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RESIDUAL LIFETIME

T1 : lifetime of patient or device
Suppose that we know that T1 > t1, then T1 − t1 is called the residual
lifetime of T1 and

P (T1 − t1 ≤ y | T1 > t1) (1)

is called the residual lifetime distribution.
Many authors studied

- the mean residual lifetime:

E(T1 − t1 | T1 > t1)

- the quantiles of the residual lifetime (e.g. median) i.e. the inverse of
the residual lifetime distribution.
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CONDITIONAL RESIDUAL LIFETIME

T1 : lifetime as before
T2 : some other variable (containing extra information on T1)
We generalize (1) by adding an extra conditioning of the form {T2 ≤ t2}
or {T2 > t2}:

P (T1 − t1 ≤ y | T1 > t1, T2 ≤ t2} (2)

P (T1 − t1 ≤ y | T1 > t1, T2 > t2} (3)

are conditional residual lifetime distributions.
In this talk we discuss quantiles of (2) and (3):
For 0 < p < 1 :

Q̃(p | t1, t2) = p-th quantile of (2)˜̃
Q(p | t1, t2) = p-th quantile of (3)
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OUR MOTIVATION

Comes from our interest in good risk ratios for comparison of risks
between 2 groups.
See recent papers of Abrams, Janssen, Veraverbeke
Such risk ratios are mostly defined in terms of conditional hazard rate
functions. For example

• CR(t1, t2) =
λ(t1|T2=t2)
λ(t1|T2>t2)

cross ratio of Clayton (1978)

• RR(t1, t2) =
λ(t1|T2≥t2)
λ(t1|T2<t2)

risk ratio

• or also λ(t1|t21<T2≤t22)
λ(t1|t23<T2≤t24)

The λ’s are conditional hazard rate functions of T1 at t1, given that
T2 = t2 (or T2 ≥ t2, or T1 < t2, . . .).
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We want to replace the conditional hazard rate functions by quantile
functions of the conditional residual lifetime:˜̃

Q(p | t1, t2)
Q̃(p | t1, t2)

Reason: ratios of quantiles of conditional residual lifetime are easier to
interpret than ratios of conditional hazard rates.
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T1 censored, T2 not censored

We study nonparametric estimators for Q̃(p | t1, t2) and
˜̃
Q(p | t1, t2) and

establish asymptotic normality results.
We allow that the lifetime T1 is subject to random right censoring by a
censoring variable C. The variable T2 is always observed.
So the available data are

(Zi, δi, T2i) i = 1, . . . , n

a random sample from (Z, δ, T2) where

Z = T1 ∧ C δ = I(T1 ≤ C)

Notation: joint distribution function of (T1, T2):

F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2)

and its margins

F1(t1) = P (T1 ≤ t1) F2(t2) = P (T2 ≤ t2)
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QUANTILE FUNCTIONS Q̃ and
˜̃
Q

Conditional distribution of T1, given T2 ≤ t2:

F (t1 | T2 ≤ t2) = P (T1 ≤ t1 | T2 ≤ t2)

=
F (t1, t2)

F2(t2)
≡ F̃t2(t1)

Conditional residual lifetime distribution of T1 at t1 given that T2 ≤ t2:

P (T1 − t1 ≤ y | T1 > t1, T2 ≤ t2)

=
P (t1 < T1 ≤ t1 + y, T2 ≤ t2)

P (T1 > t1, T2 ≤ t2)

=
F̃t2(t1 + y)− F̃t2(t1)

1− F̃t2(t1)
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p-th quantile of this distribution function:

Q̃(p | t1, t2) = inf

{
y :

F̃t2(t1 + y)− F̃t2(t1)

1− F̃t2(t1)
≥ p

}
= inf{y : F̃t2(t1 + y) ≥ F̃t2(t1) + p(1− F̃t2(t1))}
= −t1 + F̃−1

t2
(p+ (1− p)F̃t2(t1))

where F̃t2(p) = inf{y : F̃t2(y) ≥ p} is the inverse of F̃t2

A similar expression holds for
˜̃
Q(p | t1, t2) starting from

F (t1 | T2 > t2) = P (T1 ≤ t1 | T2 > t2)

=
F1(t1)− F (t1, t2)

1− F2(t2)
≡ ˜̃
F t2(t1)
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ESTIMATION OF THE JOINT DISTRIBUTION
F (t1, t2)

Start from the relation

F (t1, t2) =

t2∫
0

F (t1 | t)dF2(t)

and plug in estimators

• Fn(t1 | t) for F (t1 | t)

• F2n(t2) =
1
n

n∑
i=1

I(T2i ≤ t2) for F2(t2)

This idea has been worked out in Akritas (1994) and Akritas and Van
Keilegom (2003).
The estimator for F (t1 | t) is the Beran estimator (or conditional
Kaplan-Meier estimator):
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Fn(t1 | t) = 1−
∏

Z(i)≤t1

1−
wn(i)(t, hn)

n∑
j=1

wn(j)(t, hn)I(Zj ≥ Zi)


δ(i)

where Z(1) ≤ Z(2) ≤ . . . ≤ Z(n) are the ordered Zj-values and δ(j) is the
censoring indicator for Z(j).
The weights are Nadaraya-Watson weights

wni(t, hn) =
K

(
t−T2i
hn

)
n∑

j=1
K

(
t−T2j

hn

)
(if the weights are equal to 1

n then Beran = Kaplan-Meier).
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REPRESENTATION FOR Fn(t1, t2)

Fn(t1, t2) =

t1∫
0

Fn(t1 | t)dF2n(t)

As Lo and Singh (1986) did for the Kaplan-Meier estimator, an almost
sure asymptotic representation has been proved for the Beran estimator:

Fn(t1 | T2i)− F (t1 | T2i) ≈
n∑

j=1

wnj(T2i, hn)ξ(t1, Zj , δj , T2i)

where

ξ(t, Z, δ, t) = (1−F (t1 | t))

−
Z∧t1∫
0

dHu(s | t)
(1−H(s | t))2

+
I(Z ≤ t1, δ = 1)

1−H(Z | t)
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Here

H(z | t) = P (Z ≤ z | T2 = t)

Hu(z | t) = P (Z ≤ z, δ = 1 | T2 = t)

We have the well known relations:
(if T1 and C are independent, given T2)

1−H(z | t) = (1− F (z | t))(1−G(z | t))

Hu(z | t) =

z∫
0

(1−G(s− | t))dF (s | t)

where

F (z | t) = P (T1 ≤ z | T2 = t)

G(z | t) = P (C ≤ z | T2 = t)

The representation is valid for (t1, t2) ∈ Ω, a domain which essentially says
that we have to stay away from the upper endpoints of the supports of
H(z | t) and F2(t).
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REGULARITY ASSUMPTIONS

(A1) logn
nhn

→ 0, nh4n → 0
K is a probability density function with support [−1, 1], twice
differentiable,

∫
uK(u)du = 0.

(A2) F2(t2) is three times continuously differentiable w.r.t. t2;
H(z | t2) and Hu(z | t2) are twice continuously differentiable w.r.t. z
and t2 and for (z, t2) ∈ Ω, all derivatives are uniformly bounded
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Theorem
Under (A1) and (A2) we have

Fn(t1, t2) = F (t1, t2) +
1

n

n∑
i=1

ψ(t1, Zi, δi, T2i) + rn(t1, t2)

with
ψ(t1, Zi, δi, T2i) = [F (t1 | T2i)I(T2i ≤ t2)− F (t1, t2)]

+ξ(t1, Zi, δi, T2i)I(T2i ≤ t2)

and
sup

(t1,t2)∈Ω
| rn(t1, t2) |= oP (n

−1/2)
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Also, as n→ ∞,

n1/2(Fn(t1, t2)− F (t1, t2)
d→ N(0, σ2(t1, t2))

where

σ2(t1, t2) =

t2∫
0

F 2(t1 | t)dF2(t)− F 2(t1, t2)

+

t2∫
0

(1− F (t1 | t))2


t1∫
0

dHu(s | t)
(1−H(s | t))2

 dF2(t)
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ESTIMATION OF F̃t2(t1) and
˜̃
F t2(t1)

F̃t2,n(t1) =
Fn(t1, t2)

F2n(t2)

˜̃
F t2,n(t1) =

Fn(t1,+∞)− Fn(t1, t2)

1− F2n(t2)

Linearization + Slutsky’s theorem leads to asymptotic representations

F̃t2,n(t1)− F̃t2(t1) =
1

n

n∑
i=1

ψ̃(t1, Zi, δi, T2i) + rem

˜̃
F t2,n(t1)−

˜̃
F t2(t1) =

1

n

n∑
i=1

˜̃
ψ(t1, Zi, δi, T2i) + rem
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Direct (but long) calculations give the covariance functions of

E(ψ̃(t1, . . .)ψ̃(t
′
1, . . .))

E(
˜̃
ψ(t1, . . .)

˜̃
ψ(t1, . . .))
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ESTIMATION OF THE QUANTILE FUNCTIONS

Natural plug-in estimators

Q̃n(p | t1, t2) = −t1 + F̃−1
t2,n

(p+ (1− p)F̃t2,n(t1))

˜̃
Qn(p | t1, t2) = −t1 +

˜̃
F

−1

t2,n(p+ (1− p)
˜̃
F t2,n(t1))

Also here we obtain asymptotic representations via Bahadur type
theorems.
(extra complication: random arguments)
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The final result is asymptotic normality for Q̃n and
˜̃
Qn with explicit

expressions for the asymptotic variances:

n1/2(Q̃n(p | t1, t2)− Q̃(p | t1, t2))
d→ N(0; σ̃2p(t1, t2))

n1/2(
˜̃
Qn(p | t1, t2)−

˜̃
Q(p | t1, t2))

d→ N(0; ˜̃σ2p(t1, t2))
For the precise expressions for σ̃2p and ˜̃σ2p, we refer to Abrams, Janssen,
Veraverbeke (2021, Statistics)
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Paul Janssen (PART 2)
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CALCULATING THE RESIDUAL QUANTILE

Remember

Q̃(p | t1, t2) = inf

{
y :

F̃t2(t1 + y)− F̃t2(t1)

1− F̃t2(t1)
≥ p

}
with

F̃t2(t1) = P (T1 ≤ t1 | T2 ≤ t2) =
F (t1, t2)

F2(t2)
.

To solve

F̃t2(t1 + y)− F̃t2(t1) = p(1− F̃t2(t1))
⇔

F (t1 + y, t2) = pF2(t2) + (1− p)F (t1, t2)
⇔ (Sklar)

C(u(y), v) = pv + (1− p)C(u(0), v)

with v = F2(t2), u(y) = F1(t1 + y).
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SIMULATIONS

κ λL λU κ(θ)

Clayton θ
θ+2 2−1/θ 0 0.10 (0.22)

0.20 (0.50)
0.50 (2.00)

Gumbel θ−1
θ 0 2− 21/θ 0.10 (1.11)

0.20 (1.25)
0.50 (2.00)

FGM∗ 4θ
18 0 0 0.10 (0.45)

0.20 (0.90)

∗ For 0 ≤ θ ≤ 1, κ ∈ [0, 2/9].
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Q̃(p | t1, t2) = −t1 + F−1
1 (g(p | t1, t2, θ))

and g(p | t1, t2, θ) a function determined by the specific copula under
consideration

• Fj(tj) = 1− exp(−djt
sj
j ), j = 1, 2

sj = 1.5 (shape), dj = 0.5 (decay), scale: d
−1/sj
j

median = d
−1/sj
j (ln 2)1/sj ≈ 1.243

• G(t) = 1− exp(−dctsc)
sc = 1.5, dc = 0.15 (23% censoring)

0.85 (63% censoring)
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DATA ON PRIMARY BILIARY LIVER CIRRHOSIS

PBC-data (Mayo Clinic)
# patients: 424 (55% censoring)
primary endpoint: survival time

two groups based on serum bilirubin level
(related to functioning of liver, high level is bad)

group-low : level ≤ 3.4 mg/dl (75%)
group-high: level > 3.4 mg/dl (25%)
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The figure below gives the ratio of the medians of the conditional lifetime
distributions as a function of t1.˜̃

Q(1/2 | T1 > t1, T2 > 3.4)

Q̃(1/2 | T1 > t1, T2 ≤ 3.4)
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Note. The 95% pointwise confidence limits are bootstrap based (100
resamples).
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CONDITIONAL RESIDUAL LIFETIME -
EXTENSION

Remember
P (T1 − t1 ≤ y | T1 > t1, T2 ≤ t2)

P (T1 − t1 ≤ y | T1 > t1, T2 > t2)

Extension
P (T1 − t1 ≤ y | T1 > t1, t21 < T2 ≤ t22)

Motivation 1 (bilirubin level)
It allows (based on the value of T2) a more flexible partitioning of the
population. Hence, more flexible risk ratios can be considered (think about
partitioning of the population based on the bilirubin level).
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Motivation 2 (diabetic retinopathy)
Diabetic retinopathy: an eye disease that is caused by high blood sugar
and high blood pressure. Over time, these conditions damage the blood
vessels in the back of the eye.

Consider the subpopulation: t21 < T2 ≤ t22, then t1 = t22 is an interesting
(medical) choice. Assume that for eye 2 we know that “time to blindness”
is in the interval ]t21, t22] and that, at time t22, eye 1 is not yet blind, we
then look at the conditional distribution

P (T1 − t22 ≤ y | T1 > t22, t21 < T2 ≤ t22)

It is the distribution of the remaining lifetime for eye 1 starting from the
time that eye 2 is blind. Interesting conditional residual quantiles to look
at are de deciles, i.e., p = 0.1, 0.2, ...., 0.9 (as far as meaningful given the
presence of censoring).
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P (T1 − t1 ≤ y | T1 > t1, t21 < T2 ≤ T22)

=
F̃ (t1 + y | t21, t22)− F̃ (t1 | t21, t22)

1− F̃ (t1 | t21, t22)

with

F̃ (t1 | t21, t22) = F (t1 | t21 < T2 ≤ t22)

=
F (t1, t22)− F (t1, t21)

F2(t22)− F2(t21)
=
FV (t1 | t21, t22)
F2V (t21, t22)

Q̃(p | t1, t21, t22) = inf

{
y :

F̃ (t1 + y | t21, t22)− F̃ (t1 | t21, t22)
1− F̃ (t1 | t21, t22)

≥ p

}
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UNIVARIATE CENSORING-EXTENSION

Di = (Z1i, Z2i, δ1i, δ2i), i = 1, . . . , n

Z1i = T1i ∧ Ci, δ1i = 1(T1i ≤ Ci)

Z2i = T2i ∧ Ci, δ2i = 1(T2i ≤ Ci)

e.g. patients dropping out in a clinical study (diabetic retinopathy)
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ESTIMATION OF THE JOINT
DISTRIBUTION-REVISITED

Burke (1988) - case of univariate censoring

H(t1, t2) = P (Z1 ≤ t1, Z2 ≤ t2, δ1 = 1, δ2 = 1)

= P (T1 ≤ t1, T2 ≤ t2, T1 ∨ T2 ≤ C)

=

t1∫
0

t2∫
0

(1−G[(z1 ∨ z2)−])F (dz1, dz2)
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F (t1, t2) =

t1∫
0

t2∫
0

1

1−G[(z1 ∨ z2)−]
H(dz1, dz2)

F̂B(t1, t2) =
1

n

n∑
i=1

δ1iδ2i

1− Ĝ[(Z1i ∨ Z2i)−]
1(Z1i ≤ t1, Z2i ≤ t2)

with Ĝ the KM based on (T1i ∨ T2i) ∧ Ci, δi = 1− δ1iδ2i. F̂2 is the
Kaplan-Meier estimator based on T2i ∧ Ci, δ2i.
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Lin & Ying (1993) - case of univariate censoring

P (Z1 > t1, Z2 > t2) = P (T1 > t1, T2 > t2, C > t1 ∨ t2)
(T1,T2)

∐
C

= P (T1 > t1, T2 > t2)P (C > t1 ∨ t2)

S(t1, t2) = P (T1 > t1, T2 > t2) =
P (Z1 > t1, Z2 > t2)

1−G(t1 ∨ t2)

FV (t1 | t21, t22) = F (t1, t22)− F (t1, t2)
= (S(t1, t22)− S(t1, t21))− (S2(t22)− S2(t21))

Ŝ(t1, t2) =
1

n

1

1− Ĝ(t1 ∨ t2)

∑
1(Z1i > t1, Z2i > t2)

To estimate S2(t22)− S2(t21), use the KM estimator for S2 (as before).

F̂V,LY (t1 | t21, t22) = . . .
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F̂V,LY (t1 | t21, t22) = 1
n

{
1

1−Ĝ(t1∨t22)

n∑
i=1

1(Z1i > t1, Z2i > t22)

− 1

1−Ĝ(t1∨t21)

n∑
i=1

1(Z1i > t1, Z2i > t21)

}
− 1

n

{
1

1−Ĝ(t1∨t22)

n∑
i=1

1(Z1i > t1, Z2i > t22)

− 1

1−Ĝ(t1∨t21)

n∑
i=1

1(Z1i > t1, Z2i > t21)

}
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SIMULATIONS (continued)
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DATA APPLICATIONS

• PBC-data (3 groups)
0.3 < T2 ≤ 1.2
1.2 < T2 ≤ 2.5

T2 > 2.5

• Diabetic rethinopathy data (4 groups) based on quantiles
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