
Goodness-of-fit tests in proportional

hazards models with random effects

Wenceslao González-Manteiga

University of Santiago de Compostela, Spain
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Precedents: Regression models with random effects

Mixed effects models assume a flexible covariance structure which

allows for non-constant correlation among the observations

(longitudinal data, repeated measurements, clustered data and small

area estimation).

A semiparametric mixed effects model:

g (E [Yij |Xij , bi ]) = m(Xij) + b′iZij (j = 1, . . . , ni ; i = 1, . . . , q)

González-Manteiga, Lombard́ıa-Cortiña, Mart́ınez-Miranda and

Sperlich (2013) considered kernel estimation (bandwidth selection)

and bootstrapping for the above model in the case of g(x) = x .

González-Manteiga, Mart́ınez-Miranda and Van Keilegom (2016)

proposed a goodness-of-fit test for the function m(·), based on the

empirical distribution of the residuals.
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Survival regression: The Cox proportional hazard model

The hazard function of survival time Y given X , λ(t|X ), is:

λ(t|X ) = λ0(t) exp(β
′X ),

λ0(t) is the unspecified baseline hazard,

X is a vector of covariates and β the regression coefficients.

Assume independent survival times.

But correlation often arises because there are clusters in the data.

Multicenter and large-scale medical studies, e.g., patients’ survival

rates may differ substantially across different hospitals but may be

similar within the same hospital.

Studies with repeated measurements, e.g., multiple car accidents

caused by the same individuals in a given year.

Recurrent event data. Each individual has several outcomes

representing gap times between events, e.g. recurring infections.
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Cox model with random effects

Assume that the conditional hazard of survival time Y is:

λ(t|Xij , bi ) = λ0(t) exp(β
′Xij + b′iZij) (j = 1, . . . , ni ; i = 1, . . . , q)

bi are (iid) s-dimensional random effects of mean zero and

distribution depending on an unknown parameter θ.

Xij is a vector of covariates, Zij is a sub-vector of (1,X ′
ij)

′.

Assume random right censoring so we observe (T , δ), where

T = min(Y ,C ) and δ = I (Y ≤ C ).

Assume bi ⊥ Xij and (Tij , δij) ⊥ (Tik , δik) | (Xij ,Xik , bi ).

The shared frailty model (s = 1 and Zij = 1):

λ(t|Xij , bi ) = λ0(t) exp(β
′Xij + bi ) = λ0(t)vi exp(β

′Xij),

where vi = exp(bi ) is called frailty.

A good reference: Duchateau and Janssen (2008).
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Three goodness-of-fit tests

Problem 1. H0 : λ (t|Xij , bi ) = λ0(t) exp
{
β′Xij + b′iZij

}
H1 : λ (t|Xij , bi ) = λ0(t) exp

{
m(Xij) + b′iZij

}

Problem 2. H0 : λ (t|Xij , bi ) = λ0(t) exp
{
β′Xij + b′iZij

}
H1 : λ (t|Xij , bi ) = λ0(t) exp

{
β(t)′Xij + b′iZij

}

Problem 3. H0 : λ (t|Xij , bi ) = λ0(t) exp
{
mθ(Xij) + b′iZij

}
H1 : λ (t|Xij , bi ) = λ0(t) exp

{
m(Xij) + b′iZij

}
We are not aware of any significant contribution to these problems.
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Some related literature

Rich literature on testing linearity in the standard Cox model (Gray,

1994; Lin, Zhang and Davidian, 2008; among others), but with

random effects the problem has not been considered so far.

Xu, Vaida and Harrington (2009) use a profile-AIC and a

profile-likelihood ratio test for model selection in the multivariate

frailty model (testing for the significance of a specified subset of

random or fixed effects).

To capture the correct effect of the covariates on the conditional

hazard Yu, Lin and Tu (2012) use smoothing splines. Yu and Lin

(2008) use kernels (just one covariate, based on a marginal

proportional hazard model).
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Testing the linear covariate effects

In this work we formulate a convenient version of the first
testing problem:

H0 : λ(t|Xij , bi ) = λ0(t) exp
( d∑

k=1

βkXijk + b′iZij

)
H1 : λ(t|Xij , bi ) = λ0(t) exp

( p∑
k=1

βkXijk +
d∑

k=p+1

mk(Xijk) + b′iZij

)
,

for some 0 ≤ p ≤ d − 1 given, where mk(·) (k = p+1, . . . , d)

are non-parametric, which are supposed to have mean zero.

Our proposal1 is a likelihood ratio test.

Nonparametric estimation under the alternative is performed

using orthogonal expansions.

1Just accepted in Biometrical Journal.
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Next steps

1 Estimation under the null and the alternative

2 The likelihood ratio test

3 Simulations

4 Data application

5 Extensions
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Estimation under the null model

In the shared frailty model, with parametric baseline hazard

and Gamma frailty, estimation can be performed maximizing

the full marginal likelihood (the frailty is integrated out).

In frailty models with unspecified baseline hazard direct

maximization of the marginal likelihood is no longer possible.

In the Cox model (without random effects) the regression

coefficients are estimated using partial likelihood (PL).

Ripatti and Palmgren (2000) suggest a penalized partial

likelihood (PPL). This is much simpler but some information

might be lost.
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The full likelihood approach

We want to estimate ξ = (β, θ, λ0)

Suppose for the moment that the random effects bi were observed.

Note that

fT ,δ,X ,b = fT ,δ|X ,b fb|X fX = fT ,δ|X ,b fb fX ,

since b and X are independent. Also note that

fX does not depend on any of the parameters,

fb depends only on θ,

fT ,δ|X ,b gives rise to the classical partial likelihood of the Cox

model.
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The full likelihood approach

Hence, the likelihood is given by

L(β, θ, λ0) =
[ q∏
i=1

fTi1,...,Tini
,δi1,...,δini |Xi1,...,Xini

,bi

] [ q∏
i=1

fbi

]
=

[ q∏
i=1

ni∏
j=1

fTij ,δij |Xij ,bi

] [ q∏
i=1

fbi

]
.

since (Tij , δij) ⊥ (Tik , δik) | (Xij ,Xik , bi ), and the log-likelihood is

log L =

q∑
i=1

ni∑
j=1

{
δij log λ0(Tij) + δij(β

′Xij + b′iZij)− Λ0(Tij) exp(β
′Xij + b′iZij)

}
+

q∑
i=1

log f (bi |θ)

As the random effects bi are not observed, this is an infeasible

likelihood!



Introduction Our proposal Simulations Data example Conclusions

Full likelihood and the EM algorithm

We can use the EM algorithm to maximize the log-likelihood:

log L(β, θ, λ0) = S1(β, λ0) + S2(θ)

S1(β, λ0) =
∑∑{

δij log λ0(Tij) + δij(β
′Xij + b′iZij)

−Λ0(Tij) exp(β
′Xij + b′iZij)

}
S2(θ) =

∑
log f (bi |θ)

The λ0-function that maximizes the likelihood is concentrated

at the uncensored failures times t1, . . . , th.

Thus we can equivalently maximize the parametric

log-likelihood where the unknown parameters are:

(β, θ, λ0(t1), . . . , λ0(th))

Start with initial parameter values: ξ̃ = (β̃, θ̃, λ̃0(t1), . . . , λ̃0(th))
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The E-step

Calculation of

E [log L(β, θ, λ0) | ξ̃,D]

= E [S1(β, λ0) | ξ̃,D] + E [S2(θ) | ξ̃,D]

=

q∑
i=1

ni∑
j=1

{
δij log λ0(Tij) + δij(β

′Xij + E [bi | ξ̃,D]′Zij)

−Λ0(Tij) exp(β
′Xij)E [exp(b

′
iZij) | ξ̃,D]

}
+

q∑
i=1

E [log f (bi |θ) | ξ̃,D]

= Q1(β, λ0) + Q2(θ),

conditional on the current parameter value ξ̃ and the observed

data D.
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The M-step

Maximization of Q1(β, λ0):

Profile likelihood approach, as in the usual Cox model (with

offsets log E [exp(b′iZij) | ξ̃,D]).

Maximization of Q2(θ) :

Q2(θ) = log-likelihood of q independent observations with

density exp{E [log f (bi |θ) | ξ̃,D]}

⇒ Q2(θ) can be maximized either explicitly or numerically

depending on the density of the random effects

The E and M-steps should be iterated until convergence.
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Feasibility of the EM algorithm

The usefulness of the EM algorithm depends on two

conditions: (1) it should be easy to obtain expected values,

(2) maximisation of the likelihood conditional on the expected

values should be straightforward.

The conditional expectations in the E-step are in general not

available in closed-form and s-dimensional numerical

integration would be required2. An exception is the shared

frailty model with Gamma frailty (E-step can be performed

using closed-form expressions).

In the M-step maximization is performed using partial

likelihood ideas.

2For Normal random effects: Vaida and Xu (2000) suggest a MCMC

method with Gibbs sampling; Abrahantes and Burzykowsky (2006) suggest a

Laplace approximation (clusters need to be large).
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A pseudo marginal likelihood approach

In the shared frailty model Gorfine, Zucker and Hsu (2006)

suggest an alternative algorithm.

β and θ are estimated by maximizing the marginal likelihood:

IL(β, θ, λ0) =

q∏
i=1

∫ ni∏
j=1

fTij ,δij |Xij ,bi fbi dbi

A step-function estimate of Λ0 (integrated baseline hazard) is

plugged-in at each iteration to simplify the maximization

problem.

The approach works for any frailty distribution with finite

moments.

Estimates are shown to be very close to those derived by the

EM algorithm.
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Software available for estimation under the null

There are several available R packages:

Multivariate frailty model (s ≥ 1):

coxme::coxme and survival::coxph. Estimation by PPL.

phmm::phmm. Full likelihood and MC-EM algorithm (Xu and

Vaida, 2000).

Only shared frailty model (s = 1)

frailtyEM::emfrail. Full likelihood and EM algorithm (Balan

and Putter, 2017). Several frailty distributions. Right

censoring and truncation.

frailtySurv::fitfrail. Pseudo-marginal likelihood (Gorfine et

al., 2016). Several frailty distributions.

Other approaches: frailtypack::frailtyPenal (multivariate

frailty model, splines), frailtyHL::frailtyHL

(hierarchical-likelihood), parfm::parfm (parametric baseline),

survBayes::survBayes.
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Estimation under the alternative model

λ(t|Xij , bi ) = λ0(t) exp
( p∑

k=1

βkXijk +
d∑

k=p+1

mk(Xijk) + b′iZij

)
We use orthogonal expansions to estimate the mk -functions.

We approximate mk(x) by an expansion of the form

r∑
ℓ=1

γℓuℓ(x)

for some known orthogonal basis functions u1, . . . , ur .

The same estimation approach as under the null model can be

used, except that the model now contains more coefficients.

We can use the same software.

Examples of common basis functions are orthogonal

polynomials or trigonometric functions.
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Justification

Orthogonal expansions can approximate arbitrarily well any

continuous function with respect to a certain distance, as long

as the number of basis functions r is taken sufficiently large.

How to choose the number of basis functions rk for the

function mk ?

We use AIC:

Fit Pd−p models (take at most P basis functions for each k).

Select the model with the lowest AIC among these Pd−p

candidate models.
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The likelihood ratio test

We consider the test statistic:

LR = −2
{
log L(β̂H0 , θ̂H0 , λ̂0,H0 |H0)− log L(β̂H1 , γ̂H1 , θ̂H1 , λ̂0,H1 |H1)

}
To calibrate the test we use a model based bootstrap

procedure that creates bootstrap samples satisfying the null

hypothesis (resampling scheme extending Massonnet,

Burzykowski and Janssen, 2006).

For each bootstrap sample we recalculate the optimal number

of basis functions r∗p+1, . . . , r
∗
d using the AIC.

⇒ This leads to the bootstrap test statistic LR∗.

This procedure is repeated B times leading to bootstrapped

test statistics LR∗
1 , . . . , LR

∗
B , and the critical value of the test

at level α is then approximated by the [(1− α)B]-th order

statistic of these B values.
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Resampling algorithm

1 Under H0 fit the model and get the estimators β̂H0 , θ̂H0 and

λ̂0,H0 .
2 Draw i.i.d. random effects b∗i , i = 1, . . . , q, from their

distribution with θ replaced by θ̂H0 .
3 Generate survival times Y ∗

ij (j = 1, . . . , ni , i = 1, . . . , q) from

the estimated survival function

Ŝ(·|Xij) = Ŝ0(·)exp(β̂
′
H0

Xij+b∗′i Zij ),

with Ŝ0(·) the baseline survival obtained from λ̂0,H0 in step 1.
4 Generate censoring times C ∗

ij (j = 1, . . . , ni , i = 1, . . . , q) from

the Cox-regression estimator of the censoring distribution:

Ĝ (·|Xij) = Ĝ0(·)exp(δ̂
′Xij ),

5 Set T ∗
ij = min(Y ∗

ij ,C
∗
ij ) and δ∗ij = I (T ∗

ij ≤ C ∗
ij ). The bootstrap

sample is then {(T ∗
ij ,Xij , δ

∗
ij); j = 1, . . . , ni , i = 1, . . . , q}.
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Simulations: Aims of the study

(i) To evaluate the type I error and power of our likelihood ratio

test.

(ii) To compare our test with two possible competitors in terms of

type I error and power.

(iii) To evaluate the sensitivity of our test to: misspecification of

the frailty distribution, varying cluster sizes, and the

dimension of the parameters.

(iv) To evaluate the performance of our estimator of the

nonparametric covariate effect under the alternative, including

a comparison with an estimator based on splines.
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Scenario 1: Shared frailty model

Consider the following model under H0 :

λ(t|Xij1,Xij2, bi ) = λ0(t) exp(β1Xij1 + β2Xij2 + bi ),

where

exp(bi ) ∼ Gamma(mean= 1, variance= θ) with θ = 0.5 or 2

X1 ∼ Be(0.5), β1 = 0.5, X2 ∼ Un[0, 1], β2 = 1

Total sample size n = 300, 600 or 1200

Samples with q clusters and ni observations per cluster, with

ni = 5 or 20

Censoring distribution: (40-70% censoring)

λcen(c|Xij1,Xij2) = 0.4 exp(0.2Xij1 + 0.5Xij2)

and maximum follow-up time = 5
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Empirical level of the likelihood ratio test

n ni θ = 0.5 θ = 2

300 5 5.6 (0.52) 5.8 (0.51)

300 20 5.2 (0.51) 6.0 (0.51)

600 5 4.4 (0.50) 4.8 (0.49)

600 20 4.6 (0.50) 5.4 (0.47)

1200 5 5.1 (0.49) 5.7 (0.50)

20 5.4 (0.50) 5.5 (0.50)

Table: Empirical level (%) of the test and average p-value (between

brackets) under the shared frailty model with Gamma frailty. The

nominal level is 5%.
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Evaluation of the power under several alternatives

Sinusoidal: m(x2) = β2x2 + a sin(bπx2), with b = 2, 10 or 20

Quadratic: m(x2) = (β2 − a)x2 + ax22
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Empirical power of our test

Alternative hypothesis

Sinusoidal Medium freq. High freq. Quadratic

n ni a=0.3 a=0.5 a=1 a=1.5 a=1 a=1.5 a=1 a=1.5

θ = 0.5

300 5 24.0 69.2 40.4 67.2 15.6 22.0 10.8 24.8

20 38.4 76.8 44.4 62.4 14.8 22.8 17.6 29.2

600 5 48.0 92.8 72.0 95.6 28.4 48.8 21.6 38.4

20 57.6 96.4 79.2 94.0 27.6 45.2 27.6 46.8

1200 5 89.4 98.6 95.7 100.0 50.0 63.4 41.2 73.5

20 87.6 100.0 97.2 99.6 51.2 78.0 43.2 78.4

θ = 2

300 5 27.6 54.0 32.4 54.0 12.4 19.2 9.5 16.4

20 26.0 66.4 30.4 54.8 12.0 18.4 11.2 21.2

600 5 42.0 81.6 58.0 87.6 24.4 34.8 17.6 32.8

20 45.6 90.0 70.0 91.2 27.6 42.0 17.1 40.0

1200 5 71.0 98.4 87.5 99.1 41.2 63.3 29.5 57.9

20 78.8 99.6 96.4 99.6 49.2 69.4 41.2 70.8

Table: Percentage of rejections under the alternative.
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Scenario 2: Multivariate frailty model

The second model is a frailty model with two independent

Gaussian random effects.

λ(t|Xij1,Xij2, bi1, bi2) = λ0(t) exp(β1Xij1 + β2Xij2 + bi1 + bi2Xij1),

where

bi1, bi2 ∼ N(0, 0.25), bi1 and bi2 are independent

X1 ∼ Be(0.5), β1 = 0.5

X2 ∼ Un[0, 1], β2 = 1

n = 300 and 600, with clusters of size ni = 5

(computations more intense than before)

C ∼ Exp(λ = 0.4), maximum follow-up time = 5
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Empirical level and power of our test

Alternatives :

m(x2) = β2x2 + asin(bπx2), with b = 10 or 20

m(x2) = (β2 − a)x2 + ax22

Medium freq. High freq. Quadratic

n Null hypothesis a = 1.5 a = 1.5 a = 1 a = 1.5

300 (ni = 5) 5.9 (0.51) 59.7 16.5 9.3 19.3

600 (ni = 5) 4.0 (0.54) 92.8 39.7 15.6 36.4

Table: Empirical level and power of our test under a multivariate frailty

model with two independent Normal random effects. The nominal level is

5%.
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Two possible competitors for our test

Competitor 1: Same likelihood ratio test but using standard

Cox regression estimates (ignoring the correlation).

Competitor 2: Same likelihood ratio test but with parametric

alternative. For linear null hypothesis estimate the alternative

using an orthogonal expansion with e.g. three basis functions.

We perform a comparison between our test and each of these

competitors under the shared frailty model (scenario 1).
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Competitor 1: Power comparison

Alternative hypothesis

Sinusoidal Medium freq. High freq. Quadratic

n ni a=0.3 a=0.5 a=1 a=1.5 a=1 a=1.5 a=1 a=1.5

θ = 0.5

300 5 0.85 0.86 0.82 0.90 0.77 0.93 0.85 0.82

20 0.64 0.76 0.82 0.92 0.89 0.77 0.73 0.75

600 5 0.80 0.88 0.89 0.94 1.00 0.95 0.85 0.95

20 0.64 0.85 0.82 0.97 0.78 0.88 0.70 0.81

1200 5 0.84 1.00 0.96 1.00 0.90 1.16 0.88 0.88

20 0.83 1.00 0.95 1.00 0.88 0.94 0.75 0.78

θ = 2

300 5 0.51 0.44 0.51 0.55 0.77 0.50 0.84 0.63

20 0.54 0.49 0.57 0.53 0.63 0.50 0.61 0.53

600 5 0.49 0.54 0.51 0.63 0.64 0.71 0.66 0.57

20 0.46 0.45 0.49 0.66 0.45 0.50 0.75 0.51

1200 5 0.45 0.75 0.61 0.88 0.45 0.59 0.47 0.48

20 0.43 0.77 0.62 0.88 0.52 0.61 0.38 0.44

Table: Power of the competitor divided by the power of our proposal.
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Competitor 1: Empirical level

n ni θ = 0.5 θ = 2

300 5 5.2 (0.51) 3.8 (0.51)

300 20 5.6 (0.51) 6.6 (0.49)

600 5 4.4 (0.52) 6.2 (0.47)

600 20 4.8 (0.49) 6.2 (0.49)

1200 5 4.6 (0.53) 5.2 (0.50)

1200 20 8.2 (0.48) 7.2 (0.49)

Table: Empirical level (%) of the test and average p-value (between

brackets) under the shared frailty model. Nominal level is 5%.

→ For large θ the empirical level is above the nominal level.
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Competitor 2: Power comparison

Alternative hypothesis

Sinusoidal Medium freq. High freq. Quadratic

n ni a=0.3 a=0.5 a=1 a=1.5 a=1 a=1.5 a=1 a=1.5

θ = 0.5

300 5 1.03 1.00 0.75 0.77 0.64 0.67 0.89 0.77

20 0.95 0.99 0.71 0.78 0.92 0.82 0.89 0.84

600 5 0.95 1.01 0.83 0.89 0.68 0.61 0.85 0.88

20 0.97 1.01 0.86 0.92 0.67 0.64 0.88 0.90

1200 5 0.99 1.01 0.95 0.99 0.71 0.75 0.82 0.90

20 1.00 1.00 0.94 1.00 0.62 0.71 0.94 0.88

θ = 2

300 5 0.96 1.03 0.75 0.81 0.65 0.69 1.05 0.88

20 1.02 0.99 0.78 0.77 0.87 0.74 0.82 0.89

600 5 1.05 1.02 0.82 0.87 0.77 0.76 0.73 0.76

20 0.94 1.02 0.84 0.85 0.86 0.75 1.03 0.81

1200 5 0.99 1.01 0.84 0.95 0.68 0.72 0.80 0.91

20 1.01 1.00 0.87 0.99 0.74 0.73 0.82 0.90

Table: Power of the competitor divided by the power of our proposal.
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Sensitivity to frailty distribution misspecification

Alternative hypothesis

Sinusoidal Medium freq. High freq.

n ni a=0.3 a=0.5 a=1 a=1.5 a=1 a=1.5

θ = 0.5

300 5 1.03 1.01 1.01 0.98 1.10 0.91

300 20 1.00 1.00 0.92 0.93 1.10 0.91

600 5 0.98 0.99 0.99 0.99 1.01 1.00

600 20 0.94 0.98 0.96 0.97 0.98 0.93

1200 5 0.99 1.01 0.99 1.00 0.90 0.94

1200 20 1.01 1.00 0.99 0.99 0.94 0.91

θ = 2

300 5 1.10 0.89 0.86 0.97 1.00 0.98

300 20 0.90 0.91 0.89 0.86 0.99 1.00

600 5 0.88 0.92 0.94 0.97 0.93 1.01

600 20 0.85 0.90 0.94 1.01 0.93 1.01

1200 5 0.90 0.97 0.85 0.99 0.89 0.87

1200 20 0.98 1.00 0.94 0.99 0.84 0.90

Table: Power of our test with misspecified frailty distribution divided by

the power of the test with correctly specified frailty distribution.
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Clusters with varying sizes

Alternative hypothesis

Sinusoidal Medium freq. High freq.

n ni a=0.3 a=0.5 a=1 a=1.5 a=1 a=1.5

θ = 0.5

300 5 1.28 0.96 1.04 1.01 1.03 1.15

20 1.01 0.98 0.95 1.06 1.00 0.98

600 5 0.93 1.00 1.03 0.99 1.00 1.01

20 0.99 1.01 0.99 1.00 1.13 1.01

1200 5 0.96 1.01 0.95 1.00 0.97 1.16

20 0.99 1.00 1.00 1.00 1.07 1.09

θ = 2

300 5 0.81 0.97 0.93 0.93 1.32 1.10

20 1.20 0.99 1.14 1.03 1.03 1.15

600 5 0.89 1.01 1.01 1.00 0.85 1.06

20 1.04 0.98 0.98 1.00 1.07 1.07

1200 5 1.19 0.99 0.98 1.00 1.07 0.93

20 0.95 1.00 1.00 1.00 0.98 1.01

Table: Power of our test with varying cluster sizes divided by the power

with fixed cluster sizes.
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Effect of the dimension
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Figure: Effect of the dimension on the power of our test. The curves are

the percentages of rejections under the alternative for two different

settings.
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Evaluating the estimation under the alternative
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Figure: Average estimates (with 95% confidence bands) using our

nonparametric estimator based on a orthogonal representation.
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Comparison with the splines approach by Lin et al. (2012)
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Figure: Average estimates (with 95% confidence bands) using splines.
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Data example

Consider data from a randomized trial on chronic granulotomous

disease (CGD) :

q = 128 = number of patients

For each patient i :

ni = number of records (at least 1)

Yij = gap time (days) between (j − 1)-st and j-th infection

Sample size n = 203. Censoring percentage is 62% (time

interval does not finish with one infection)

Patients were randomized to either gamma interferon or

placebo

The data are shown in Appendix D2 of Fleming and Harrington

(1991). Available also in the R-package survival (cgd).
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Data example

Covariates :

Xij1 = treatment (binary)

Xij2 = pattern of inheritance (binary)

Xij3 = use of corticosteroids (binary)

Xij4 = use of prophylactic antibiotics (binary)

Xij5 = gender (binary)

Xij6,Xij7,Xij8 = hospital category (four categories from which

three binary covariates are created)

Xij9 = age (continuous)

Vaida and Xu (2000) analysed these data using a shared frailty

model
λ(t|Xij , bi ) = λ0(t) exp

( 9∑
k=1

βkXijk + bi

)
,

with bi ∼ N(0, θ).
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Data example: model and testing problem

Why shared-frailty model?

The risk of recurrent infection remains constant regardless of

the number of previous infections.

Times between infections for a patient may be correlated.

Our goal: To test whether age has indeed a linear effect (assumed
by Vaida and Xu, 2000):

H0 : λ(t|Xij , bi ) = λ0(t) exp
( 9∑

k=1

βkXijk + bi
)

H1 : λ(t|Xij , bi ) = λ0(t) exp
( 8∑

k=1

βkXijk +m9(Xij9) + bi
)
.
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Data example: estimation and testing results

Estimated coefficients under the null hypothesis :
trtmt inherit cortico prophy gender hosp1 hosp2 hosp3 age

β̂ 1.14 0.82 -1.97 0.95 -0.96 -0.27 -1.09 -0.94 -0.04

sd 0.34 0.37 0.96 0.46 0.51 0.40 0.61 0.59 0.02

lower 0.47 0.09 -3.85 0.04 -1.96 -1.06 -2.30 -2.10 -0.08

upper 1.80 1.56 -0.08 1.86 0.04 0.52 0.11 0.21 -0.01

Estimated variance of the frailty: θ̂H0
= 0.6

Estimated coefficients under the alternative hypothesis :
age

trtmt inherit cortico prophy gender hosp1 hosp2 hosp3 u1 u2 u3
β̂ 1.03 1.00 -1.94 1.13 -1.08 -0.28 -1.18 -0.91 -12.6 -12.5 -10.8

sd 0.31 0.37 0.78 0.43 0.49 0.39 0.59 0.57 4.87 6.29 4.92

lower 0.41 0.27 -3.48 0.28 -2.03 -1.04 -2.34 -2.02 -22.1 -24.8 -20.5

upper 1.64 1.73 -0.40 1.98 -0.12 0.48 -0.03 0.21 -3.01 -0.17 -1.16

Test statistic : LR = 7.168

P-value = 0.10 based on 500 bootstrap samples

⇒ We do no have evidence to reject H0 at the 5% level. Results

are not conclusive at 10% level.
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Estimated age effect under the null and the alternative
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Data example: estimated random effects
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The variable “number of previous infections” is “not significant” in

the model.

⇒ Previous infections do not increase the risk of future infections.



Conclusions

Development of a goodness-of-fit test for the functional form of the

covariate effects in a Cox model with random effects.

Approach based on the full likelihood.

Under the alternative we estimate the covariate effects

non-parametrically using orthogonal expansions.

Computations can be performed in R using available packages (e.g.

frailtySurv, phmm).

Simulations show that the proposed bootstrap calibration works well

in practice.

Simulations show that the test is not affected by the misspecification

of the frailty distribution, and the dimension of parameters.



Extensions

Some other appealing models for goodness-of-fit testing:

Accelerated failure time model with random effects:

logTij = m(Xij) + b′iZij + ϵij

Additive risk model with random effects:

λ (t|Xij , bi ) = λ0(t) +m(Xij) + b′iZij

Proportional odds model with random effects:

Pr (Y ≤ t|Xij , bi )

Pr (Y > t|Xij , bi )
= exp {α(t) +m(Xij) + b′iZij}

Explore an extension of the goodness-of-fit test of

González-Manteiga et al. (2016) under the formulation of

López-de-Ullibarri, Janssen and Cao (2012).
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