with the aim of simplyfying gene expression patterns. Any-
way, this is not a common approach and it is not often recommended,
due to the loss of information that entails. Therefore, from now on,
we will consider gene expression data as continuois data.

2. Nuclear DNA is composed by two nucleotidic chains, containing each
the information inherited from parents. In each chain, and for each
position (locus), this information is binary (two options), so the com-
bination of the information in each physical position of both chains
will still have a very limited number of possibilities, namely, categor-
ical data. This is applicable not only to SNP data but also to the
common markers used in forensics.

So it seems clear that genetics are a huge battlefield for statistical tools,
not only due to this variety of data types, but also because genetic studies
pursue different aims, even in a branch like clinical genetics: discovering
of disease association, gene functions, gene pathways, new disease subtypes
based on genetic patterns, etc.

The rest of this essay is organized as follows. Chapter 3 contains a penal-
ized regression approach to get sparse, genetically interpretable, models in
case–control genetic studies. A support vector machine (SVM) adaptation
to SNP data can be found in Chapter 4. In Chapter 5, two different eval-
uations of statistical methods in SNP case–control association studies, with
emphasis on tree–based methods, cover Sections 5.1 and 5.2. Chapters 3 to
5 could be considered a set of several methods for classification/prediction
with different types of genetic datasets. Statistical tools for forensic and
population genetics are revised in Chapter 6, together with the use of in-
tensive simulation to solve intricate problems. Finally, Chapter 7 is devoted
to general conclusions about this work and Chapter 8 lists several lines of
further research.



Chapter 3

Penalized regression in gene
expression studies: lasso
logistic regression to obtain
sparsity

3.1 Lasso logistic regression, GSoft and the cyclic
coordinate descent algorithm. Application to
gene expression data

This chapter consists of a penalized regression study to be applied to con-
tinuous gene expression data. This work has been recently finished and it is
now in process to be submitted soon to an international journal. The great
majority of it was made during a three months stay of the author in the
Laboratoire Jean Kuntzmann of the Universite Joseph Fourier in Grenoble
(France) with the professor Anestis Antoniadis.

3.1.1 Abstract

Statistical methods generating sparse models are of great value in
the gene expression field, where the number of covariates (genes)
under study moves about the thousands, while the sample sizes
seldom reach a hundred of individuals. For phenotype classifi-
cation, we propose different lasso logistic regression approaches
with specific penalizations for each gene. These methods are
based on a generalized soft–threshold (GSoft) estimator. We also
show that a recent algorithm for convex optimization, namely
the cyclic coordinate descent (CCD) algorithm, provides with a
fast way to solve the optimization problem posed in GSoft. Re-
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sults are obtained for simulated and real data. The leukemia
and colon datasets are commonly used to evaluate new statisti-
cal approaches, so they come in useful to establish comparisons
with similar methods. Furthermore, biological meaning is ex-
tracted from the leukemia results, and compared with previous
studies. In summary, the approaches presented here give rise to
sparse, interpretable models, competitive with similar methods
developed in the field.

3.1.2 Introduction

Advent of high–dimensional data in several fields (genetics, text categoriza-
tion, combinatorial chemistry,. . . ) is an outstanding challenge for statistics.
Gene expression data is the paradigm of high–dimensionality, usually com-
prising thousands (p) of covariates (genes) for only a few dozens (n) of
samples (individuals). Feature selection in regression and classification is
then fundamental to get interpretable, understandable models, which might
be of use to the field. First approaches to this problem [167, 170, 237, 430]
were based on filtering to select a subset of covariates related with the out-
come, usually a binary response. Nevertheless, common methods developed
nowadays search for variable selection and classification carried out in the
same step. Sparse models are needed to account for high–dimensionality
(the p >> n problem) and strong correlations between covariates.

Penalized regression methods have received much attention over the past
few years, as a proper way to get sparse models in those fields with large
datasets. Lasso [395] was originally proposed for linear regression models,
and subsequently adapted to the logistic case [344, 378]. Lasso applies a l1
penalization that, as opposed to ridge regression [183], gives rise to sparse
models, ruling out the influence of most of the covariates on the response.
Consistency properties of lasso for the linear regression case have been full
well studied [215, 259, 278, 444, 446]. An evolution of lasso that allows for
specific penalizations in the l1 penalty (adaptive lasso) is developed in [451].
Lasso has been also adapted to work with categorical variables [16, 25, 277,
442] and multinomial responses [224]. Other penalized regression methods
include bridge estimators [137], which replace the l1 penalization with lq
penalization, being 0 < q < 1, and the elastic net [452], that penalizes by
means of a linear combination of l1 and l2 penalties. Consistency studies
about bridge and elastic net can be found in [194] and [87], respectively.
Application of both approaches to high–dimensional genetic data is carried
out in [252]. Optimization of the lasso log–likelihood function is also an
important subject of study [238, 363], as a result of the non–differentiability
problems of the l1 penalty around zero.

In this study, we adopt an adaptive lasso logistic regression approach
based on the generalized soft–threshold estimator (GSoft) [214]. A theoret-
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ical connection between existence of solution in GSoft and convergence of
the cyclic coordinate descent (CCD) algorithm [447] is established, allowing
the solutions obtained with the latter to take advantage of the asymptotic
properties of the former. We try different vectors Γ for the specific penaliza-
tion of each covariate (gene) and some consistency results [196] are shown
for each one. Extensive comparisons with similar approaches are carried out
using simulated and real microarray data.

The rest of this chapter is organized as follows: a short introduction
about the CCD algorithm, GSoft and some of its asymptotic properties
is given in Section 3.1.3, together with the theoretical connection between
both and the three different Γ choices for the specific penalizations. Some
consistency results for each one are added. Results of simulated and real
data are shown in Section 3.1.4. Simulations include approximations of the
variance–covariance matrix for the estimated coefficients. Real data includes
leukemia [161] and colon [6] datasets. Finally Section 3.1.5 is devoted to
conclusions, and the Appendix A contains the proof of Theorem 2.

3.1.3 Methods

Our aim is to learn a binary gene expression classifier yi = f(xi) from a
set D = {(x1, y1), . . . , (xn, yn)} of independent and identically distributed
observations. In each sample i, the vector

xi =

xi1...
xip

 ∈ Rp

comprises gene expression measurements. The n × p design matrix is then
X = (xj , j ∈ {1, . . . , p}) where the xj ’s represent the expression measure-
ments of gene j along the entire set of samples. The vector of binary re-
sponses

y =

y1
...
yn


informs about membership (+1) or nonmembership (-1) of the sample to the
category. The logistic regression model with vector of regression coefficients
β ∈ Rp assumes that

P (yi = 1|xi) =
1

1 + exp(−x′
iβ)

.

Adopting a generalized linear model framework, the associated linear pre-
dictor η is defined as
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η = Xβ =

x
′
1β
...

x
′
nβ,

 where X =

x
′
1
...

x
′
n

 and β =

β1
...
βp

 .

The decision of whether to assign the i sample to the category or not is
usually accomplished by comparing the probability estimate with a threshold
(e.g. 0.5). Consequently, minus the log–likelihood function is

L(β) =
n∑
i=1

ln
[
1 + exp(−yix

′
iβ)
]

(3.1)

The lasso like logistic estimator β̂ with specific penalizations for each
covariate is then given by the minimizer of the function

L1(β) = L(β) + λ

p∑
j=1

γj |βj | (3.2)

where λ is a common nonnegative penalty parameter and the vector Γ =
(γ1, . . . , γp) with nonnegative entries penalizes each coefficient. The stan-
dard lasso regularization [395] takes γj = 1 ∀j. Minimization of these ob-
jective functions makes use of their derivatives. We refer to the gradient of
L(β) as the score vector whose components are defined by:

sj(β) =
∂L(β)
∂βj

The negative Hessian with respect to the linear predictor η is defined as

H(η) = −∂
2L(η)
∂η∂η′

The basic requirement for the weights γj is that their value should be
large enough to get β̂j = 0 if the true value βj is zero, and small otherwise.
Obtaining of a sparse, interpretable model is of paramount importance in
those areas where the number of variables usually outperforms the sample
size (p >> n problem). The choice of the Γ vector is therefore essential to
get an accurate estimator β̂.

3.1.3.1 Cyclic coordinate descent (CCD) algorithm

The choice of a proper algorithm to solve the minimization of (3.2) is a
main issue, as it needs to be capable of dealing with the problem of non–
differentiability of the absolute value function around zero. Furthermore,
efficiency of the algorithm is fundamental, given the high–dimensionality of
the problems at hand.
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A number of different algorithms have been developed to obtain the
optimum for the objective function. In [160] a “Split–Bregman” method
is applied to solve l1-regularized problems, while in [435] an algorithmic
framework for minimizing the sum of a smooth convex function with a non-
smooth nonconvex one is proposed. A similar algorithm is used in [212] to
obtain the solution for the SCAD estimator in high–dimensions. Two new
approaches are developed in [363], together with a comparative study. An
efficient algorithm is carried out in [238], using LARS [110] in each itera-
tion. A local linear approximation (LLA) algorithm was recently proposed
by [453], while [416] developed a method of least squares approximation
(LSA) for lasso estimation, making use of the LARS algorithm.

Finding the estimate of β is a convex optimization problem. The cyclic
coordinate descent algorithm is based on the CLG algorithm of Zhang and
Oles [447]. An exhaustive description of the algorithm is beyond the scope
of this paper, and interested readers are referred to the detailed description
in [151]. The basis of all cyclic coordinate descent algorithms is to optimize
with respect to only one variable at the time while all others are held con-
stant. When this one–dimensional optimization problem has been solved,
optimization is performed with respect to the next variable, and so on. When
the procedure has gone through all variables it starts all over with the first
one again, and the iterations proceed in this manner until some pre–defined
convergence criterion is met. The one–dimensional optimization problem is
to find βnewj , the value for the j–th parameter that maximizes the penalized
log–likelihood assuming that all other βj ’s are held constant. In the end,
the update equation for βj becomes

βnewj =


βj −∆j if ∆vj < −∆j

βj + ∆vj if −∆j ≤ ∆vj < ∆j

βj + ∆j if ∆j < ∆vj

where the interval (βj−∆j , βj+∆j) is an iteratively adapted trust region for
the suggested update ∆vj . The width of this interval is determined based
on its previous value and the previous update made to βj . The suggested
update is given by

∆vj = −sj(β)− λγjsign(βj)
Q(βj ,∆j)

(3.3)

The essential idea in CCD is Q(βj ,∆j) to be an upper bound on the
second derivative of L1(β) in the interval around βj :

∂2L1(β)
∂β2

j

=
n∑
i=1

x2
ijexp(−yix

′
iβ)[

1 + exp(−yix
′
iβ)
]2

The function Q(βj ,∆j) is given by the expression:
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Q(βj ,∆j) =
n∑
i=1

x2
ijF (yix

′
iβ,∆jxij)

with the function F being defined by

F (B, δ) =
{

0.25 if |B| ≤ |δ|
[2 + exp(|B| − |δ|) + exp(|δ| − |B|)]−1 otherwise.

A proof of Q being an upper bound in the aforementioned interval is
straightforward. Advantages of CCD can be summarized in efficiency of
the algorithm, stability and ease of implementation. Efficiency is due to
several factors: CCD works following a cycling procedure along the coeffi-
cients. From a certain iteration, CCD only visits the active set, reducing
considerably its computational demands. Implementation has been carried
out by means of the R package glmnet. This approach is explained in [143],
where it is proved to be faster than its competitors.

3.1.3.2 GSoft

The generalized soft–threshold estimator or GSoft [214] is claimed to be a
compromise between approximately linear estimators and variable selection
strategies for high dimensional problems. Our interest in GSoft lies in the
fact that once a solution β exists, a bunch of asymptotic properties can be
derived. The next theorem from [214] establishes necessary and sufficient
conditions for the existence of such solution.

Theorem 1. The following set of conditions is necessary and sufficient for
the existence of an optimum β̂ of L1(β)

(a) 
|sj (β) | ≤ λγj if βj = 0
sj (β) = λγj if βj > 0
sj (β) = −λγj if βj < 0


(b)

X
′
λH (η)Xλ is positive definite,

where Xλ retains only those columns (covariates) xj of X fulfilling |sj(β)| =
λγj, that is, Xλ = (xj , |sj(β)| = λγj).

Approximation of the covariance matrix for the estimated coeffi-
cients

Approximations to the variance–covariance matrix of β̂ have to deal with
the non–differentiability problem of the penalization term around |βj | = 0.
This fact is solved by taking a differentiable approximation a(βj , δ) to the
absolute value function, obtained by smoothing it around zero
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a(βj , δ) =

{
|βj | if |βj | > δ
(β2
j+δ2)

2δ if |βj | ≤ δ
,

with δ > 0 and satisfying limδ→0a(βj , δ) = |βj |.
So an approximation can be constructed from the well–known sandwich

form developed in [197]

Vδ(β̂) =
{
H(β̂) + λΓG

(
β̂, δ

)}−1
Var

{
s(β̂)

}{
H(β̂) + λΓG

(
β̂, δ

)
)
}−1

where H(β̂) is the negative Hessian of L but now as a function of β̂ and G is
the diagonal matrix made up of the second derivatives of the approximations
a(βj , δ):

G(β, δ) = diag
(
I {|β1| ≤ δ}

δ
, . . . ,

I {|βp| ≤ δ}
δ

)
In these conditions it is clear that, when δ → 0, the diagonal elements of

the matrix G(β̂, δ) corresponding to βj = 0 tend to ∞, making the covari-
ance matrix Vδ(β̂) become singular in the limit. So regularity conditions of
the asymptotic theory are not fulfilled with GSoft when any of the coeffi-
cients take the value zero. This is a major concern, since it is just one of
the desirable characteristics in a proper variable selection method.

GSoft solves this problem developing an estimator of the covariance ma-
trix that smooths the discontinuity in G(β̂, δ) when δ → 0 by means of
approximating using the expectation of G and a continuous variable (e.g.
normal) with mean in β̂. The estimator is

V̂ (β̂j) =
{
H(β̂) + λΓG∗

(
β̂, σ̂

)}−1
F̂ (β̂)

{
H(β̂) + λΓG∗

(
β̂, σ̂

)}−1
(3.4)

where

G∗
(
β̂, σ

)
= diag

{
2
σ1
ϕ(β̂1/σ1), . . . , 2

σp
ϕ(β̂p/σp)

}
(
σ̂2

1, . . . , σ̂
2
p

)
= diag

[
H(β̂)−1F̂ (β̂)H(β̂)−1

]
ϕ density function of the normal distribution

Anyhow, the main point to get a well established approach to the real
variance–covariance matrix is to use an accurate estimator F̂ of the Fisher
matrix given by

F (η) = −E
{
∂L(η)
∂η∂η′

}
Firstly, we made use of the approach carried out in [17]. Nevertheless,

after some tests we realized that such a choice really underestimates the true
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variance–covariance values. Our solution consists of rescaling this matrix
multiplying it by a factor equal to the number p of variables in the model.
So

F̂ (β̂) = I(β̂) =
p[∂2L(β̂)/∂βiβj ]

n
(3.5)

Goodness–of–fit for this estimator is discussed in the results section.

3.1.3.3 Connection GSoft – CCD algorithm

The main aim of this article is to establish a theoretical connection between
the convergence of the CCD algorithm and the existence of an optimum for
the objective function with GSoft. This theoretical connection is established
by the next theorem (proof in Appendix A).

Theorem 2. The following two statements are equivalent:
(1) The CCD algorithm for the lasso case converges.
(2) An optimum for the objective function under the terms of the theorem
in [214] exists.

In this way, positive results of convergence obtained with the CCD algo-
rithm can take advantage of the asymptotic properties of GSoft. Similarly,
solutions obtained with GSoft are consistent in the way proved in [277].

Choice of Γ
As we mentioned above, we use a global threshold λ together with a vec-

tor of specific thresholds Γ = (γ1, . . . , γp) corresponding to the coefficients
β1, . . . , βp of each variable in the model. In this study, we will evaluate the
performance of three different choices for the Γ vector:

1. γj =
√

var(xj). This is one of the choices carried out in [214]. As a
consequence, we will refer to it as γ–Klinger. Adjusting the thresholds
like this is equivalent to standardization.

2. γj = 1

|βridge
j |

. Ridge logistic regression was performed on data with

a small global threshold λ0, obtaining coefficients βridge
j 6= 0, ∀j =

1, . . . , p. This choice is related to penalize according to the importance
of the variable in ridge, and it is based on a special case of the adaptive
lasso [451]. This choice will be designated as γ–ridge.

3. γj = 1
|βlasso
j | . Lasso logistic regression was performed on data with

a small global threshold λ0 and without using specific thresholds γ.
Obviously, some coefficients βlasso

j will take zero values. In this case,
these variables are excluded from the final model, which is equivalent
to take γj =∞. It will be named as γ–lasso.
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Consistency results
Variable selection consistency results in lasso can be found in the recent

related literature. Oracle property [125] for the adaptive lasso in linear
regression models is proved in [195]. Consistency results shown here are
based on the subsequent adaptation of these results to the logistic case,
carried out in [196], for the γ–lasso, there called iterated lasso.

The number of covariates p will be taken as a function of sample size,
so the notation pn will be used. For a set of indices B ⊆ {1, . . . , pn} we
consider XB = (xj , j ∈ B) and CB = X

′
BXB/n. From them we define:

c(m) = min|B|=mmin‖v‖=1v
′
CBv

c(m) = max|B|=mmax‖v‖=1v
′
CBv

The Sparse–Riesz Condition (SRC) [444] is satisfied by the covariance
matrix X with rank q and spectrum bounds 0 < c∗ < c∗ <∞ if

c∗ < c(q) < c(q) < c∗

Let us take the subset of indices with true nonzero coefficients B0 =
{j, βj 6= 0}. Let kn = |B0| and mn = pn− kn be the number of nonzero and
zero coefficients, respectively, and bn1 = minj∈B0 |βj |, bn2 = maxj∈B0 |βj | the
minimum and the maximum of the true nonzero coefficients. Let us assume
the following conditions:

(i) Bounds for the true coefficients and the covariates:

(i1) For some constant 0 < b <∞, it is fulfilled that bn2 < b.

(i2) For some constant M > 0, it is fulfilled that |xij | < M for all
i ∈ {1, . . . , n}, j ∈ {1, . . . , pn}.

(ii) The design matrix X satisfies the SRC with bounds {c∗, c∗} and rank
qn = M1n

2/λ2
0 being M1 a positive constant.

(iii) When n→∞, the following convergence is satisfied
√

ln kn
bn1
√
n

+
√
nln mn

λrn
+
λ
√
kn

nbn1
→ 0

where rn is the order of consistency at zero [196] of the primary lasso
estimator.

Under (i)–(iii) it has been proved that

P (sign(β̂) = sign(β))→ 1 (3.6)
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where the sign function is now taken in a slightly different way than in (3.3):
sign(θ1, . . . , θp) = (sign(θ1), . . . , sign(θp)) and

sign(t) =


−1 if t < 0
0 if t = 0
1 if t > 0

so nonzero coefficients are correctly selected with γ–lasso with probability
converging to one. From the same assumptions a result for the asymptotic
distribution of the estimated nonzero coefficients of β̂ wih respect to the
true ones β can be constructed. The following definitions are needed:

βB0
= (βj , j ∈ B0)

′

β̂B0
= (β̂j , j ∈ B0)

′

xiB0 = (xij , j ∈ B0)
′

ε = (ε1, . . . , εn)
′

ΣB0 =
1
n
X

′
B0
DXB0

where εi = yi − (2P (yi = 1|xi)− 1) and D is the diagonal matrix composed
by the products of the logistic probabilities of case and control in each
individual sample. Then, for s2

n = σ2α
′
Σ−1
B0
α with α any vector of length kn

fulfilling ‖α‖ ≤ 1, the following asymptotic property is satisfied by logistic
lasso estimators β̂ with the γ–lasso choice:

√
n

sn
α

′
(β̂B0

− βB0
) =

∑n
i=1 εiα

′
Σ−1
B0

xiB0√
nsn

+ op(1)→D N(0, 1) (3.7)

whenever λ
√
kn√
n
→ 0.

These two results, (3.6) and (3.7), together mean the γ–lasso choice has
the asymptotic oracle property. The proof can be found in [196], which also
refers to the proof for the linear case in [195]. A careful study of both proofs
is enough to realize that only minor changes in the assumptions have to
be applied to transfer the oracle property to the γ–ridge choice of specific
penalizations.

When γ–Klinger penalizations are selected, this is equivalent to stan-
dardization, as proved in [214]. Therefore, only usual consistency lasso re-
sults [196, 277] can be proved in this case, and oracle property does not
hold. An upper bound for the number of estimated nonzero coefficients in
lasso is given in [196]. There, it is proved that the dimension of the model
selected by lasso is directly proportional to n2 and inversely proportional to
the penalization parameter λ.
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3.1.4 Results

3.1.4.1 Simulated data

We have simulated two scenarios with binary response according to one of
the examples in [199]. In both of them, the response follows:

P (y = 1|x) =
1

1 + exp(−x′β)

and the complementary probability for y = −1. This example has been
adapted to two specifical scenarios carried out in [416] (Simulation 1) and
[453] (Simulation 2), with the aim of comparing our results with those ob-
tained there. Furthermore, a third bunch of simulations have been developed
following [199]. We have also used the scenario in [453] to obtain the results
of approximation of variance as explained in the last section.

Simulation 1
Our aim is to compare our results with those obtained with the least

squares approximation (LSA) estimator. Comparisons with the results of the
Park and Hastie (PH) algorithm of [306] shown in [416] are also established.
The model is 9–dimensional with coefficients β = (3, 0, 0, 1.5, 0, 0, 2, 0, 0)

′
.

The components of xi are standard normal and the correlation between
each pair of variables xj1 and xj2 is fixed to 0.5|j1−j2|. The sizes of the
training samples are n = 200 and n = 400, and 500 simulation replications
have been obtained each time. The BIC criterion is used to obtain the best
solution for LSA and PH, while for the choice of λ in our models, we follow
a slightly different approach. As choosing the λ giving rise to the smallest
error rate (ER) does not necessarily produce a sparse model, we take the
largest λ having an error rate smaller than minλER+2∗sd(ER). Results are
shown in Table 3.1. From now on, lasso logistic regression will be referred
with the abbreviation LLR.

The different estimators are compared in terms of model size (MS) and
percentage of correct models identified (CM). Unlike [416], here we will
not use the relative model error as a comparative measure, since it puts
too much weight to the model error without penalty. Besides, in problems
involving large amounts of noise, detection of the variables associated with
the response is much more important than precise estimation of the true
coefficients. Results obtained with our models are slightly better than those
in [416], despite improvement of the results of LSA and PH seemed to be
highly difficult. Comparisons between the different choices for the Γ vector
are favorable to γ–ridge and γ–lasso, as the γ–Klinger seems to be more
imprecise than those two regarding detection of the correct model. This
imprecision grows when sample size decreases, until reaching the standard
of LSA and PH.
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Sample Estimation MS CM
size Method Mean (SE) Mean (SE)

200 LLR γ–Klinger 3.266 (0.025) 0.762 (0.019)
LLR γ–ridge 2.896 (0.025) 0.812 (0.017)
LLR γ–lasso 2.96 (0.028) 0.798 (0.018)

LSA 3.178 (0.026) 0.798 (0.018)
PH 3.272 (0.033) 0.716 (0.020)

400 LLR γ–Klinger 3.046 (0.011) 0.956 (0.009)
LLR γ–ridge 2.964 (0.021) 0.860 (0.016)
LLR γ–lasso 2.982 (0.022) 0.902 (0.013)

LSA 3.130 (0.018) 0.888 (0.014)
PH 3.092 (0.023) 0.846 (0.016)

Table 3.1: True model detection results. Comparison between our models
and those in [416] is established in the same terms as there.

Simulation 2
Comparisons with the one–step sparse estimates developed in [453] are

carried out, along with the SCAD and the other variable selection models
used there. The second model is 12–dimensional with vector of coefficients
β = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)

′
, while x is obtained as in Simulation 1,

but with one important difference: variables with even index are translated
to binary according to their sign. Size of the training sample is n = 200
and 1000 replicated datasets were obtained. Choice of the optimal λ for our
models is carried out in a similar way to Simulation 1, but taking the largest
λ having an error rate smaller than minλER + 0.2 ∗ sd(ER). Results are
shown in Table 3.2.

Same terms as in [453] are used: columns ‘C’ and ‘IC’ measure the av-
erage number of nonzero coefficients correctly estimated to be nonzero and
the average number of zero coefficients incorrectly estimated to be nonzero,
respectively; “Under–fit” and “Over–fit” show the proportion of models ex-
cluding any nonzero coefficients and including any zero coefficients through-

Proportion of
Method C IC Under-fit Correct-fit Over-fit

LLR γ–Klinger 2.84 1.68 0.16 0.14 0.70
LLR γ–ridge 2.77 0.82 0.22 0.40 0.37
LLR γ–lasso 2.71 0.71 0.29 0.40 0.31

one-step SCAD 2.95 0.82 0.051 0.565 0.384
one-step LOG 2.97 0.61 0.029 0.518 0.453
one-step L0.01 2.97 0.61 0.028 0.516 0.456

SCAD 2.92 0.51 0.076 0.706 0.218
P-SCAD 2.92 0.5 0.079 0.707 0.214

AIC 2.98 1.56 0.021 0.216 0.763
BIC 2.95 0.22 0.053 0.800 0.147

Table 3.2: True model detection results. Comparison between our models
and those in [453] is established in the same terms as there.
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ρ = 0.25 ρ = 0.75
Method C I C I

LLR γ–Klinger 5.96 0.034 5.562 0.326
LLR γ–ridge 5.9 0.166 5.912 0.778
LLR γ–lasso 5.9 0.176 5.916 0.76

New 5.922 0 5.534 0.222
LQA 5.728 0 4.97 0.090
BIC 5.86 0 5.796 0.304
AIC 4.93 0 4.86 0.092

Table 3.3: True model detection results. Comparison between our models
and those in [199] is established in the same terms as there.

out the 1000 replications, respectively. “Correct–fit” shows the proportion
of correct models obtained.

Our methods show a worse behaviour than those in [453]. After some
tests (results not shown) we realized that the reason was that they suffer
a lot from the presence of binary variables. This is not a major concern,
since our aim was to apply these methods to gene expression data, where
all the variables move in a continuous way. Therefore, with the intention
of testing them in a continuous environment, conditions in [199] were repli-
cated. These conditions are the same as in Simulation 1 but the correlation
between variables is now fixed to ρ = 0.25 and ρ = 0.75. Sample size was
also fixed to n = 200. Results are shown in Table 3.3.

Optimal λ is chosen as in Simulation 1. “C” and “I” measure the av-
erage number of coefficients correctly and incorrectly set to zero, respec-
tively. Comparisons are made with a new proposed algorithm in [199], a
local quadratic approximation (LQA) algorithm developed in [125] and best
subset variable selection using BIC and AIC scores. Competitive results are
obtained with respect to the procedure in [199]. The best variable selection
is obtained using BIC. The results obtained with the γ–Klinger are similar
to the ones with γ–ridge and γ–lasso.

Approximation of variance
Covariance matrix estimation for the estimated coefficients have been ob-

tained according to the approach previously explained. The same model
as in Simulation 2 has been used, without the translation to binary (for
simplicity). In Figure 3.1 the behaviour of variance estimation for β1 = 3,
β2 = 1.5 and β3 = 0, respectively, is shown in comparison with the true
variance, as a function of λ. The estimation, obtained as the median on
1000 replications, fits almost perfectly to the variance except for small devi-
ations when λ approachs zero (maximum likelihood estimator), as the true
variance increases enormously.
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Figure 3.1: Variance estimation (in red) for the estimated values of β1, β2

and β3 in Simulation 2 according to the estimator (3.4) with F̂ taken as
in (3.5). True variance (in black) was approximated by means of recursive
simulation–estimation. Variance is displayed as a function of the penalty
parameter λ.

3.1.4.2 Real data

The leukemia dataset [161] has been used on countless occasions through
the gene expression literature. It comprises gene expression data for 72
bone marrow and peripheral blood samples (47 cases of acute lymphoblastic
leukemia (ALL) and 25 cases of acute myeloid leukemia (AML)) in 7129
genes. Initially [161] the total sample was divided into a training sample (38
bone marrow samples) and a test sample (34 bone marrow and peripheral
blood samples).

The colon dataset was analyzed initially by [6]. As leukemia, it is an-
other commonly used dataset in genomic studies. A number of 62 samples
(40 tumors and 22 controls) were measured in 2000 human genes. Abso-
lute measurements from Affymetrix high–density oligonucleotide arrays were
taken for each sample in each gene in both datasets. Here, we have worked
with data in two different ways. On one side, we have carried out prepro-
cessing steps (P) following [101], (i) thresholding of the measurements, (ii)
filtering of genes, (iii) base 10 logarithmic transformation. On the other,
we have also tried our models over the raw data (RD). With preprocessing,
leukemia and colon datasets reduce their dimensionality to 3571 and 1225
genes, respectively.

As a result of combining these two ways to deal with data with the three
different choices for γ, we have six different models. Table 3.4 shows the
results for the leukemia dataset. To obtain accurate and precise measures
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Leukemia Test error SD Genes

RD-γ Klinger 0.062 (0.044) 67 (of 7129)
RD-γ ridge 0.064 (0.039) 11 (of 7129)
RD-γ lasso 0.102 (0.055) 6 (of 7129)
P-γ Klinger 0.079 (0.032) 16 (of 3571)

P-γ Zou 0.067 (0.030) 5 (of 3571)
P-γ Lasso 0.064 (0.028) 5 (of 3571)

Table 3.4: Test error and sparsity results for the leukemia dataset.

for the error and its standard deviation, we split 50 times the set of 72
samples into a training set of 38 samples and a test set of 34 samples. We
also record the number of genes with nonzero coefficient for the optimal
lambda, in terms of cross–validation (CV) error.

Table 3.5 shows the results for the colon dataset. The 62–sample has
been randomly splitted 50 times into a training subsample of 50 observations
and a test subsample of 12 observations.

When looking for other error test results obtained with different meth-
ods, it is common and correct to think that leukemia and colon datasets
have been often used in the scientific literature since its appearance years
ago. Nevertheless, it is difficult to find a fair comparison between methods,
since each author uses a different way to obtain an error measure. Some of
them only focus on a leave–one–out cross–validation rate (too optimistic);
others center on the same data subdivision carried out by [161]; finally, the
fairest way to know the real performance of each method is to randomly
split the total sample N times into two disjoint samples, training and test.
Table 3.6 compare our best results with those from methods obtaining their
error rate following the latter way.

Comparisons with the following methods have been established. In [43],
a CART-based method is developed to discover the emerging patterns inside
the set of variables. BagBoosting [89] is a combination of bagging and boost-
ing, two ensemble learning algorithms, applied to stumps, decision trees with
only one split and two terminal nodes. Different algorithms are presented
in [90]. Pelora is a penalized logistic regression method. Forsela is similar
to Pelora, but making a search of single genes instead of groups, Wilma [91]
shares some characteristics with Pelora, but suffers from a few limitations

Colon Test error SD Genes

RD-γ Klinger 0.195 (0.130) 10 (of 2000)
RD-γ ridge 0.147 (0.116) 17 (of 2000)
RD-γ lasso 0.200 (0.128) 9 (of 2000)
P-γ Klinger 0.152 (0.096) 11 (of 1225)

P-γ Zou 0.182 (0.111) 15 (of 1225)
P-γ Lasso 0.215 (0.133) 10 (of 1225)

Table 3.5: Test error and sparsity results for the colon dataset.
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Dataset Method Test error

Leukemia Our best 0.062
CART-Fisher [43] (*) 0.024–0.050
BagBoosting [89] (**) 0.0408

Pelora [90] (**) 0.0569
Wilma [90] (**) 0.0262
Forsela [90] (**) 0.0415
PLS [299] (***) 0.033–0.047
PCA [299] (***) 0.039–0.108

Colon Our best 0.147
CART-Fisher [43] (*) 0.128–0.234
BagBoosting [89] (**) 0.161

Pelora [90] (**) 0.1571
Wilma [90] (**) 0.1648
Forsela [90] (**) 0.1381

Table 3.6: Test error rates obtained using different methods from the scien-
tific literature for the leukemia and colon datasets. (*) In each random split,
10 observations in the test set. (**) In each random split, 2/3 of the data
to the training set, 1/3 of the data to the test set. (***) In each random
split, 1/2 of the data to the training set, 1/2 of the data to the test set.

[90]. [299] uses dimension reduction through partial least squares (PLS) and
principal component analysis (PCA), classifying with discriminant analysis.
Our error results are only slightly worse than the others for the leukemia
dataset, and among the best for colon. In any case, all the error rates are
quite similar. Many of the methods we compare with stand out for grouping
genes ([43], [299], Pelora and Wilma in [90]) in one way or another. Gene
preselection is carried out by means of preexisting methods in [43] and [89].
Our logistic lasso methods neither makes use of grouping or gene preselec-
tion nor it is necessary to select a lot of different parameters, as in [43],
appart from the penalty λ. Moreover, its sparsity (see Tables 3.4 and 3.5)
and the interpretability associated with it are merits not fulfilled by these
other methods.

Gene expression data is seen as the paradigm of the case n << p, as
Affymetrix or oligonucleotide arrays map large parts of the human genome
while only tens or hundreds of individuals are sampled. This situation makes
most of traditional statistical methods inapplicable, so new variable selection
approaches had to be developed to deal with this curse of dimensionality
problem. Lasso selects a group of p

′ ≤ n genes with high importance in the
classification of samples, and assign a zero coefficient to the rest. Use of the
CCD algorithm to solve the optimization problem is highly desirable, as it
provides with the global solution of GSoft in the fastest way.

In a more biological way, we have also studied which genes are more
related with the ALL/AML status in leukemia. Observations of the genes
with nonzero coefficients for each model have been carried out. As expected,
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some recurrences have been found in the six different models. Table 3.7
shows those genes appearing more frequently.

The fact that some genes are discovered in some models and not in others
can be explained from the correlations between them. These correlations
arise as a result of co–inheritance of nearby genes throughout generations.
For instance, gene M19507 takes a nonzero coefficient with all but two
of the models, and gene M92287 takes nonzero coefficients only in these
two models. If we take a careful look to the correlation between them, we
detect it as abnormally high. A correlation study between all the genes
with nonzero coefficient in any of the models has been carried out. With
the aim of knowing the real significance of each correlation value, we have
obtained a significance value as the proportion of values, in a set of 10000
random correlations between pairs of genes from the entire dataset, higher
than the correlation. This way, significance of the correlation M19507 –
M92287 is 0.0558; the one between M84526 –Y00787 is 0.048, which explains
why they are partly complementary. Significances of correlations between
gene Y00787 and the last eight genes in Table 3.7 are also very low, as
they are detected specifically in those two models where Y00787 is not.
In a similar way, pairwise correlations in this 8–gene group are often high.
Complementarity in the detection by the different models emphasizes one
of the biggest problems of lasso selection, also marked in [452]: when there
is a group of significan variables with high pairwise correlation lasso selects
only one, and does not care which one.

Genes RD-γ Klinger RD-γ Zou RD-γ Lasso P-γ Klinger P-γ Zou P-γ Lasso

M27891 X X X X X X
M19507 X X X X
M84526 X X X X
Y00787 X X X X
M92287 X X
U05255 X X
M17733 X X
M63138 X X
M96326 X X
L07633 X X
U82759 X X
HG1612 X X
M13690 X X
M23197 X X
X95735 X X
Y07604 X X
X85116 X X

Table 3.7: Genes with nonzero estimated coefficients in the different mod-
els for the leukemia dataset. Here we show the seventeen ones which are
detected in more than one model.
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A bunch of articles can be found in the gene expression literature looking
for the genes associated with the ALL/AML status. It is expected that exists
some kind of intersection between the sets of genes given by the different
studies. First five genes in the relation of Table 3.7 (M27891, M19507,
M84526, Y00787 and M92287 ) are also discovered in [237], being M27891
the one showing the strongest association with disease, as happens here.
Three of the four genes pointed out in [168] (U82759, HG1612 and X95735 )
are also discovered here. On the other hand, coincidences with the list given
in [392] are more limited.

3.1.5 Conclusion

We study lasso logistic regression by means of a generalized soft–threshold
(GSoft) estimator. An equivalence between existence of a solution in GSoft
and convergence of the CCD algorithm to the same solution is given. An
approximation of the covariance matrix for the estimated coefficients β̂ based
on the GSoft approach produces very accurate results. The CCD algorithm
is fast, stable and efficient, and allows different kinds of implementations.
Efficiency of the optimization algorithm is a main issue nowadays, as the
datasets used in many fields (text categorization, image processing, . . . )
have extraordinary high dimensions.

We tried different options for the vector Γ of specific penalizations in
GSoft. Some of them are based in the variability shown by each covari-
ate, while others depend on previous application of penalized regression
approaches to data. Their consistency properties follow from appropriate
developments in the recent literature.

Finally, we applied these methods to simulated and real gene expression
data. The same simulations carried out in other studies were used here, in
order to provide honest and fair comparisons. Common real gene expression
datasets, like leukemia or colon, allow us to know the ability of these methods
to detect genes related with the disease or trait under study. The penalized
regression approaches performed in this work are expected to give rise to
sparse models, where only a very small percentage of covariates (genes) have
weight in classification/prediction.



Chapter 4

Machine learning tools:
Support Vector Machine
(SVM) approach to classify
in genetic association studies

4.1 A SVM adaptation to SNP data

This chapter contains a new SVM approach developed to work with SNP
data in two–class classification problems. Although unpublished, this SVM
tool is two–fold and has been therefore presented in two different conferences:
the 24th International Biometric Conference [148] (statistical aspects), and
the 2nd Iberian Grid Infraestructure Conference [355] (information technol-
ogy aspects).

4.1.1 Abstract.

Support vector machines (SVMs) arose in the machine learning
field in the nineties as a pattern classification technique. Their
main idea is to construct a separating hyperplane between classes
in a feature, high–dimensional space, where separability is eas-
ier to achieve. To get that, SVMs use a kernel approach. The
choice of the kernel is fundamental facing accurate classifica-
tion. In this chapter, a new kernel approach, adapted to work
with categorical SNP data, is developed. Its classification results
are given in comparison with similar techniques. The compu-
tational burden generated by this SVM approach is very high.
Computer parallelization is carried out using two different GRID
infraestructures, in order to reduce computation times and allow
for feasibility.

83
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4.1.2 Introduction

Support vector machine (SVM) is a pattern classification technique initially
proposed by Vapnik and co–workers [42, 82, 409]. The past years have
witnessed an increasing interest in this machine learning method, which in-
troduces new principles to solve old problems. SVMs aims at minimizing
an upper bound of the generalization error through maximizing the margin
between the separating hyperplane and the data. What makes SVMs at-
tractive is the property of condensing information in the training data and
providing a sparse representation by using a very small number of points
(support vectors) [8, 156].

The performance of SVMs largely depends on the kernel choice and,
hence, on the feature space selected. SVMs transform data from the input
space to a feature space, usually high–dimensional, where data separation
is easier. This is made by means of a similarity measure, called kernel. In
the machine learning literature, there are three types of kernels [42, 409]
that can be found. The importance of the kernel choice can be observed in
many studies [8, 33, 45, 193]. New kernels, some of them modifications of
the previous ones, have been proposed. The search for kernels suitable for
feature selection in high–dimensional data problems is also a matter of study
[193, 249]. Methods for incorporating prior knowledge about a problem at
hand in SVMs are also valuable [54, 366].

SVMs have been applied to data from many different fields. Regarding
genetic data, it is easy to find studies both in gene expression [54, 319]
and SNP data [248, 249, 371]. In this sense, specific approaches have been
developed to handle large high–dimensional datasets [44] or to combine a
SVM approach with l1 penalization (see Chapter 3) [387]. There are plenty
of software packages developed to run SVMs in many different ways [176,
319].

Most SVM approaches in use nowadays were thought to work with con-
tinuous data. Here, we have developed a new kernel approach specifically
designed for SNP categorical data. Its classification abilities are studied in
comparison with other classification techniques (see Chapter 5). Computer
parallelization is used to reduce computation times, taking advantage of the
fact that many calculations can be made independently of each other. The
type of computer implementation carried out is very important, due to the
computational burden generated by the method.

This chapter is organized as follows: Subsection 4.1.3 contains SVM ori-
gins and principles, together with a proper explanation about our approach.
Classification and computation time results are given in Subsection 4.1.4.
Proof of the mathematical properties fulfilled by the kernel is located in the
Appendix B of this essay.
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4.1.3 Methods

4.1.3.1 Pattern recognition: from perceptron to SVMs

The first machine learning technique, called perceptron, was proposed more
than half a century ago [341, 342]. The main aim of perceptron was to solve
pattern recognition problems building a rule to accurately separate data
from different classes. A training sample {(x1, y1), . . . , (xn, yn)} is used. Per-
ceptron connects the outputs yi ∈ {−1, 1} with the inputs xi = (x1

i , . . . , x
p
i )

by means of a functional dependence model

yi = sign [〈ω,xi〉+ b]

Geometrically, the reference space is divided in two regions, one for yi =
−1 and the other for yi = 1. Separation between these two regions is defined
by the hyperplane

〈ω,x〉+ b = 0

The vector ω and the scalar b establish the direction and position, re-
spectively, of this separating hyperplane. Figure 4.1 shows an example of
hyperplane (straight line) separating two different classes in the plane.

During the learning process, the perceptron algorithm uses data from the
training sample to find the separating hyperplane minimizing the addition
of distances from the hyperplane to incorrectly classified points. Incorrectly
classified points are those fulfilling:

yi = −1 and 〈ω,xi〉+ b > 0
or

yi = 1 and 〈ω,xi〉+ b < 0

Figure 4.1: Perceptron classification in a two–class problem. Image obtained
from www.celebisoftware.com/Tutorials/neural_networks.
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Therefore, the objective function to be minimized is

L(ω, b) = LPω,b = −
∑
i∈I

yi [〈ω,xi〉+ b] (4.1)

where the set of indexes I moves along the incorrectly classified points of
the training sample. Although the solution of the optimization problem can
be easily reached in a finite number of steps, the perceptron suffers from
several problems, summarized in [333]:

1. When the data is separable, there are plenty of solutions, depending
on the initial values of the optimization algorithm.

2. The finite number of steps to reach the solution could eventually be
large, depending on the larger the separation between classes is.

3. When data is not separable, the optimization algorithm will not con-
verge, and it will enter into an infinite loop.

The first problem is easy to solve, adding new restrictions to the separat-
ing hyperplane. The optimal separating hyperplanes (OSH) technique [409]
looks for separating classes maximizing the distance to the closest point
in each class (margin). This way, only one solution expected to give rise
to a better classification is obtained. The OSH technique generalizes the
perceptron criterion 4.1 formulating the following optimization problem:

max‖ω‖=1C

fulfilling yi [〈ω,xi〉+ b] ≥ C i = 1, . . . , n

With these restrictions it is ensured that all the observations are at
least at a distance C of the separating hyperplane. Taking ‖ω‖ = 1/C,
the problem can be reformulated in terms of ω and b. This is a convex
optimization problem (quadratic programming with inequality constraints).
The objective function to be maximized now is

LO
ω,b =

1
2
‖ω‖2 −

n∑
i=1

αi {yi [〈ω,xi〉+ b]− 1}

It can be proved that the solution ω depends only on the support vectors
xi. The support vectors are those observations lying on the border of the
margin (and therefore having αi > 0). Figure 4.2 shows an optimal separat-
ing hyperplane with its margins. Support vectors lie on the left and right
borders. The fact that none of the training samples fall inside the margin
does not imply the same is going to happen with new observations. Simply,
intuition indicate us that a large margin in training data would give rise to
a good separation with new data.
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Figure 4.2: Example of optimal separating hyperplane. The support vectors
lie on the borders of the margin. A linear combination of them defines the
direction ω of the hyperplane. Image obtained from www.enm.bris.ac.uk/
teaching/projects/2004_05/dm1654/svm_classification.html.

However, the same as with the perceptron, the OSHs do not deal with
non–separable data. Data from common problems in real life overlaps in
the reference space. A way to deal with overlapping consists of maximizing
C, as before, but allowing some samples to fall in the incorrect side of the
margin [57, 177]. Working this manner is also expected to overcome one of
the main defects of the perceptron and OSHs, called overfitting.

In the non–separable case, a set of slack variables ξ = (ξ1, . . . , ξn) is
defined to allow incorrectness in data. The optimization problem is now
posed as

max C − γ
∑n

i=1 ξi

fulfilling yi [〈ω,xi〉+ b] ≥ C(1− ξi) i = 1, . . . , n
ξi ≥ 0

where γ sets an upper bound for the amount of incorrectly classified samples;
the separable case would correspond with γ =∞. The objective function in
the present case is

LN
ω,b =

1
2
‖ω‖2 + γ

n∑
i=1

ξi −
n∑
i=1

αi {yi [〈ω,xi〉+ b]− (1− ξi)} −
n∑
i=1

µiξi

The so–called dual problem is equivalent and can be obtained simply
replacing with the values derived from making the first derivative of the
objective function equal to zero:

LNd
α =

n∑
i=1

αi −
n∑
i=1

n∑
k=1

αiαkyiyk 〈xi,xk〉 (4.2)
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Figure 4.3: The fundamental principle of the SVM procedure is to map from
the original reference space to a feature space, usually high–dimensional,
where data separation is easier. Image obtained from imtech.res.in/
raghava/rbpred/home.html.

As in the separable case, the solution will be defined in terms of the
support vectors, but it will still be a linear function of the data. SVMs
arise as an evolution of the techniques shown here. The main idea of the
SVM method is that data separation can be simplified working with higher
dimensions (feature space) and coming back then to the original space. This
will give rise to a non–linear data separation.

4.1.3.2 Feature spaces, kernel choices and the kernel trick

To work in higher dimensions it is necessary to convert the original reference
space X into a feature high-dimensional dot product space F (below we will
see the need of the dot product requirement). To this end, we use a map:

φ : X → F

x 7−→ φ(x)

Figure 4.3 illustrates the idea of mapping in SVMs to get non–linear
transformations back in the original space. SVM methodology is only un-
derstood around the concept of kernel. A definite positive kernel K is a
similarity measure defined from a map and a dot product in the feature
space:

K : X ×X → R
(xi,xk) 7−→ K(xi,xk) = 〈φ(xi), φ(xk)〉
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where i, k ∈ {1, . . . , n}. A kernel matrix is the n×n matrix whose elements
are Kik = K(xi,xk). A common approach in SVM studies is to begin from
the kernel instead of from the feature space or the map. It is relatively
easy to prove that any definite positive kernel can be represented as a dot
product in a given space [367].

The optimization problem to be solved in SVMs is immediately derived
from the dual problem in 4.2, but now with the kernel K instead of the
general dot product:

max LSd
α =

∑n
i=1 αi −

∑n
i=1

∑n
k=1 αiαkyiykK(xi,xk)

fulfilling 0 ≤ αi ≤ γ∑n
i=1 αiyi = 0

A definite positive kernel has to fulfill some mathematical properties.
Once we have a definite positive kernel, the kernel trick states that given an
algorithm which is formulated in terms of a definite positive kernel K, one
can construct an alternative algorithm by replacing K by another positive
definite kernel K̃ [367]. The best known application of the kernel trick is in
the case where K is the dot product in the input domain; however, the trick
is not limited to that case.

In the scientific literature concerning SVMs, there are three families of
kernels that dominate:

• Polynomial kernels
K(xi,xk) = 〈xi,xk〉d

with d ∈ N. Examples of use of this family of kernels can be seen in
[2, 54]. There are also SNP association studies making use of them
[248, 371, 440].

• Gaussian kernels

K(xi,xk) = exp

(
−‖xi − xk‖2

2σ2

)

with σ > 0. Some of the kernels used in [2, 54] belong to this family.

• Sigmoid kernels

K(xi,xk) = tanh(τ 〈xi,xk〉+ υ)

with τ > 0 and υ > 0. In [2] is carried out a SVM feature selection
study with kernels from this family, among others.
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The importance of the kernel choice has been addressed in many studies
[193]. An interesting chapter about design of kernel functions can be found
in [367]. Different kernel approaches from the ones explained above are
developed, for instance, in [33, 45]. SVM classifiers are improved in [8] by
means of modifying kernel functions.

Completely specifying a SVM therefore requires specifying two elements:
the kernel function (K) and the magnitude of the penalty for violating the
soft margin (γ). The settings of these parameters depend on the specific data
at hand [54]. Most of the scientific articles focus on the choice of the kernel.
However, it is also possible to find studies trying to assess the influence of
the penalty parameter γ on the results [176].

4.1.3.3 Adaptation to SNP categorical data

Samples xi = (x1
i , . . . , x

p
i ) in case–control SNP association studies fulfill xji ∈

{1, 2, 3}, depending on if the individual is homozygous in the common allele
(1), heterozygous (2) or homozygous in the rare allele (3) for the SNP under
study, or a similar coding. The categorical nature of SNP data makes the use
of the majority of kernels developed in the literature a complete nonsense.
These kernels have been usually developed to work with continuous data.

So there is a need to look for a kernel ready to work with SNP genetic
profiles with values in {1, 2, 3}p ⊂ Rp. It is not easy to define a similarity
measure in this set, as such function would understand distance between 1
and 2 is equal to distance between 2 and 3 when there is no reason for such
relation to exist in reality. Take as example the sickle cell anemia disease:
while homozygote individuals in the common allele (1) and heterozygote
individuals (2) are almost equal with respect to disease symptoms, homozy-
gote individuals in the rare allele (3) suffer all the symptoms in the most
severe degree.

To look for a kernel is to look for a map of SNP profiles. A basic
idea to carry out such a mapping is to consider the two different alleles
of each SNP, that is, to map the SNP profiles to binary data. So the
genetic profile of an individual could be described by means of 2p alleles
zi = (z1

i , z
2
i , . . . , z

2p−1
i , z2p

i ) instead of p SNPs xi = (x1
i , . . . , x

p
i ). Data would

be transformed like

if xji = 1 then z2j−1
i = z2j

i = 0

if xji = 3 then z2j−1
i = z2j

i = 1

if xji = 2 then z2j−1
i = 1, z2j

i = 0 or z2j−1
i = 0, z2j

i = 1

Thus, an ambiguity appears each time we have a heterozygote inside
the SNP profile. The best way to deal with this ambiguity is thinking the
feature space not as a real space, but as a vector space with all the discrete
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random variables in a certain real space. This way, the map z of a SNP
profile x would be a random variable with T = 2#{xj=2} values with equal
probability. For instance, let p = 3 and x = (2, 1, 2) be. The transformed
allele profile would be a random variable in R6 taking 4 values, each one
with probability 1/4:

z(1) = (1, 0, 0, 0, 1, 0)
z(2) = (1, 0, 0, 0, 0, 1)
z(3) = (0, 1, 0, 0, 1, 0)
z(4) = (0, 1, 0, 0, 0, 1)

Intuitively, we are splitting each heterozygote into two allele profiles, and
then considering all the allele profiles z(t), t = 1, . . . , T , for each SNP profile.
The weight of each SNP profile is shared equally among each allele profile.
When constructing a kernel, we have to bear in mind some aspects:

1. The kernel has to be a similarity measure between profiles. As we work
with binary data, the indicator function will be probably necessary. . .

2. Weight of each SNP profile is shared equally among all the allele pro-
files. Therefore, probability of each allele profile is 1/T .

3. As in every discrimination problem, each predictor variable has a cer-
tain discriminant power. It will be then necessary to use any kind of
measure wj of the discriminant power of each allele or group of alleles.

Bearing these aspects in mind, a first proposal of kernel for two SNP
profiles xi and xk could be:

K(xi,xk) =
Ti∑
s=1

Tk∑
m=1

1
Ti

1
Tk

2p∑
l=1

wlI
{
zli(s) = zlk(m)

}
(4.3)

where I is the indicator function, Ti = 2#{xji=2}, Tk = 2#{xjk=2} and zli(s)
is the value of the l allele in the s allele profile of the i individual. As a
similarity measure, this kernel estimates the similarity between two SNP
profiles xi, xk as the weighted addition along all the possible pairs of allele
profiles of all the allele weights wl where the profile coincides. However, this
kernel suffers from two main defects which make it non suitable in case–
control association studies.

First, a large part of the research concerning disease–genotype associa-
tion is focused on the search for interaction effects between SNPs [186, 258,
305, 337, 432]. The kernel in (4.3) only measures similarity between individ-
uals by means of similarities of separate alleles. Interactions between SNP
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pairs or trios are not borne in mind. Second, this kernel could be invalid
depending on the data dimensions we are working with. A definite positive
kernel can be defined as a kernel giving rise to definite positive kernel ma-
trices (hence non–singular) for every sample of profiles. Nevertheless, the
kernel in (4.3) has a maximum rank of p + 1, so if we have n > p + 1 then
the kernel matrix is singular and the optimization problem in SVMs cannot
be solved.

Therefore, the need to solve these drawbacks led us to a second proposal
of kernel:

K(xi,xk) =
Ti∑
s=1

Tk∑
m=1

1
Ti

1
Tk

(
2p∑
l=1

2p∑
r=l

wlrI
{
zlri(s) = zlrk(m)

})
(4.4)

where zlri(s) = (zli(s), z
r
i(s)) is the pair of alleles (l, r) of the s allele profile. It

is obvious that (abuse of notation):

wll = wl , l = 1, . . . , 2p
zlli(s) = zli(s) , l = 1, . . . , 2p

This kernel (4.4) can be also expressed as follows:

K(xi,xk) =
Ti∑
s=1

Tk∑
m=1

1
Ti

1
Tk

(
2p∑
l=1

wlI
{
zli(s) = zlk(m)

}
+

2p∑
l=1

2p∑
r=l+1

wlrI
{
zlri(s) = zlrk(m)

})

where we are adding to the kernel in (4.3) SNP–SNP interaction weights.
Thus, the kernel in (4.4) can be considered an extension of kernel (4.3) in
the sense that similarities between individuals bear now in mind interactions
between pairs of alleles. The proof that expression (4.4) is a definite positive
kernel is given in Appendix B.

So this kernel solves, partly, the lack of study of interactions we had with
(4.3). The problem of singularity of the kernel matrices generated is also
partly solved. The maximal rank of kernel matrices is now p(p+ 1)/2. This
is remarkably higher than p+1 but in some cases it could still be considered
insufficient. Table 4.1 shows the maximal ranks (hence, maximal sample
sizes) of kernels (4.3) and (4.4) depending on p.

4.1.3.4 Optimization of the objective function

The SVM optimization problem can be analytically solved only when the
training sample size is extremely small, or in the separable case, when the
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p Maximal rank kernel (4.3) Maximal rank kernel (4.4)
10 11 55
25 26 325
50 51 1275

100 101 5050
200 201 20100
500 501 125250

1000 1001 500500

Table 4.1: Maximal ranks of the kernel matrices depending on p. These
maximal ranks determine the maximal sample size which, if exceeded, would
give rise to a singular kernel matrix and hence, an unsolvable optimization
problem.

support vectors are known in advance. However, in most cases, this opti-
mization problem has to be solved numerically. There are many optimiza-
tion techniques suitable for this kind of problems. Here we use the primal
active set method to solve quadratic programming problems with inequal-
ity constraints. A complete explanation about the method can be found in
[130].

The primal active set method fits perfectly with the datasets to be used
here (see next section); nevertheless, this method works out to be compu-
tationally demanding when the dimension p goes beyond. This is the situa-
tion in SNP case–control association studies, as every day high–throughput
technologies become more and more common. In some cases, optimization
techniques discovering an approximate solution instead of the global solu-
tion can be acceptable, especially when methods looking for global solutions
are computationally unfeasible.

Genetic algorithms (GAs) were first developed in [187]. The GAs are
search algorithms based on the mechanics of natural selection and genetics.
A very interesting book compiling the basics of GAs is [159]. Figure 4.4
summarizes their working scheme. GAs combine survival of the best data
structures with data random crossing among such structures. Each new
generation, a new set of data is created mixing pieces of the ones showing
best results (in terms of the objective function) in the previous generations,
and new data pieces are occasionally added to be tried. Although partly
random, GAs are not completely random, as they take advantage of the
information acquired in previous steps to speculate about new search points
that could most likely improve the objective function values.
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Figure 4.4: Working scheme of GAs. Many of the terms used (mutation,
reproduction, population,. . . ) are taken from the genetic field. Image ob-
tained from [159].

4.1.4 Results and discussion

4.1.4.1 SVM classification

To evaluate the classification abilities of this SVM tool, we took some of the
datasets simulated in [149] (see next chapter), specifically those including
marginal effects. Due to computational feasibility problems, we only kept
20 SNPs (two causal and 18 noise ones). Sample sizes were reduced to 200
individuals for training and 100 for testing the method (half cases and half
controls in both).

Misclassification results are shown in Table 4.2 in comparison with the
results of classification trees (CART), random forests (RF) and logistic re-
gression (LR) obtained in [149] and the Bayes error rate (also explained
there). The six datasets differ in the minimum allelic frequency (MAF) of
the causal SNPs (0.2 and 0.4) and the choice of the θ parameter (0.8, 1.4
and 2) in the penetrance model [266]. SVM classification results are worse
than tree–based methods ones and only slightly better than LR’s. In any
case, SVM errors move far from Bayes error rates, even in the most favorable
cases to detect association.

Weights wlr are expected to measure in some way the discriminant power
of each pair of alleles. We tried different choices, all of them based on
differences of allelic frequencies between cases and controls. Results do not
differ in a significant way. Further research is needed about this issue. A
boosting–based approach to “update” the allele weights could be suitable
here.
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SVM CART RF LR Bayes
MAF = 0.2, θ = 0.8 0.49 0.49 0.49 0.49 0.44
MAF = 0.2, θ = 1.4 0.47 0.46 0.47 0.49 0.40
MAF = 0.2, θ = 2 0.47 0.42 0.45 0.48 0.38
MAF = 0.4, θ = 0.8 0.45 0.43 0.44 0.46 0.38
MAF = 0.4, θ = 1.4 0.40 0.35 0.37 0.44 0.32
MAF = 0.4, θ = 2 0.38 0.32 0.32 0.41 0.29

Table 4.2: Misclassification results of our SVM tool in comparison with
the methods carried out in [149] and the Bayes error rate in six different
simulated scenarios of minimum allelic frequency (MAF) and penetrance
(θ).

4.1.4.2 Computation time

The SVM tool presented here is computationally demanding due to sev-
eral aspects, like the data mapping carried out or the study of every SNP–
SNP interaction. Programming of the method consists of three fundamental
stages:

1. Construction of the kernel matrix.

2. Solution of the optimization problem by means of the primal active
set method.

3. Testing of the method.

Figure 4.5: Sketch of the GRID infrastructure in the Ingenio Mathematica
Project. At each site it has been installed and configured a Computing Ele-
ment (CE), a Storage Element (SE), a Monitoring System (MON) together
with several Worker Nodes (WN). To do this, XEN virtual machines have
been used with Dual Core Xeon processors with 2Gb of memory. Image
obtained from [355].
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There are several factors determining computation times in each one
of these stages. Amount of SNPs under study and heterozygosity are the
most important, while training and testing sample sizes have also strong
influence. To illustrate the computational burden generated by this SVM
approach, Table 4.3 shows the computation times needed for constructing
the kernel matrix depending on training sample sizes and number of SNPs
in a two–year old 512 Mb RAM laptop. A quick look is enough to realize
that moving onto high dimensions (more SNPs) is prohibitive.

Computational burden is concentrated on stages 1 and 3 above, espe-
cially on the construction of the kernel matrix. This makes the problem
manageable, as both stages can be parallelized in a computer cluster (in the
kernel matrix each cell is calculated independently of the others; testing each
sample is also independent of previous tests with other samples). It reminds
a double “bottleneck”, as only the middle stage (solution of the optimization
problem) needs to be carried out completely at the same computer.

Parallelization allows us to save computation time, sharing computa-
tional burden of stage 1 and 3 among several computers connected in a
cluster. Here we made use of two different parallelization approaches to
obtain SVM classification results:

• A GRID platform with 11 computers Core Duo AMD Opteron 4 Gb
RAM located at the Department of Statistics and Operations Research
of the University of Santiago de Compostela. Package Rmpi in R was

Number of SNPs
Training sample 5 10 15

50 7s. 30s. 14m.
75 11s. 1m. 40m.

100 20s. 2m.15s. –
200 1m.22s. 8m. –
400 5m.25s. 36m. –
600 13m. 1h.7m. –
800 23m. 2h. –

1000 38m. – –
1300 1h.20m. – –
1600 1h.35m. – –
2000 2h.33m. – –

Table 4.3: Approximated computation times of the kernel matrix in a stan-
dard laptop as a function of training sample size and number of SNPs under
study in hours (h.), minutes (m.) and seconds (s.). Cells marked with a
hyphen (–) mean unfeasibility to obtain the matrix. Times obtained with
15 SNPs are highly variable, depending on the heterozygosity of the SNPs;
this problem gets worse when more than 15 SNPs are studied.



4. SVMs in association studies 97

used to parallelize and optimize the entire process.

• The GRID of the Ingenio Mathematica Project (www.i-math.org) in
CESGA (Supercomputation Galician Center) has 124 slots. A small
portion of them were available to run some tests. Figure 4.5 details
the GRID infrastructure, consistent of three nodes at CESGA, UNI-
CAN (University of Cantabria) and IMUB (University of Barcelona).
Proper explanation about hardware infrastructure and aims can be
found in [355].





Chapter 5

Empirical studies in clinical
genetics

5.1 Evaluating the ability of tree-based methods
and logistic regression for the detection of SNP–
SNP interaction

This section consists of the results included in [149]. Minor changes have
been applied here to the original manuscript, either to remove redundant
information from previous chapters, or to include some figures which in the
article were pushed into supplementary material. Furthermore, the format
has been adapted to not alter this essay.

5.1.1 Abstract

Most common human diseases are likely to have complex eti-
ologies. Methods of analysis that allow for the phenomenon
of epistasis are of growing interest in the genetic dissection of
complex diseases. By allowing for epistatic interactions between
potential disease loci, we may succeed in identifying genetic vari-
ants that might otherwise have remained undetected. Here we
aimed to analyze the ability of logistic regression (LR) and two
tree–based supervised learning methods, classification and re-
gression trees (CART) and random forest (RF), to detect epista-
sis. Multifactor–dimensionality reduction (MDR) was also used
for comparison. Our approach involves first the simulation of
datasets of autosomal biallelic unphased and unlinked single nu-
cleotide polymorphisms (SNPs), each containing a two–loci in-
teraction (causal SNPs) and 98 “noise” SNPs.We modelled in-
teractions under different scenarios of sample size, missing data,
minor allele frequencies (MAF) and several penetrance models:

99



100 5.1. Tree-based methods and LR in association

three involving both (indistinguishable) marginal effects and in-
teraction, and two simulating pure interaction effects. In total,
we have simulated 99 different scenarios. Although CART, RF,
and LR yield similar results in terms of detection of true asso-
ciation, CART and RF perform better than LR with respect to
classification error. MAF, penetrance model, and sample size
are greater determining factors than percentage of missing data
in the ability of the different techniques to detect true associa-
tion. In pure interaction models, only RF detects association.
In conclusion, tree–based methods and LR are important statis-
tical tools for the detection of unknown interactions among true
risk–associated SNPs with marginal effects and in the presence
of a significant number of noise SNPs. In pure interaction mod-
els, RF performs reasonably well in the presence of large sample
sizes and low percentages of missing data. However, when the
study design is suboptimal (unfavourable to detect interaction
in terms of e.g. sample size and MAF) there is a high chance of
detecting false, spurious associations.

5.1.2 Introduction

With the deposition of fresh data on autosomal SNPs in large data repos-
itories such as HapMap [389], population–based studies are becoming very
popular among researchers interested in disentangling the genetic causes of
complex diseases. Studies of complex diseases such as asthma, schizophre-
nia, diabetes, etc. generally involve a large number of SNP genotypes.

The determination of which of the SNPs tested modify the risk of dis-
ease entails important statistical challenges; even more so when considering
the possibility of interaction between SNPs. The definition of epistasis or
interaction is highly controversial in the scientific literature [317]. Here, we
will use a pragmatic definition of interaction: two or more SNPs contribute
jointly to the probability of developing a particular disease. There is an
ample spectrum of different statistical approaches for detecting interaction.
Logistic regression is probably the most popular one among genetic epidemi-
ologists and geneticists. Over the past few years, the MDR approach [337]
has been applied to the analysis of SNPs in many complex diseases [72, 169].
Recently, a number of tree–based techniques, such as CART and RF, have
been suggested as suitable for detecting interactions in large–scale associa-
tion studies [258] or for identifying SNPs predictive of phenotype [56]. The
ability of these methodologies to detect association is however a topic of
great controversy. Thus, for instance, some authors [147] claim that CART
is a suitable technique for detecting interactions, especially in those cases
that do not exhibit strong marginal effects [80], while others [394] state that

. . . CART suffers from the same problem of sequential condi-
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tioning that can plague many other regression–based methods,
which makes it difficult to discover interactions. . . among predic-
tor variables. . .

Since most of the time the detected statistical interaction is considered equiv-
alent to positive real interaction, there is a crucial need for extensive re–
evaluation of existing methodologies for detecting SNP interaction in order
to minimize the high incidence of false positives in case–control studies [205].

The primary goal of tree–based methods and logistic regression (LR)
is to identify SNPs that may increase or decrease susceptibility to disease.
This can be achieved by quantifying how much each SNP contributes to the
predictive accuracy of these methods by measuring its predictive importance.
Finding that a SNP helps distinguishing between cases and controls is an
indication that the SNP either contributes to the phenotype or is in linkage
disequilibrium with SNPs contributing to the phenotype. While tree–based
methods are model–free, the underlying concept of LR is that data follows
a given model (logistic function). Tree–based methods are non–parametric
statistical approaches for conducting regression and classification analyses by
recursive partitioning [177]. The a priori advantage of tree–based methods
in comparison with e.g. logistic regression is that they do not require the
specification of a model.

Here we examine, by means of simulation of unphased and unlinked
SNP genotyping data, the power of different methods for detecting SNP
interaction. Several penetrance models, under different conditions of sample
size, missing data frequency and minimum allelic frequency (MAF), are
considered in order to evaluate which method performs best in different
disease scenarios.

5.1.3 Material and methods

5.1.3.1 Simulations

We simulated unphased genotype SNP data using SNaP [301] under several
scenarios: different sample sizes (400, 1000 and 2000; 1:1 cases and controls),
different percentages of missing data (0, 10 and 20%) equally distributed in
cases and controls, and causal SNPs with three different MAFs (0.1, 0.2
and 0.4). In addition, different models of penetrance were also considered.
Three of them were built following model 2 of [266]. In this model, the odds
of disease have a baseline value, α, unless both loci have at least one disease
associated allele. After that, the odds increase multiplicatively within and
between genotypes by a parameter, 1 + θ. Here we have used α = 0.05
and three different values of θ (0.8, 1.4 and 2). The odds were expressed as
penetrances, as required by SNaP. Note that these penetrance models involve
both marginal SNP effects and SNP–SNP interaction. Besides these, we also
simulated two scenarios of pure SNP–SNP interaction, without marginal
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Table 5.1: Penetrance matrices for pure and non–pure interaction models. In
the top rows we indicate the odd model according to [266]. In order to obtain
the penetrance values from the odds in the non–pure interaction models we
followed the formula: Penetrance = ODD/(1 + ODD), where α = 0.05 and
the θ is 0.8, 1.4, and 2 depending on the model. Pure–interaction models are
not considered in [266]; therefore, we have employed an ad hoc procedure as
explained in Subsection 5.1.2. More information concerning these models is
shown in Figure 5.2. Image obtained from [149].

SNP effects. Table 5.1 and Figure 5.1 show the different penetrance models
in matrix shape and graphically, respectively, as a function of the MAF of
the two causal SNPs. Figure 5.2 displays the marginal effects of causal SNPs
as a function of their MAFs and genotypes.

All simulated samples consist of unlinked autosomal SNPs: two causal
SNPs plus 98 neutral ones (noise). The frequencies of the noise SNPs were
randomly taken from a real matrix of SNP frequencies of a panel of autoso-
mal SNPs analyzed in a sample of West European control individuals (data
not shown) [410]. The simulated data aims to emulate real case–control
association studies where the power to detect real positive association is
usually low (due to the presence of large numbers of noise SNPs and/or low
penetrance and sample sizes,. . . ).

The combination of the different parameters involved in the simulation
consists of 99 different scenarios. Each of them was replicated 100 times in
order to account for the randomness of the sampling process. A Perl script
(http://www.perl.org/) was written in order to reformat the output from
the SNaP and to allow the processing of the data according to the different
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Figure 5.1: 3–D graphics showing the penetrance values as a function of the
MAF of the two causal SNPs: non–pure interaction models using θ = 0.8,
θ = 1.4 and θ = 2 (left, from top to bottom); and pure interaction models 1
and 2 (right) as defined in Material and methods (see also Figure 5.1). Pure
interaction model figures are zoomed to allow an easier interpretation of the
effect of MAF on penetrance. Image obtained from [149].

specifications accomplished. This Perl script also generates a random seed
for each of the SNaP runs.

5.1.3.2 Statistical methods

CART 1

The typical approach explained in Chapter 1 to classification trees has
been slightly modified here, with the aim of fitting better to the characteris-
tics of genetic data. For instance, as high–dimensionality of data could lead
to computational problems, we set to 20 the minimum number of observa-
tions required for splitting a node, to avoid the generation of complex and
excessive large trees.

Furthermore, trees were pruned following an ad hoc procedure: on a first
step, we identified the sub–tree with minimum classification error (mCE); on
a second step, our choice is the shortest sub–tree whose classification error
is below mCE + SD, where SD denotes the standard deviation of the mCE.
The aim of this second pruning is to reduce the complexity of the tree with a
minimum loss of classification power, leading to an improvement related to

1A large part of the explanations about CART, RF, LR and MDR have been removed
from [149] to avoid redundancies with Chapter 1. Only issues related to specific perfor-
mances of these methods are included here.



104 5.1. Tree-based methods and LR in association

Figure 5.2: Marginal effects of the causal SNPs as a function of their MAF’s
and genotypes. Each line represents the three possible genotypes: black
indicates the homozygote for the rare variant, red the heterozygote, and
green the homozygote for the common variant. Note that the disease risk
in both the pure–interaction model 1 and 2 for MAF = 0.4 and MAF =
0.2 respectively, is the same for the three possible genotypes. This clearly
shows that these SNPs do not show marginal effects for the MAF values
employed in our pure–interaction models. These distributions are computed
as follows; for the pure-interaction model 1 and using the penetrance values
of Figure 5.1: (AA): 0.3953 · p2 + 0.0015 · 2 · p · (1− p) + 0.1 · (1− p)2; (Aa):
0.0015 · p2 + 0.1328 · 2 · p · (1 − p) + 0.1 · (1 − p)2; (aa): 0.1; being p the
allele frequency for the rare allele. The same procedure can be applied to
the other models replacing the penetrance values (Figure 5.1) accordingly.
Image obtained from [149].

the interpretability of the model. Our choice for pruning has no influence on
the association results because we are removing only those branches located
far away from the top.

RF We constructed 500 trees in each forest and took m = 25
predictor variables in each node. These values yielded the best results in RF
but the differences using other parameters were not substantially different
(e.g. number of trees ranging from 100 to 1000 at intervals of 100). The
recommended number of variables selected for the random set is smaller
than m = 25. However, for large datasets, a larger number of variables
could improve classification errors [48].

For each tree, out–of–bag (OOB) SNP profiles are predicted to a class
(i.e., case or control) by running them down the tree. The term OOB
profiles refers to those individuals of the training sample which have not
been resampled by bootstrap, and therefore have not been used to build the
corresponding tree. Each tree gives one vote for each OOB observation, and
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the forest prediction for a given observation is the class receiving the most
votes (majority vote rule) [245].

Unlike CART, RF requires previous imputation of missing data. For
consistency, we also use RF to impute. Specifically, we sequentially consider
each SNP as an outcome and the others as covariates, and fill missing data
with the values predicted by RF.

LR LR is extremely prone to overfitting. Here we use a step-
wise variable selection algorithm based in the Akaike Information Criterion
(AIC). Using the function stepAIC in R, we choose the best model in terms
of having the lowest AIC (beginning from the model without variables and
adding or removing variables one–by–one). This should remove a large pro-
portion of the noisy SNPs and therefore alleviate the effect of overfitting.

As in RF, the method is not able to deal with missing data. For each
SNP we impute missing data by drawing randomly from a multinomial dis-
tribution whose vector of probabilities consists of the genotype frequencies
estimated from complete observations for the same SNP.

Multifactor dimensionality reduction (MDR) MDR was
used here as a reference method. Since MDR gives rise to a large computa-
tional burden, we have applied this technique in one random run per model
(one out of 100). MDR treats missing data as a new category [169].

Selection of the best candidate SNP In CART the best
candidate SNP is defined as the one located at the root of the tree. In RF,
there are two statistical indices that quantify the relative importance of each
SNP in the model: the mean decrease accuracy (MDA) and the Gini index.
For each tree, MDA records the prediction accuracy on the OOB portion
of the data. The prediction accuracy is also recorded for the same OOB
portion of the data after permuting the values of the SNP of interest; the
differences between the two accuracies are then averaged over all trees and
normalized by their standard error. The Gini index is the total decrease in
node impurities from splitting on the variable, averaged over all trees. Only
the results obtained using MDA are reported here, since they are highly
correlated to those obtained using the Gini index. In LR, two coefficients
are assigned to each SNP as follows: (i) each SNP is a categorical variable
with three categories (genotypes; e.g. GG/GA/AA are initially coded as
1/2/3), and this involves two degrees of freedom, (ii) next, LR transforms
these three categories to a binary code by means of creating two dummy
variables that consider the presence of one or two rare alleles (status 1 =
0/0, status 2 = 0/1, status 3 = 1/0); and (iii) the SNP having the dummy
variable with the most significant p–value is considered the best candidate
SNP. In MDR, the best candidate SNPs are the pair of SNPs that better
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classify in terms of disease status. As MDR is carried out using a ten-fold
cross–validation, the MDR cross–validation consistency counts the number
of times a particular pair of SNPs is detected as the best candidate.

It is also worth measuring the significance of the association of each sce-
nario. Thus, p–values can be computed as the probability of detecting two
noisy SNPs as the best candidate SNPs at least the same number of times as
observed for the causal SNPs. This can be done assuming a binomial distri-
bution with parameters n = 100 (number of runs) and p = 0.02 (proportion
of causal SNPs).

Bayes error rate Table 5.2 displays error rates from Bayes rule
in every simulated scenario. Their values do not depend much on sample
sizes, percentages of missing data or amount of noisy SNPs. The Bayes error
rate provides the lowest achievable error rate for a given pattern classification
problem. As a result, Bayes error rate is commonly used as the gold standard
for comparing the classification error obtained using a particular statistical
approach.

In a two–category problem like the one presented here (case–control),
there are two ways in which a classification error can occur [97]. Either
an observation has been classified as a case (x ∈ R2) and the true state
of its nature is a control (y = −1), or it has been classified as a control
(x ∈ R1) and it is actually a case (y = 1). Since these sources of error are
mutually exclusive and exhaustive, the probability of error can be calculated
as follows:

P (err) = P (x ∈ R2, y = −1) + P (x ∈ R1, y = 1)
= P (x ∈ R2|y = −1)P (y = −1) + P (x ∈ R1|y = 1)P (y = 1)

=
∫
R2

P (x|y = −1)P (y = −1) +
∫
R1

P (x|y = 1)P (y = 1)

The Bayes optimal decision rule minimizes this probability, so gives the

Table 5.2: Bayes error rates for the different models considered in this study.
Image obtained from [149].
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lowest error probability (Bayes error rate). In our particular problem, it
is easy to obtain the a posteriori probabilities of case and control for each
individual based on their penetrance and minimum allele frequency (MAF).
When the posterior probability of being a case is larger than the one of
being a control, the Bayes optimal decision rule allocates this individual as
a case, acting in an analogous way when the posterior probability of being a
control is larger. Bayes error rates are a function of penetrances and MAF,
regardless of the sample size (an infinite population is assumed), percentages
of missing data or amount of neutral (noise) SNPs (such parameters are not
considered).

Software Most of the methods above have been run in R soft-
ware (http://www.r-project.org/) using the libraries rpart [391] for run-
ning CART, randomForest [245] for RF and stats for logistic regression. RF
is more computationally demanding, especially due to the imputation pro-
cedure applied. For running MDR we have used the MDR software package
[169] version 1.1.0. More information concerning the R code employed can
be provided upon request.

5.1.4 Results

5.1.4.1 Association

Table 5.3 reports in table format the percentage of runs in which one of
the two causal SNPs is detected as the best candidate (only for non–pure
interaction scenarios). Such a result will be referred to here as a positive
association. CART, RF and LR show very similar outcomes even in the
presence of missing data. The latter is somehow surprising given the differ-
ent nature of the three methods employed and the fact that each of them
used different imputation procedures. Among all the parameters considered
in the simulations, MAF is the most determinant one regarding associa-
tion detection, leading to substantial improvements in detection as its value
increases. High penetrances and sample sizes are very important too. Strik-
ingly, percentage of missing data seems to be less influential (especially in
CART). Figure 5.3 summarizes the performance of CART, RF and LR.

Table 5.4 shows association results for pure interaction scenarios. All
the methods yielded poor results in pure interaction model 2. In fact, none
of them was able to detect the existing association between the outcome
variable and causal SNPs. It is striking that, for pure interaction model 1,
RF actually detects association in those cases where sample sizes are high
enough or percentage of missing data is low or zero. In such circumstances,
CART and LR fail to detect the association. This is an unforeseen discovery,
as RF is a generalization of the CART procedure. Notice that in the best
association scenario (sample size 2000 and 0% of missing data) RF detects
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Table 5.3: Detection of the association in models of non–pure interaction.
For each value of penetrance (θ), we indicate the percentage of runs a causal
SNP was selected as the best candidate SNP in CART, RF and LR, respec-
tively (see Subsection 5.1.2); the fourth column of each tetrad indicates the
MDR cross–validation consistency (ten–fold cross–validation). A hyphen
indicates that the causal variables were not selected as the best candidate
SNP pair [337]. MAF = minimum allele frequency; N = sample size; MD
= percentage of missing data. Image obtained from [149].

one of the causal SNPs in 85% of the runs. The ability of RF to detect a
positive association decreases with lower sample sizes and/or higher amounts
of missing data.

Tables 5.5 and 5.6 show the p–values that indicate the significance of the

Table 5.4: Detection of the association in pure interaction models. The data
is presented as in Figure 5.5 (see its legend for details). Image obtained from
[149].
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Figure 5.3: Detection of positive association in non–pure interaction models
for CART (blue), RF (red) and LR (green). In each scenario, association
detection varies as MAF (0.1, 0.2, 0.4) increases. Image obtained from [149].

association for each scenario (see Subsection 5.1.2). These results confirm
those summarized in Tables 5.3 and 5.4: all the methods evaluated here fail
when MAF and penetrances are not high enough, and with pure interactions.
Only RF shows promising results for the most favourable scenarios in terms
of association.

5.1.4.2 Performance of MDR versus tree–based methods

MDR performance varies according to the type of interaction between causal
SNPs. With non–pure interactions, MDR association results look similar to
those obtained with CART, RF and LR, with perhaps a better performance
of the latter (Table 5.3).

As occurs with tree–based methods, MDR is unable to detect the existing
associations between causal SNPs and the disease in pure interaction model
2. However, with pure interaction model 1, MDR shows a better behavior
than RF, since it detects interaction in the presence of missing data, at least
up to 20%, and suffers less from shortage of sample size. For sample sizes of
400 cases and controls, MDR is prone to false positives, as is also the case
of the tree–based methods and LR (Table 5.4).
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In terms of execution requirements, the four methods are very time–
consuming. In a standard computer (and only 1GB of memory) it would
take from 1 hour (for one of the simplest scenarios; no missing data and 400
cases and controls and using CART) to 45 hours (missing data, sample sizes
of 2000 cases and controls, and using RF). CART is the less computationally
demanding method, while RF and LR suffer from recursive construction of
classification trees and use of a stepwise variable selection AIC criterion,
respectively. Finally, computation times for the MDR algorithm are at least
three times higher than those of LR.

5.1.4.3 Estimation of classification error

Each run from each simulated scenario was randomly divided into two parts:
80% of the sample is used for training (training sample), and the remain-
ing 20% is employed to (unbiasedly) estimate the classification error (test
sample). Imputation of missing data (when needed) is then carried out sep-
arately on training and test samples. Classification error of models in each
scenario is then averaged over all runs.

CART yields the lowest classification errors (Table 5.7), which are close
to Bayes error rates for the most favourable models in terms of MAF (0.4)
and no missing data. RF errors are generally only slightly larger than CART

Table 5.5: Significance of the association in non–pure interaction models.
p–values were computed as the probability of detecting two noise SNPs as
the best candidate SNPs at least the same number of times as observed for
the causal SNPs. For each value of penetrance (θ), we indicate the p–value
obtained with CART, RF and LR, respectively (see Subsection 5.1.2). MAF
= minimum allele frequency; N = sample size; MD = percentage of missing
data. Image obtained from [149].
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Table 5.6: Significance of the association in models of pure interaction. The
data is presented as in Figure 5.8 (see its legend for details). Image obtained
from [149].

errors, while LR performs worst. These results mirror those obtained for
association detection, with the exception of LR. The most plausible reason
is the overfitting problem related to LR, aggravated by the fact that the
AIC stepwise algorithm employed here is prone to include more neutral
(noise) SNPs in the model when either missing data increase or sample sizes
decrease. As a result, LR classification errors improve significantly as sample
sizes grow. The presence of missing data slightly increases the classification

Table 5.7: Classification error in models of non–pure interaction. For each
value of penetrance (θ), we indicate the mean classification error using
CART, RF and LR, respectively (see subsection 5.1.2 for more details).
Codes are as in Figure 5.5. In square brackets (beside θ) we indicate the
Bayes error rate for each model. Image obtained from [149].
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Figure 5.4: Classification error in non–pure interaction models in CART
(blue), RF (red) and LR (green). In each scenario, classification error varies
as MAF (0.1, 0.2, 0.4) increases. Image obtained from [149].

error. This is especially noticeable for the most favoured models.
None of the methods classify better than tossing a coin when MAF is

very low (0.1). MAF is, again, the most determinant of the parameters,
followed by penetrance and sample size (Figure 5.4). The effect of MAF
is more substantial when combined with high penetrances. Percentage of
missing data has little influence on the classification error of CART and RF.

Table 5.8 shows classification error results for pure interaction scenar-
ios. All errors are around 50%. This could be at least expected for pure
interaction model 2, bearing in mind that its Bayes error rate (48.6%) is
near 50%, while it is unexpectedly discouraging for pure interaction model
1, especially taking into account the reasonable performance of RF in the
association results (Table 5.4). A tentative explanation of this result is that
RF is able to detect only the effect of one of the two causal SNPs which is
insufficient for the detection of two–SNP interaction effects.

5.1.5 Discussion

Human genome analysis and high–throughput techniques are giving rise to
a mass of complex biological data. Numbers of candidate SNPs being used
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Table 5.8: Classification error in pure interaction models. The data is pre-
sented as in Figure 5.5, thus, each trio of columns shows the results of CART,
RF and LR, respectively. The Bayes error rate for each model is included
in square brackets. Image obtained from [149].

in association studies are increasing rapidly across a wide range of disease
phenotypes. The general discouraging results obtained in case–control asso-
ciation studies of complex diseases [205] are favouring a growing interest in
the search for interactions (gene–gene, SNP–SNP, gene–environment,. . . ) as
a key causal factor in the disease outcome. The analysis of genomic data de-
mands new statistical tools required to deal with one of the major problems
in common disease association studies, namely, the curse of dimensionality
[394]. Here, we used simulated data for evaluating the ability of three statis-
tical approaches for detecting interaction: CART, RF and LR. Apart from
assessing the ability of the different methods for detecting positive associ-
ation between causal SNPs and the disease we also aimed to estimate the
performance of these methods for diagnosis, i.e., to determine their ability
to classify disease status as a function of their individual genotype. The
latter can be inferred by evaluating the classification error across different
simulated scenarios, and comparing them with their corresponding Bayes
error rates.

In terms of association, CART, RF and LR yield similar results, though
CART seems to be slightly better than the other two, mainly due to its bet-
ter performance in the presence of missing data. Classification error results
mirror those obtained for association detection, except for the fact that dif-
ferences favoring CART become more pronounced, especially regarding LR.
The poor results of LR related to the classification error are more likely due
to its sensibility with regard to the curse of dimensionality [179, 394, 432].
The three methods fail to detect weak genotype–disease associations. Their
performance improves gradually as the model becomes more favourable (i.e.,
higher MAF, larger sample sizes, . . . ). For the best conditions, classification
error measures of CART and RF are close to Bayes error rates, indicating



114 5.1. Tree-based methods and LR in association

that the presence of noise SNPs does not interfere significantly with the
detection of the interaction and classification [48, 56, 179, 258]. However,
the tree–based methods and MDR tested here are probably not useful for
large scale genomic projects (e.g. GWAs) if we assume that the candidate
SNPs have low penetrances and the sample sizes are not extremely large (as
considered here). As seen in the present study, the presence of only 98 noise
SNPs could already lead to meaningless conclusions.

In contrast to the conclusions of previous studies [80, 147, 371, 436, 445],
our results seem to indicate that CART, as a sequential binary–splitting
technique, is not able to discover interactions between predictor variables,
unless these predictor variables have an individual effect, independent of the
other variables [177, 394]. On the other hand RF has the ability to detect
pure SNP–SNP interactions responsible for the disease outcome [179, 258,
371] although at the cost of demanding high sample sizes and low percentages
of missing data. The permutation process immanent to the RF procedure
allows “amplification” of the SNP–SNP interaction signal [258].

When the SNPs have also some marginal effect, CART and RF perform
as well as (or even slightly better than) MDR. However, when there are no
marginal effects, MDR is more sensitive to the interaction, even though RF
also behaves reasonably well in some circumstances. CART and RF can
be very useful in those scenarios that include SNPs with marginal effects,
especially when MAFs of the causal SNPs are high enough (above 0.2).
These techniques perform well in the presence of a large number of noise
SNPs.

We also observed that neutral SNPs are always in Hardy–Weinberg
(HW) equilibrium, while causal SNPs show a slight tendency to be in dise-
quilibrium in more runs related to those scenarios with strong association.
This could indicate a potential usefulness of the HW test for detecting associ-
ation, as previously suggested [186]. However, we noticed that this potential
is relative if we consider that the maximum percentage of runs in HW dis-
equilibrium for a causal SNP was always below 15%, and this maximum is
only sporadically achieved.

Finally, the results indicate that pure interactions are difficult to detect
if the scenario is not favourable. Most of the methods considered here have
been tested in scenarios where marginal effects are difficult to distinguish
from the interaction effects (non–pure interaction models) under different
circumstances of MAF, sample size, missing data, . . . . We are aware that
the specific effect of interaction versus marginal effect would require further
research.

In addition, we foresee several parameters that could be investigated in
future research studies based on simulations (as done in the present chap-
ter). For instance, one could examine in depth different approaches related
to imputation of missing data or the effect of linkage disequilibrium in clas-
sification error and association detection.
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In summary, our results indicate that tree–based methods and LR (with
an appropriate variable selection algorithm) can play an important role as
statistical tools in large–scale genetic association studies where unknown
interactions exist among true risk–associated SNPs with marginal effects
and in the presence of a significant number of noise SNPs. In pure interac-
tion models, RF performs reasonably well in the presence of large sample
sizes and low percentages of missing data. In our study, its performance
is comparable with that of MDR. Empirical simulation studies allow the
evaluation of the performance of different statistical tools under controlled
conditions. The tree–based methods tested in this chapter could be used as
complementary approaches following for instance a two–step strategy: one
method (e.g. RF) could be applied for variable selection [56] and other (e.g.
CART) for classification [371]. Alternatively, the results obtained could be
compared for the three methods when analyzing real data, with the aim of
checking to what extent the results coincide. This could indicate something
meaningful in terms of the association.

There is a general belief that epistasis does really matter as a risk factor
in complex diseases. The lack of proper statistical approaches to deal with
the curse of dimensionality is likely one of the causes favoring the unfortunate
lack of sensibility and specificity in genomic disease association studies.
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5.2 Role of the ZBTB7 gene on breast cancer de-
velopment

This section consists of the results included in [350]. Moreover, tree–based
results that were obtained for this study and were finally dropped in the final
version have been included here, together with two explanatory figures. The
format has been adapted to not alter this essay.

5.2.1 Abstract

It has been proposed that the excess of familiar risk associated
with breast cancer could be explained by the cumulative effect of
multiple weakly predisposing alleles. The transcriptional repres-
sor FBI1, also known as Pokemon, has recently been identified
as a critical factor in oncogenesis. This protein is encoded by
the ZBTB7 gene. Here we aimed to determine whether poly-
morphisms in ZBTB7 are associated with breast cancer risk
in a sample of cases and controls collected in hospitals from
North and Central Spanish patients. We genotyped 15 SNPs
in ZBTB7, including the flanking regions, with an average cov-
erage of 1 SNP/2.4 Kb, in 360 sporadic breast cancer cases and
402 controls. Comparison of allele, genotype and haplotype fre-
quencies between cases and controls did not reveal associations
using Pearson’s chi–square test and a permutation procedure to
correct for multiple test. In this, the first study of the ZBTB7
gene in relation to, sporadic breast cancer, we found no evidence
of association.

5.2.2 Introduction

It has been suggested that breast cancer, together with prostate and colorec-
tal, are the cancers with the highest heritable components. A substantial
proportion of familiar breast cancer (∼25%) is explained by mutations in
the BRCA1 and BRCA2 genes [135, 393]. By contrast, the excess of famil-
iar risk associated with sporadic breast cancer (as well as the unexplained
genetic risk in familiar breast cancer) may be better explained by the effect
of multiple weakly predisposing alleles [19, 312]. The identification of com-
mon alleles conferring modest susceptibility to cancer (as opposed to the
known high penetrance BRCA1/2 genes) is a field of growing interest, espe-
cially with the development of new genotyping techniques and SNP database
facilities [389].

Hence, there is much interest in the search for gene/variants with low
penetrance for breast cancer, which could exist with relatively high preva-
lence in the general population. Many polymorphisms have been proposed
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as candidates for susceptibility to sporadic breast cancer but reported posi-
tive associations have rarely been replicated in independent studies [15, 35,
292, 425].

Recently [264], the transcriptional repressor FBI1, namely Pokemon
(POK erythroid myeloid ontogenic factor), was identified as a critical factor
in oncogenesis. This protein is encoded by the ZBTB7 gene (“zing finger
and BTB domain containing 7”; Gene ID: 51341). Mouse embyronic fi-
broblasts lacking ZBTB7 are completely refractory to oncogene–mediated
cellular transformation. Conversely, FBI1 over–expression led to overt onco-
genic transformation both in vitro and in vivo in transgenic mice. FBI1
can specifically repress the transcription of the tumor suppressor gene ARF
(600160). In [264], it was found that FBI1 is aberrantly over–expressed
in human cancers, and its expression levels predict biologic behaviour and
clinical outcome. On the other hand, tissue microarray (TMA) analysis in
breast carcinomas has revealed high levels of Pokemon expression in a subset
of these tumours. In addition, the genomic region where the ZBTB7 gene
resides (19p13.3) is a hotspot for chromosomal translocations (The Cancer
Genome Anatomy Project; http://cgap.nci.nih.gov/). ZBTB7 is there-
fore a good candidate low penetrance breast cancer susceptibility gene.

Here we aim to study the potential implications of common ZBTB7
variants in sporadic breast cancer in a sample of cases and controls from
Spain. To do this, we selected a set of 19 SNPs covering the whole extension
of ZBTB7 and flanking regions at high density.

5.2.3 Material and methods

5.2.3.1 Study subjects and DNA extraction

Cases were 360 Spanish women with breast cancer and mean age at diagnosis
of 59 years (range 25 to 85 years), recruited between 2000 and 2004 (48% of
cases were recruited within one year of their diagnosis and 79% within five
years). All cases were collected from a consecutive series recruited via three
public Spanish hospitals: Hospital La Paz (20%), Fundación Jiménez Dı́az
(50%) and Hospital Monte Naranco (30%). Our samples contain prevalently
invasive cases of breast cancer, 96%; while only 4% of in situ breast cancer.
Controls were 402 Spanish women free of breast cancer at ages ranging
from 24 to 85 years (mean = 53 years) and recruited between 2000 and
2005, via the Menopause Research Centre at the Instituto Palacios (50%),
the Colegio de Abogados (31%) and the Centro Nacional de Transfusiones
(19%), all in Madrid. While data was not available to calculate response
rates, our experience is that response rates are very high for cases (∼90%).

Genomic DNA was isolated from peripheral blood lymphocytes using
automatic DNA extraction (Magnapure, Roche) according to the manufac-
turer’s recommended protocols. DNA was quantified using picogreen and
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diluted to a final concentration of 50 ng/ul for genotyping. Informed con-
sent was obtained from all participants and the study was approved by the
institutional review boards of Hospital Cĺınico Universitario (Santiago de
Compostela, Galicia, Spain) and Hospital La Paz, Madrid.

5.2.3.2 SNP selection

SNPs were selected from different sources: the International HapMap Project
(The International HapMap Consortium, 2003; 2004; www.hapmap.org), En-
semble (Birney et al 2004; www.ensemble.org), the Sequenom RealSNP
database (www.realsnp.com/default.asp), and PupaSNP (Conde et al
2004; www.pupasnp.org). All 22 SNPs described at the time of selection
were included, which yielded an average coverage of 1 SNP/1.7 Kb. These
SNPs cover the upstream and downstream flanking regions (10000 bp) and
the introns of ZBTB7, and include only one coding non–synonymous SNP
(Table 5.9).

5.2.3.3 SNP genotyping

Genotyping was performed using the MassARRAY SNP genotyping system
(Sequenom Inc., San Diego, CA) located at the Universidad de Santiago
de Compostela node of the Spanish National Genotyping Center (Centro
Nacional de Genotipado; http://www.cegen.org), following the manufac-
turer’s instructions. This typing assay uses the extension of a single primer

Table 5.9: ZBTB7 SNPs successfully genotyped. Image obtained from [350].
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that binds to the sequence flanking the mutation site. Base–specific primer
extension products are created 1–4 bases long depending on the substitution
present. The different primer extension products are then differentiated by
mass. Multiple sites can be typed simultaneously by multiplexing the ex-
tension reaction. Detection uses matrix–assisted laser desorption ionization
time–of–flight (MALDI–TOF) mass spectrometry with samples automati-
cally genotyped from each mass spectrum produced. The assays were de-
signed using Spectro DESIGNER software. Case and control samples were
genotyped using 384–well plates and automated protocols. The allele–calling
of all possible SNPs in each DNA sample was performed automatically using
SpectroTYPER–RT software. Positive and negative controls were incorpo-
rated in each genotyping plate in order to assess genotyping quality. We
estimate a genotyping error rate below 0.001%.

5.2.3.4 Statistical analyses

We tested for differences in allele frequencies between cases and controls
using Pearson’s chi–squared test (the best model is provided in Table 5.10).
We adjusted for age in categories <45, 44–49, 50–54, 55–59, and >60 via lo-
gistic regression using Stata v8. Disequilibrium coefficients (D’) for adjacent
SNPs were calculated using Haploview v3.11 [29]. We used Gold software
[1] to graphically summarized patterns of linkage disequilibrium in ZBTB7
because it is well suited to the analysis of dense genetic maps. Assuming a
minimum allele frequency (MAF) of 3% (the average MAF of our SNP set)
and a genetic effect of 2, the a priori power to detect association under a
dominant model is above 70%.

Haploview v3.32 (www.broad.mit.edu/mpg/haploview) was used for es-
timating the genotyping coverage of the selected SNPs (see below) and hap-
lotype block structure.

The Cocaphased program of the Unphased software package [98] was
used to check for single SNP and haplotype associations. We tested all two,
three, four, and five–SNP haplotypes for association in a sliding window
across the gene. The option “drop rare haplotypes” was used in order to
restrict the analysis to the haplotypes with a frequency > 1%. We followed
the permutation test procedure implemented in Unphased which provides
p–values corrected for the multiple haplotypes tested. The EM algorithm
was used to impute missing data.

Evaluation of stratification was carried out based on the genotyping of
28 neutral SNPs, as previously described in a separate study that targeted
a different set of low penetrance breast cancer genes in overlapping samples
[282].

Two different tree–based methods were used to assess the importance of
the genotyped SNPs in determining breast cancer risk: CART and RF. In
CART, the tree is built in two steps, growing and pruning. First, the tree is
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Table 5.10: OR and p–value for the best fitting model. Image obtained from
[350].

allowed to grow to its maximum. Then, CART executes a process of pruning
that consists of selecting the sub–tree with the minimum classification error
ErrCART . The selected tree is further pruned using one standard deviation
(SD) relative to ErrCART , that is, we take the shorter tree within the range:

ErrCART ± SD

The samples were divided into a training set (∼80% randomly selected
cases and controls) and a test set (the remaining ∼20%). A complexity
parameter was obtained as a measure of the improvement in classification
error as the tree was grown. The main role of this parameter is to save
computing time by pruning off splits that are obviously not worthwhile.
With RF, the training set used to grow each tree was a 608–individuals
bootstrap sample taken from ∼80% of the observations. The number of
trees built for each model was set to 1000 and m, the number of SNP
markers randomly chosen to split at each node, was set to 10. We computed
the classification error and we also recorded the mean decrease in accuracy
(MDA) that allows weighting the relative importance of the different markers
in the model built by RF. The rfImpute function of the randomForest library
in R was used to impute missing genotypes.

5.2.4 Results and discussion

Three out of the 22 SNPs selected failed genotyping. Four out of the 19 re-
maining SNPs (namely, rs10405522, rs895330, rs350840, and rs350832) were
successfully genotyped in less than 75% of the samples and were therefore
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Figure 5.5: D’ pairwise linkage disequilibrium values of ZBTB7 markers in
control individuals. Image obtained from [350].

excluded from association analyses. The average call rate for these 15 SNPs
was 95% (see also preliminary results in [351, 352, 411]) and none gave evi-
dence of deviation from Hardy–Weinberg equilibrium. Table 5.9 summarizes
their location and allele frequencies.

We computed D’ values between all 19 markers, and detected moderate
levels of linkage disequilibrium (LD) (Figure 5.5). However, under the “four
gamete rule” model (see Haploview for more information) we identified hap-
lotype blocks nearly covering the entire extension of the gene (Figure 5.6).
This characterization of LD along the ZTBT7 region could be useful for
future association study designs in cancer.

In order to measure the percentage of variability captured by the our
selected SNPs, we first collected the HapMap data from the CEPH sub-
set (http://www.hapmap.org) and the same chromosome range explored in
the present study (chromosome 19: positions 3990056–4025697). Then, we
estimated the number of SNPs un–captured in the CEPH–HapMap using
our SNP selection under an r2 threshold of 0.8 and a model of “aggressive
tagging”. Only one SNP in the HapMap dataset would remain untagged
by our selected SNPs, indicating that our set of SNPs covers well the whole
gene region under analysis.

No statistically significant differences between cases and controls were
observed for individual SNPs based on comparisons of allele frequencies (see
Table 5.10 for the best fitting models) whether or not age was adjusted for.
Four and three–SNPs haplotypes carrying markers rs350842 and rs350841
had associated p–values below 0.05 but were not significant after correction
for multiple testing. Note also that these adjusted p–values overestimates
the real value since the software employed (Cocaphased) does not correct
for the multiple hypothesis tested running different sliding windows.
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Figure 5.6: Haplotype block structure in our control individuals and
HapMap information for the CEPH dataset (top). Image obtained from
[350].

We applied two different tree–based methods in order to estimate the
relative importance of the genotyped SNPs in our sample of breast can-
cer patients. CART produced a complex tree of 21 leaves. The tree with
13 leaves (Figure 5.7 left) is simpler and retains only 9 different variables
(SNPs) when pruned. Figure 5.7 (right) shows the evolution of the training
error as the tree grows. The root node gives a classification error of 0.472
(benchmark). The model constructed by CART gives 0.457, indicating that
it performed only marginally better in predicting the disease outcome than
tossing a coin. Difference with the benchmark is obviously not statistically
significant. Figure 5.8 shows the 15 SNP markers sorted by their MDA val-
ues. The most associated SNP in RF, as determined by its higher MDA
value in comparison with the rest of SNPs, was rs350841.

To our knowledge, this is the first time that ZBTB7 has been evaluated
as a candidate sporadic breast cancer susceptibility gene. We have not found
evidence of an association for ZBTB7 SNPs nor haplotypes with breast
cancer risk. It should be mentioned that most of the ZBTB7 variants studied
are rare in our sample. We are aware that the main drawback in detecting
positive associations of rare variants (or haplotypes) is the need for large
sample sizes. Therefore, the present result needs further validation in future
studies of independent case–control series before a role for ZBTB7 in breast
cancer can be completely ruled out.
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Figure 5.7: Classification tree for the ZBTB7 case–control data (left) and
2D graphical plot showing the evolution of the training error as the tree
grows (right).

Figure 5.8: R plot displaying the 15 SNPs of the study sorted by their MDA
value.





Chapter 6

Statistics in non–clinical
genetics: intricate problems
in forensic genetics

6.1 Resolving relationship tests that show ambigu-
ous STR results using autosomal SNPs as sup-
plementary markers

This section contains the work published in [314]. We have adapted it to
the format and notations used in this essay. Here, statistics help to show
how the addition of a set of SNP markers can be very useful to solve com-
plex paternity tests. Although the statistical concepts which appear here
were developed long time ago, this work is a model of how to apply common
statistical results and intensive simulation to forensic genetic problems. Fur-
thermore, simulation can be really helpful in genetic studies, as obtaining
of human genetic data is sometimes a path full of obstacles (for instance,
economic costs).

6.1.1 Abstract

When using a standard battery of STRs for relationship testing a
small proportion of analyses can give ambiguous results – where
the claimed relationship cannot be confirmed by a high enough
paternity index or excluded with fully incompatible genotypes.
The majority of such cases arise from unknowingly testing a
brother of the true father and observing only a small number of
exclusions that can each be interpreted as one– or two–step mu-
tations. Although adding extra STRs might resolve a proportion
of cases, there are few properly validated extra STRs available,
while the commonly added hypervariable SE33 locus is four times
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more mutable than average, increasing the risk of ambiguous re-
sults. We have found that SNPs in large multiplexes are much
more informative for both low initial probabilities or ambiguous
exclusions and at the same time provide a more reliable genotyp-
ing approach for the highly degraded DNA encountered in many
identification cases. Eight relationship cases are outlined where
the addition of SNP data resolved analyses that had remained
ambiguous even with extended STR typing. In addition we have
made simulations to ascertain the frequency of failing to obtain
exclusions or conclusive probabilities of paternity with different
marker sets when a brother of the true father is tested. Results
indicate that SNPs are statistically more efficient than STRs in
resolving cases that distinguish first–degree relatives in deficient
pedigrees.

6.1.2 Introduction

Most laboratories performing relationship testing will rely on the core foren-
sic sixteen–marker short tandem repeat (STR) sets to obtain an exclusion
or strong probability of paternity (i.e. reaching virtual proof). However
a small proportion of cases show ambiguous results where the claimed re-
lationship cannot be confirmed by a high enough probability or when an
exclusion is suggested by just one or two loci. A large proportion of am-
biguous results arise from unknowingly testing a first–degree relative of
the true father, usually a brother, so the exclusion rate is markedly re-
duced and a paternity index using a likelihood ratio against a random man
does not apply. Less frequently, ambiguous STR results occur from ob-
serving exclusions that may originate from germ–line step mutations (see
www.cstl.nist.gov/biotech/strbase/mutation.htm and also www.aabb.
org/Documents/Accreditation/Parentage\_Testing\) [52]. These mu-
tations are characterized by one or two repeat additions or diminutions
creating an incompatibility that is impossible to distinguish as a mutation
or an exclusion. Ambiguous genotypes are particularly difficult to interpret
when a brother of the true father is unknowingly tested, as this reduces the
total excluding loci. The main recourse for laboratories finding such results
is addition of extra STRs to improve the probability or provide clear, un-
ambiguous exclusions. However outside of the principal commercial kits few
additional autosomal STRs are validated and readily applicable. Another
source of ambiguity is second order exclusions created when primer binding
site substitutions lead to the dropout of an amplifiable allele in both par-
ent and offspring. This phenomenon is observed more frequently in certain
STRs (www.cstl.nist.gov/biotech/strbase/NullAlleles.htm) and the
normal approach is to use complementary marker sets testing identical loci
with alternative primer designs [10, 127, 291].
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For relationship testing we use extended STR sets comprising 17 markers
in two complementary kits: Identifiler R© and Powerplex R© 16 plus singleplex
STRs: D1S1656, D12S391, D18S535 and SE33. Supplementary genotyp-
ing has been developed in–house, with three STRs extensively characterized
during their initial forensic optimization [228, 229, 230]. This choice of kits
plus standalone STRs benefits from using 13 loci common to each marker
set with different primer sites to help detecting dropout, plus eight unique
STRs providing powerful extra discrimination. In the past three years we
have added single nucleotide polymorphisms (SNPs) to STR analysis in an
increasing proportion of complex or deficient relationship tests. Although
SNPs have a much lower discriminatory power per locus than STRs, we have
used a standardized forensic 52plex assay [354] that matches or exceeds the
discriminatory power of 15 STRs. Notably SNPs applied to relationship
testing offer a much lower overall mutation rate, typically: µ = 2.5 × 10−8

compared with µ = 10−3 to 10−4 in STRs but the 52plex has provided an
ideal complementary approach for three additional reasons: (i) the genomic
positions of the 52 SNPs are well spaced, both as a set and in relation
to common STRs, to facilitate segregation between related individuals; (ii)
SNPs, as binary polymorphisms, are more likely than multi–allelic STRs to
show informative second order exclusions in deficient cases (i.e. lacking all
pedigree members) and; (iii) the 52plex amplified fragments are all less than
120 bp offering greater success than standard STRs with highly degraded
DNA [133, 134, 354]. Since a small but consistent proportion of relationship
tests we perform involve analysis of human remains, this last characteristic
of SNPs provides an important way to avoid a further source of ambigu-
ous results with STRs: uninformative paternity probabilities resulting from
incomplete profiles commonly obtained from degraded DNA.

We outline eight cases that failed to give a clear, unequivocal indication
of the claimed relationship with STRs alone. Each one showed that adding
SNPs improved the paternity index or successfully resolved ambiguous STR
exclusions.

6.1.3 Materials and methods

6.1.3.1 Marker sets used

Table 6.1 outlines the 21 STRs used, based on two commercial STR mutli-
plexes: Identifiler R© (Applied Biosystems, Foster City, CA) and Powerplex R©

16 (Promega, Madison, WI) providing complementary primer set analysis
of 13 loci and two specific to each set plus supplementary singleplex STRs:
D1S1656, D12S391, D18S535 and SE33. SNP analysis was based on the
well–established SNPforID 52plex assay previously described [354] (supple-
mentary data at: www.snpforid.org/publications.html) and shown to
be informative for forensic identification [133, 134, 313, 354].
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Table 6.1: STRs sets used and their reported percentage mutation rates (µ).
Values of µ with * denote an average rate used in the absence of current
estimates. STRs in bold show non–complementary markers analyzed using
single primer pairs. Image obtained from [316].

6.1.3.2 Statistical analysis

All STR and SNP genotypes were compared amongst tested individuals
using Familias pedigree analysis software [115] and locally derived (NW
Spain) allele frequencies (SNP data in the SNPforID frequency browser:
spsmart.cesga.es/snpforid.php). In all cases where a paternity index is
given as a percentage probability (P) an a priori value of 0.5 was always used.
The Familias program specializes in suggesting the most likely relationship
given the genotypes of tested individuals by calculating the probability of
given sets of possible pedigrees. When second order exclusions and step
mutations are observed Familias is able to factor in specific mutation rates
for the loci to compile a probability of the defined relationships. We added
values for µ reported in STRbase and listed in Table 6.1, with range: µ =
0.0001 for TPOX/TH01 to µ = 0.0064 for SE33, with D1S1656, D12S391,
D18S535 using an average value of 0.0016 in the absence of current estimates.
A universal SNP mutation rate of µ = 2.5 × 10−8 was used – to date the
52plex SNPs have been validated in trios and extended families without
detecting second order incompatibilities for nearly all the SNPs [41, 313].

6.1.3.3 Simulation of testing a first–degree relative of the true
father

We developed a computer program in R (www.r-project.org/) to assess
the probability P (B), that a paternal first–degree relative (simplified here to
“brother” but applicable to the father or a son of the true father) has been
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tested and is fully compatible with paternity for different combinations of
markers, such as 21 STRs or STRs plus 52 SNPs. P (B), for loci: i = 1, . . . , l,
can be defined as:

P (B) =
l∏

i=1

P (Bi)

for each locus:

P (Bi) = P (Bi|C1)P (C1) + P (Bi|C2)P (C2) + P (Bi|C3)P (C3)

where C1 = two alleles shared by the true father and a brother, so the
probability of C1: P (C1) = 0.25; C2 = one allele shared, P (C2) = 0.5; C3
= no alleles shared, P (C3) = 0.25, and P (Bi|C1), P (Bi|C2) and P (Bi|C3)
are calculated from the allele frequencies and mutation rates for each locus
i. This allowed estimation of the expected proportion of cases where no
exclusions are detected in a brother. Additionally we simulated child–father–
brother pedigrees to estimate the paternity index considering two exclusive
hypotheses: a brother being the true father against a random man being
the true father. More details of the algorithms are available on request.

6.1.3.4 Relationship tests examined

The eight cases showing ambiguous STR results can be categorized: (i) a
simple disputed paternity trio: 44p06; (ii) paternity analysis of aged, de-
graded skeletal remains: 70p06 and 20p07; (iii) sibship analysis differen-
tiating half from full sibs: 24p07 and 28p07; (iv) a sib versus paternity
counter–claim (individual A claims to be the son of B, B claims to be the
half sib of A): 45p06; (v) testing of a sib as proxy for the deceased claimed
father: 39p04 and 123p04. With the exception of simple trio 44p06, all fam-
ilies analyzed were deficient, i.e. lacking the mother or the supposed father.
Figure 6.1 gives the explanatory pedigrees showing alternative relationships
analyzed for 44p06 plus the two most complex cases: 123p04, and 45p06.

6.1.4 Results

Results can be divided into two groups: (i) three cases showing ambiguous
STR exclusions resolved by adding SNPs, (ii) five cases with uninformative
paternity indices improved by adding SNPs, two due to partial STR pro-
files obtained from degraded bones that gave near–complete SNP profiles in
parallel genotyping.
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Figure 6.1: Three cases showing ambiguous exclusions with likelihood ra-
tios (W ) and probabilities (P ) for the most likely relationships (hypotheses:
H1, H2 or RM = random man) using 21 STRs on the left and with the
addition of 52 SNPs on the right. Bold pedigree components denote the
tested individuals. Likelihoods marked with * were calculated adding mu-
tation rates for excluding loci. Panel C shows the actual pedigree for 45p06
(previously summarized in panel B) disclosed by the family during testing.
Image obtained from [316].

6.1.4.1 Cases with ambiguous exclusions

Cases 44p06 and 45p06 (Figure 6.1 A and B respectively) showed an inter-
esting contrast in their final interpretations although both gave two 1– or
2–step genotype differences after typing 21 STRs. In the simple trio 44p06
these comprised a maternal one–step or paternal two–step incompatibility
in CSF1PO plus a maternal two–step or paternal one–step incompatibility
in D19S433. A reasonable interpretation at this stage would be that two
independent mutations are highly unlikely so the tested man is excluded
although he may be closely related to the true father. A high paternity
index when factoring in the mutation rates also suggested that a brother
of the true father could have been tested, but this case remained ambigu-
ous because the incompatibilities were each one– or two–step differences.
The addition of SNPs resolved the case since the final paternity index from
STRs and SNPs combined with mutation rates, reached 99.999999995% with
a predicted probability of failing to exclude a brother of 0.00017 (final row,
Table 6.2).
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The sib versus paternity counter–claim case 45p06 had a deficient pedi-
gree: compromising the ability to unambiguously exclude the tested man,
while the alternative possibility that the tested men were half–sibs also re-
duced the excluding power. Additionally the excluding STRs showed one–
or two–step differences possible from either paternal allele in both D2S1338
and SE33. Adding SNPs provided four independent second order exclusions
emphasizing the enhanced ability to resolve deficiency cases provided by bi-
nary markers. In fact this case proved to be more challenging than originally
supposed, as the true pedigree disclosed by the family showed that one man
was the offspring of the others aunt (Figure 6.1 C), with Familias allowing
a straightforward adjustment to the probability estimates.

Case 123p04, outlined in Figure 6.1 D, was a fully deficient pedigree
(both parents deceased) testing the brother of the deceased man. The tested
man claimed paternity of the sole offspring (a daughter, precluding mito-
chondrial and Y–chromosome analysis). STR analysis gave a single two–
step incompatibility in SE33. Factoring in the mutation rate of SE33 gave
a probability of paternity against a random man of 99.9978%, but more sig-
nificantly paternity for the tested man was three times more likely than for
the deceased. As SE33 has a mutation rate four times higher than average
but the probabilities were not considered strongly indicative of paternity
this case remained ambiguous. Addition of SNPs provided two further ex-
clusions of the tested man and, more importantly for resolving the case,
when conservative mutation rates of µ = 0.00001 were included for each
SNP Familias gave a 99.99997% probability in favour of paternity for the

Table 6.2: Predicted probabilities of a brother of the true father being com-
patible with paternity (no exclusions detected) for different marker sets and
their combinations. The right column lists the proportion of uninformative
PI values that simulations suggest can be expected from each marker set
(i.e. a PI value higher than 1, when a brother is more likely than a random
man to be the father). Table obtained from [316].
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deceased man against the brother.

6.1.4.2 Cases with uninformative probabilities for the claimed
relationship

Table 6.3 outlines the five cases where SNP analysis provided a significant
improvement in the probability of the claimed relationship. The severely
degraded skeletal remains tested in cases 20p07 and 70p06 involved respec-
tively: a 35–year–old femur where 9 of 17 STRs were successfully typed and
a 10–year–old doubly degraded femur [296] where all 17 STRs failed. SNP
profiles detecting 51/52 loci were obtained in both cases [134]. Case 39p04
was identical in structure to 123p04 described above and in Figure 6.1 D, but
here addition of SNPs provided a strong indication that the tested brother
was the true father by increasing the paternity index 35–fold to 99.994%
against the deceased man.

6.1.4.3 Probability of failing to exclude first–degree relatives of
the true father

We calculated the probability of a brother of the true father showing no
exclusions against the tested child. Here an exclusion denotes a mendelian
incompatibility given the hypothesis of the tested man’s brother being the
true father. Probabilities are shown in Table 6.2 with the corresponding
standard deviations for common STR sets, the 52 ID–SNP set and their

Table 6.3: Five cases testing three different sets of alternative pedigrees.
RM (random man), H1 and H2 relationship hypotheses were assessed with
likelihood ratios (W ) and percentage probabilities (P ) for 21 STRs alone
and STRs plus 52 SNPs. Values marked with a suffix denote partial profiles.
Image obtained from [316].
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combinations. Profiler Plus R© and MiniFiler R© are included as we now reg-
ularly use these in combination with SNPs to analyze degraded DNA when
Identifiler R© and Powerplex R© 16 give incomplete profiles. The values re-
veal that both the core STR sets have a comparable failed exclusion rate of
∼2%, while SNPs alone show a rate of ∼5%: indicating that in about 1 in
50 cases using STRs a brother is completely compatible with paternity since
no exclusions are detected. The slightly lower power of SNPs compared to
STRs can be partly explained because with binary markers heterozygotes
(in either brother or true father) are uninformative for both inclusions and
exclusions in deficient families. This loss of discrimination power in SNPs
is compensated by using a much higher total number of loci compared to
STRs. The addition of six STRs to either core set lowers the failed exclusion
rate to 1 in 360 but notably the rate is reduced more than 16–fold to 1 in
5880 when 21 STRs and 52 SNPs are combined.

Figure 6.2 plots the paternity indices obtained from the simulation of
father–brother–child pedigrees. Computation of the paternity index for the
alternative hypotheses: paternity of a brother against paternity of a ran-
dom man provides a more realistic simulation of how an actual paternity
case is normally approached when no exclusions are detected. Values for
this paternity index higher than one indicate that no exclusions have been
detected in the brother so he is more likely than a random man to be the
father, a typical ambiguous result. Table 6.2 lists the proportion of paternity
indices higher than one for each marker set. Figure 6.2 plots the complete
range of PI values obtained for each marker set in 6577 simulations, ranked
left to right, from most to least informative, so lower plot lines indicate a
higher proportion of informative PI values obtained. Although SNPs give
a “ladder–shape” plot because only opposite homozygotes between brother
and child are informative, the overall proportion of highly informative PI
values is seen to be equivalent to the plot for a full set of 21 STRs. Table
6.2 shows the proportion of PI values higher than one obtained for Identi-
filer with 6.9% and Powerplex 16 with 6.4% are both slightly higher than
52 SNPs with 6.1%. Therefore results indicate that SNPs are more effi-
cient than STRs for resolving cases that attempt to distinguish first–degree
relatives in deficient pedigrees. Overall Table 6.2 and Figure 6.2 clearly indi-
cate that combining STRs and SNPs provides the most secure interpretative
framework for relationship testing of close relatives, reducing to 0.5% the
total proportion of ambiguous paternity indices.

6.1.5 Discussion

Each of the eight relationship tests reported gave some ambiguity in the STR
results that was successfully resolved by including SNP analysis. The SNP
profiles were generated from a straightforward multiplex assay optimized
and validated for forensic identification, where a very low frequency of in-
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Figure 6.2: Range of logarithms base 10 of PI values from 6577 simulations
for different marker sets given the two hypotheses: a brother of the true fa-
ther is compatible with paternity versus a random man. The “ladder–shape”
of the SNP PI values is due to the fact that only opposite homozygotes be-
tween brother and child are informative. The plot labelled STRs denotes all
21 unique STR loci in combination, the plot labelled All denotes 21 STRs
plus 52 SNPs. Image obtained from [316].

compatibilities in normal trios has already been established [41, 313]. These
cases clearly illustrate that the addition of 52 SNPs removes the element of
doubt involved in the interpretation of challenging relationship tests using
extended STR typing. We found the combination of adding a large battery
of SNPs and using Familias to obtain reliable probabilities for each possible
relationship created a more secure framework for interpreting results.

The application of SNPs in relationship testing has not been widespread
to date because nearly all paternity cases are adequately resolved with ex-
isting well validated STR sets. However a characteristic of SNPs often listed
in their favour for relationship testing is a comparatively low mutation rate,
suggesting SNPs markedly reduce the risk of ambiguous exclusions arising
from mutation. The distinction should be made here between exclusions cre-
ated by allelic instability and those created by allele dropout from primer
binding site mutations. SNPs have a much lower rate of allele mutation
than STRs, reflected in the rates detailed above. In contrast, SNP analysis
of ∼50 loci (assuming use of one extension plus two PCR primers and 20
bp average lengths) will be prone to ∼5 times more allele dropouts from
binding site mutations than 15 STRs. However since the average nucleotide
substitution rate is extremely low [296] this has a minor effect on the rate of
incompatibilities compared to the meiotic instability of STRs. Additionally,
the effect of genotyping 50 or more binary markers makes it most likely that
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a primer site mutation creates a single second order exclusion contrasting
with the overall pattern of results.

There is persuasive evidence in the cases described and previous stud-
ies (Figure 5 of [313]) that SNPs can add the extra discrimination power
needed to resolve relationship tests that routinely compare closely related
individuals. It is likely that this characteristic of SNPs is largely due to
the relatively high number of segregations occurring between first–degree
relatives with an extensive marker set showing the widest possible genomic
distribution. Furthermore the low SNP mutation rate makes the interpreta-
tion of any exclusions found amongst closely related individuals much more
secure. Applications that can therefore benefit from SNP analysis include
disaster victim identification, immigration testing, complex pedigree recon-
struction and the analysis of deficient families that forms a large proportion
of tests identifying missing persons. The fact that SNPs additionally offer
greater success when typing highly degraded DNA indicates that combining
SNPs, rather than extra STRs, with the current core markers offers the best
way to improve the interpretation of challenging relationship tests in the
future.
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6.2 Population stratification in Argentina: influ-
ence in paternity testing

The work presented here was published in [401]. Statistics and intensive
simulation aim here to prove the need of appropriate databases and allelic
frequency data to get accurate results in forensic identification cases. Nota-
tions and formulas have been adequately adapted to this essay.

6.2.1 Abstract

A simulation–based analysis was carried out to investigate the
potential effects of population substructure in paternity testing
in Argentina. The study was performed by evaluating paternity
indexes (PI) calculated from different simulated pedigree scenar-
ios and using 15 autosomal short tandem repeats (STRs) from
eight Argentinean databases. The results show important sta-
tistically significant differences between PI values depending on
the dataset employed. These differences are more dramatic when
considering Native American versus urban populations. This
study also indicates that the use of Fst to correct for the effect
of population stratification on PI might be inappropriate because
it cannot account for the particularities of single paternity cases.

6.2.2 Introduction

Historically, non–exclusion in paternity testing was statistically evaluated
by means of probability of paternity according to the Essen–Moller formula
[120, 121]. Later, the use of the ratio between the probability of the hy-
pothesis of paternity (X) and non–paternity (Y ), with the form X/Y , was
proposed [165] and this ratio, called the paternity index (PI), was considered
to be sufficiently appropriate to report a result [407]. Recently, the Pater-
nity Testing Commission of the International Society for Forensic Genetics
(ISFG; www.isfg.org) has issued a series of recommendations on biostatis-
tics [157, 290] suggesting that the biological evidence should be based on
likelihood ratio principles.

Calculation of PI requires knowing the allele frequency distributions in
the reference population. Caution must be taken when population sub-
structure exists, so that appropriate corrections on PI values can be applied
[124]. The use of Fst to measure (and correct for) the effect of substructure
in reference populations is commonly used in forensic genetics [124]. Fst
measures population differentiation based on allele frequencies. However,
in routine casework, one case is generally evaluated at a time and global
patterns of variability in the population do not necessarily represent the
idiosyncrasies of particular cases and genetic profiles, in the same way as
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for haploid data [116, 117, 348]. Therefore, the use of Fst to account for
population stratification does not always correctly adjust the PI values in
every single case.

It is well documented that in Argentina differences exist between allele
frequency distributions in populations, for common genetic markers used in
forensics, that can have important consequences in routine forensic casework
[398, 400]. This view, however, is controversial since other authors claim that
population differences within the country are irrelevant in this context [267].
Recently, we used a simulation–based approach to show that these differ-
ences actually have implications in the computation of likelihood ratios in
forensic casework [400]. The goal of the present study was to determine the
impact of the population substructure on paternity testing, using a different
simulation–based approach that compares the results obtained when using
different datasets for the computation of PI values in several pedigree scenar-
ios. Some analytical expressions can be obtained in order to address these
problems [114] in a general population context. These other approaches aim
generally to investigate the expected average effect of using different levels
of population stratification and mutation rates in hypothesized situations
(e.g. artificially created populations). The study by Karlsson et al [209]
described a very interesting approach related to the evaluation of the risk
of erroneous conclusions on DNA testing for immigration cases. The aim of
the present study was, however, to exactly measure the real impact of us-
ing different datasets from Argentina on particular PI values by simulating
paternity cases that could be real in this country, and given the fact that it
is a particular PI value that is generally communicated to the courtroom.
Therefore, the most theoretical general approaches, although necessary in
science, do not help by definition to evaluate singular forensic cases where
particular individuals are being judged. On the other hand, the present
approach has the advantage that cases where parents come from different
populations can easily be handled by sampling from different databases.

6.2.3 Materials and methods

6.2.3.1 Population samples and genotyping data

The study was based on 1906 genotypes belonging to individuals of six urban
populations from Buenos Aires (N = 879), Neuquen (N = 355), Tucumán
(N = 75), San Luis (N = 61), Santa Cruz (N = 132), and La Pampa
(N = 232) and two Native American populations from Colla (N = 43) and
Toba (N = 129) in Argentina.

The genotype data consisted of a set of 15 autosomal STRs from the
Powerplex R© 16 System kit (Promega, Madison, WI, USA): D3S1358, FGA,
D21S11, D18S51, HUMvWA, D5S818, D13S317, D7S820, D16S539, CSF1PO,
PENTA D, PENTA E, D8S1179, HUMTPOX, and HUMTH01. No devia-
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tions from Hardy–Weinberg equilibrium were detected in any of these pop-
ulation samples.

6.2.3.2 Data simulation

Data simulation involved the following steps:

1. Generation of artificial profiles. For each of the 1906 real profiles in
the database, a set of new profiles was created by a computer–assisted
procedure. First, allele frequencies were obtained for all the original
datasets. Second, compatible profiles for both parents of each indi-
vidual were built as follows: each of the two alleles was randomly
assigned to each parent then the other allele of each parent was ran-
domly taken from a vector of allele population frequencies of each STR
locus. Parents’ sets were tested for Hardy–Weinberg equilibrium and
no departures were observed.

2. Definition of pedigrees to calculate the PI. With the individuals gen-
erated as described in Step 1, we constructed two different types of
pedigrees: alleged father–mother–child (trio) and alleged father–child
(duo).

3. Frequency databases. A total of 50 different allelic frequency matri-
ces were built from each population sample constructed by select-
ing at random 80% of the individuals of the original datasets. This
bootstrap–based approach aim to control for the variability involved
in the estimation of allele frequencies due, for instance, to differences
in samples size.

4. PI calculation. PI values were calculated by contrasting two mutually
exclusive hypotheses in trios and duos: (1) the alleged father is the
true father of the child and (2) the father is an unrelated individual.

PIs for all the pedigrees in one population were calculated with the cor-
responding reference database, and also using the databases from the seven
other populations. Since 50 different frequency matrices were available for
each population, each pedigree yielded 50 PIs for each population database.
For each population database, the mean PI value was also calculated for
every single pedigree.

6.2.3.3 Statistical analyses

As explained, for each individual (N = 1906) a set of 50 PI values were ob-
tained using each of the eight datasets. Three goodness–of–fit tests were em-
ployed in order to examine if each set of 50 PI values fits to a normal, namely
Kolmogorov–Smirnov, Shapiro–Wilks and Pearson’s χ2 (see e.g. [285]). The
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normality assumption was rejected in most of the situations, even for the
most conservative test, namely Kolmogorov–Smirnov. Therefore, all the PI
values were converted into logarithms and the normality was checked again
using the same goodness–of–fit tests. The normality assumption (required
to properly carry out the statistical tests below) could then be accepted for
the logarithm of the PI values (logPI).

Next, for each individual an ANOVA analysis was carried out for the
eight sets of 50 logPI. ANOVA allowed testing significant differences among
the logPI values obtained when using the different datasets. Due to the
fact that the null hypothesis of equality among sets was always rejected,
we next used four different statistical tests (namely Tukey, LSD Fisher,
Duncan Ranks, and Newman; see e.g. [285]), in order to explore statistical
differences between all pairwise comparisons involving the 1906 profiles.

The decision to use several tests for testing normality and several post
hoc tests was based on two facts: (a) the need for testing inconsistencies
when using different statistical approaches that could reveal, for instance,
some technical or conceptual problem in the design of the simulations and
(b) select the test providing the most conservative results. Bonferroni’s
adjustment was used in order to account for multiple test corrections and
setting the nominal significant value α to 0.01.

Additionally, for each profile we computed an ad hoc index, the weighted
mean difference (WMD) between pairs of populations that quantifies the
magnitude of the differences between pairs of PI values. This index is defined
here as follows: for each pair of populations i, j,

WMD =
P̄Ii − P̄Ij

max(P̄Ii, P̄Ij)

where P̄I indicates the mean value for the set of 50 PIs obtained of each
individual in each dataset.

6.2.3.4 Double checking the results

All the simulations and statistical analysis were carried out using Visual
Basic programming in Microsoft Excel and the freely available statistical
package R (http://www.r-project.org/). A random subset of the pedi-
grees was selected from the original pedigree simulations, and the accuracy
of the results was double checked by using the shareware software Familias
v.1.81, www.math.chalmers.se/~mostad/familias/ [115].

6.2.3.5 Rationale

The aim of the statistical analysis was to evaluate the impact on PIs using a
single national database for every forensic case in the country compared to
using a regional database. In fact it is common for example that a laboratory
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Figure 6.3: Scheme showing the main steps considered in the simulation and
statistical analysis carried out in the present study. Image obtained from
[401].

in Buenos Aires receives paternity cases from all over the country. If all the
populations in Argentina were homogeneous no significant differences would
be observed on PIs. On the contrary, if population substructure exists,
we would expect to find important differences depending on the database
employed. The latter would involve the need to develop local frequency
tables representing the main regions from the country instead of using a
global one.

One could envisage another simpler potential solution to the problem, i.e.
to build a global database of the country and use it as reference population
for any paternity test carried out in the territory. However, as demonstrated
below, the differences in PI values when using different datasets can be
dramatic, and so, the use of a single database would just aggravate the
problem; e.g. if one has a case from Buenos Aires, it will be more appropriate
to use the Buenos Aires database than a global one. Similar problems were
addressed from a theoretical point of view by Ayres [23].

The whole simulation algorithm employed in the present study is sum-
marized in the scheme of Figure 6.3.
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Table 6.4: Significant difference between populations. The upper diagonals
values indicate the percentages of individuals that show significant differ-
ences in pairwise comparisons under the test of Tukey for trios (upper) and
duos (bottom); the first term is for a α = 0.01, while the second term is for
the Bonferroni’s correction assuming 1906 comparisons. The below diago-
nals show the percentages of WMD values above 0.8. Population codes: BA
Buenos Aires, NQ Neuquen, LP La Pampa, SL San Luis, SC Santa Cruz,
TU Tucumán, CO Collas, TO Tobas. Image obtained from [401].

6.2.4 Results and discussion

6.2.4.1 PI values vary significantly depending on the reference
population

Several statistical tests were used to measure the percentage of pedigrees
from which the PI values statistically differ when using different population
datasets. For instance, the Tukey test (Table 6.4) indicates that most of the
times the logPI values differ significantly among populations (e.g. using a
nominal value of α = 0.01 coupled with a Bonferroni’s correction assuming
1906 comparisons). As expected, the largest percentages of statistically
significant PI differences almost always involved comparisons between the
two Native American populations versus the other datasets. The largest
differences occurred between these two Native American populations.

The other statistical tests employed yielded less conservative results than
Tukey (data not shown), since the Tukey test internally controls for global
error type I (given the 28 comparisons carried out each time). The different
statistical tests are, however, consistent in showing the percentages of PI
values statistically significant as showed by a Mantel test. For instance, in
trios, r2 > 0.997 and p < 0.001 (Pearson’s correlation, 10000 permutation
tests) for all the comparisons (Tukey versus LSD of Fisher, Tukey versus
Duncan Ranks, Tukey versus Newman).
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Figure 6.4: WMD values for the 1906 profiles in the database in trios. Above
the diagonal are the pairwise distributions of WMD values for the 1906
profiles in the database in trios. Each histogram represents therefore the
impact on WMD for a given pair of frequency datasets over the 1906. Below
the diagonal are the distributions of -log10(p–values) for Tukey’s test; the
horizontal lines represent from bottom to top the -log10 values for α =
0.05, α = 0.01, and the respective values assuming Bonferroni corrections.
The numbers in the top–right corner of these distributions pictures indicate
the number of tests that fall out of the distribution and that in general
correspond to values close to zero. Image obtained from [401].

The distribution of -log10(p–values) obtained using Tukey’s test are shown
in Figure 6.4 (below the diagonal), for trios and duos. The most outstanding
feature of these figures is that the slopes of the distributions are more pro-
nounced in those comparisons involving more distant populations (see also
[397]). For instance, those involving Native Americans. It is also remarkable
the large number of -log10(p–values) that falls below the most conservative
Bonferroni’s correction.
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6.2.4.2 Measuring inter–population differences in PI values

The main aim of the present analytical approach is to evaluate the magni-
tude of the differences in PI values and to what extent statistical significances
between populations have an impact in substantial PI differences that could
be relevant for decisions in court.

WMD values were computed for each individual profile. These values
measure the magnitude of the difference between every single pair of mean
PI values among populations. For instance, a WMD value of 0.7 indicates
that the difference between the two mean values considered is 70% of the
absolute value of the largest mean. Therefore, high WMD values indicate
large differences between populations and vice versa.

Figures 6.4 and 6.5 (above the diagonal) for trios and duos respectively,
show the distributions of WMD values between pairs of datasets. Note again
that the two Native American populations show the most skewed distribu-
tions towards high WMD values. In particular Toba is more distinct than
Colla with respect to the other populations. In general, the histograms of
Figures 6.4 and 6.5 indicate large differences between PI values indepen-
dently of the population dataset used. Table 6.4 (data below the diagonals
for trios and duos) indicates the percentage of WMD values above 0.8. Note
that these values correspond with the two last bars of the histograms pre-
sented in Figures 6.4 and 6.5 (data above the diagonal).

6.2.4.3 Reviewing previous finding concerning population sub-
structure in Argentina

The importance of population substructure in Argentina has been minimized
in previous studies [268, 269, 270, 271]. More recently, Marino et al. [267]
measured the impact of population substructure in Argentina, analyzing 15
autosomal STRs in ten population samples from the country, and concluded
that no substructure could be detected supporting that a single database
of the whole country could be suitable for the correct interpretation of pa-
ternity testing and forensic casework results. Nevertheless, they found a
clear statistical differentiation between the Salta population sample and the
rest of the population samples analyzed, which contradict their final conclu-
sion about the possibility of using a unique database for the whole country.
Moreover, our previous findings [398] revealed the existence of population
substructure in Argentina at autosomal STR level. In addition, population
stratification is also supported when looking at the population patterns of
Y–STR [270, 399] and mitochondrial DNA data, as can be inferred from the
few studies carried out in populations from this country [7, 60, 155, 349].

In the present study, we have employed exactly the same autosomal
marker set used by Marino et al [267] but our results and conclusions differ
substantially. The main reason is that the statistical approaches employed in
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these studies are conceptually different. While Marino et al [267] employed
Fst genetic distances to detect and quantify genetic stratification, our ap-
proach aimed to measure the effect of population substructure directly on
PI values. We demonstrated here that Fst corrections might not account
for the singularities of the full universe of genetic profiles in a population.
Thus, for instance, considering trios, ∼22% of the PI values of the Toba’s
profiles differs more than three orders of magnitude if we use the database
of Buenos Aires and some PI value can differ more than five magnitude or-
ders. To cite one of the many outstanding examples of our results, we have
observed a Toba profile with a PI value of 273 using the Toba dataset but
15788114 using Buenos Aires as the reference population in a case of alleged
father–son.

It is worth stressing that in forensic routine work the results of the
genetic test are directly communicated to the judge by way of a PI value,
and these values are therefore those that are finally considered no matter
what the values of Fst are in the populations. In other words, the use of Fst

Figure 6.5: WMD values for the 1906 profiles in the database in duos. The
table shows the same data as in Figure 6.4 but for duos father–son. See
legend of Figure 6.4 for more details. Image obtained from [401].
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to correct for population stratification might not be appropriate in court.

6.2.5 Conclusions

The results of the present study clearly support the existence of population
stratification in Argentina to a level that can be relevant in forensic routine
work. On the other hand, the Argentinean populations show low Fst values,
indicating that the use of this index to measure and correct for population
substructure might be inappropriate in forensics.

We have simulated pedigree scenarios where a set of 15 different STRs
are fully genotyped in all the individuals. These simulations emulate the
most favorable scenario. However, in real paternity cases DNA profiles can
be deficient (missing data) when using highly degraded DNA (e.g. exhumed
remains). Moreover, the discrimination power of the 15–plex can be limited
in pedigrees where e.g. a paternity relationship has to be inferred indi-
rectly by genotyping family members related to the alleged father. In these
cases, the consequences of using inappropriate databases can be even more
dramatic because PI values are generally lower.

Using a single database for routine paternity testing in Argentina might
not be justified and could lead to serious bias when estimating PI values. The
approach used in the present study would be also appropriate to investigate
the real effect of population stratification in the paternity testing routine
work exercised in other countries.





Chapter 7

Conclusions

Different conclusions and final remarks have been already pointed out for
each of the different chapters in the present essay. Therefore, this section just
aims to summarize some global ideas about the essentials and the state–of–
the–art of present statistical approaches available in the genomic field. The
conclusions are heterogeneous as it corresponds to the variety of statistical
problems studied here.

The curse of dimensionality problem is present in almost all of the ge-
nomic fields of research, being (perhaps) particularly severe in the gene
expression field. Current expression arrays generally deal with the analy-
sis of few thousand genes; however, technical improvements will soon allow
to include the full set of nuclear genes (around 25000–30000), which would
complicate even more the statistical analysis. Furthermore, it can be ten-
tatively said that most likely, sample sizes will remain the same. This also
connects with the multiple test correction problem: as there are too many
covariates (genes, gene markers, . . . ), many statistical tests will be needed,
in some way or another, so the probability of type I errors will increase
notably (see next chapter).

The huge amount of data generated in the new genomic era obviously
demands fast, efficient algorithms, and powerful computers; this connects
statistics and genetics with several other knowledge areas, such as bioin-
formatics, neural computation, etc. Further advances in computation are
strongly needed to allow the implementation of new, computationally de-
manding statistical methods. The kernel approach developed in Chapter 4
serves as an example.

As statistics are continuously evolving and providing with new method-
ologies, and new problems arise each day in the genetics field, there is a
growing need to improve the interplay between these two fields of research,
statistics and genomics. One of the main drawbacks arises from the fact
that many statistical developments are published exclusively in specialized
statistical journals and therefore, these developments usually pass unnoticed
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to geneticists. It is also important to mention that availability of data is dif-
ferent between the fields of gene expresion and SNP case–control association
studies: expression data is generally available to the scientific community
for further statistical analysis while SNP genomic data is not (although it
seems this tendency is starting to change in the GWAS era [390]).

Another important problem in genetic association studies is the so–called
publication bias, as usually journals with high impact factor tend to se-
lect for publication only studies reporting positive associations. This has
contributed to the appearance of many spurious associations, that are not
replicable in other studies using independent samples. Sometimes, a well–
designed study that do not find association with a particular disease or trait
can bring more light to science than many biased studies showing (false)
positive associations that subsequently do not replicate.

Although the statistical basis of the tools used in forensic genetics is sim-
pler than in genomics, and the conceptual framework was developed long
time ago, there are many problems that still remain unsolved. Many of
these problems connect to the field of population and molecular genetics,
namely, population stratification, mutation rates, . . . . Although they rarely
affect most of the routine forensic casework, these problems also demands
the attention of statisticians. This essay contains examples of how to com-
bine intensive simulation, statistical tools and forensic knowledge to solve
intricate, unresolved problems in forensics.



Chapter 8

Further research

The number of further research lines arising from this work is countless,
due to the great variety of areas we work with and the heterogeneity of the
studies. Here we will mention some of them, being aware that a lot will
remain unsaid. Groups of forthcoming research lines will be suggested for
each of the chapters inside this essay: Chapter 3 (penalized regression in
studies involving high–dimensional data), Chapter 4 (support vector ma-
chines in classification problems), Chapter 5 (statistics in clinical genetics)
and Chapter 6 (statistics in forensic and population genetics).

8.1 Penalized regression in studies involving high–
dimensional data

• The imperious need of sparse models in those fields where data is
high–dimensional (gene expression, text categorization, information
retrieval, combinatorial chemistry, . . . ) makes lq penalization a very
attractive option to be massively carried out. The elastic net also
seems to be promising, especially when strong correlations are present.

• The power of penalization in combination with the power of resampling
techniques has been already proposed [172], and its consistency has
been proved. A long road is in front of us. A great variety of resampling
methods and penalization approaches exist, so many researchers will
have part along this path.

• Different options for the vector of specific penalizations in Chapter 3
were investigated in this essay, and many other could be possible.

• It is very important to go into the biological interpretation of the gene
expression results obtained in depth. This is partly done, on a small–
scale, inside this essay, with leukemia dataset results.
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8.2 Support vector machines (SVMs) in classifica-
tion problems

• There is a need to get faster and more efficient kernels, reducing the
computational burden, while at the same time allowing for the exis-
tence of complex gene interactions associated with disease.

• Recent studies have tried to combine the abilities of SVMs to classify
with the power of penalization approaches. More research work is
needed.

8.3 Statistics in clinical genetics

• New statistical methods need to be developed, and existing ones need
to be adapted, to face the new challenges arising as a consequence of
the GWAS age: multifactorial diseases, low penetrances, . . .

• A main issue in GWAS studies is the high number of hypotheses car-
ried out, giving rise to the so–called multiple test correction problem.
Most of the GWAS inside the scientific literature use Bonferroni–type
corrections (which are too conservative) or ad hoc procedures which
have not been previously tested. Careful studies are needed to de-
termine which are the best corrections to be carried out with high–
dimensional genetic datasets. There are some consortia or authors of
GWAS studies that have undertaken to make data available (upon re-
quest). This provides statisticians with the necessary tools, together
with high–dimensional data simulation packages, to test the abilities
of the different corrections.

• Careful attention to positive associations detected is required by all the
researchers involved in the field. Publication bias is a worrying source
of problems. As commented along this essay, many positive associ-
ations have not been subsequently replicated in independent studies.
Critical studies, bibliographic revisions and meta–analyses are of great
utility to detect those studies which results are not reliable or, at least,
dubious.

8.4 Statistics in forensic and population genetics

• Although the statistical basis to be used in criminal and paternity
cases were established long time ago, the great variety of problems
and the importance of each forensic case itself (usually involving in-
heritances, feelings, sentences and imprisonments, . . . ), make that the
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tools needed to solve this kind of problems have to be continuously
reinvented. The study in Section 6.1 serves as an example.

• Both studies in Sections 6.1 and 6.2 show the importance that sim-
ulations acquire nowadays. Real data is sometimes unattainable or
economical costs required to obtain samples cannot be afforded.

• Further work on correction for population stratification problems is
needed. Use of Fst or θ corrections has been largely considered as the
definitive solution for stratification. Preliminary studies show that Fst
corrections could not be appropriate in populations where indigenous
and immigrant subpopulations are present without admixture (e.g.
Argentina).

• Many forensic genetic studies focus nowadays on discovering the ge-
netic regions associated with physical traits like eye colour, hair colour
or pigmentation. Phenotypes are highly variable with regards to each
of these traits, which means a new challenge for statisticians. There is
a substantial need to find the best procedures to deal with this kind
of data.

• Ancestrality studies look for the effect of human migrations in the
distribution of genetic frequencies. In this sense, the search for those
genetic markers (STRs or SNPs) which allelic frequencies have the
largest differences among world populations is very interesting, as it
can provide with the tools to distinguish ethnically different individ-
uals in a genetic way. Statisticians may look for the best measures
allowing to unravel these genetic markers, as they can mean a power-
ful tool in forensic genetic casework.





Appendix A

Proof of the equivalence
GSoft – CCD algorithm

The log–likelihood functions in logistic regression and in lasso logistic re-
gression with specific penalizations are given in (3.1) and (3.2), respectively.
The first partial derivatives or score functions are:

sj(β) =
n∑
i=1

−yixij
1 + exp(yix

′
iβ)

The definition of the ∆vj for the lasso case in [151], applied on a penalized
regression problem with specific penalizations for each variable, is given in
(3.3). For ease of notation, we will use here S instead of sign(βj). We will
base the entire proof in the steps and the notations used in Figures 4 and 5
in [151]. Many of the terms used there will be repeated here. To clarify the
notation, we will use βj for the true value of the coefficients and β(I)

j for the
value of the jth coefficient in the iteration I of the CCD algorithm.

We will begin proving the equivalence for the case βj = 0, and then we
will move to the more general case of βj > 0 (analogous proof for βj < 0).

Case βj = 0

(1)⇒ (2)
We assume that the CCD algorithm, as explained in [151], converges.

Therefore, from a certain iteration I we have β(I)
j = 0 and ∆v(I)

j = 0. The
CCD algorithm tries then to improve the objective function value searching
in the positive and the negative direction, so:{

S = 1 and ∆v(I+1)
j ≤ 0 ⇔ sj(β)− λγj ≤ 0

S = −1 and ∆v(I+1)
j ≥ 0 ⇔ sj(β) + λγj ≥ 0

}
⇔
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{
sj(β) ≤ λγj
−sj(β) ≤ λγj

}
⇔ (A.1)

⇔ |sj(β)| ≤ λγj

(2)⇒ (1)
We assume now that the necessary and sufficient conditions for conver-

gence in the GSoft theorem are fulfilled. That implies, for βj

|sj(β)| ≤ λγj

We need to bear in mind also that the initial value for βj in the CCD
algorithm is β(0)

j = 0. In this situation and from the definitions of the CCD
algorithm for the lasso case, we have that

• if we try S = 1 (positive direction) then ∆v(0)
j ≤ 0 and positive direc-

tion failed.

• if we try S = −1 (negative direction) then ∆v(0)
j ≥ 0 and negative

direction failed.

Therefore, following the steps of the CCD algorithm for the lasso case,
this means we take ∆v(0)

j = 0, as both directions failed, and then

∆βj = min
(
max(0,−∆j),∆j

)
= min

(
0,∆j

)
= 0

and the CCD algorithm converges.

Case βj > 0 (the proof is analogous for βj < 0)

(1)⇒ (2)
Let us suppose that sj(β) 6= λγj and we will try to show that this gives

rise to a contradiction. As the true βj is positive and the CCD algorithm
converges, from any iteration I we will have βJj > 0 for all iteration J > I,
so S = 1 and ∆vJj 6= 0 following the definition in (3.3). This way, for any
positive constant k,

∆β(J)
j = min

(
max(∆v(J)

j ,−∆(J)
j ),∆(J)

j

)
6= 0 ⇒

⇒ ∆(J+1)
j = max

(
2|∆β(J)

j |,
∆

(J)
j

2

)
> k > 0

and this happens for every iteration J > I, which enters in contradiction
with the convergence of the CCD algorithm to βj .

(2)⇒ (1)
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We assume now that necessary and sufficient conditions for convergence
in the GSoft theorem are fulfilled; let us suppose that the CCD algorithm
converges to a different “solution” β̄ 6= β with β̄j 6= βj .

In such case, as the conditions in (a) in the GSoft theorem determine
an unique solution, it has to be sj(β̄) 6= λγj ; then ∆v(J)

j 6= 0, for all J > I

with I ∈ N and therefore ∆β̄j does not converge to 0, which means the CCD
algorithm does not converge either, and we have reached a contradiction.

We have not mentioned or used anywhere in the proof the condition
about the positive definite nature of the matrix X

′
λH(η̂)Xλ. So we have to

prove this condition is also fulfilled when the CCD algorithm converges. We
will prove this by reductio ad absurdum.

Let us assume that X
′
λH(η̂)Xλ is not definite positive. As Xλ is a com-

plete matrix, this implies that H(η̂) is not definite positive, and therefore

−H(η̂) (Hessian) is not definite negative
∂L1(β̂)
∂βj

= 0 for all j ∈ {1, . . . , p}

}

and therefore the estimated linear predictor η̂ cannot be a maximum of the
objective function in [214], which means β̂ is not a minimum of the objective
function in [151] and the CCD algorithm does not converge (contradiction).





Appendix B

Mathematical properties and
definite positiveness of the
SVM kernel

We need to prove that the kernel (4.4) used in our SVM studies can be
thought of as a dot product in the so–called feature space F [367], where a
dot product is a symmetric bilinear form that is strictly positive definite in
the vector space F .

To do this, we will proceed in three consecutive steps: first, we will define
the mapping φ and the feature space F . After that, we will observe that F
is a vector space over R with addition and scalar multiplication, to finally
show that the kernel (4.4) can be seen as a symmetric bilinear form strictly
positive definite in F .

B.1 Mapping φ and feature space F

We take the feature space:

F =
{

Γ = (Γ(1), . . . ,Γ(U)): Γ(u) ∈ R8p2 , u = 1, . . . , U , U = 2v
}

so F can be understood as a space which elements are vectors of vectors.
v is a fixed value that can be taken as the maximum of heterozygotes
max #

{
xj = 2

}
that can be found in p SNP markers (x1, . . . , xp) (p is an

upper bound for v).
The mapping φ is given by:

φ : {1, 2, 3}p → F

x 7−→ φ(x) = Γ
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For the sake of convenience, we will call φ(x) = Γ = (Γ(1), . . . ,Γ(U))
where Γ(u) = (1/T )A(u), u = 1, . . . , U , T = 2#{xj=2} and

A(u) =
(√

w1,1z
1
(u),
√
w1,1(1− z1

(u)),
√
w1,2z

1
(u)z

2
(u),
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∈ R8p2

where the wi,j are the weights assigned to the pair i, j of alleles and the
binary values zj(u) are given by:

if xj = 1 then z2j−1
(u) = z2j

(u) = 0

if xj = 3 then z2j−1
(u) = z2j

(u) = 1

if xj = 2 then z2j−1
(u) = 1, z2j

(u) = 0 or z2j−1
(u) = 0, z2j

(u) = 1

The number U of vectors in each element Γ in F is fixed as the maximum
of heterozygotes in a genotype. It could happen (in fact, it will be a common
situation) that this maximum will not be reached for some genotype x. In
that case, the components Γ(u) with index from 2#{xj=2}+ 1 to U = 2v are
taken as 0 ∈ R8p2 .

F is a vector space as a consequence of its definition and the properties
of Euclidean vector spaces. Addition (+) and scalar multiplication (·) are
defined by:

(+) Addition. Let Γ = (Γ(1), . . . ,Γ(U)) and Ω = (Ω(1), . . . ,Ω(U)) be,
Γ,Ω ∈ F . Then

Γ + Ω = (Γ(1) + Ω(1), . . . ,Γ(U) + Ω(U))

(·) Scalar multiplication. Let λ ∈ R and Γ = (Γ(1), . . . ,Γ(U)) ∈ F be.
Then

λΓ = (λΓ(1), . . . , λΓ(U))
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B.2 The SVM kernel can be expressed as a dot
product in the feature space F

The last step of the proof entails expression of the kernel (4.4) as a dot
product in the feature space F . Let us define the following application:

Q : F × F → R

(Γ,Ω) 7−→ Q(Γ,Ω) =
U∑
u=1

U∑
o=1

〈
Γ(u),Ω(o)

〉
where 〈, 〉 is the common scalar product in R8p2 . Therefore, we have that
the kernel in (4.4) can be expressed in terms of Q:

K(xi,xk) = Q(φ(xi), φ(xk))

So it only remains to be proved that Q is a dot product, that is, a
symmetric bilinear form strictly positive definite, for (4.4) to be a valid
kernel. The requirements demanded are:

• Bilinearity. We will prove bilinearity in the first component. The
proof is analogous for the second one. Let Γ,Ω and Ψ be elements in
the feature space F , and λ1, λ2 ∈ R. Then:

Q((λ1Γ + λ2Ω),Ψ) =
U∑
u=1

U∑
o=1

〈
(λ1Γ + λ2Ω)(u),Ψ(o)

〉
=

U∑
o=1

( U∑
u=1

〈
(λ1Γ + λ2Ω)(u),Ψ(o)

〉 )
=

U∑
o=1

( U∑
u=1

[
λ1

〈
Γ(u),Ψ(o)

〉
+ λ2

〈
Ω(u),Ψ(o)

〉] )
= λ1

U∑
u=1

U∑
o=1

〈
Γ(u),Ψ(o)

〉
+ λ2

U∑
u=1

U∑
o=1

〈
Ω(u),Ψ(o)

〉
= λ1Q(Γ,Ψ) + λ2Q(Ω,Ψ)

• Simmetry. Let Γ,Ω ∈ F be, then:

Q(Γ,Ω) =
U∑
u=1

U∑
o=1

〈
Γ(u),Ω(o)

〉
=

U∑
o=1

U∑
u=1

〈
Ω(o),Γ(u)

〉
= Q(Ω,Γ)

• Strictly positive definiteness. Positive definite nature is relatively
easy to prove. Let Γ = (Γ(1), . . . ,Γ(U)) be any element of F . Then,
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making some calculations and using the properties of the scalar prod-
uct 〈, 〉 in R8p2 it can be seen that:

Q(Γ,Γ) =
U∑
u=1

U∑
o=1

〈
Γ(u),Γ(o)

〉
=
〈
Γ(1) + . . .+ Γ(U),Γ(1) + . . .+ Γ(U)

〉
≥ 0

From the above inequality it is immediate that the “strict” nature is
not achieved, as we will have Q(Γ,Γ) = 0 for those Γ 6= 0 fulfilling
Γ(1) + . . .+ Γ(U) = 0 in R8p2 . Anyway, this will not affect the results
obtained with the kernel (4.4), as the sets of (genetic) data involved
in our studies give rise to elements Γ in F with all the values non–
negative in each component Γ(u).



Resumo en galego -
Summary in Galician
language

Dende o seu nacemento fai varios séculos, indubitablemente debido a necesi-
dade de comprender a lóxica pola cal se rex́ıan moitos xogos de azar, o uso da
estat́ıstica extendeuse a outras áreas con obxectivos non tan marcadamente
economicistas, e si mais cient́ıficos. Os campos das finanzas, da medicina,
da f́ısica, das ciencias da computación, etc. (e tamén dos xogos de azar)
fixeron uso neste tempo de diferentes ferramentas estat́ısticas para obteren
coñecemento dos datos.

A xenética é un destes campos. Considérase que o seu estudo comeza a
partir dos traballos do monxe checo Gregor Mendel, que realizou no século
XIX unha serie de experimentos coa fin de coñecer o patrón de herencia
de diferentes especies vexetáis. Nos últimos tempos, os estudos xenéticos
sufriron unha explosión, debida ós avances na tecnolox́ıa e ó incremento das
investigacións dirixidas a determinar a influencia do ADN na cĺınica, no eido
das investigacións forenses, na determinación das migracións das poboacións
humanas, etc. Esta explosión trouxo consigo important́ısimos incrementos
nas cantidades de cartos adicadas a investigación xenética (a lo menos en
aquelas nacións que otorgan á investigación a importancia que realmente
ten), o cal se traduxo, entre outras cousas, na aparición de cantidades ma-
sivas de datos que necesitan ser convintemente analizados. É neste punto
no que a estat́ıstica surxe co obxectivo de dotar de significado a estes datos,
proveendo a xenética das metodolox́ıas e das ferramentas necesarias de cara
a obtención de resultados que sexan de proveito tanto para o descubrimento
de variantes xenéticas relacionadas con enfermidades, como para relacionar
cada xen coa súa función correspondente, dar con aqueles marcadores de
relevancia no que se refire ós análisis forenses ou clasificar novos subtipos de
enfermidades segundo os patróns de expresión xénica observados.

Esta memoria pretende por un lado introducir ó lector no contexto da
estat́ıstica xenética e toda a súa complexidade e, por outro, provelo cunha
serie de ferramentas que consideramos de utilidade neste ámbito. A contin-
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uación pasaremos a resumir caṕıtulo por caṕıtulo o seu contido:

Na introducción (Caṕıtulo 1) faise unha ampla descripción de todos
aqueles elementos que serán tratados nos traballos contidos na memoria. A
Sección 1.1 repasa, nun certo orden lóxico, todos aqueles elementos involu-
crados nos mecanismos da herencia. Comezando a partir do ADN (nuclear
e mitocondrial), e a súa estrutura en forma de cromosomas, pásase a contin-
uación a explicar o significado das unidades f́ısicas e funcionais da herencia,
os xens, para logo enumerar os diferentes tipos de marcadores xenéticos,
de máximo interés tanto en xenética cĺınica, como en xenética forense, de
poboacións, evolutiva ou filoxenética. Dado que un par de individuos toma-
dos de forma aleatoria apenas difiren nun 0.1% da súa secuencia nucleot́ıdica,
o estudo daqueles marcadores nos que se apreza variabilidade dentro da es-
pecie humana (polimorfismos) resulta ser vital de cara a coñecer as bases
xenéticas que determinan as diferencias interhumanas.

Diferentes tipos de márcadores xenéticos foron usados no eido da xenética
cĺınica ó longo do tempo. Os mais en boga hoxe en d́ıa son os SNPs (do
inglés, Single Nucleotide Polymorphism), consistentes nun cambio de base
na secuencia nucleot́ıdica. Os CNVs (do inglés, Copy Number Variable)
supoñen tamén unha fonte de información que crece de d́ıa en d́ıa. Xa
dentro do marco da xenética forense, os STRs (do inglés, Short Tandem
Repeats) úsanse nas probas de identificación forense, moitas veces xunto cos
SNPs, o cal supón un avance relativamente recente.

Dentro da Sección 1.1 tamén se fai un repaso do Human Genome
Project (HGP), o proxecto en gran parte responsable da explosión mediática
da xenética. O obxectivo principal do HGP foi dende o principio a obtención
do xenoma completo dun ser humano, con todas as implicacións e riscos que
conleva. Este proxecto foi desenrolado de forma independente por un con-
sorcio público, sendo o governo dos EEUU o maior inversor, e unha iniciativa
privada comandada por Celera Genomics. Obviamente, o conxunto de obx-
ectivos a alcanzar por parte do HGP vai mais aló da simple secuenciación
do xenoma, xa que isto supón a consecución dunha grande cantidade de
obxectivos a unha menor escala.

Na Sección 1.2 trátase a obtención de datos cuantitativos de expresión
xénica, cos cales se traballará ó longo da primeira parte deste traballo. En
concreto, expĺıcase como son obtidos os datos a partiren de diferentes pa-
quetes de software e técnicas de procesado de imaxes procedentes de estudos
de microarray. A expresión xénica mide espećıficamente o nivel de expresión
(sobreexpresión, infraexpresión, . . . ) dun xen ou rexión xénica; nestes estu-
dos dito nivel recibe un valor numérico que se move dentro dun rango con-
tinuo. Unha vez explicados os pasos da obtención das medidas de expresión,
faise un pequeno repaso dalgunhas das ĺıneas de investigación mais en boga
neste eido, e nas que a estat́ıstica ten un papel mais relevante. Como ver-
emos mais adiante, a principal caracteŕıstica dos datos de expresión xénica
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é a súa alta dimensionalidade, xa que estes estudos involucran un número
inusualmente alto de variables (e que en ocasións pode comprender a to-
talidade de xenes dentro do xenoma, arredor de 25000). Este problema
coñécese en estat́ıstica como a maldición da dimensionalidade (do inglés,
curse of dimensionality).

Polo tanto, compre comentar que esta memoria vai presentar unha bateŕıa
de métodos, técnicas e ferramentas estat́ısticas con aplicación sobre difer-
entes tipos de variables que poden aparecer no eido da xenética. É por iso
que a Sección 1.3 aparece dividida en dúas diferentes subseccións:

A Subsección 1.3.1 fai un amplo resumo do estado da arte no que se
refire os estudos de asociación en xenética cĺınica con SNPs, centrándose
en aqueles que buscan diferencias entre unha mostra de enfermos ou casos,
e outra mostra formada ı́ntegramente por individuos control. Xeralmente,
diferentes metodolox́ıas estat́ısticas son usadas na busca de diferencias sig-
nificativas nas frecuencias alélicas presentes nos casos e nos controis. En
determinadas circunstancias, estas diferencias significativas son indicativas
de asociación (que non necesariamente causalidade) entre unha variante
xenética dada e a enfermidade baixo estudio. Diferentes ferramentas son
comúnmente usadas en dita busca: árbores de clasificación (CART), ran-
dom forests (RF), regresión lox́ıstica (LR), etc. Os factores que poden com-
plicar os estudos de asociación xenética son moitos e diversos: fenocopia,
heteroxeneidade, . . . e deben ser tidos en conta á hora de diseñar o estudo.
Nunha primeira fase, os estudios de asociación centráronse nunhas deter-
minadas rexións do ADN sospeitosas ou candidatas de conter as variantes
responsables das enfermidades. Hoxe en d́ıa, os GWAS (do inglés, Genome
Wide Association Study) conteñen información de centos de miles de SNPs
(o cal engloba a maior parte da variabilidade xenética humana) para miles
de casos e miles de controis agrupados e obtidos botando man de consorcios
internacionais. Por suposto, as inversións económicas necesarias para levar
a cabo os devanditos estudios son moi grandes, e imposibles de abordar por
parte da maioŕıa dos grupos de investigación. Neste senso, a simulación de
xenotipos de individuos adquire unha grande importancia, xa que permite a
competitividade incluso en situacións de inferioridade económica. A lista de
enfermidades estudadas é longa. Descartadas as enfermidades mendelianas
(hemofilia, acondroplasia, . . . ), cunha base xenética extremadamente simple
e descuberta tempo ha, a investigación céntrase agora en intentar descubrir a
base xenética das enfermidades comúns (cáncer, enfermidades psiquiátricas,
diabetes, asma, . . . ), obviamente cunha natureza complexa. Desta complex-
idade surxe a necesidade de técnicas estat́ısticas capaces de detectar patróns
en conxuntos de datos de alta dimensión.

Pola súa parte, a Subsección 1.3.2 informa acerca da situación actual
no que se refire os estudos con datos de expresión. Dado que os obxectivos
(busca de asociacións xen–enfermidade, función xénica, rutas metabólicas,
. . . ) difiren en gran medida entre os diferentes tipos de estudos, a lista de
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técnicas tamén é ampla e diversa no que se refire a finalidade. As técnicas
de aprendizaxe supervisado (e.g. regresión lox́ıstica) están pensadas para a
clasificación/predicción do estatus caso ou control en novos individuos, polo
que son entrenadas sobre unha mostra de entrenamento (training sample) e
posteriormente probadas nunha mostra de proba (test sample). Por outro
lado, as técnicas de aprendizaxe non supervisado (e.g. análisis cluster) non
teñen en conta en ningún momento o estatus (caso ou control), agrupando ós
individuos segundo as súas similaridades xenéticas. A súa finalidade non é
en ningún caso a clasificación, e si detectar novos subtipos da enfermidade,
descubrir a función dun xen a partir da súa pertenza a un determinado
cluster de expresión, etc.

Para finalizar coa introducción, a Sección 1.4 resume as caracteŕısticas
mais importantes a ter en conta no que se refire ó uso de ferramentas es-
tat́ısticas en xenética forense e de poboacións. Os STRs e os SNPs son os
marcadores xenéticos xeralmente utilizados neste tipo de estudios. A partir
de tales marcadores, perf́ıs xenéticos son construidos e comparados para os
diferentes individuos, usando kits comerciais de STRs ou grupos (“plexes”)
de SNPs altamente polimórficos. O teorema de Bayes e o teorema das prob-
abilidades totais son as ferramentas estat́ısticas xeralmente utilizadas nos
casos forenses mais comúns e simples. Nembargantes, problemas tales coma
a estratificación poboacional, a endogamia, . . . xeran casos de dif́ıcil res-
olución que requiren de técnicas mais complexas, simulacións intensivas,
etc. Todas as implicacións que acarrean os casos de rutina forense (heren-
cias, sentencias xudiciais, encarceramentos, etc.) provocan que a resolución
de cada caso sexa vital, a lo menos no que respecta ás partes implicadas, e
que a probabilidade de erro se teña que ver reducida ó máximo.

É, polo tanto, esta unha memoria enfocada e orientada a estat́ıstica
xenética, na que se exporán diversos traballos con diversos tipos de datos
(expresión xénica, SNPs, STRs) procedentes de fontes tanto reais coma sim-
uladas. A xustificación e os obxectivos que persigue o traballo resúmense no
Caṕıtulo 2. Cada un dos seguintes caṕıtulos contén un traballo ou grupo
de traballos que se enmarcan dentro dunha mesma liña. O f́ıo conductor
é, evidentemente, o uso de ferramentas estat́ısticas na xenética. Pasamos a
continuación a relatar con algo mais de detalle cada un deles:

Caṕıtulo 3. Os microarrays de expresión xénica xeralmente estudan
miles de xens para tan só unhas poucas docenas de mostras. O obxectivo é
explicar a variable resposta (de carácter categórico) a partir do patrón de ex-
presión, utilizando un modelo que inclúa únicamente unhas poucas variables,
polo que os métodos estat́ısticos dando lugar a modelos “sparse” (modelos
de regresión nos que únicamente un número reducido de variables ten co-
eficiente non nulo) son grandemente valorados. Os métodos de regresión
penalizada, tales como o lasso, a bridge regression ou a elastic net dan lugar
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a modelos “sparse” minimizando unha función obxectivo da forma:

LP (β, λ) = L(β) + P (β, λ)

onde β ref́ırese ó vector de coeficientes e λ é o termo de penalización.
Neste estudo nos propoñemos diferentes métodos de penalización lasso

usando modelos de regresión lox́ıstica. As penalizacións son espećıficas para
cada xen, e poden basarse na súa variabilidade ou en aplicacións previas de
métodos de penalización. Todas estas metodolox́ıas teñen a súa partida nun
recente estimador GSoft (do inglés, generalizad soft-threshold). Un novo
algoritmo, chamado algoritmo CCD (do inglés cyclic coordinate descent),
é utilizado para resolver o problema de optimización numérica que surxe
ó minimizar a función obxectivo. O tal algoritmo é capaz de resolver dito
problema, sendo ademáis rápido e eficiente, o cal resulta ser unha vantaxe
incomparable, tendo en conta a dimensionalidade dos datos coa que estamos
traballando. O CCD minimiza a función obxectivo iterando en cada un dos
coeficientes namentres os tempos de computación non se resinten.

Obtivéronse resultados tanto para datos reais coma simulados. Dous
conxuntos de datos de leucemia e cancro de colon con resposta binaria, moi
comúnmente usados na literatura para probar novas técnicas, foron usadas
co obxectivo de probar os nosos métodos, e os resultados obtidos foron com-
parados con outros publicados na literatura cient́ıfica. Ademáis, extraéronse
conclusións de valor no que se refire ós resultados de leucemia, que tamén
foron comparados con estudos previos. En resumo, con estes métodos de
penalización é posible obter modelos biolóxicamente interpretables, e com-
petitivos cos resultados previos obtidos neste eido.

Caṕıtulo 4. Os support vector machines (SVMs) apareceron no campo
da machine learning nos anos noventa como unha técnica de clasificación de
patróns, que rápidamente adquiriu moita relevancia. A idea principal dos
SVMs é construir un hiperplano separador entre clases (as diferentes cat-
egoŕıas da variable resposta) nun espacio transformado de alta dimensión,
no que a separabilidade é fácilmente obtible. Con este obxectivo, os SVMs
usan unha aproximación tipo kernel, que nun mesmo cálculo obtén unha
medida de similaridade entre individuos, traballando no espacio transfor-
mado. A elección do kernel é fundamental cara a obter unha clasificación
precisa. Neste caṕıtulo construimos un novo método kernel, preparado para
traballar con datos categóricos como os dos SNPs. Esto foi necesario dado
que aproximacións previas ó problema do kernel pensaban só en problemas
con datos continuos. Este novo kernel toma a forma:

K(xi,xk) =
Ti∑
s=1

Tk∑
m=1

1
Ti

1
Tk

(
2p∑
l=1

2p∑
r=l

wlrI
{
zlri(s) = zlrk(m)

})
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onde se calcula a similaridade entre os xenotipos dos individuos xi e xk no
espacio transformado.

Os resultados de clasificación obtidos compáranse cos de técnicas sim-
ilares. A demanda computacional desta aproximación SVM é moi alta.
Traballando en computación paralela utilizando dúas diferentes infraestru-
turas GRID (CESGA e Departamento de Estat́ıstica e IO en Santiago) so-
mos capaces de reducir os tempos de computación e permitir a factibilidade
computacional.

Caṕıtulo 5. Este caṕıtulo componse, a diferencia dos anteriores, de
dous traballos nos que se evalúan as capacidades de técnicas estad́ısticas en
datos simulados (Sección 5.1) e reais (Sección 5.2).

Na Sección 5.1 pártese da idea de que a maioŕıa das enfermedades
comúns probablemente posúen unha etiolox́ıa complexa. Os métodos es-
tat́ısticos que se centran na busca de eṕıstasis entre diferentes marcadores
ou rexións xénicas son de crecente interés, dado que espérase con elas identi-
ficar zonas que de outro modo seŕıan indetectables. Nesta sección analizamos
a capacidade da regresión lox́ıstica (LR) a dúas técnicas de aprendizaxe su-
pervisado tipo árbore: árbores de clasificación (CART) e random forests
(RF), á hora de detectar eṕıstasis. O método MDR (do inglés, multifactor
dimensionality reduction) foi tamén usado con fins comparativos. Partindo
da simulación de SNPs autosómicos onde dous dos SNPs son causais inter-
actuando entre si e co estatus da enfermidade, modelamos dita interacción
en diferentes escenarios de tamaño de mostra, frecuencia alélica mı́nima
(MAF), porcentaxe de datos perdidos e diversos modelos de penetrancia,
algúns deles simulando interaccións puras (sen rastro de presencia de efec-
tos marxinais). Todo esto da lugar a 99 escenarios de simulación diferentes.

Inda que CART, RF e LR ofrecen resultados similares no que atingue
a detección da asociación, CART e RF funcionan millor no que respecta ó
erro de clasificación. O MAF, a penetrancia e o tamaño de mostra semellan
ser factores moito mais determinantes que a porcentaxe de datos perdidos.
Nos escenarios de interacción pura tan so os RF son capaces de detectar
a asociación dun modo similar ó MDR. En conclusión, os métodos tipo
árbore e a LR son ferramentas estad́ısticas de importancia no que se refire
a detección das interaccións en situacións de exceso de SNPs de ruido. Nos
modelos de interacción pura, só RF e MDR dan resultados mı́nimamente
aceptables. Nembargantes, cando o diseño do estudio non é óptimo existe
unha alta probabilidade de detectar asociacións espúreas.

Na Sección 5.2 pártese da proposta, común na literatura cient́ıfica, de
que o a probabilidade de sufrir cancro de mama podeŕıa ser explicada polo
efecto acumulativo dunha grande cantidade de alelos cun efecto moi débil.
O represor transcripcional FBI1, tamén coñecido como Pokemon, foi recen-
temente identificado coma un factor cŕıtico na oncoxénese. Esta protéına é
codificada polo xen ZBTB7. Este estudo ten como obxectivo determinar si
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os polimorfismos dentro do xen ZBTB7 están asociados co risco de sufrir
cancro de mama. Utiĺızase unha mostra de casos e controis recolectada en
hospitais no norte e centro de España. Quince SNPs foron xenotipados,
cunha cobertura promedio dun SNP por cada 2.4 kilobases, en 360 casos
de cancro de mama esporádico e 402 controis. A comparativa de frecuen-
cias haplot́ıpicas, xenot́ıpicas e alélicas non revela asociacións significativas.
Un procedimento basado na permutación é usado para correxir por test
múltiple. Neste primeiro estudio involucrando o xen ZBTB7 co cancer de
mama esporádico non se aprecia evidencia algunha de asociación.

Caṕıtulo 6. Do mesmo modo que o caṕıtulo anterior, este está com-
posto por dous traballos nos que o f́ıo conductor é o uso de ferramentas
estat́ısticas e de simulación en problemas complexos de xenética forense. No
primeiro (Sección 6.1) estúdase como a adición dun “plex” de SNPs pode
ser de gran axuda na resolución de probas de paternidade en situacións com-
plexas, namentres que no segundo (Sección 6.2) demóstrase a existencia dun
claro problema de estratificación poboacional na Arxentina, o cal podeŕıa
ocasionar problemas nas probas de parentesco que aĺı se realicen. Vexámolo
cun pouco mais de detalle:

A Sección 6.1 evalúa o salto de mellora que se obtén usando un “plex”
de SNPs como complemento en problemas de identificación forense. En
moitas ocasións, cando se usa unha bateŕıa estandar de STRs en casos
forenses de parentesco, unha pequena proporción dos casos poden dar lugar
a resultados lixeiramente ambiguos. Moitos de estes casos aparecen en es-
tudos de paternidade onde o presunto pai non está dispoñible i é necesario
recurrir a un irmán deste. Inda que a adición dunha certa cantidade de STRs
podeŕıa axudar a resolver estes casos, non son moitos os STRs dispoñibles.
Neste estudo móstrase que grandes multiplexes de SNPs son moi informa-
tivos naqueles casos onde se obteñen probabilidades de paternidade pouco
informativas ou exclusións (da paternidade) ambiguas. Ó mesmo tempo, os
SNPs ofrecen resultados dunha maior fiabilidade, o cal é moi importante en
casos con mostras de ADN degradado.

Neste estudo móstranse oito casos reais de parentesco nos que a adición
de datos de SNPs resolveu o problema de resultado ambiguo previamente
obtido usando tan só STRs. Además, realizáronse simulacións que permi-
tiron determinar a frecuencia dos fracasos á hora de obter exclusións ou
probabilidades de paternidade concluintes con diferentes conxuntos de mar-
cadores naqueles casos nos que un irmán do verdadeiro pai é utilizado na
proba. Os resultados indican que os SNPs son estad́ısticamente mais efi-
cientes que os STRs de cara a resolver este tipo de casos.

Na Sección 6.2, un estudo de simulación foi levado a cabo co obxec-
tivo de investigar os efectos potenciais da subestructuración poboacional en
probas de paternidade en Arxentina. O estudio foi realizado mediante a
avaliación dos ı́ndices de paternidade (PI) calculados en diferentes escenar-
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ios simulados de pedigŕıs familiares, usando 15 STRs autosómicos en oito
bases de datos de subpoboacións da Arxentina.

Os resultados mostran importantes diferencias estat́ısticamente significa-
tivas entre os valores de PI obtidos, segundo as frecuencias alélicas utilizadas
(que vaŕıan en cada unha das subpoboacións presentes na Arxentina). Estas
diferencias son mais dramáticas segundo se consideren poboacións nativo–
americanas ou poboacións urbanas. O estudo tamén mostra que o uso do
indicador Fst á hora de correxir no PI o efecto da estratificación poboacional
podeŕıa ser inapropiado, dado que non ten en conta as particularidades de
cada un dos casos de paternidade que chegan ós xulgados.

Inda que cada un dos caṕıtulos e seccións que presentan un traballo
de investigación conteñen as conclusións propias correspondentes a cada un
deles, o Caṕıtulo 7 conten un conxunto de conclusións mais “xerais” e, en
certo modo, aplicables ó contexto común da estat́ıstica xenética.

Para finalizar, o Caṕıtulo 8 e último fai referencia ás liñas de inves-
tigación futuras relacionadas con cada un dos traballos que se expoñen na
memoria. Compre decir que estas liñas son só unha pequena mostra das
que realmente existen nun campo tan en auxe coma o que se trata neste
traballo.
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