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Abstract

The most relevant ideas and results about mechanical systems defined on
Lie algebroids are presented. This was a program originally proposed by
Alan Weinstein (1996) and developed by many authors.
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Several reasons for formulating Mechanics on Lie algebroids

��� The inclusive nature of the Lie algebroid framework: under the same
formalism one can consider standard mechanical systems, systems on
Lie algebras, systems on semidirect products, systems with symme-
tries.

��� The reduction of a mechanical system on a Lie algebroid is a mechan-
ical system on a Lie algebroid, and this reduction procedure is done
via morphisms of Lie algebroids.

��� Well adapted: the geometry of the underlying Lie algebroid deter-
mines some dynamical properties as well as the geometric structures
associated to it (e.g. Symplectic structure). Provides a natural way
to use quasi-velocities in Mechanics.
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Introduction



Lagrangian systems

Given a Lagrangian L ∈ C∞(TQ), the Euler-Lagrange equations define a
dynamical system

q̇i = vi

d

dt

(
∂L

∂vi

)
=
∂L

∂qi
.

Variational Calculus.
Symplectic formalism
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Geodesics of left invariant metrics

For instance, if k is a Riemannian metric on a manifold Q , the Euler-
Lagrange equations for L(v) = 1

2k(v, v) are the equation for the geodesics
∇vv = 0

If Q = G is a Lie group and k is left invariant, then L defines a function
l on the Lie algebra g, by restriction l(ξ) = 1

2k(ξ, ξ). The equations for
geodesics are the Euler-Poincaré equations (Poincaré, 1901)

d

dt
k(ξ, ) = ad∗ξ k(ξ, ).

To obtain them: go back to the group and trivialize TG = G× g, express
the connection in terms of lefts invariant vector fields, ...

How to get the dynamic equations directly from the reduced Lagrangian?
Variational Calculus? Symplectic description?
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Rigid body

A concrete example is the rigid body:
G = SO(3).
Euler equations for rigid body motion
are of this type.

Iω̇ + ω × Iω = 0.

How to get them from the Lagrangian
L = 1

2ω · Iω?
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Systems with symmetry

If we have a group G acting on Q and
L is invariant, then the Lagrangian and
the dynamics reduces to a dynamical
system defined on TQ/G.
How to get the reduced dynamics from
the reduced Lagrangian?
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Semidirect products

In systems with parameters, when considering a
moving frame, some parameters are promoted
to dynamical variables. The Lagrangian is no
longer a function on a tangent bundle.
How to get the dynamics form this new La-
grangian?
For instance, for the heavy top, the Lagrangian
in body coordinates is

L =
1
2
ω · Iω −mglγ · e

anf the dynamical equations are

γ̇ + ω × γ = 0
Iω̇ + ω × Iω = mglγ × e.
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Holonomic Constraints

x2 + y2 − z2 = α ∈ R

Consider a foliation and a Lagrangian system.
Restrict the system to any of the leaves. For
different α we have different topologies, and we
have to perform a case by case analysis.
Is there a common Lagrangian description, in-
dependent of the value of α?
If both the Lagrangian and the foliation admit
a symmetry group ... constraint and then re-
duce? reduce and then constraint? Can we do
it directly?
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General form

In all cases the dynamical equations are of the form

d

dt

(
∂L

∂yα

)
+
∂L

∂yγ
Cγαβy

β = ρiα
∂L

∂xi

ẋi = ρiαy
α.

Is there a general geometric formalism that includes all this examples?
What properties remains? Hamiltonian Formalism?

Weinstein (1996) propose to use Lie algebroid geometry.

P. Libermann, E. M., P. Popescu, M. Popescu, JC. Marrero, M. de León,
W. Sarlet, T. Metdag, J. Cortés, JF. Cariñena, P. Santos, J. Nunes da
Costa, J. Grabowski, K. Grabowska, P. Urbanski, E. Padrón, D. Martín de
Diego, D. Iglesias, ...
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Lie Algebroids



Lie Algebroids

A Lie algebroid structure on a vector bundle τ : E →M is given by

��� a Lie algebra structure (Sec(E), [ , ]) on the set of sections of E,

σ, η ∈ Sec(E) ⇒ [σ, η] ∈ Sec(E)

��� a morphism of vector bundles ρ : E → TM over the identity, such
that

[σ, fη] = f [σ, η] + (ρ(σ)f) η,

where ρ(σ)(m) = ρ(σ(m)). The map ρ is said to be the anchor.

As a consequence of the Jacobi identity

ρ([σ, η]) = [ρ(σ), ρ(η)]
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Examples

� Tangent bundle.

E = TM ,
ρ = id,
[ , ] = bracket of vector fields.

� Tangent bundle and parameters.

E = TM × Λ→M × Λ,
ρ : TM × Λ→ TM × TΛ, ρ : (v, λ) 7→ (v, 0λ),
[ , ] = bracket of vector fields (with parameters).
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� Integrable subbundle.

E ⊂ TM , integrable distribution
ρ = i, canonical inclusion
[ , ] = restriction of the bracket to vector fields in E.

� Lie algebra.

E = g→M = {e}, Lie algebra (fiber bundle over a point)
ρ = 0, trivial map (since TM = {0e})
[ , ] = the bracket in the Lie algebra.
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� Atiyah algebroid.

Let π : Q→M a principal G-bundle.
E = TQ/G→M = Q/G, (Sections are equivariant vector fields)
ρ([v]) = Tπ(v) induced projection map
[ , ] = bracket of equivariant vector fields (is equivariant).

� Transformation Lie algebroid.

Let Φ: g→ X(M) be an action of a Lie algebra g on M .
E = M × g→M ,
ρ(m, ξ) = Φ(ξ)(m) value of the fundamental vector field
[ , ] = induced by the bracket on g.

15



Mechanics on Lie algebroids

Lie algebroid E →M .
L ∈ C∞(E) or H ∈ C∞(E∗)

��� E = TM →M Standard classical Mechanics

��� E = D ⊂ TM →M (integrable) System with holonomic constraints

��� E = TQ/G → M = Q/G System with symmetry (eg. Classical
particle on a Yang-Mills field)

��� E = g→ {e} System on a Lie algebra (eg. Rigid body)

��� E = M × g→M System on a semidirect product (eg. heavy top)
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Structure functions

A local coordinate system (xi) in the base manifold M and a local basis of
sections (eα) of E, determine a local coordinate system (xi, yα) on E.

The anchor and the bracket are locally determined by the local functions
ρiα(x) and Cαβγ(x) on M given by

ρ(eα) = ρiα
∂

∂xi

[eα, eβ ] = Cγαβ eγ .
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The function ρiα and Cαβγ satisfy some relations due to the compatibility
condition and the Jacobi identity which are called the structure equations:

ρjα
∂ρiβ
∂xj
− ρjβ

∂ρiα
∂xj

= ρiγC
γ
αβ

∑
cyclic(α,β,γ)

[
ρiα
∂Cνβγ
∂xi

+ CµβγC
ν
αµ

]
= 0.
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Lagrange equations

Given a function L ∈ C∞(E), we define a dynamical system on E by means
of a system of differential equations, which in local coordinates reads

d

dt

(
∂L

∂yα

)
+
∂L

∂yγ
Cγαβy

β = ρiα
∂L

∂xi

ẋi = ρiαy
α.

(Weinstein 1996)

The equation ẋi = ρiαy
α is the local expression of the admissibility condi-

tion: A curve a : R→ E is said to be admissible if

ρ ◦ a =
d

dt
(τ ◦ a).

Admissible curves are also called E-paths.
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Exterior differential

On 0-forms
df(σ) = ρ(σ)f

On p-forms (p > 0)

dω(σ1, . . . , σp+1) =

=
p+1∑
i=1

(−1)i+1ρ(σi)ω(σ1, . . . , σ̂i, . . . , σp+1)

−
∑
i<j

(−1)i+jω([σi, σj ], σ1, . . . , σ̂i, . . . , σ̂j , . . . , σp+1).

d is a cohomology operator d2 = 0.
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Exterior differential-local

Locally determined by
dxi = ρiαe

α

and
deα = −1

2
Cαβγe

β ∧ eγ .

The structure equations are

d2xi = 0 and d2eα = 0.
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Admissible maps and Morphisms

A bundle map Φ between E and E′ is said to be admissible if

Φ?df = dΦ?f.

A bundle map Φ between E and E′ is said to be a morphism of Lie alge-
broids if

Φ?dθ = dΦ?θ.

Obviously every morphism is an admissible map.

Admissible maps transform E-paths into E′-paths.
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Variational description



Variational description

Consider the action functional

S(a) =
∫ t1

t0

L(a(t)) dt

defined on curves on E with fixed base endpoints, which are moreover
constrained to be E-paths.

But we also have to constraint the variations to be of the form

δxi = ρiασ
α δyα = σ̇α + Cαβγa

βσγ

for some curve σ(t) such that τ(a(t)) = τ(σ(t)).

Variation vector fields are of the form

Ξa(σ) = ρiασ
α ∂

∂xi
+ [σ̇α + Cαβγa

βσγ ]
∂

∂yα
.
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E-Homotopy

(Crainic and Fernandes 2003)

Let I = [0, 1] and J = [t0, t1], and (s, t) coordinates in R2.

Definition 1 Two E-paths a0 and a1 are said to be E-homotopic if there
exists a morphism of Lie algebroids Φ: TI × TJ → E such that

Φ
(
∂

∂t

∣∣∣
(0,t)

)
= a0(t) Φ

(
∂

∂s

∣∣∣
(s,t0)

)
= 0

Φ
(
∂

∂t

∣∣∣
(1,t)

)
= a1(t) Φ

(
∂

∂s

∣∣∣
(s,t1)

)
= 0.

It follows that the base map is a homotopy (in the usual sense) with fixed
endpoints between the base paths.
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Homotopy foliation

The set of E-paths

A(J,E) =
{
a : J → E

∣∣∣∣ ρ ◦ a =
d

dt
(τ ◦ a)

}
is a Banach submanifold of the Banach manifold of C1-paths whose base
path is C2. Every E-homotopy class is a smooth Banach manifold and the
partition into equivalence classes is a smooth foliation. The distribution
tangent to that foliation is given by a ∈ A(J,E) 7→ Fa where

Fa = {Ξa(σ) ∈ TaA(J,E) | σ(t0) = 0 and σ(t1) = 0 } .

and the codimension of F is equal to dim(E). The E-homotopy equiva-
lence relation is regular if and only if the Lie algebroid is integrable (i.e. it
is the Lie algebroid of a Lie groupoid).
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Variational description

The E-path space with the appropriate differential structure is

P(J,E) = A(J,E)F .

Fix m0,m1 ∈M and consider the set of E-paths with such base endpoints

P(J,E)m1
m0

= { a ∈ P(J,E) | τ(a(t0)) = m0 and τ(a(t1)) = m1 }

It is a Banach submanifold of P(J,E).

Theorem 1 Let L ∈ C∞(E) be a Lagrangian function on the Lie alge-
broid E and fix two points m0,m1 ∈ M . Consider the action functional
S : P(J,E) → R given by S(a) =

∫ t1
t0
L(a(t))dt. The critical points of

S on the Banach manifold P(J,E)m1
m0

are precisely those elements of that
space which satisfy Lagrange’s equations.
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Morphisms and reduction

Given a morphism of Lie algebroids Φ: E → E′ the induced map
Φ̂ : P(J,E)→ P(J,E′) given by Φ̂(a) = Φ◦a is smooth and T Φ̂(Ξa(σ)) =
ΞΦ◦a(Φ ◦ σ).

��� If Φ is fiberwise surjective then Φ̂ is a submersion.

��� If Φ is fiberwise injective then Φ̂ is a immersion.

Consider two Lagrangians L ∈ C∞(E), L′ ∈ C∞(E′) and Φ: E → E′ a
morphism of Lie algebroids such that L′ ◦ Φ = L.

Then, the action functionals S on P(J,E) and S′ on P(J,E′) are related
by Φ̂, that is

S′ ◦ Φ̂ = S.
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Theorem 2 (Reduction) Let Φ: E → E′ be a fiberwise surjective mor-
phism of Lie algebroids. Consider a Lagrangian L on E and a Lagrangian
L′ on E′ such that L = L′ ◦ Φ. If a is a solution of Lagrange’s equations
for L then a′ = Φ ◦ a is a solution of Lagrange’s equations for L′.

Proof. From S′ ◦ Φ̂ = S we get

〈 dS(a) , v 〉 = 〈 dS′(Φ̂(a)) , TaΦ̂(v) 〉 = 〈 dS′(a′) , TaΦ̂(v) 〉.

Since TaΦ(v) surjective, if dS(a) = 0 then dS′(a′) = 0. ���
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Theorem 3 (Reconstruction) Let Φ: E → E′ be a morphism of Lie al-
gebroids. Consider a Lagrangian L on E and a Lagrangian L′ on E′ such
that L = L′◦Φ. If a is an E-path and a′ = Φ◦a is a solution of Lagrange’s
equations for L′ then a itself is a solution of Lagrange’s equations for L.

Proof. We have

〈 dS(a) , v 〉 = 〈 dS′(a′) , TaΦ̂(v) 〉.

If dS′(a′) = 0 then dS(a) = 0. ���
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Theorem 4 (Reduction by stages) Let Φ1 : E → E′ and Φ2 : E′ → E′′

be fiberwise surjective morphisms of Lie algebroids. Let L, L′ and L′′ be
Lagrangian functions on E, E′ and E′′, respectively, such that L′ ◦Φ1 = L

and L′′ ◦Φ2 = L′. Then the result of reducing first by Φ1 and later by Φ2

coincides with the reduction by Φ = Φ2 ◦ Φ1.
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Examples.

� Lie groups.

Consider a Lie group G and its Lie algebra g. The map Φ: TG→ g given
by Φ(g, ġ) = g−1ġ is a fiberwise bijective morphism of Lie algebroids.

For an invariant Lagrangian L(g, ġ) = L′(g−1ġ), every solution (g(t), ġ(t))
for L projects to a solution g−1ġ for L′.

Conversely, if ξ(t) = g(t)−1ġ(t) is a solution for L′, then (g(t), ġ(t)) is a
solution for L.

Thus, the Euler-Lagrange equations on the group reduce to the Euler-
Poincaré equations on the Lie algebra.
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� Lie groupoids.

Consider a Lie groupoid G overM with source s and target t, and with Lie
algebroid E. Denote by T sG→ G the kernel of Ts with the structure of
Lie algebroid as integrable subbundle of TG. Then the map Φ: T sG→ E

given by left translation to the identity, Φ(vg) = TLg−1(vg) is a morphism
of Lie algebroids, which is moreover fiberwise surjective. As a consequence,
if L is a Lagrangian function on E and L is the associated left invariant La-
grangian on T sG, then the solutions of Lagrange’s equations for L project
by Φ to solutions of the Lagrange’s equations.
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� Group actions.

G Lie group acting free and properly on a manifold Q, so that the quotient
map π : Q→M is a principal bundle.

E = TQ the standard Lie algebroid
E′ = TQ/G→M Atiyah algebroid
Φ: E → E′, Φ(v) = [v] the quotient map

Φ is a fiberwise bijective Lie algebroid morphism.

Every G-invariant Lagrangian on TQ defines uniquely a Lagrangian L′ on
E′ such that L′ ◦ Φ = L.

Thus, the Euler-Lagrange equations on the principal bundle reduce to the
Lagrange-Poincaré equations on the Atiyah algebroid.
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� Semidirect products.

Let G be a Lie group acting from the right on a manifold M .

E = TG×M → G×M where M is a parameter manifold
E′ = g×M →M transformation Lie algebroid
Φ(vg,m) = (g−1vg,mg) is a fiberwise surjective morphism of Lie alge-
broids.

Consider a Lagrangian L on TG depending on the elements of M as pa-
rameters which is invariant by the joint action L(g−1ġ,mg) = L(ġ,m),
and the reduced Lagrangian L′ on E′ by L′(ξ,m) = L(ξG(e),m), so that
L′ ◦ Φ = L.

Euler-Lagrange equations on the group, with parameters, reduce to Euler-
Poincaré equations with advected parameters.
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� Abelian Routh reduction.

A Lagrangian L ∈ C∞(TQ) with cyclic coordinates θ and denote by q the
other coordinates The Lagrangian L on TQ projects to a Lagrangian L′ on
TQ/G with the same coordinate expression. The solutions for L obviously
project to solutions for L′.

The momentum µ = ∂L
∂θ̇

(q, q̇, θ̇) is conserved and we can find θ̇ =
Θ(q, q̇, µ). The Routhian R(q, q̇, µ) = L(q, q̇,Θ(q, q̇, µ) − µθ̇ when re-
stricted to a level set of the momentum µ = c defines a function L′′ on
T (Q/G) which is just L′′(q, q̇) = R(q, q̇, c).

Thus L′′(q, q̇) = L(q, q̇,Θ(q, q̇, c))− d
dt (cθ), i.e. L and L′′ differ on a total

derivative. Lagrange equations reduce to T (Q/G).
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Symplectic formalism



Prolongation

Given a Lie algebroid τ : E → M and a submersion µ : P → M we can
construct the E-tangent to P (the prolongation of P with respect to E).
It is the vector bundle τEP : T EP → P where the fibre over p ∈ P is

T Ep P = { (b, v) ∈ Em × TpP | Tµ(v) = ρ(b) }

where m = µ(p).

Redundant notation: (p, b, v) for the element (b, v) ∈ T Ep P .

The bundle T EP can be endowed with a structure of Lie algebroid.
The anchor ρ1 : T EP → TP is just the projection onto the third fac-
tor ρ1(p, b, v) = v. The bracket is given in terms of projectable sections
(σ,X), (η, Y )

[(σ,X), (η, Y )] = ([σ, η], [X,Y ]).
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Prolongation of maps: If Ψ: P → P ′ is a bundle map over ϕ : M →M ′

and Φ: E → E′ is a morphism over the same map ϕ then we can define a
morphism T ΦΨ: T EP → T E′P ′ by means of

T ΦΨ(p, b, v) = (Ψ(p),Φ(b), TpΨ(v)).

In particular, for P = E we have the E-tangent to E

T Ea E = { (b, v) ∈ Em × TaE | Tτ(v) = ρ(b) } .

The structure of Lie algebroid in T EE can be defined in terms of the
brackets of vertical and complete lifts

[ηC, σC] = [σ, η]C, [ηC, σV] = [σ, η]V and [ηV, σV] = 0.
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Geometric Lagrangian Mechanics

Associated to L there is a section θL of (T EE)∗,

〈 θL , (a, b, V ) 〉 =
d

ds
L(a+ sb)

∣∣∣
s=0

.

Equivalent conditions:
iΓωL = dEL

with ωL = −dθL and EL = d∆L− L the energy, or

dΓθL = dL

with Γ a sode-section. (Martínez 2001)
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Poisson bracket

The dual E∗ of a Lie algebroid carries a canonical Poisson structure. In
terms of linear and basic functions, the Poisson bracket is defined by

{σ̂, η̂} = [̂σ, η]

{σ̂, g̃} = ρ(σ)g

{f̃ , g̃} = 0

for f , g functions on M and σ, η sections of E.

Basic and linear functions are defined by

f̃(µ) = f(m)

σ̂(µ) = 〈µ , σ(m) 〉
for µ ∈ E∗m.

In coordinates

{xi, xj} = 0 {µα, xj} = ρiα {µα, µβ} = Cγαβµγ .
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Hamiltonian formalism

Consider the prolongation T EE∗ of the dual bundle π : E∗ →M :

T EE∗ = { (µ, a,W ) ∈ E∗ × E × TE∗ | µ = τE∗(W ) ρ(a) = Tπ(W ) } .

There is a canonical symplectic structure Ω = −dΘ, where the 1-form
Θ is defined by

〈Θµ , (µ, a,W ) 〉 = 〈µ , a 〉.

In coordinates
Θ = µαXα,

and
Ω = Xα ∧ Pα +

1
2
µγC

γ
αβX

α ∧ X β .
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The Hamiltonian dynamics is given by the vector field ρ(ΓH) associated to
the section ΓH solution of the symplectic equation

iΓH
Ω = dH.

In coordinates, Hamilton equations are

dxi

dt
= ρiα

∂H

∂µα

dµα
dt

= −
(
µγC

γ
αβ

∂H

∂µβ
+ ρiα

∂H

∂xi

)
.

The canonical Poisson bracket on E∗ can be re-obtained by means of

Ω(dF, dG) = {F,G}

for F,G ∈ C∞(E∗).

The equations of motion are Poisson

Ḟ = {F,H}.
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Hamilton-Jacobi theory

Let H ∈ C∞(E∗) a Hamiltonian function and ΓH the Hamiltonian section.

Theorem: Let α be a closed section of E∗ and let σ = FH ◦ α. The
following conditions are equivalent

��� If m(t) is an integral curve of ρ(σ) then µ(t) = α(m(t)) is a solution
of the Hamilton equations.

��� α satisfies the equation d(H ◦ α) = 0.

We can try α = dS, for S ∈ C∞(M) (but notice that closed 6= exact, even
locally). In such case if H ◦dS = 0 then d

dt (S ◦m) = L◦σ ◦m, or in other
words

S(m(t1))− S(m(t0)) =
∫ t1

t0

L(σ(m(t))) dt
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Optimal control



Optimal Control

� Data

��� Control bundle π : B →M

��� L ∈ C∞(B) cost function

��� σ a section of E along π

� Locally

��� B = M ×U , π : (x, u) 7→ x.

��� L = L(x, u).

��� σ = σα(x, u)eα.

� Problem: Given (t0,m0) and (t1,m1), minimize∫ t1

t0

L(x(t), u(t)) dt

among the curves (x(t), u(t)) such that x(t0) = m0 and x(t1) = m1, the
curves σ(x(t), u(t)) are admissible and in a fixed E-homotopy class.

Integral curves: ẋ(t) = ρ(σ(x(t), u(t))).

Locally ẋi = ρiα(x)σα(x, u).
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Pontryagin maximum principle

Pontryagin Hamiltonian: H(x, µ, u) = 〈µ , σ(x, u) 〉 − L(x, u).

Look for σH , a section of T EE∗ along pr1 : E∗ ×M B → E∗, satisfying
the symplectic equation

iσH
Ω = dH.

Critical trajectories: Integral curves of the vector field ρ(σH).

In local coordinates,

ẋi = ρiα
∂H

∂µα
,

µ̇α = −
[
ρiα
∂H

∂xi
+ µγC

γ
αβ

∂H

∂µβ

]
,

0 =
∂H

∂uA
.
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Reduction

Theorem 5 Let ψ : B → B′ and Φ: E → E′ be fibered maps over the
same map ϕ : M →M ′, and assume that ψ is fiberwise submersive and Φ is
a morphism of Lie algebroids which is fiberwise bijective. Let L be an index
function on B′ and L′ be an index function on B′ such that L = L′ ◦ ψ
and let σH and σH′ the corresponding critical sections. Then we have that
Ψ(SH) ⊂ SH′ and

T ΦΦc ◦ σH = σH′ ◦Ψ

on the subset SH .

As a consequence, the image under Ψ of any critical trajectory for the index
L is a critical trajectory for the index L′.

Here Ψ = (φc, ψ) and φc = φ−1∗.
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Example: symmetry reduction

As an application of the above result we can consider the case of reduction
by a symmetry group G with a free and proper action on the bundle B.

E = TQ, B = B, M = Q

E′ = TQ/G, B′ = B/G, M ′ = Q/G

ψ(b) = [b], Φ(v) = [v], ϕ(q) = [q], (quotient maps)

Index L, L′([b]) = L(b) (so that L = L′ ◦ ψ)

Result: the projection of any critical trajectory for L in Q is a critical
trajectory for L′ in the reduced space Q/G.
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Note:

In the above expression, the meaning of iσH
is as follows. Let Φ: E → E′

be a morphism over a map ϕ : M →M ′ and let η be a section of E′ along
ϕ. If ω is a section of

∧p
E′∗ then iηω is the section of

∧p−1
E∗ given by

(iηω)m(a1, . . . , ap−1) = ωϕ(n)(η(m),Φ(a1), . . . ,Φ(ap−1))

for every m ∈ M and a1, . . . , ap−1 ∈ Em. In our case, the map Φ is
T pr1 : T E(E∗×MB)→ T EE∗, the prolongation of the map pr1 : E∗×M
B → E∗ (this last map fibered over the identity in M), and σH is a
section along pr1. Therefore, iσH

Ω − dH is a section of the dual bundle
to T E(E∗ ×M B).
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Discrete Mechanics



Lie groupoids

A groupoid over a set M is a set G together with the following structural
maps:

��� A pair of maps (source) s : G→M and (target) t : G→M .

��� A partial multiplication m, defined on the set of composable pairs
G2 = { (g, h) ∈ G×G | t(g) = s(h) }.

. s(gh) = s(g) and t(gh) = t(h).

. g(hk) = (gh)k.

��� An identity section ε : M → G such that

. ε(s(g))g = g and gε(t(g)) = g.

��� An inversion map i : G → G, to be denoted simply by i(g) = g−1,
such that

. g−1g = ε(t(g)) and gg−1 = ε(s(g)).
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A groupoid is a Lie groupoid if G and M are manifolds, all maps (source,
target, inversion, multiplication, identity) are smooth, s and t are submer-
sions (then m is a submersion, ε is an embedding and i is a diffeomor-
phism).
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The Lie algebroid of a Lie groupoid

The Lie algebroid of a Lie groupoid G is the vector bundle τ : E → M

where Em = Ker(Tε(m)s) with ρm = Tε(m)t.

The bracket is defined in terms of left-invariant vector fields.

Left and right translation:
g ∈ G with s(g) = m and t(g) = n

lg : s−1(n)→ s−1(m), lg(h) = gh

rg : t−1(m)→ t−1(n), rg(h) = hg

Every section σ of E can be extended to a left invariant vectorfield ←−σ ∈
X(G). The bracket of two sections of E is defined by

←−−
[σ, η] = [←−σ ,←−η ].
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Examples

� Pair groupoid.

G = M ×M with s(m1,m2) = m1 and t(m1,m2) = m2.
Multiplication is (m1,m2)(m2,m3) = (m1,m3)
Identities ε(m) = (m,m)
Inversion i(m1,m2) = (m2,m1).
The Lie algebroid is TM →M .

� Lie group.

A Lie group is a Lie groupoid over one point M = {e}. Every pair of
elements is composable.
The Lie algebroid is just the Lie algebra.
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� Transformation groupoid.

Consider a Lie group H acting on a manifold M on the right. The set
G = M ×H is a groupoid over M with s(m, g) = m and t(m, g) = mg.
Multiplication is (m,h1)(mh1, h2) = (m,h1h2).
Identity ε(m) = (m, e)
Inversion i(m,h) = (mh, h−1)
The Lie algebroid is the transformation Lie algebroid M × h→M .

� Atiyah or gauge groupoid.

If π : Q→M is a principal H-bundle, then (Q×Q)/H is a groupoid over
M , with source s([q1, q2]) = π(q1) and target t([q1, q2]) = π(q2).
Multiplication is [q1, q2][hq2, q3] = [hq1, q3].
Identity ε(m) = [q, q]
Inversion i([q1, q2]) = [q2, q1]
(An element of (Q × Q)/G can be identified with an equivariant map
between fibers)
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Discrete Lagrangian Mechanics

A discrete Lagrangian on a Lie groupoid G is just a function L on G. It
defines a discrete dynamical system by mean of discrete Hamilton prin-
ciple.

� Action sum: defined on composable sequences (g1, g2, · · · , gn) ∈ Gn

S(g1, g2, . . . , gn) = L(g1) +L(g2) + · · ·+L(gn).

� Discrete Hamilton principle: Given p ∈ G, a solution of a Lagrangian
system is a critical point of the action sum on the set of composable se-
quences with product p, i.e. sequences (g1, g2 · · · , gn) ∈ Gn such that
g1g2 · · · gn = p
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Discrete Euler-Lagrange equations

We can restrict to sequences of two elements (g, h). Since gh = p is fixed,
variations are of the form g 7→ gη(t) and h 7→ η(t)−1h, with η(t) a curve
thought the identity at m = t(g) = s(h) with η̇(0) = a ∈ Em. Then the
discrete Euler-Lagrange equations are:

〈DEL(g, h) , a 〉 =
d

dt
[L(gη(t)) +L(η(t)−1h)]

∣∣∣
t=0

= 〈 d0
(
L ◦ lg +L ◦ rh ◦ i

)
, a 〉.
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Simplecticity

In the case of the pair groupoid, it is well known that the algorithm defined
by the discrete Euler-Lagrange equations is symplectic.

In the general case of a Lagrangian system on a Lie groupoid one can
also define a symplectic section on an appropriate Lie algebroid which is
conserved by the discrete flow. From this it follows that the algorithm is
Poisson (In the standard sense).

Such appropriate Lie algebroid is called the prolongation of the Lie groupoid
PG→ G, where

PgG = Ker(Tgs)⊕Ker(Tgt)

It can be seen isomorphic to

PG = { (a, g, b) ∈ E ×G× E | τ(a) = s(g) and τ(b) = t(g) }

where τ : E →M is the Lie algebroid of G.
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Cartan forms

Given a discrete Lagrangian L ∈ C∞(G) we define the Cartan 1-sections
Θ−L and Θ+

L of PG∗ by

Θ−L(g)(Xg, Yg) = −Xg(L), and Θ+
L(g)(Xg, Yg) = Yg(L),

for each g ∈ G and (Xg, Yg) ∈ Vgβ ⊕ Vgα.

The difference between them is

dL = Θ+
L −Θ−L.

The Cartan 2-section is

ΩL = −dΘ+
L = −dΘ−L

A Lagrangian is said to be regular if ΩL is a symplectic section.
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Discrete evolution operator

For a regular Lagrangian there exists a locally unique map ξ : G→ G such
that it solves the discrete Euler-Lagrange equations

DEL(g, ξ(g)) = 0 for all g in an open U ⊂ G.

One of such maps is said to be a discrete Lagrangian evolution operator.

Given a map ξ : G → G such that s ◦ ξ = t, there exists a unique vector
bundle map Pξ : PG→ PG, such that Φ = (Pξ, ξ) is a morphism of Lie
algebroids.

A map ξ is a discrete Lagrangian evolution operator if and only if

Φ∗Θ−L −Θ−L = dL.

If ξ is a discrete Lagrangian evolution operator then it is symplectic, that
is, Φ∗ΩL = ΩL.
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Hamiltonian formalism

Define the discrete Legendre transformations F−L : G → E∗ and
F+L : G→ E∗ by

(F−L)(h)(a) = −a(L ◦ rh ◦ i), for a ∈ Es(h)

(F+L)(g)(b) = b(L ◦ lg), for b ∈ Et(g)

The Lagrangian is regular if and only if F±L is a local diffeomorphism.

If Θ is the canonical 1-section on the prolongation of E∗ then

(PF±L)∗Θ = Θ±L ,

and
(PF±L)∗Ω = ΩL.
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We also have that

DEL(g, h) = F+L(g)−F−L(h)

so that the Hamiltonian evolution operator ξL is

ξL = (F+L) ◦ (F−L)−1,

which is therefore symplectic

(PξL)∗Ω = Ω.
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Morphisms and reduction

A morphism of Lie groupoids is a bundle map (φ, ϕ) between groupoids G
over M and G′ over M ′ such that Φ(gh) = Φ(g)Φ(h).

The prolongation Pφ of φ is the map Pφ(X,Y ) = (Tφ(X), TΦ(Y )) from
PG to PG′.

Assume that we have a Lagrangian L on G and a Lagrangian L′ on G′

related by a morphism of Lie groupoids φ, that is L′ ◦ φ = L. Then

��� 〈DEL(g, h) , a 〉 = 〈DDELL
′(φ(g), φ(h)) , φ∗(a) 〉

��� Pφ∗Θ±L′ = Θ±L

��� Pφ∗ΩL′ = ΩL

64



As a consequence:

Let (φ, ϕ) be a morphism of Lie groupoids from G ⇒ M to G′ ⇒ M ′ and
suppose that (g, h) ∈ G2.

1. If (φ(g), φ(h)) is a solution of the discrete Euler-Lagrange equations
for L′ = L◦Φ, then (g, h) is a solution of the discrete Euler-Lagrange
equations for L.

2. If φ is a submersion then (g, h) is a solution of the discrete Euler-
Lagrange equations for L if and only if (φ(g), φ(h)) is a solution of
the discrete Euler-Lagrange equations for L′.
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Thank you !
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Example: Heavy top

Consider the transformation Lie algebroid τ : S2 × so(3) → S2 and La-
grangian

Lc(Γ,Ω) =
1
2

Ω · IΩ−mglΓ · e =
1
2

Tr(Ω̂IΩ̂T )−mglΓ · e.

where Ω ∈ R3 ' so(3) and I = 1
2 Tr(I)I3 − I.

Discretize the action by the rule

Ω̂ = RT Ṙ ≈ 1
h
RTk (Rk+1 −Rk) =

1
h

(Wk − I3),

where Wk = RTkRk+1 to obtain a discrete Lagrangian (an approximation
of the continuous action) on the transformation Lie groupoid L : S2 ×
SO(3)→ R

L(Γk,Wk) = − 1
h

Tr(IWk)− hmglΓk · e.
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The value of the action on a variated sequence is

λ(t) = L(Γk,Wke
tK) + L(e−tKΓk+1, e

−tKWk+1)

= − 1
h

[
Tr(IWke

tK) +mglh2Γk · e + Tr(Ie−tKWk+1) +mglh2(e−tKΓk+1) · e
]
,

where Γk+1 = WT
k Γk (since the above pairs must be composable) and

K ∈ so(3) is arbitrary.

Taking the derivative at t = 0 and after some straightforward manipulations
we get the DEL equations

Mk+1 −WT
k MkWk −mglh2( ̂Γk+1 × e) = 0

where M = W I− IWT .

In terms of the axial vector Π in R3 defined by Π̂ = M , we can write the
equations in the form

Πk+1 = WT
k Πk +mglh2Γk+1 × e.
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Examples

� Pair groupoid.

Lagrangian: L : M ×M → R Discrete Euler-Lagrange equations:

D2L(x, y) +D1L(y, z) = 0.

� Lie group.

Lagrangian: L : G→ R Discrete Euler-Lagrange equations:

µk+1 = Ad∗gk
µk, discrete Lie-Poisson equations

where µk = r∗gk
dL(e).
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� Action Lie groupoid.

Lagrangian: L : M ×H → R Discrete Euler-Lagrange equations: Defining
µk(x, hk) = d(Lx ◦ rhk

)(e), we have

µk+1(xhk, hk+1) = Ad∗hk
µk(x, hk) + d(Lhk+1 ◦ ((xhk)·))(e),

where (xhk)· : H →M is the map defined by

(xhk) · (h) = x(hkh).

These are the discrete Euler-Poincaré equations.
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� Atiyah groupoid.

Lagrangian: L : (Q × Q)/H → R. Discrete Euler-Lagrange equations:
Locally Q = M ×H

D2L((x, y), hk) +D1L((y, z), hk+1) = 0,
µk+1(y, z) = Ad∗hk

µk(x, y), (1)

where
µk(x̄, ȳ) = d(r∗hk

L(x̄,ȳ, ))(e)

for (x̄, ȳ) ∈M ×M .

One can find a global expression in terms of a discrete connection.
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Examples

� Let G be a Lie group and consider the pair groupoid G×G over G. Consider
also G as a groupoid over one point. Then we have that the map

Φl : G×G −→ G
(g, h) 7→ g−1h

is a Lie groupoid morphism, and a submersion. The discrete Euler-Lagrange
equations for a left invariant discrete Lagrangian on G × G reduce to the
discrete Lie-Poisson equations on G for the reduced Lagrangian.
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� Let G be a Lie group acting on a manifold M by the left. We con-
sider a discrete Lagrangian on G × G which depends on the variables
of M as parameters Lm(g, h). The Lagrangian is invariant in the sense
Lm(rg, rh) = Lr−1m(g, h).

We consider the Lie groupoid G×G×M over G×M where the elements in
M as parameters, and thus L ∈ C∞(G×G×M) and then L(rg, rh, rm) =
L(g, h,m). Thus we define the reduction map (submersion)

Φ : G×G×M −→ G×M
(g, h,m) 7→ (g−1h, g−1m)

where on G ×M we consider the transformation Lie groupoid defined by
the right action m · g = g−1m.
The Euler-Lagrange equations on G×G×M reduces to the Euler-Lagrange
equations on G×M .

73



� A G-invariant Lagrangian L defined on the pair groupoid L : Q×Q→ R,
where p : Q → M is a G-principal bundle. In this case we can reduce to
the Atiyah gauge groupoid by means of the map

Φ : Q×Q −→ (Q×Q)/G
(q, q′) 7→ [(q, q′)]

Thus the discrete Euler-Lagrange equations reduce to the discrete
Lagrange-Poincaré equations.
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Thank you !
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