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There are several differences in qualitative behavior of gases compared to liquids, mainly: com-
pressibility and small viscosities. In general, gas bearing operates with higher velocity and smaller
clearance ratio than the liquid one. Although the gas viscosity is small (typically of order 10−5)
we rarely have to consider the turbulence, due to the small typical length (gap thickness smaller
than 1µm is not uncommon). The most common examples where the gas lubrication appears are
computer hard discs, magnetic tapes and some high precision measuring devices. Our goal is to
derive the isothermal Reynolds model for gas lubrication using the rigorous asymptotic analysis.
To derive the model we start from equations of motion governing the compressible, stationary flow
through a thin domain with thickness ε described by the shape function h:

Ωε = {x = (x′, xn) ∈ Rn ; x′ = (x1, · · · , xn−1) ∈ O , 0 < xn < ε h(x′) } ,

where O ⊂ Rn−1 is a bounded smooth domain and h : O → R is a smooth, positive func-
tion. Let Γε be the lateral boundary. We shall also need rescaled domain Ω = {(x′, yn) ∈
Rn ; x′ = (x1, · · · , xn−1) ∈ O , 0 < yn < h(x′) } . The unknowns in the model are
uε - the velocity , pε - the pressure , ρε - the density . We suppose that the fluid is vis-
cous and compressible and that the flow is stationary and isothermal. As usual, we use the ideal
gas law, which in the isothermal case reduces to the simple pressure-density relation pε = aε ρ

ε ,
where aε = Tε R > 0 is a constant. We also neglect the inertial term, i.e. we assume that the
Reynolds number Reε � 1. The total quantity of the fluid in the domain is prescribed and equal
to Mε > 0, i.e. Mε =

∫
Ωε
ρε(x) dx . The velocity of the relative motion of two surfaces is denoted

by V. Our system then reads

−µ∆uε − (λ+ µ)∇(divuε ) +∇pε = 0 , div(ρε uε) = 0 in Ωε (1)
uε = 0 for xn = ε h(x′) , uε = V for xn = 0 , uε = 0 on Γε . (2)

For our asymptotic analysis we need additional hypothesis limε→0 ε
2aε

Mε

|Ωε| = M . Using the a
priori estimates and the pressure decomposition, under some technical hypothesis, we prove:

Theorem 1 Let (uε, pε) be the solution of the equations of motion (1)-(2) and let Uε , P ε be de-
fined from it by change of variables Uε(x1, x2, y) = uε(x1, x2, ε y), P ε(x1, x2, y) = pε(x1, x2, ε y) .
Then

Uε → U ,
∂Uε

∂y
⇀

∂U

∂y
and ε2P ε → P weakly in L2(Ω) (3)

where (U,P ) is the unique solution of the compressible Reynolds equations

U = − 1
2µ

yn (h− yn) ∇x′ P + (1− yn
h

) V , P ≥ 0 ,
∫

Ω

P = M |Ω| (4)

divx′ (P
∫ h

0

U) = 0 in O , P

∫ h

0

U · n = 0 on ∂O . (5)
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